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ABSTRACT 

Web robots or Web crawlers have become the main source of Web traffic. 

Although some bots perform well, such as search engines, other bots can perform 

DDoS attacks, posing a huge threat to websites. The project aims to develop an 

offline system that can effectively detect malicious web robots, which is not only 

conducive to network traffic cleaning, but also conducive to improving the network 

security of IoT systems and services. A comprehensive literature review for the 

years 2010-2019 was conducted to identify the research gap. The key 

contributions of the research are: 1) it provided a systematic methodology to 

address the web robot detection problem based on the log file from industrial 

company; 2) it provided an approach of feature engineering, thus overcoming the 

challenge of curse of dimensionality; 3) It made a big progress in the accuracy of 

off-line web robot detection through a holistic study on the three types of machine 

learning techniques based on real data from industry.  

Three algorithms based on Keras sequential model, random forest, and SVM, 

were developed with python to detect web robots from human visitors on the 

TensorFlow 2.0 platform. Experimental results suggested that random forest 

obtained the best performance in accuracy and training time.  

The parameters of each model were adjusted using trial and error approach. For 

the Keras sequential model, the impact of parameters such as activation function, 

training epoch and dropout on the detection performance were examined. The 

linear activation function obtained higher accuracy than sigmoid activation 

function. Training accuracy increased with the increase of training epoch and 

tended to stabilize when the training epoch reached 40. Experiments suggested 

that dropout could prevent overfitting. For random forest, the impact of the 

number of trees on the detection performance was examined. The training 

accuracy decreased slightly when the number of estimators exceeded one. For 

the SVM model, the impact of the kernel function was examined. The linear kernel 

obtained higher accuracy than the nonlinear kernel.  
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Feature importance was investigated through random forest and information gain. 

The calculation results of these two methods are consistent. Then an incremental 

approach was applied to observe the impact of features in the order of decreased 

feature importance. The accuracy of all models showed a trend of rising volatility. 

A feature could have different effects on different models, for example, when 

feature os (operating system of user machine) and app version (the version of 

the application which is running on user machine) was added to training, the 

accuracy of Keras sequential model increased, while the accuracy of random 

forest and SVM decreased slightly. When more features were added to training, 

the accuracy of random forest and SVM increased, and the accuracy of neural 

network slowly decreased. This indicates that different features could have 

different effect on different decision processes, although we have sorted the order 

of attribute importance through random forest and information gain. When top 6 

important features were used to the training of neural network, it achieved the 

highest accuracy of 100%; when the selected 22 features were added to the 

training process of random forest, it obtained the highest accuracy of 100%. This 

project uses the confusion matrix as an evaluation method, combined with 

training time, to measure the performance of a model. Although both neural 

networks and random forests can achieve 100% accuracy under certain 

conditions, when the same accuracy is achieved, the training time of random 

forests is 50% less than that of neural networks. Thus, the conclusion of this 

project is that random forest is the best model for offline detection of web robots. 

Keywords:  

Web robot, Web crawler, Sequential model, Random forest, SVM, Feature 

importance, TensorFlow 2.0. 

 

  



iii 

ACKNOWLEDGEMENTS 

Firstly, I would like to thank Dr. Hongmei He and Dr. Andrew Starr. Without their 

supervision, I may not be able to complete my research on time. They pointed 

out the direction of my research and sought opportunities for my academic 

development. When I needed any support, they always offered a helping hand 

without hesitation. 

Secondly, I want to thank Cranfield University, including Registry, Education 

Support, SASSATM-Research, and other departments who may have helped me 

even I have not remembered their name. Especially, I would like to thank the 

manufacturing department who offered financial support and a lot of other help to 

my research.  

Thirdly, I would like to give my great thanks to my parent and my family. I could 

not have studied at a wonderful university without the love and support of them. 

At the same time, in this difficult period, it is hard for me to study and live with 

peace of mind if they had not sent me their care and greetings.  

Finally, I want to thank my girlfriend and my amazing friends. They always 

showed great warmth and support to me. In this difficult time, we always 

encourage each other and be there when needed. 

  



iv 

TABLE OF CONTENTS 

ABSTRACT ......................................................................................................... i 

ACKNOWLEDGEMENTS................................................................................... iii 

LIST OF FIGURES ............................................................................................. vi 

LIST OF TABLES .............................................................................................. vii 

LIST OF EQUATIONS ...................................................................................... viii 

LIST OF ABBREVIATIONS ................................................................................ ix 

1 INTRODUCTION ........................................................................................... 10 

1.1 Web Robot .............................................................................................. 10 

1.2 Machine-Learning and Web Robot Detection ......................................... 12 

1.3 Python and TensorFlow .......................................................................... 13 

1.4 Research Motivation, Aim, and Objectives ............................................. 14 

1.4.1 Motivation and aim ........................................................................... 14 

1.4.2 Objectives ........................................................................................ 14 

1.5 Thesis Structure ...................................................................................... 15 

2 RESEARCH METHODOLOGY ..................................................................... 16 

3 LITERATURE REVIEW ................................................................................. 19 

3.1 Web Log Analysis ................................................................................... 19 

3.2 Honeypot ................................................................................................ 23 

3.3 Online Web Robot Detection .................................................................. 25 

3.4 The Identified Research Gap and Challenges ........................................ 28 

4 FEATURE ENGINEERING ............................................................................ 29 

4.1 Data Cleaning ......................................................................................... 31 

4.1.1 Handling the missing values ............................................................. 31 

4.1.2 Data transformation .......................................................................... 31 

4.2 Feature Selection .................................................................................... 32 

4.2.1 Information gain ............................................................................... 33 

4.2.2 Feature importance evaluation with random forest .......................... 33 

4.3 Getting Features Ready for Model Training ............................................ 35 

5 INVESTIGATED MODELS FOR WEB ROBOT DETECTION ....................... 36 

5.1 Keras Sequential Model .......................................................................... 36 

5.1.1 Implementation ................................................................................. 38 

5.2 Random Forest ....................................................................................... 39 

5.2.1 Implementation ................................................................................. 41 

5.3 Support Vector Machine ......................................................................... 42 

5.3.1 Linear SVM ...................................................................................... 42 

5.3.2 Non-linear SVM ................................................................................ 44 

5.3.3 Implementation ................................................................................. 45 

6 EXPERIMENTS AND EVALUATION ............................................................ 46 

6.1 Experiment Design.................................................................................. 47 

6.1.1 Experiment design and evaluation methods ..................................... 47 



v 

6.1.2 Experiment environment .................................................................. 49 

6.2 Experiments with TensorFlow Keras Sequential Model .......................... 50 

6.2.1 Experiments with two different activation functions .......................... 50 

6.2.2 Experiments with dropouts ............................................................... 51 

6.2.3 Experiments with selected features .................................................. 52 

6.3 Experiments with Random Forest ........................................................... 53 

6.3.1 Experiments with different amount of estimators .............................. 53 

6.3.2 Experiments with selected features .................................................. 54 

6.4 Experiments with SVM ............................................................................ 55 

6.4.1 Experiments with two different kernels ............................................. 55 

6.4.2 Experiments with selected features .................................................. 58 

6.5 Evaluation and Discussion ...................................................................... 59 

6.5.1 The importance of feature selection ................................................. 59 

6.5.2 Time efficiency ................................................................................. 60 

6.5.3 Discussion ........................................................................................ 61 

7 CONCLUSIONS AND FUTURE WORK ........................................................ 63 

7.1 Conclusions ............................................................................................ 63 

7.2 Future Work ............................................................................................ 65 

REFERENCES ................................................................................................. 66 

APPENDIX ....................................................................................................... 70 

 

  



vi 

LIST OF FIGURES  

Figure 1-1 Bad bot vs. good bots vs. human traffic 2018 (Distil Networks, 2019)
 .................................................................................................................. 10 

Figure 3-1 Data flow diagram of the crawler detection system (Priyanka et al., 
2016) ......................................................................................................... 24 

Figure 3-2 PathMarker architecture (Wan et al., 2019) .................................... 25 

Figure 3-3 PathMarker suppressing distributed crawler (Wan et al., 2019) ...... 27 

Figure 3-4 Evaluation scores of the sequential classification approach (Cabri et 
al., 2018) .................................................................................................... 27 

Figure 4-1 Feature importance ......................................................................... 34 

Figure 5-1 Structure diagram of Keras sequential model ................................. 36 

Figure 5-2 Schematic diagram of dropout (Srivastava, et al., 2014) ................. 37 

Figure 5-3 Flowchart of the algorithm using Keras sequential model ............... 38 

Figure 5-4 The internal structure of Keras sequential model ............................ 38 

Figure 5-5 Flowchart of the algorithm using random forest .............................. 41 

Figure 5-6 Maximum-margin hyperplane and margins for an SVM .................. 42 

Figure 5-7 Kernel machine ............................................................................... 44 

Figure 5-8 Flowchart of the algorithm using SVM ............................................. 45 

Figure 6-1 Epoch accuracy with different activation function ............................ 50 

Figure 6-2 Epoch accuracy with different percentage of dropout applied ......... 51 

Figure 6-3 Epoch accuracy with different amount of features........................... 52 

Figure 6-4 Decision region of SVM using different kernels ............................... 56 

Figure 6-5 Accuracy of models without feature selection ................................. 59 

Figure 6-6 Accuracy of models with feature selection ...................................... 59 

Figure 6-7 Average training time using different number of features ................ 60 

 

Figure A-1 Raw dataset. ................................................................................... 70 

Figure A-2 Dataset after pre-processing .......................................................... 71 
  



vii 

LIST OF TABLES 

Table 2-1 Overview of the research methodology ............................................ 16 

Table 3-1 Comparison between different web robot classification methods ..... 21 

Table 3-2 Performance of the models using the simple, the semantic and both 
simple and semantic features (Lagopoulos et al., 2018) ........................... 22 

Table 3-3 Performance of C4.5 and SVM (Gržinić, Mršić and Šaban, 2015) ... 24 

Table 3-4 Confusion matrix of PathMarker (Wan et al., 2019).......................... 26 

Table 3-5 Challenges in web robot detection ................................................... 28 

Table 4-1 Field definition of the dataset ........................................................... 30 

Table 4-2 Number of columns with each data types ......................................... 32 

Table 6-1 Experiment design............................................................................ 47 

Table 6-2 Confusion matrix .............................................................................. 48 

Table 6-3 Hardware and Software configurations ............................................ 49 

Table 6-4 Parameters of each model ............................................................... 49 

Table 6-5 Confusion matrixes of random forest with different number of trees 53 

Table 6-6 Confusion matrixes of one-estimator random forest with different 
number of features .................................................................................... 54 

Table 6-7 Confusion matrixes of SVM using different kernels .......................... 57 

Table 6-8 Confusion matrixes of SVM with linear kernel with different number of 
features ...................................................................................................... 58 

 

  



viii 

LIST OF EQUATIONS 

(4-1) .................................................................................................................. 33 

(4-2) .................................................................................................................. 33 

(4-3) .................................................................................................................. 33 

(5-1) .................................................................................................................. 40 

(5-2) .................................................................................................................. 40 

(5-3) .................................................................................................................. 43 

 

  



ix 

LIST OF ABBREVIATIONS 

IT Information Technology 

ML Machine Learning 

NN Neural Network 

SVM Support Vector Machine 

RF Random Forest 

WBA Weak Bayesian Approach 

SBA Strong Bayesian Approach 

BDT Boosted Decision Tree 

NNGE Non-Nested Generalized Exemplar 

CSS Cascading Style Sheets 

CV Computer Vision 

 

 



 

10 

1 INTRODUCTION 

1.1 Web Robot 

Web robots, also known as spiders, crawlers, walkers, wanderers and harvesters, 

are computer programs that travel across the Internet and collect data 

autonomously (Schmidt, 2015; Udapure, Kale and Dharmik, 2014).  

The most popular way for people to grasp information from the web is by 

searching with a search engine (Udapure, Kale and Dharmik, 2014). Search 

engines like Google use web robot to index web pages to be used in their page 

ranking process (Algiriyage, 2017). Except for search engines, web robots can 

be used to collect data for analysis, monitoring public opinions or even booking 

tickets. 

Recent academic report suggests web robots accounted for 60% http requests 

on the internet (Zabihimayvan et al., 2017). According to the 2019 Bad Bot Report 

shown in Figure 1-1, which was published by Distil Networks. Web robots 

accounted for 37.9 percent of all online traffic during 2018 among which 20.4 

percent are bad (Distil Networks, 2019). 

 

Figure 1-1 Bad bot vs. good bots vs. human traffic 2018 (Distil Networks, 2019) 

The illegitimate robots can perform some activities that violate the robot.txt file, 

collect sensitive information and consume large amounts of bandwidth by staging 

Distributed Deny of Service (DDoS) attacks. This could cause serious loss to 

companies that rely on web traffic (Catalin and Cristian, 2017). The behaviour of 

web robots might be different on different websites. Menshchikov et al. (2017) 

analysed the behaviour of web robots on different websites.   

62%20%

18% Human

Bad Bot

Good Bot
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According to a report from robotattaack.org, between 2012 and 2018, more than 

20 companies received the effects of robot attacks. These include well-known 

companies such as Cisco and IBM. Specifically, the Cisco products affected 

include WebEx Business Suite (including Meeting Center, Training Center, Event 

Center, Support Center), and services including Cisco ACE 4710 Application 

Control Engine Appliance. These attacks were promptly repaired without causing 

serious damage. However, this still suggests that any traffic-centric site is likely 

to be threatened by a robot attack. For IBM, more than 16 software was attacked, 

and the main action of robots’ attack is exposing sensitive information to 

unauthorized actors. 

With the development of Internet of Things technology, network traffic security 

has become an even more challenging issue, it is also a critical challenge for IoT 

enabled systems and services. Effectively detecting malicious web robots will 

benefit not only for the security of network traffic but also for the IoT enabled 

systems and services. 
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1.2 Machine-Learning and Web Robot Detection 

ML is the algorithms and statistical models that computer systems use to 

complete certain tasks without explicit instructions. Instead, ML algorithms rely 

on patterns and inference. It is a subset of AI (Artificial Intelligence). ML 

algorithms  can build a mathematical model based on given data, or so called 

“training data”, then the models can make predictions when similar data is fed 

into them (Koza et al., 1996; Bishop, 2006). ML are widely used in various 

scenarios, such as spam detection and auto pilot, in which it is extremely difficult 

to develop a conventional algorithm for the task. 

ML algorithms could be categorized into several broad themes, such as 

unsupervised learning, supervised learning, reinforcement learning and so on. 

The supervised learning algorithms will build a mathematical model from a 

dataset which contains both features and labels (Russell et al., 2010). While in 

unsupervised learning, the algorithm builds a mathematical model from a dataset 

that contains only features.  

Doran and Gokhale (2011) classified web robot detection techniques to four 

themes: (1) Syntactical log analysis; 2) Traffic pattern analysis; (3) Analytical 

learning techniques; (4) Turing test systems. In the recent decade, three major 

themes, such as offline web robot detection based on web log analysis with 

machine-learning techniques (Menshchikov et al., 2017; Doran et al., 2011; Ma 

et al., 2017; Rovetta et al., 2020; Iliou et al., 2019; Doran et al., 2016), honeypots 

(McKenna, 2016; Priyanka et al., 2016; Abdullahi et al., 2019; Selvaraj et al., 

2015), and online web robot detection (Guo et al., 2019; Balla et al., 2011), were 

popularly investigated in the literature. 
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1.3 Python and TensorFlow 

Python is an interpreted, high-level, general-purpose programming language. 

Python’s design philosophy emphasizes code readability with its notable use of 

significant whitespace. It supports multiple programming paradigms and it is often 

described as a “batteries included” language due to its comprehensive standard 

library (Kuhlman et al., 2004; Python Software Foundation, 2012). Python has a 

wealth of libraries for data science and machine learning. For example, numpy, 

which is an efficient library to deal with numeric data; pandas, which is suitable 

for string process; sklearn, which contains various classical machine-learning 

algorithms (e.g. SVM, Decision Tree), Boosting algorithms (e.g. Adaboost), and 

Bagging algorithms (e.g. random forest). 

TensorFlow is an open source software library that uses data flow graphs for 

numerical calculations. The nodes in the graph represent mathematical 

operations, and the edges in the graph represent the multidimensional arrays 

(tensors) passed between these nodes. With this flexible architecture, you can 

deploy computing work to one or more CPUs or GPUs in desktop devices, 

servers, or mobile devices through an API. TensorFlow was originally developed 

by researchers and engineers in the Google Brain team (belonging to Google's 

machine intelligence research department) and was designed to be used for 

machine learning and deep neural network research. However, the system has 

good versatility and can also be applied to many other fields (2018).  
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1.4 Research Motivation, Aim, and Objectives 

1.4.1 Motivation and aim 

The motivation for this project can be summed up as follows: Today's Internet is 

growing rapidly, with more and more companies with traffic at its core, yet 

malicious bots can attack such corporate websites, affecting their business and 

even suffering serious financial losses. At the same time, websites attacked by 

malicious reptiles often block normal human access, which seriously affects their 

browsing activities. Besides, they waste bandwidth resources, mislead people, 

and they can trick search engine to gain unfair search results (T. H. Sardar and 

Z. Ansari, 2014). If such a network robot is detected and blocked in a timely 

manner, the normal user's online experience will be greatly improved. So, this 

project was started. The project aims to develop an offline system that can 

effectively detect malicious web robots, which is not only conducive to network 

traffic cleaning, but also conducive to improving the network security of IoT 

systems and services. The key contributions of the research are: 1) it provided a 

systematic methodology to address the web robot detection problem based on 

the log file from industrial company; 2) it provided a methodology for feature 

selection, overcoming the challenge of curse of dimensionality; 3) it investigated 

three types of machine learning techniques based real data from industry, making 

a big progress in the accuracy of off-line web robot detection. 

1.4.2 Objectives 

To achieve the goal, this research will implement the following objectives: 

1) To identify research gaps through literature review. 

2) To find out important features in web log files determine the identity of web 

robots. 

3) To develop cutting-edge machine learning techniques, such as neural 

network, random forest, and SVM algorithms for web robot detection. 

4) To assess and compare the developed machine learning models for web 

robot detection. 
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1.5 Thesis Structure 

The rest of the thesis is structured as follows: 

Chapter 2: Research methodology 

This chapter illustrates what methods were employed in each phase of the 

research. 

Chapter 3: Literature review 

This chapter gives a comprehensive review of existing works that related to web 

robot detection and identifies research gap. 

Chapter 4: Feature engineering 

This chapter shows how the dataset was pre-processed and how the feature 

importance was calculated. 

Chapter 5: Investigated model for web robot detection 

This chapter explains the mathematical principles of the investigated models and 

their implementation. 

Chapter 6: Experiments and evaluation 

This chapter demonstrates the experimental process using the investigated 

model, after which the experimental results are evaluated and discussed. 

Chapter 7: Conclusion and future work 

This chapter describes the key findings and contributions to knowledge. There 

are also ideas for future work.  
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2 RESEARCH METHODOLOGY 

This section introduces the methods and tools used in this research program. 

Table 2-1 illustrates the research methodology. 

Table 2-1 Overview of the research methodology 

Literature Review (Hanlin 
et al., 2020) 
Chapter 3 

• Reviewing the literatures related to web robot 
detection; machine-learning 

• Taking a close look to the existing web robot 
detection strategies. 

• Identifying research gap 

Feature Engineering 
Chapter 4 

• Data cleaning: Inspecting the industrial data; deleting 
the obviously irrelevant fields, Dealing with missing 
values 

• Data editing: Normalize data that cannot be 
recognized by models. 

• Feature selecting: Two methods were used to 
calculate the influence of each features on the 
classification results. 

• Splitting the dataset into two subsets: training data 
and test data 

Investigated Model for 
Web Robot Detection 

Chapter 6 

• Inspecting 5 types of models/ algorithms that will be 
used in this project, including: decision tree, SVM, 
Boosting, Bagging and TensorFlow Keras sequential 
model. 

• Part of training data was used to train the mentioned 
models. 

• Selecting models that has the best and the worst 
results for further experiments 

Experiments and 
Evaluation 
Chapter 7 

• Experiment are conducted using all features and 
using selected features 

• Training data was fed to each model that were 
trained with different parameters. 

• Test each model with test dataset and evaluate the 
test results. 

Conclusion and Future 
Work 

Chapter 8 

• Random forest is the most accurate and the fastest 
algorithm for distinguishing the robots from humans by 
web log-based-learning. 

• Further research could be undertaken to carry out 
this study to focus on online detection, web robot 
detection devices, web robot datasets, and cloud-
based web robot detection.  
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This research project includes five stages. They are: 

Stage 1: Literature Review 

To identify the research gap review in web robot detection, a comprehensive 

literature was conducted. The review covers main works in the last decade. 

Database used include Google Scholar, Springer, IEEE Xplore Library, Wikipedia 

and so on. 

The documents that have been viewed are sorted according to their views. The 

views of these documents were refined and summarized, and an attempt was 

made to find their shortcomings. Thus, identified the research gap. As the final 

step, summary of the literature is to identify the research gap of web robot 

detection. 

Stage 2: Feature engineering 

The dataset is a comma separated value file which has columns and row when 

opened by Microsoft Excel. Each column is a feature in machine learning 

progress. At this stage, Python machine-learning libraries (numpy, 

pandas, TensorFlow, and sklearn) were imported and used to pre-processing 

the data.  

The first step of data pre-processing includes fill in the missing values, deleting 

the duplicated values, normalize numerical values and using hash to transform 

string values into vectors.  

In the second step, random forest and Information Gain were used to evaluate 

the importance of each feature. Feature importance is a key factor for some 

algorithms. 
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Stage 3: Models and implementation 

This stage focuses on the mathematical theory of investigated models and how 

they were implemented in this project. 

Stage 4: Training, Test and Evaluation 

At this stage, the dataset will be divided into three parts: training set, validation 

set and test set. Then some parameters of investigated models will be adjusted 

for the training process. After training, decision region, confusion matrix, and 

time-efficiency test were implied to evaluate models’ performance. 

Stage 5: Conclusion and Future Work 

At this stage, the key findings and conclusions were listed according to the 

research objectives. random forest algorithm obtained the highest accuracy and 

the fastest training speed. 
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3 LITERATURE REVIEW 

This chapter introduces a literature review covering the past 10 years. These 

documents are all related to web robot detection. This part contains three topics, 

web log analysis, honeypot technology and online web robot detection. For each 

topic, this review compares the performance of the systems proposed in the work, 

listing their respective advantages and their shortcomings. Finally, summarize 

their performance, and on this basis, put forward the main challenges and 

research gaps. 

3.1 Web Log Analysis 

This section focuses on the use of web log analysis methods to detect web 

crawlers. In this section, a total of five types of web robot detection methods are 

introduced, all of which are based on offline web log analysis. 

Rajabnia and Jahan (2016) proposed a hybrid fuzzy inference system based on 

NNGE (non-nested generalized exemplar) algorithm. In the proposed NNGE 

algorithm, only the main features are used to train the model. In addition, a hybrid 

inference system was developed in this work to infer the possibility that the web 

log came from a robot. 

Bayesian network is a popular method in web robot detection. Suchacka and 

Sobków (2015) used a Bayesian approach to robot detection based on pattern of 

user sessions. In their work the performance of Weak Bayesian Approach (WBA) 

and Strong Bayesian Approach (SBA) were compared. Under normal 

circumstances, the accuracy of SBA is better than that of WBA. However, how to 

choose these two methods depends on the tolerance for errors. If a small amount 

of errors is allowed in the usage scenario, one can use SBA, otherwise one can 

only use WBA. 

Sisodia et al. (2015) believed the result of web server log analysers are not very 

reliable due to the highly inflated input log files. They proposed an agglomerative 

approach combining web logs with actual visitors’ knowledge extraction, and 

evaluated the performance of these ensemble learners with recall, precision, and 
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F1 measure. The precision for the web robot sessions with ensemble classifiers 

is more than 80% in the first experiment and 98% in the second experiment. 

Haidar (2017) developed a two-class Boosted Decision Tree (BDT) for web robot 

detection based on website navigation behavior analysis. In addition to DBT, his 

works also involve SVM, neural network and random forest. These were used in 

controlled trials. Two websites (named wheelers and wherever) provide the data 

needed for this experiment. The biggest advantage of this system is that it can 

be retrained according to the evolution of web robot types. The experiment results 

are shown in Table 3-1. The fields in Table 3-1 are defined as follows: 

• TP: true positive, is the percentage of positive cases correctly classified as 

belonging to the positive class. 

• FP: false positive, is the percentage of negative cases misclassified as 

belonging to the positive class. 

• Precision: (also called positive predictive value) is the fraction of relevant 

instances among the retrieved instances: Precision = TP / (TP + FP) 

• Recall: (also known as sensitivity) is the fraction of the total amount of 

relevant instances that were retrieved: Recall = TP / (TP + FN) 

• F1-score is a measure of a test's accuracy. It considers both the precision 

and the recall of the test to compute the score, and it is the harmonic mean 

of the precision and recall: F1 = 2 × Precision × Recall / (Precision + Recall) 
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Table 3-1 Comparison between different web robot classification methods 

Lagopoulos et al. (2018) proposed a semantic approach for web robot detection. 

They designed this system based on a basic assumption, that is, web robots will 

randomly grab the content they encounter, but humans will follow a topic to 

access related web content.  

Typical features extracted from sessions includes: 

• Total Requests 

• Session Duration 

• Average Time: average time between two consecutive requests. 

• Standard Deviation Time: the standard deviation of the time between two 

consecutive requests. 

• Repeated Requests: a request for an already visited page using the same 

HTTP method as the previous one. 

• HTTP requests: four features, each containing the percentage of requests 

associated with one of the following HTTP response codes: Successful 

(2xx), Redirection (3xx), Client Errors (4xx) and Server Errors (5xx). 

Classification 

Methods 

Source of Data No. of 

Selected 

Features 

Precision Recall F1-score Accuracy 

NNGE-fuzzy 

Inference 

system 

Pars Web 

Server 4 0.9931 0.9931 0.9931 0.993 

SBA Real E-

commerce Site 
20 N/A N/A N/A 0.931 

Agglomerative 

Approach 

Unclear 
23 0.9800 0.9800 0.9800 N/A 

Random Forest Wheelers / 

Whereleb 
Unknown 0.828 0.739 0.756 0.797 

BDT Wheelers 496 0.920 0.765 0.815 0.831 

Whereleb 472 0.916 0.502 0.601 0.731 
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• Specific Type Requests: The percentage of requests of a type over the 

number of all requests. This feature is application dependent. 

While the semantic features extracted from a session are: 

• Total Topics (TT): The number of topics with non-zero probability. 

• Unique Topics (UT). The number of unique topics with non-zero 

probability. 

• Page Similarity (PS). The ratio of unique topics with non-zero 

probability over all the topics with non-zero probability. 

• Page Variance (PV). The semantic variance of the pages of a session. 

• Boolean Page Variance: It is a Boolean version of PV. 

The experiments were carried out with four different models: an SVM with an RBF 

kernel (RBF), a gradient boosting (GB) model, a multi-layer perceptron (MLP), 

and an eXtreme Gradient Boosting (XGB) model. From Table 3-2, it can be seen 

that RBF achieved the best performance when using semantic features; MLP 

performed relatively poorly; GB and XGB achieved the best performance when 

both semantic features and simple features were used at the same time; 

(Lagopoulos, Tsoumakas and Papadopoulos, 2018). 

Table 3-2 Performance of the models using the simple, the semantic and both 

simple and semantic features (Lagopoulos et al., 2018) 

Performance 
Indicator 

Feature sets RBF MLP GB XGB 

 Simple 0.655 0.784 0.907 0.905 

F1-score Semantic 0.848 0.749 0.848 0.846 

 Both 0.648 0.816 0.918 0.917 

 Simple 0.651 0.768 0.900 0.898 

Accuracy Semantic 0.848 0.771 0.845 0.841 

 Both 0.651 0.801 0.913 0.912 

 Simple 0.583 0.743 0.898 0.896 

G-mean Semantic 0.847 0.767 0.843 0.839 

 Both 0.565 0.781 0.912 0.911 
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3.2 Honeypot 

Honeypot is represented as an invisible link or vulnerable web page that 

intentionally designed by developers to mislead web robots. A human cannot see 

the links or other resources that have been hidden. However, a web crawler, 

looking at the source code, does not check the visibility before requesting them. 

Based on this assumption, McKenna (2016) proposed a strategy to detect and 

classify web robots with honeypots. He used a CSS rule named display: none to 

construct hidden contents. Besides, they built a sand trap, which implements a 

server-side PHP script to catch crawlers. This system will also detect whether a 

certain web robot complies with the constraints of robot.txt. If it complies, the 

system will classify it as a good robot, otherwise it will mark it as a bad robot. But 

his experiment did not distinguish between good robots and bad robots as 

expected In his final conclusion, he indicated that pure honeypot technology is 

not suitable for direct web robot detection and classification, because good robots 

may also be misclassified as bad ones. (McKenna, 2016). 

In 2015, Gržinić and his colleagues developed a data collection system called 

Lino. This system will simulate an unsafe web page to attract web robots. For the 

collected data, select the characteristics. And use the data set to train the 

decision tree C4.5 and SVM model. Both models were used in two sets of 

experiments. In Experiment 1, only the selected features were used in the training 

process. In Experiment 2, in addition to using the selected features, two additional 

features were added, the country and the customer's ASN. Experiment results 

are shown in Table 3-3 

With Lino they selected top 5 features that dominate the dataset including: 

• Post data, which shows us whether the client has filled/not filled the fake 

form in the Lino system. 

• Session change, which shows us if user, during the session, has changed 

the session identifier or not. 

• Session duration, duration of the session in seconds. 

• Robots, which shows us whether the user accessed /not accessed to the 

robots.txt file, which defines the rules of robot conduct. 
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Table 3-3 Performance of C4.5 and SVM (Gržinić, Mršić and Šaban, 2015) 

 Class TP FP F1  AUC 

C 4.5 Experiment #1 
Human 
Robot 

0.177 
1 

0 
0.823 

0.301 
0.972 

0.773 
0.773 

C 4.5 Experiment #2 
Human 
Robot 

0.793 
0.998 

0.002 
0.207 

0.872 
0.992 

0.985 
0.985 

SVM Experiment #1 
Human 
Robot 

0.625 
1 

0 
0.735 

0.419 
0.979 

0.801 
0.801 

SVM Experiment #2 
Human 
Robot 

0.962 
0.998 

0.006 
0.042 

0.942 
0.997 

0.976 
0.978 

The flaw of this algorithm is that the false positive rate is too high. In other words, 

many human users may be marked as web robots. (Gržinić, Mršić and Šaban, 

2015). 

Priyanka et al. (2016) employed similar strategy to detect malicious web robot. 

However, honeypot was utilized in a different way. The flow chart of the system 

is shown in Figure 3-1. This system was designed to be deployed on the server 

side. This system uses a combination of honeypot technology and an intrusion 

detection system. 

 

Figure 3-1 Data flow diagram of the crawler detection system (Priyanka et al., 2016) 
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Figure 3-1 shows that the web-side application will do two things at the same time. 

Transaction A is to send the webpage traffic log to the intrusion detection system 

for analysis. If the analysis result is abnormal, the producer of a certain log is 

induced into the honeypot and analyzed in the honeypot whether he is an internal 

attacker or an external attacker. Transaction B is: when the detection result of the 

intrusion detection system in transaction A is no abnormal, the information of the 

web log and the information of the server log are combined to create an extended 

log, and then the extended log is subjected to session extraction, feature 

extraction, and session labeling. And divide the log file into a training set and a 

test set, and then perform classification operations to distinguish malicious 

crawlers from non-malicious crawlers. 

3.3 Online Web Robot Detection 

Most of the existing web robot detection systems are offline web log analysis. 

Few systems can detect web robots online.(Cabri et al., 2018). In 2019, Wan et 

al. (2019) proposed an online web robot detection system called PathMarker. It 

can trace the page that leads to the access to an URL by adding a marker to the 

URL and identify the user, who accesses to this URL. SVM was utilized to 

distinguish malicious web crawler from normal users. Experimental results 

showed the proposed system could successfully identify 96.74% crawlers’ long 

sessions and 96.43% normal users’ long sessions. The architecture of 

PathMarker is shown in Figure 3-2. 

 

Figure 3-2 PathMarker architecture (Wan et al., 2019) 
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PathMarker's workflow consists of two parts: Preprocessing and Real-time 

detection. In preprocessing period this system will add a tag to some URLs in the 

page. when. Then the system will create an extended access log table containing 

IP address, visited URL, timestamp, and extended information. In real-time 

detection period,  First, extract the features of the web page request and send 

these features to its unique A and B subsystems, and finally send the output of 

these two subsystems to CAPTCHA verification to finally determine the identity 

of the requester. 

Experimental results are shown in the Table 3-4. Type 0 stands for human users. 

Type 1, 2, and 3 stands for breadth-first crawlers, depth-first crawlers, and 

random-like crawlers. The system could successfully identify 96.74% crawlers’ 

long sessions and 96.43% normal users’ long sessions.  

Table 3-4 Confusion matrix of PathMarker (Wan et al., 2019) 

Original type Classify as 0 Classify as 1 Classify as 2 Classify as 3 

0 96.43% 0% 3.57% 0% 

1 0% 100% 0% 0% 

2 0% 6.25% 93.75% 0% 

3 1.51% 1.77% 0% 96.72% 

Except for web robot identification, Wan also conducted experiments to inspect 

the impact PathMarker has on distributed crawlers. They take the crawling 

efficiency of a distributed web robot with only one worker as a reference standard 

when the PathMarker system is not used. Figure 3-3 illustrates the relationship 

between the crawling efficiency of a single worker and the total number of workers 

when the PathMarker system is applied. 
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Figure 3-3 PathMarker suppressing distributed crawler (Wan et al., 2019) 

This figure shows that when the PathMarker system is used, if there is only one 

worker in the distributed web pages and robots, then its crawling efficiency will 

not be greatly affected. However, as the number of workers increases, the 

efficiency of each worker will be increasingly affected. When the number of 

workers reaches 100, the work efficiency of each worker is less than half of their 

expected efficiency.  

In the same year, Cabri et al. (2018) proposed a novel approach for binary 

classification of a multivariate data stream incoming on a web server. Deep neural 

networks and Wald’s sequential Probability Ratio Test were utilized to represent 

the relation between subsequent HTTP requests. Results showed that the 

proposed approach could detect robots with a high accuracy and had slight 

impact on human visitors. Figure 3-4 shows that the developed system could 

achieve stable Precision (0.979), Accuracy (0.963), F1 (0.959) and Recall (0.940) 

after the number of requests reached 8. 

 

Figure 3-4 Evaluation scores of the sequential classification approach (Cabri et al., 

2018) 
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Figure 3-4 shows that as the number of requests increases, the recall rate of the 

system is low, and the accuracy is high. Using the formula of Recall and Precision 

(mentioned in 3.1) to analyze the experimental results, it shows that the FN rate 

of this system is greater than the FP rate, which in turn indicates that this system 

is more inclined to classify web robots as normal users.  

3.4 The Identified Research Gap and Challenges 

A review of the relevant literature shows that the existing methods have their 

advantages and disadvantages. This section summarizes the advantages and 

disadvantages mentioned above. This leads to the challenges and research gaps 

in the field of web robot detection, which is listed in Table 3-5.  

Table 3-5 Challenges in web robot detection 

Detection methods Challenges 

Web log analysis 
• Curse of dimensionality (D. Stevanovic et al., 2012). 
• Positive case labelling is a critical challenge (D. Doran and 
S. S. Gokhale, 2011).  

• Web log analysis systems cannot detect and block web 
robots in real-time (A. Mason et al., 2019). 

• The detection accuracy is not high enough.  

Honeypot 
• It could drop the performance of a web browser (Gržinić et 
al., 2015). 

• Normal users could be fooled too (Gržinić et al., 2015). 

• Honeypot defence techniques can be thwarted if web robots 
are employing certain countermeasures (McKenna, 2016). 

Online web robot 

detection 

• Uncertainty of web robot situations (Cabri et al.,2018). 

• Poor session labelling (A. Mason et al., 2019). 

• Unknown web robots. 

• The real-time performance of online web robot detection 
system. 

• The diversity of web robots. 

According to the results of the literature review, the current research status of 

web robots can be summarized as follows: First, most of the existing systems 

detect web robots based on offline web log analysis. Although these methods 

have achieved considerable accuracy, they cannot detect web crawlers in real 

time. Second, honeypot technology is not recommended for direct detection of 

web robots. Instead, it can be used as a good data collector. Third, the accuracy 

of some online detection systems is generally lower than that of offline detection 
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systems, and most online monitoring systems are only effective for certain types 

of crawlers. 

Through this review, we can draw conclusions: First, some specific algorithms or 

models are only suitable for specific samples, so the choice of model will have a 

great impact on the detection results. Second, the choice of features will also be 

crucial to the test results. Third, to get a good understanding of the performance 

of an algorithm or system, a variety of evaluation methods should be adopted. 

When researching related topics, you should first consider the browsing 

experience of web users. In other words, the system used to detect web crawlers 

online should not have a significant impact on the loading speed of web pages. 

In the latest research, there is a method for online detection of web robots. It is 

to study the relationship between each request of a certain user in a session, and 

then determine the identity of the user. For future study, it is demanded to design 

and develop high performance and highly efficient online web techniques or 

methods for detecting web robots and/or distributed web crawlers. This is 

required by “Security by Design” for Industry 4.0. 

 

4 FEATURE ENGINEERING 

The dataset for the project comes from an Internet company whose business 

area is local living services. The original datasets are two comma-separated-

value (csv) files, one of which contains 1000 human traffic records, and the other 

contains 1000 web crawler traffic records. The dataset has 43 columns among 

which 42 are features and 1 column is label. The outlook and the field definition 

of the dataset is shown in the Table 4-1 below. Note that the definition of some 

features may be somewhat vague, as this involves the interests of the company. 
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Table 4-1 Field definition of the dataset 

Field name Definition 
_mt_datetime log generation time 
_mt_servername log generation server 
_mt_appkey log generated service appkey 
_mt_leve log level 
_mt_thread the thread which generated the log 
_mt_action logger name generated by the log 
_mt_message log content 
request_id request id 
request_time request time 
union_id user device tag 
user_id user id 
Os operating system of user machine 
app_version application version number 
Mac no data due to permission problems 
page _city_id page city id 
locate_city_id target city id 
Lat Latitude 
Lng Longitude 
page_index page order, counting from 0 
Offset page offset 
page_size length of each page 
Stock number of ads requested 
page_id the page ID of the requested ad slot 
lx_page_id the actual page ID of the requested ad 
Channel ad request channel 
channel_source distinguish between search requests on the homepage or 

channel page 
area_id area id 
cate_id front desk category id 
Keyword search keyword 
query_type query type 
slot_id ad slot id 
intent_type intent type of request 
Extensions extended field 
cate_ids request the front desk category ids, multiple id stitching 
query_analysis keyword understanding result JSON 
search_request original request 
search_info search Information 
ab_trace_tag experiment id 
slot_ids request ad slot ids 
dt date 
hour hour 
ctime time 
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In this project, a Python library named pandas was used to pre-process the data 

for further experiment.  

4.1 Data Cleaning 

The original dataset has 43 columns among which 42 are features and 1 column 

is label. However, many columns have the same meaning, or the other case is 

many columns have too much null values, which may bring too much extra 

calculation or causing overfitting when training the model. If users think the data 

is messy, they are less likely to believe that the mining results based on this data, 

that is, the output results are unreliable. The main idea of data cleaning is to 

"clean up" the data by reducing missing values, smoothing noisy data, deleting 

outliers, and resolving data inconsistencies. 

4.1.1 Handling the missing values 

The methods for dealing with these missing values are mainly based on the 

distribution characteristics of the variables and the importance of the variables, 

the amount of information and the ability to predict. The following operations are 

performed in this project to handle missing values: 

• Deleting a column: if a column has a high rate of null value (greater than 

80%), and it has a minor importance, the column will be deleted. 

• Statistics filling: If the missing rate is lower (less than 95%) and the 

importance is low, the filling is performed according to the data distribution. 

For data that conforms to a uniform distribution, use the mean of the 

variable to fill in the missing. For data that have a skewed distribution, use 

the median to fill. 

After deleting the columns that are not needed. The dataset has twenty-one 

columns left plus one label column. 

4.1.2 Data transformation 

Data transformation includes normalizing, discretizing, and thinning the data to 

make them suitable for machine learning. Before transforming the data, a built-in 

function in pandas called dtype was applied to inspect each column in the dataset 
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file to find out what type they are. The number of columns with the following data 

types is shown in the Table 4-2. 

Table 4-2 Number of columns with each data types 

Data type of columns Number of columns 

String 10 

Categorical column 2 

Numeric column 9 

There are three types of features in the given dataset. However, machine learning 

models can only recognize numbers and matrices. All these types of features 

were transformed into the format of number or matrices.  

This section illustrates the methods applied to transform each column to the 

format which can be fed into machine learning models. For random forest and 

SVM all the values of each feature in the dataset were digitized by a built-in 

function called factorize () from a python library called “pandas”. After that, all the 

same values in each column of the table will be replaced by the same number. 

This number will increase one by one starting from zero and is only used to 

indicate how many different states there are in this column. However, for the 

TensorFlow models, they can be digitalized by a TensorFlow built-in function 

called categorical_column_with_hash_bucket ().  

At this stage, the final step is to split the dataset into training set, validation set 

and test set using a function called train_test_split () imported from sklearn library. 

4.2 Feature Selection 

Feature selection could have a huge impact on the performance of models. In 

this project, feature selection will be used as a variable to observe its influence 

on each model. In this section, two method were employed to evaluate the 

importance of each feature: information gain and random forest. 
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4.2.1 Information gain 

In machine learning, information gain has the same meaning as Kurbach-

Leeblier's divergence. The amount of information about one random variable 

obtained by observing another random variable. In decision trees, information 

gain is sometimes synonymous with mutual information, which is the univariate 

probability distribution of one variable and the Kullback-Leibler’s divergence 

given the conditional distribution of another variable.  

The information gain of random variable X obtained from the observation value 

of random variable A with value A = a is defined as below 

𝐼𝐺𝑋,𝐴(𝑋, 𝑎) = 𝐷𝐾𝐿(𝑃𝑋(𝑥|𝑎)||𝑃𝑋(𝑥|𝐼)) (4-1) 

the Kullback–Leibler divergence of the prior distribution 𝑃𝑋(𝑥|𝐼) for x from the 

posterior distribution 𝑃𝑋|𝐴(𝑥|𝑎) for x given a. 

In summary, the expected information gain change information entropy Η from 

the previous state requires some information: 

𝐼𝐺(𝑇, 𝑎) = 𝐻(𝑇) − 𝐻(𝑇|𝑎), (4-2) 

Where 𝐻(𝑇|𝑎) is the conditional entropy of 𝑇 given the value of attribute 𝑎. 

Then the information gain of 𝑻 for attribute 𝒂 is the difference between the a priori 

Shannon entropy 𝑯(𝑻) of the training set and the conditional entropy 𝑯(𝑻|𝒂).  

𝐻(𝑇|𝑎) = ∑
|𝑆𝑎(𝑣)|

|𝑇|
∙ 𝐻(𝑆𝑎(𝑣)).

𝑣∈𝑣𝑎𝑙𝑠(𝑎)

 
(4-3) 

4.2.2 Feature importance evaluation with random forest 

The idea of evaluating the importance of features in a random forest is to 

determine the contribution of each feature to each tree in the random forest, then 

take the average, and finally compare the contributions between the features. 

The first step to calculate the variable importance in a data set 𝐷𝑛 = {(𝑋𝑖, 𝑌𝑖)}𝑖=1
𝑛  

is to fit a random forest to the data. During the fitting process an out-of-bag error 
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(OBE) is recorded and averaged over the forest (errors on an independent test 

set can be substituted if bagging is not used during training). 

To measure the importance of the 𝑗-th feature after training, the values of the 𝑗-

th feature are permuted among the training data and the OBE is again computed 

on this perturbed data set. The importance score for the 𝑗-th feature is computed 

by averaging the difference in OBE before and after the permutation over all trees. 

The score is normalized by the standard deviation of these differences. Features 

importance is shown in Figure 4-1. 

 

Figure 4-1 Feature importance 

Figure 4-1 shows the importance of each feature in the dataset which was pre-

processed. The abscissa is the name of each feature, and the ordinate is the 

importance of each feature. The larger the ordinate value, the more important a 

certain feature is, and vice versa. This figure shows that the first six most 

important features are server name, thread, request id, request time, os, and app 

version. Subsequent experiments will study the impact of these first six important 

features on the accuracy of the model. 
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4.3 Getting Features Ready for Model Training 

For TensorFlow Keras sequential model, all features of type string should be 

transformed into their hash matrix using a TensorFlow built-in function named 

feature_column.categorical_column_with_hash_bucket() 

And all the categorical columns should transform to matrices with another 

TensorFlow built-in function called: 

feature_column.categorical_column_with_vocabularty_list () 

And for the numeric columns, they should be fed in to another TensorFlow built-

in function called: 

feature_column.numeric_column ()  

After defining each feature, they were ready to be added into Keras feature layers. 
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5 INVESTIGATED MODELS FOR WEB ROBOT 

DETECTION 

The goal of this project is to develop machine learning models that can accurately 

identify web robots from the given log dataset. In this project, TensorFlow Keras 

model, random forest, and SVM were investigated. The reason for choosing 

TensorFlow Keras Model is that we have not found any existing research using it 

for web robot detection. There are two reasons for choosing random forest. First, 

few works mainly study random forest; second, in the existing works, random 

forest did not perform well. For example, in Haidar and Elbassuoni ’s work that 

aimed to develop a classifier which can identify various classes of web robots. 

They used random forest as comparison. And the model only achieved an 

accuracy of 80% and a recall of 73.9%.  The reason for choosing SVM is that it 

is a very classic machine learning model, and it is often used to study binary 

classification problems. 

5.1 Keras Sequential Model 

Keras sequential model is a linear stack of layers. It is a multi-layer feedforward 

neural network. The structure diagram of this model is shown in Figure 5-1 

 

Figure 5-1 Structure diagram of Keras sequential model 
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The Keras sequential model shown in the diagram has three layers. Each layer 

could be a dense neural network that contains multiple neurons. The number of 

neurons can range from 1 to a very big number. But it will have a huge impact on 

performance of the model. Too many neurons may cause overfitting, but too few 

may cause underfitting. Within each layer, every neural has its weighs and bias, 

model will adjust those weighs and bias in the training process as the training 

epoch moving forward.  

In artificial neural networks, the activation function of a node defines the output 

of that node given an input or set of inputs. In Keras sequential model, each layer 

could have its own activation function. There are at least five types of activation 

function in machine learning. They are identity function, binary step function, 

bipolar step function, sigmoidal function, and ramp function. Activation function 

has significantly impact on the model’s performance too. 

Dropout is a regularization technique patented by Google for reducing overfitting 

in neural networks by preventing complex co-adaptations on train data. 

 

Figure 5-2 Schematic diagram of dropout (Srivastava, et al., 2014) 

In the training process of the neural network, for a part of the layered neural 

network trained at a time, some of the neurons in the random selection are hidden 

first, and then this training and optimization is performed. In the next iteration, 

continue to hide some neurons randomly, and so on until the end of training. 
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5.1.1 Implementation 

 

Figure 5-3 Flowchart of the algorithm using Keras sequential model 

 

Figure 5-4 The internal structure of Keras sequential model 
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Figure5-3 demonstrates the algorithm using the Keras sequential model. The 

model has two hidden layers, each with 20 neurons. After each hidden layer, a 

dropout layer that can control the active neurons is added. Stage 1: Data pre-

processing, including data cleaning and data normalization; Stage 2, model 

parameter tuning, including the use of different kernel functions and different 

proportions of dropout. The next stage is two parallel sub-experiments. 

Experiment A did not use feature selection, training and test was conducted 

right after parameter adjustment, followed by training and test results, while 

Experiment B conducted model training and output training and test results after 

feature selection. Figure 5-4 is the internal structure of Keras sequential model. 

Data goes into the model through input layer and then two dense neural layers 

where activation function and dropouts will be applied. Then the result comes 

out from output layer. In the following experiments, parameters activation 

function, dropout will be examined. 

5.2 Random Forest 

In machine learning, a random forest is a classifier containing multiple decision 

trees, and the output category is determined by the mode of the category output 

by the individual trees. Leo Breiman and Adele Cutler developed an algorithm to 

infer random forest. And "random forest" is their trademark. This term is derived 

from random decision forests proposed by Tin Kam Ho of Bell Labs in 1995. This 

method combines Breimans' "Bootstrap aggregating" idea and Ho's "random 

subspace method" to build a set of decision trees. (Ho,1995).  

Random forests correct for decision trees' habit of overfitting to their training set 

(Hastie, 2008). To tree learners. Given a training set 𝑋 =  𝑥1, . . . , 𝑥𝑛  with 

responses 𝑌 =  𝑦1, . . . , 𝑦𝑛, bagging repeatedly (𝐵 times) selects a random sample 

with replacement of the training set and fits trees to these samples: 

For 𝑏 =  1, . . . ,  𝐵: 

1. Sample, with replacement, 𝑛 training examples from 𝑋, 𝑌, call these 𝑋𝑏, 𝑌𝑏. 

2. Train a classification or regression tree 𝑓𝑏on 𝑋𝑏, 𝑌𝑏. 
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After training, predictions for unseen samples 𝑥′ can be made by averaging the 

predictions from all the individual regression trees on 𝑥′:  

𝑓 =
1

𝐵
∑ 𝑓𝑏(𝑥

′)

𝐵

𝑏=1

 
(5-1) 

 

or by taking the majority vote in the case of classification trees. 

Additionally, an estimate of the uncertainty of the prediction can be made as the 

standard deviation of the predictions from all the individual regression trees on 𝑥′: 

𝜎 = √
∑ (𝑓𝑏(𝑥′) − 𝑓)2𝐵

𝑏=1

𝐵 − 1
 

(5-2) 

The above procedure describes the original tree bagging algorithm. There is only 

one difference between random forest and this generic scheme: they use an 

improved tree learning algorithm to select a random subset of features at each 

candidate segmentation point during the learning process. (Ho et al., 2002). 



 

41 

5.2.1 Implementation 

 

Figure 5-5 Flowchart of the algorithm using random forest 

Figure 5-5 demonstrates the algorithm flow using random forest. Stage 1: Data 

pre-processing, including data cleaning and data normalization; Stage 2, model 

parameter tuning, including the number of estimators (trees). The next stage is 

two parallel sub-experiments. Experiment A did not use feature selection, but 

directly conducted model training and output training and test results, while 

Experiment B conducted model training and output training and test results after 

feature selection. 
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5.3 Support Vector Machine 

A Support-vector machine (SVM) is a supervised learning model with associated 

learning algorithms that analyze data used for classification and regression 

analysis. Given a set of training examples, each marked as belong to one or the 

other of two categories, an SVM training algorithm builds a model that assigns 

new examples to one category or the other, making is a non-probabilistic binary 

linear classifier. An SVM model is a representation of the examples as points in 

space, mapped so that the examples of the separate categories are divided by a 

clear gap that is as wide as possible. New examples are then mapped into that 

same space and predicted to belong to a category based on the side of the gap 

on which they fall. 

5.3.1 Linear SVM 

As shown in Figure 5-6, given a training dataset of 𝑛  points of the form 

(𝑥1⃗⃗  ⃗, 𝑦1),… , (𝑥𝑛⃗⃗⃗⃗ , 𝑦𝑛), where the 𝑦𝑖 are either 1 or -1, each indicating the class to 

which the point 𝑥𝑖⃗⃗  ⃗  belongs. Each 𝑥𝑖⃗⃗  ⃗  is a 𝑝 −  dimensional real vector. The 

objective is to find the ‘maximum-margin hyperplane” that divides the group of 

points 𝑥𝑖⃗⃗  ⃗  for which 𝑦𝑖 = −1, which is the defined so that the distance between the 

hyperplane and the nearest point 𝑥𝑖⃗⃗  ⃗  from either group is maximized. Any 

hyperplane can be written as the set of points 𝑥𝑖⃗⃗  ⃗ satisfying 𝜔⃗⃗ ∙ 𝑥 − 𝑏 = 0, where 

𝜔⃗⃗  is the normal vector to the hyperplane. Samples on the margin are called the 

support vectors. 

 

Figure 5-6 Maximum-margin hyperplane and margins for an SVM 
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If the training data is linearly separable, two parallel hyperplanes can be selected 

to separate the two types of data, making the distance between them as large as 

possible. The area defined by these two hyperplanes is called the "boundary", 

and the maximum boundary hyperplane is the hyperplane between the two. For 

normalized and standardized data sets, 𝜔⃗⃗ ∙ 𝑥 − 𝑏 = 1  described by these 

hyperplane equations (any of the above boundaries is a class, and label 1) and  

𝜔⃗⃗ ∙ 𝑥 − 𝑏 = −1 (or below this boundary) Any other class of, with label −1). 

The distance between the two hyperplanes is 
2

‖𝜔⃗⃗⃗ ‖
 so to maximize the distance 

between the planes, ‖𝜔⃗⃗ ‖ needs to be minimized. The distance is calculated by 

the distance from a point to the plane equation.  To prevent data points from 

falling into the margin, following constraint is added: for each 𝑖 either 𝜔⃗⃗ ∙ 𝑥𝑖⃗⃗  ⃗ − 𝑏 ≥

1, if 𝑦𝑖 = 1, or 𝜔⃗⃗ ∙ 𝑥𝑖⃗⃗  ⃗ − 𝑏 ≤ −1 if 𝑦𝑖 = −1. These constraints state that each data 

point must lie on the correct side of the margin. This can be rewritten as 

𝑦𝑖(𝜔⃗⃗ ∙ 𝑥𝑖⃗⃗  ⃗ − 𝑏) ≥ 1, for all 1 ≤ 𝑖 ≤ 𝑛. (5-3) 

Now the optimization problem becomes: 

“Minimize ‖𝜔⃗⃗ ‖ subject to 𝑦𝑖(𝜔⃗⃗ ∙ 𝑥𝑖⃗⃗  ⃗ − 𝑏) ≥ 1 for 𝑖 = 1,… , 𝑛.” 

The‖𝜔⃗⃗ ‖ and 𝑏 that solve this problem determine the classifier, 𝑥 → 𝑠𝑔𝑛(𝜔⃗⃗ ∙ 𝑥 −

𝑏). 

An important result of this geometric description is that the maximum margin 

hyperplane is determined entirely by the 𝑥𝑖⃗⃗  ⃗  data that is closest to it. These  𝑥𝑖⃗⃗  ⃗ are 

called support vectors. 
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5.3.2 Non-linear SVM 

In 1992, Boser et.al proposed a method to create a nonlinear classifier by 

applying the nuclear technique to the maximum margin hyperplane (1992). The 

proposed algorithm is similar in form, except that each dot product is replaced by 

a nonlinear kernel function. This allows the algorithm to fit the maximum margin 

hyperplane into the transformed feature space. See Figure 5-7, The 

transformation can be nonlinear, the space after transformation can be high 

dimensional. Although the classifier is a hyperplane in the transformed 

eigenspace, it may be nonlinear in the original input space. 

 

Figure 5-7 Kernel machine 
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5.3.3 Implementation 

 

Figure 5-8 Flowchart of the algorithm using SVM 

Figure 5-8 demonstrates the algorithm flow using SVM. Stage 1: Data pre-

processing, including data cleaning and data normalization; Stage 2, model 

parameter tuning, including the kernel selection. The next stage is two parallel 

sub-experiments. Experiment A did not use feature selection, but directly 

conducted model training and output training and test results, while Experiment 

B conducted model training and output training and test results after feature 

selection. In the following experiments, parameter kernel will be inspected and 

adjusted. 
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6 EXPERIMENTS AND EVALUATION 

Google's Colab was chosen as the experimental environment, Python3.7 as the 

programming language, TensorFlow as the deep learning framework, and python 

sklearn library as the provider of random forest and SVM. Accuracy and confusion 

matrices were chosen to evaluate experimental results. The tools and methods 

mentioned above was considered appropriate for 4 reasons: 

1) Google Colab is a cloud-based Python development environment that can 

debug and run python programs in a browser without any download, and it can 

automatically save code on a google cloud drive. 

2) TensorFlow is a free, open source machine learning platform that integrates 

popular machine learning libraries such as Keras; 

3) Python is a rapidly growing programming language that can run on any server, 

making Python programs very easy to port. 

4) Accuracy and confusion matrix are commonly used performance measures in 

machine learning research, especially in the dichotomy problem, that is, the field 

to which this project belongs. 
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6.1 Experiment Design 

6.1.1 Experiment design and evaluation methods 

To improve the performance of each model for web robot detection, the 

experiments in Table 6-1 are conducted. For the Keras sequential Model, the 

impact of kernal, dropout, features on the accuracy and time efficiency are 

examined. For the random forest Model, the impact of estimator number and 

features and time efficiency are examined; For the SVM model, the impact of 

kernels and features as well as time efficiency are assessed.    

Table 6-1 Experiment design 

EXPERIMENT 

PHASE 

KERAS SEQUENTIAL 

MODEL (NN) 

RF SVM 

1 Activation function Number of 

estimators 

Kernel 

2 Dropout    

3 Feature selection Feature 

selection 

Feature 

selection 

4 Time efficiency  Time 

efficiency 

Time efficiency 

Table 6-1 demonstrates the experiment design of the project. At phase 1, the 

kernel of Keras sequential model and SVM were adjusted. And the number of 

estimators in random forest was adjusted. At phase 2, the dropout of Keras 

sequential model was adjusted. At phase 3, feature selection was applied to all 

the models. At phase 4, time efficiency tests were conducted on every model. 

Two performance measurements used in this project :1) confusion matrix, which 

was used to evaluate all models; 2) accuracy, which was used in the training 

process of neural network model. The following table illustrates a basic confusion 

matrix:  
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Table 6-2 Confusion matrix 

 Positive Sample Negative Sample 

Classified as Positive True Positive (TP) False Positive (FP) 

Classified as Negative False Negative (FN) True Negative (TN) 

⚫ TP: cases are classified as positive samples and are actually positive 

samples.  

⚫ FP: cases are classified as positive samples, but actually negative samples. 

⚫ FN: cases are not classified as positive samples, but they are actually positive 

samples. 

⚫ TN: cases are not classified as positive samples and are actually negative 

samples. 

⚫ Accuracy: ratio of the number of samples correctly classified to the total 

number of samples, (TP + TN) / (TP + TN + FP + FN). 

⚫ Precision: ratio of the number of samples correctly classified to the total 

number of samples classified, TP / (TP + FP). 

⚫ Recall: ratio of the number of samples correctly detected to the number of 

samples to be detected, (TP / TP + FN). 

In this project, positive samples are log records generated by web robots, and 

negative samples are log records generated by humans. 
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6.1.2 Experiment environment 

This section introduces the experimental environment of this project, including 

hardware equipment, software and configurations, and model parameters. 

Table 6-3 Hardware and Software configurations 

Hardware Software 

CPU: Intel Core i7-4720HQ (2.6GHz/L3 
6M) 
Memory: 8GB DDR3 1600 
Hard drive: 1TB HDD 

Platform: Google Colab, TensorFlow 2.0 
Programming language: Python3.7 

Table 6-3 illustrates the environment of the project. The experiments of this 

project were performed on a laptop. Google Colab is a free online Python 

programming service from Google that integrates with TensorFlow, a popular 

deep learning framework. It can be run in a browser, as long as there is Internet 

access.  

Table 6-4 Parameters of each model 

Keras Sequential Model Random Forest SVM 

layer 1: feature layer 
layer 2: dense layer, 20 neural, activation 
function linear, dropout 0.6 
layer 3 dense layer, 20 neural, activation 
function linear, dropout 0.6 
layer 4 dense layer, 1 neural, activation 
function linear  
learning rate: 0.001 
batch size: 32 
epochs: 40 
loss function: binary cross entropy 

criterion: Gini 
max features: None 
max depth: None 

C: 1.0 
gamma: auto 

Table 6-4 shows the key parameters of each model. Keras sequential model is a 

linear stack of multiple neural network layers. The default learning rate of the 

model is 0.001 (adjustable), and the batch size is 32 (adjustable). Binary cross 

entropy is a loss function recommended in the Keras Sequential model document 

for binary classification problems. The parameters of the random forests and 

support vector machines shown in the table are all default, and the following 

experiments focused on the number of estimators in random forests and the 

kernels of SVM.   
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6.2 Experiments with TensorFlow Keras Sequential Model 

6.2.1 Experiments with two different activation functions 

In this period, all features were used to train the model, no dropout were 

employed, the variable between two experiments was kernel. The training epoch 

was set to 40 to observe the accuracy and overfitting during the training process. 

Overfitting means the model is over trained. The main phenomenon of overfitting 

is accuracy on training set surpass that on test set. 

 

(a) Linear                                              (b) Sigmoid 

Figure 6-1 Epoch accuracy with different activation function  

Figure 6-1 shows that sequential model with linear activation function has a better 

accuracy (0.9085) than the model with sigmoid activation function (0.7314). For 

the model with linear activation function, overfitting happened between epoch 8 

and 20. And for the model with sigmoid activation function, there was no obvious 

sign of overfitting, but the peak epoch accuracy was much lower. So sequential 

model with linear kernel was selected for further experiment. 
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6.2.2 Experiments with dropouts 

In this period, four different proportions of dropouts were applied to the model 

with linear activation function. 

 

(a) 20% dropout                                 (b) 40% dropout  

 

 

(c) 60% dropout                                  (d) 80% dropout  

Figure 6-2 Epoch accuracy with different percentage of dropout applied  

As shown in the graphs, over fitting gradually disappeared as dropout percentage 

went up. This suggested reducing model complexity could reduce overfitting. It 

can be inferred by comparing Figure 6-2 (c) and (d) that too much dropout may 

cause decrease in peak epoch accuracy. The best performance was achieved by 

60% dropout experiments. Its test accuracy was 0.9725. 
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6.2.3 Experiments with selected features 

In this period, the model was trained with different number of features. 

 

(a) top 2 features                                     (b) top 4 features  

 

(c) top 6 features                                     (d) top 8 features 

Figure 6-3 Epoch accuracy with different amount of features  

Horizontal axis represents the number of epochs in training. The four subfigures 

in Figure 6-3 suggests that epoch accuracy can be improved by adding more 

features. But adding features may cause overfitting in different epoch of training. 

The best accuracy on validation set without overfitting is 100% using top 6 

features. This may suggest that training with the selected features allow the 

model to obtain higher accuracy on the validation set while too much unimportant 

features may cause the accuracy of the model to decrease. The reason for this 

is phenomenon is that unimportant features will cause model parameters to tend 

to value that are not conducive to the performance of the model. 
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6.3 Experiments with Random Forest 

6.3.1 Experiments with different amount of estimators 

At this stage, all features were used to train the model, the number of estimators 

(trees) were set to 1, 10, 100 and 1000.  

Table 6-5 Confusion matrixes of random forest with different number of trees 

No. of 

Estimators 

        Original Type 

Classified as 

Human Robot Precision Recall 

1 

Human 186 0 

1.000 1.000 

Robot 0 214 

10 

Human 186 1 

1.000 0.9953 

Robot 0 213 

100 

Human 186 1 

1.000 0.9953 

Robot 0 213 

1000 

Human 186 1 

1.000 0.9953 

Robot 0 213 

Table 6-5 shows that as the number of trees increases, the accuracy did not 

change, but some robots are classified as human, in other words, false negative 

went up. Therefore, experiments were carried out with one-tree-Random Forest 

at next stage. 
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6.3.2 Experiments with selected features 

At this stage, different amounts (2, 4, 6 and 8) of features were employed to train 

the random forest with one estimator. 

Table 6-6 Confusion matrixes of one-estimator random forest with different 

number of features 

No. of 

Features 

        Original Type 

Classified as 

Human Robot Precision Recall 

2 

Human 94 117 

0.5123 0.4532 

Robot 92 97 

4 

Human 182 6 

0.9811 0.9720 

Robot 4 208 

6 

Human 179 2 

0.9680 0.9907 

Robot 7 212 

8 

Human 184 2 

0.9907 0.9907 

Robot 2 212 

As is shown in Table 6-6, Precision and Recall goes up as the number of training 

features increase. A quite high accuracy and recall can be achieved when using 

top 8 important features to train the model. Meanwhile the training time dropped 

significantly compared to using all features. 
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6.4 Experiments with SVM 

6.4.1 Experiments with two different kernels 

In this period, all the features were used to train the model   with different kernels. 

Top 2 important features (server name and thread) were employed to plot the 

decision boundary. Decision boundary shows the distribution of samples in the 

problem space and how the kernel function separates two different samples., the 

outputs of the classifier are scattered in different regions with triangle and square 

symbols. Obviously, there are misclassified outputs. 

 

(a) Linear kernel 
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(b) Sigmoid kernel 

Figure 6-4 Decision region of SVM using different kernels 

In Figure 6-4 (a) and (b), the abscissa represents the distribution of the sample 

in the server name parameter, and the ordinate represents the distribution of the 

sample in the thread parameter. Specifically, for a certain sample, there is a 

server name feature, a thread feature, and a label, indicating that it is a web robot 

(positive case) or a human (negative case). First, the positive cases are 

represented by purple squares, and the negative cases are represented by lime 

green triangles. Second, convert the pre-processed values of the two parameters 

again to make them conform to the range of the coordinate system. Then, 

according to the parameter value after conversion of each sample, the sample is 

put into the coordinate system to observe the distribution of the sample on these 

two parameters. By comparing Figure 6-4 (a) and (b), it can be concluded that 

the sample is more linear separable than sigmoid separable. 
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Table 6-7 Confusion matrixes of SVM using different kernels 

Kernel         Original 

Type 

Classified as 

Human Robot Precision Recall 

Linear 

Human 184 2 

0.9906 0.9906 

Robot 2 212 

Sigmoid 

Human 109 106 

0.5838 0.5046 

Robot 77 108 

For further validation. Samples with all features were fed into two models with 

different kernel. After training and test, the result is shown in table 6-7. SVM with 

linear kernel obtained a precision of 0.9906 and a recall of 0.9906. SVM with 

sigmoid kernel reached a precision of only 0.5838 and recall of 0.5046. Therefore, 

the SVM with linear Kernel was taken to further experiments. 
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6.4.2 Experiments with selected features 

At this stage, different amounts (2, 4, 6 and 8) of features were employed to train 

the model. The performance of the model on test set are showed in the confusion 

matrixes below. 

Table 6-8 Confusion matrixes of SVM with linear kernel with different number of 

features  

No. of 

Features 

        Original Type 

Classified as 

Human Robot Precision Recall 

2 

Human 186 214 

0 0 

Robot 0 0 

4 

Human 158 26 

0.8704 0.8785 

Robot 28 188 

6 

Human 152 6 

0.8595 0.9720 

Robot 34 208 

8 

human 183 2 

0.9860 0.9907 

Robot 3 212 

From the confusion matrixes shown in table 6-8, it can be indicated that SVM 

cannot tell robots from human visitors by the top 2 important features. It classified 

all the robot samples as human. The precision and recall go up as more features 

were employed to train the model. 
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6.5 Evaluation and Discussion 

To identify which algorithm/model is the best offline web robot detection 

algorithm/model, both accuracy and running time are assessed. In order to 

examine the running time of each algorithm, the average training time and 

accuracy of each algorithm on different numbers of features at a training process 

were calculated. 

6.5.1 The importance of feature selection 

This section will make a summary of the feature selection experiment mentioned 

above.  

 

Figure 6-5 Accuracy of models without feature selection 

 

Figure 6-6 Accuracy of models with feature selection 
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Figure 6-5 shows that when no feature selection applied, random forest has the 

highest accuracy of 100%, SVM 99.06%, and NN 97.25%.  

Figure 6-6 shows that when features were added to training in terms of their 

importance from high to low, the variation of model accuracy presents different 

trends. When top 2 important features applied, the accuracy of SVM model is 0, 

it classified every sample as human. When 2 more features applied, the accuracy 

of all models experienced a sharp growth: NN 38%, RF 46.9%, SVM 87%. When 

the top 6 features were applied to the training, the NN reached its peak accuracy 

of 100%, while the accuracy of RF and SVM declined slightly. As more features 

were added to the training, the accuracy of the NN declined slowly, while SVM 

and SVM rose slowly. Here, the NN and the RF are probably the best algorithms.  

6.5.2 Time efficiency 

This section will focus on the time efficiency of each model trained with different 

amounts of features.  

 

Figure 6-7 Average training time using different number of features 
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most time. As for the Keras sequential model, the time it takes is acceptable. 

Perhaps it could be achieved to reduce the training time by reducing the number 

of neurons, but this may cause the accuracy of the model to decrease. 

From the perspective of the influence of the number of features on the training 

time, with the increase of the number of training features, the training time of the 

random forest model has not increased significantly, the training time of the Keras 

sequential model increases linearly, and the training time of the SVM model also 

shows Increasing trend. 

Although both neural networks and random forests can achieve 100% accuracy 

under certain conditions, when the same accuracy is achieved, the training time 

of random forests is 50% less than that of neural networks. Here, it can be 

concluded that random forest is the best web crawler detection algorithm 

regarding both accuracy and training time. 

6.5.3 Discussion 

In this project, two challenges mentioned in Table 3-5 were addressed: 1) the 

curse of dimensionality was solved by applying feature selection; 2) very high 

accuracy is achieved when the appropriate number of features is used for model 

training. Specifically, in this project, when the features were added to the training 

process of the neural network in the order of decreasing importance, the accuracy 

of the neural network increases gradually, and reaches the highest accuracy 100% 

when the number of features was 6, and then began to decrease. This suggested 

that the use of feature selection could ease the dimensional curse. For the model 

using random forest, when all 22 features selected were applied to training and 

the number of estimators was set to 1, the highest accuracy of 100% was 

achieved, and the training time of the model was about 50% less than that of the 

neural network. In addition, the data set of this project came from an Internet 

industry. Although the data set was not able to mark and distinguish between 

good web crawlers and bad ones, it can be inferred that these web crawler 

records were not expected, or at least worthy of attention. Because no enterprise 

will spend time on things they don't care about. 
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The data set contains only positive and negative cases, it does not contain more 

types of web bots. This make the web robot detection become a decision-making 

problem or a binary classification problem. To train models that can recognize 

more types of web robots, a data set with detailed tags is required. One way to 

build such a data set is to build a website and design different types of web bots. 

Let the bots crawl the information on the site and produce a set of tagged weblog 

data. This could be future work. 

TensorFlow was used to identify web robot logs for the first time. Even though 

the Keras sequential model produced a very high accuracy of 100% when top 6 

features were used in training period, it is slower than random forest. To improve 

the training speed of the model, it might be possible to further reduce the number 

of neurons. 

In random forest experiments, only the number of estimators was used as a 

variable, and high accuracy was achieved when the number of estimators (trees) 

was set to 1 and no feature-selection applied. In fact, the random forest has more 

parameters that can affect the training results, such as the depth of the tree, the 

maximum number of features and so on.  This could be studied in future. For 

more complex samples, parameters tuning can be used to optimize the model. 

Request Time and Request ID were not accounted in the influential features. 

However, the experimental results show that these two characteristics have 

significant effects on the accuracy of all models. This indicates web robots may 

usually come from specific IDs at specific times
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7 CONCLUSIONS AND FUTURE WORK 

7.1 Conclusions 

The project aims to develop an offline system that can effectively detect malicious 

web robots, which is not only conducive to network traffic cleaning, but also 

conducive to improving the network security of IoT systems and services. The 

key contributions of the research are: 1) it provided a systematic methodology to 

address the web robot detection problem based on the log file from industrial 

company; 2) it provided a methodology for feature selection, overcoming the 

challenge of curse of dimensionality; 3) it investigated three types of machine 

learning techniques based real data from industry, making a big progress in the 

accuracy of off-line web robot detection. Overall, this project solved two of the 

challenges mentioned in Table 3-5: overcoming the curse of dimensionality by 

applying feature selection and improving the accuracy of offline web robot 

detection by using proper features and parameters.  

Feature engineering, modelling, model implementation, parameters impact and 

verification of the developed models were conducted with comprehensive 

experiments. The key findings are listed as below: 

Feature Engineering: The investigated dataset was a csv file with 2000 web log 

records. It has 43 columns in which 42 were features and 1 was the decision 

labels. After data cleaning and data transformation 21features were reserved for 

feature selection. During feature selection information gain and random forest 

were applied to evaluate feature importance. 

Machine learning models: Three models (sequential model, random forest, and 

SVM) were developed as web robot classifiers.  When feature selection was not 

performed, the accuracy of the random forest algorithm was 3% higher than the 

Keras sequential Model, and 1% higher than the SVM algorithm, reaching 100%. 

The training time of the random forest saves 59.1% compared to the Keras 

sequential model and 83.1% compared to the SVM. 
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Feature importance to the decision is assessed. The most important features 

were identified. They are server name, thread, request time, request id, os, app 

version. Among them, the request id and request event had the greatest impact 

on the accuracy of the model. They increased the accuracy of the neural network 

by 38%, the random forest by 46.9%, the SVM by 87%.  

The impact of features on the performance of model for tested data is examined. 

The accuracy of random forest and SVM fluctuated upward with the number of 

features. The accuracy of the Keras sequential model reached a peak of 100% 

when using the six most important features, and then decreases slowly. This 

phenomenon indicated that feature selection has an important impact on the 

performance of models. For different models, the influence of a certain feature is 

not the same. That is, the addition of a certain feature may help improve the 

accuracy of one model, but it will reduce the accuracy of another model. In terms 

of training time, random forest is still the most time-saving algorithm. 

Impact of parameters on the performance of models for the tested data. Keras 

sequential model (NN) and random forest (RF) obtained accuracy of 0.47 and 

0.512 with server name and thread, while SVM obtained none. When request id 

and request time were added, accuracy of three models increased significantly: 

NN to 0.85, RF to 0.981, and SVM to 0.87. when os and app version were added, 

NN reached its peak accuracy of 1, RF and SVM experienced a slight drop to 

0.968 and 0.86. when page city id and locate city id were added. The accuracy 

of NN dropped a bit to 0.98 while RF and SVM increased to 0.9907 and 0.986.  

This project uses the confusion matrix as a performance matrix, combined with 

training time, to measure the performance of a model. Although both neural 

networks and random forests can achieve 100% accuracy under certain 

conditions, when the same accuracy is achieved, the training time of random 

forests is 50% less than that of neural networks. Thus, the conclusion of this 

project is that random forest is the best model for offline detection of web robots. 
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7.2 Future Work 

The present work focused on off-line web log analysis using machine-learning 

techniques. In the literature, there are very few methods to investigate the 

distributed web robots. When distributed web robots are performing DDoS 

attacks, off-line methods are not able to react to handle these attacks in real-time. 

The further work will investigate the following areas: 

• Investigate online detection of web robot based on user behaviours pattern 

learning. 

• Develop hardware equipment for web crawler detection based on machine 

learning. 

• Create web robot datasets for future research and share them on public 

repository. 

• Investigate cloud-computing based web robot detection method and 

service. 
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APPENDIX 

Appendix A Dataset Files 

 

Figure A-1 Raw dataset. 



 

71 

 

Figure A-2 Dataset after pre-processing
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Appendix B Code of Experiments 

B.1 Experiments with Keras Sequential model 

# Import libraries 

!pip install sklearn 

from __future__ import absolute_import, division, print_function, unicode_literals 

 

 

import numpy as np 

import pandas as pd 

 

try: 

  %tensorflow_version 2.x 

except Exception: 

  pass 

import tensorflow as tf 

 

from tensorflow import feature_column 

from tensorflow.keras import layers 

from keras.layers import Input, Dense, Dropout 

from keras.models import Model 

from sklearn.model_selection import train_test_split 

 

 

# Initialize Tensorboard 

import datetime 

%load_ext tensorboard 

from tensorboard import notebook 
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# Create a dataframe 

dataframe = pd.read_csv("/Dataset.csv", na_filter=False, header=0) 

dataframe.fillna('', inplace=True) 

 

 

# Split the dataframe into train, validation, and test 

train, test = train_test_split(dataframe, test_size=0.2) 

train, val =train_test_split(train, test_size=0.2) 

 

 

# Create an input pipeline using tf.data 

def df_to_dataset(dataframe, shuffle=True, batch_size=20): 

  dataframe = dataframe.copy() 

  labels = dataframe.pop('traffic_type') 

  ds = tf.data.Dataset.from_tensor_slices((dict(dataframe), labels)) 

  if shuffle: 

    ds = ds.shuffle(buffer_size=len(dataframe)) 

  ds = ds.batch(batch_size) 

  return ds 

 

 

batch_size = 5 # A small batch sized is used for demonstration purposes 

train_ds = df_to_dataset(train, batch_size=batch_size) 

val_ds = df_to_dataset(val, shuffle=False, batch_size=batch_size) 

test_ds = df_to_dataset(test, shuffle=False, batch_size=batch_size) 
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# Read the input pipeline 

for feature_batch, label_batch in train_ds.take(1): 

  print('Every feature:', list(feature_batch.keys())) 

  print('A batch of traffic_type',label_batch) 

 

 

# Demonstrate several types of feature columns 

print(dataframe.dtypes) 

 

 

# We will use this batch to demonstrate several types of feature columns 

example_batch = next(iter(train_ds))[0] 

 

 

# A utility method to create a feature column and to transform a batch of data 

def demo(feature_column): 

  feature_layer = layers.DenseFeatures(feature_column) 

  print(feature_layer(example_batch).numpy()) 

 

 

# Hashed feature columns 

servername_hashed = feature_column.categorical_column_with_hash_bucket('servername', 

hash_bucket_size=1000) 

demo(feature_column.indicator_column(servername_hashed)) 

 

thread_hashed = feature_column.categorical_column_with_hash_bucket('thread', hash_bucket_size=1000) 

demo(feature_column.indicator_column(thread_hashed)) 
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request_id_hashed = feature_column.categorical_column_with_hash_bucket('request_id', 

hash_bucket_size=1000) 

demo(feature_column.indicator_column(request_id_hashed)) 

 

request_time_hashed = feature_column.categorical_column_with_hash_bucket('request_time', 

hash_bucket_size=1000) 

demo(feature_column.indicator_column(request_time_hashed)) 

 

query_analysis_hashed = feature_column.categorical_column_with_hash_bucket('query_analysis', 

hash_bucket_size=1000) 

demo(feature_column.indicator_column(query_analysis_hashed)) 

 

search_request_hashed = feature_column.categorical_column_with_hash_bucket('search_request', 

hash_bucket_size=1000) 

demo(feature_column.indicator_column(search_request_hashed)) 

 

search_info_hashed = feature_column.categorical_column_with_hash_bucket('search_info', 

hash_bucket_size=1000) 

demo(feature_column.indicator_column(search_info_hashed)) 

 

ab_trace_tag_hashed = feature_column.categorical_column_with_hash_bucket('ab_trace_tag', 

hash_bucket_size=1000) 

demo(feature_column.indicator_column(ab_trace_tag_hashed)) 

 

slot_ids_hashed = feature_column.categorical_column_with_hash_bucket('slot_ids', hash_bucket_size=1000) 

demo(feature_column.indicator_column(slot_ids_hashed)) 

 

app_version_hashed = feature_column.categorical_column_with_hash_bucket('app_version', 

hash_bucket_size=1000) 
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demo(feature_column.indicator_column(app_version_hashed)) 

 

 

# Categorical columns 

os = feature_column.categorical_column_with_vocabulary_list('os', ['pc', 'android', 'iphone', 'other']) 

os_one_hot = feature_column.indicator_column(os) 

demo(os_one_hot) 

 

query_type = feature_column.categorical_column_with_vocabulary_list('query_type', ['select', 'search']) 

query_type_one_hot = feature_column.indicator_column(query_type) 

demo(query_type_one_hot) 

 

 

# Numeric cols 

Num_cols = ["locate_city_id","page_city_id", "lat", "lng", "page_index", "offset", "page_size", "cate_id", 

"stock"] 

for i in Num_cols: 

  demo(feature_column.numeric_column(i)) 

 

 

feature_columns = [] 

# Hashed feature columns 

feature_columns.append(feature_column.indicator_column(servername_hashed)) 

feature_columns.append(feature_column.indicator_column(thread_hashed)) 

feature_columns.append(feature_column.indicator_column(request_id_hashed)) 

feature_columns.append(feature_column.indicator_column(request_time_hashed)) 

feature_columns.append(feature_column.indicator_column(query_analysis_hashed)) 

feature_columns.append(feature_column.indicator_column(search_request_hashed)) 

feature_columns.append(feature_column.indicator_column(search_info_hashed)) 
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feature_columns.append(feature_column.indicator_column(ab_trace_tag_hashed)) 

feature_columns.append(feature_column.indicator_column(slot_ids_hashed)) 

feature_columns.append(feature_column.indicator_column(app_version_hashed)) 

# Categorical columns 

feature_columns.append(os_one_hot) 

feature_columns.append(query_type_one_hot) 

# Numeric cols 

# feature_columns.append(feature_column.numeric_column('page_city_id')) 

# feature_columns.append(feature_column.numeric_column('locate_city_id')) 

for i in Num_cols: 

  feature_columns.append(feature_column.numeric_column(i)) 

 

 

# Create a feature layer 

feature_layer = tf.keras.layers.DenseFeatures(feature_columns) 

batch_size = 32 

train_ds = df_to_dataset(train, batch_size=batch_size) 

val_ds = df_to_dataset(val, shuffle=False, batch_size=batch_size) 

test_ds = df_to_dataset(test, shuffle=False, batch_size=batch_size) 

 

 

# clear existing log filed 

!rm -rf ./logs/  

 

 

# train the model 

model = tf.keras.Sequential([ 

  feature_layer, 

  layers.Dense(20, activation='linear'), 
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  layers.Dropout(0.6), 

  layers.Dense(20,activation='linear'), 

  layers.Dropout(0.6), 

  layers.Dense(1, activation='linear') 

]) 

 

 

model.compile(optimizer='adam', 

              loss=tf.keras.losses.BinaryCrossentropy(from_logits=True), 

              metrics=['accuracy']) 

 

log_dir="logs/fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S") 

tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1) 

 

model.fit(train_ds, 

          validation_data=val_ds, 

          epochs=40, 

          callbacks=[tensorboard_callback]) 

print('\n Test') 

result = model.evaluate(val_ds) 

dict(zip(model.metrics_names, result)) 

 

 

# Test the model 

model.evaluate(test_ds) 

%tensorboard --logdir logs 
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B.2 Experiments with Random Forest and SVM 

import numpy as np 

import pandas as pd 

 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier,  BaggingClassifier, 

ExtraTreesClassifier 

 

from sklearn.linear_model import LogisticRegression 

from sklearn.svm import SVC 

from sklearn.neighbors import KNeighborsClassifier 

from xgboost import XGBClassifier, plot_importance 

 

from sklearn.model_selection import train_test_split, KFold, cross_val_score, GridSearchCV 

from sklearn.preprocessing import StandardScaler 

 

import matplotlib.pyplot as plt 

 

df = pd.read_csv('/Dataset.csv') 

 

for i in list(df.head(0)): 

  df[i] = pd.factorize(df[i])[0].astype(np.uint64) 

 

df.head(100) 

 

df.columns = ['servername', 'thread', 'request_id', 'request_time', 'os', 

       'app_version', 'page_city_id', 'locate_city_id', 'lat', 'lng', 

       'page_index', 'offset', 'page_size', 'stock', 'cate_id', 'query_type', 

       'query_analysis', 'search_request', 'search_info', 'ab_trace_tag', 
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       'slot_ids', 'traffic_type'] 

 

print('traffic_type: ', np.unique(df['traffic_type'])) 

 

label = np.unique(df['traffic_type']) 

print(label) 

 

X, y = df.iloc[:,:-1].values,df.iloc[:,-1].values 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0) 

 

features = df.columns[:-1] 

 

"""# Performance of models""" 

 

clf_rf = RandomForestClassifier() 

clf_et = ExtraTreesClassifier() 

clf_bc = BaggingClassifier() 

clf_ada = AdaBoostClassifier() 

clf_dt = DecisionTreeClassifier() 

clf_xg = XGBClassifier() 

clf_lr = LogisticRegression() 

clf_svm = SVC() 

 

Classifiers = 

['RandomForest','ExtraTrees','Bagging','AdaBoost','DecisionTree','XGBoost','LogisticRegression','SVM'] 

scores = [] 

models = [clf_rf, clf_et, clf_bc, clf_ada, clf_dt, clf_xg, clf_lr, clf_svm] 

for model in models: 

  score = cross_val_score(model, X_train, y_train, scoring = 'accuracy', cv = 10, n_jobs = -1).mean() 
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  scores.append(score) 

 

mode = pd.DataFrame(scores, index = Classifiers, columns = ['score']).sort_values(by = 'score', ascending 

= False) 

 

mode 

 

"""# Training of RandomRorest, SVM (kernel = linear), and SVM (kernel = sigmoid)""" 

 

rf_10000 = RandomForestClassifier(n_estimators=10000) 

 

rf_10000.fit(X_train,y_train) 

 

importances = rf_10000.feature_importances_ 

indices = np.argsort(importances)[::-1] 

 

for f in range(X_train.shape[1]): 

  # Evaluate feature importance based on calculation of average impure decay of 10,000 decision trees 

  print ("%2d) %-*s %f" % (f+1,30, features[f], importances[indices[f]])) 

 

# Visualize Feature Importance 

plt.title('Feature Importance of RandomForest') 

plt.bar(range(X_train.shape[1]), importances[indices], color='gray', align='center') 

plt.xticks(range(X_train.shape[1]), features, rotation=90) 

plt.xlim([-1, X_train.shape[1]]) 

plt.tight_layout() 

plt.show() 

 

"""# Decision Boundary Visualization of RandomForest and SVM""" 
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from sklearn.preprocessing import StandardScaler 

from sklearn.decomposition import PCA 

from matplotlib.colors import ListedColormap 

from mlxtend.plotting import plot_decision_regions 

 

x = StandardScaler().fit_transform(X) 

X_train_reduced = PCA(n_components = 2).fit_transform(X_train) 

X_test_reduced  = PCA(n_components=  2).fit_transform(X_test) 

 

t = np.array(y_train) 

t = t.astype(np.integer) 

 

rf_1 = RandomForestClassifier(n_estimators=1)  

rf_1.fit(X_train_reduced,t) 

plt.figure(figsize = [15,10]) 

plot_decision_regions(X_train_reduced, t, clf = rf_1, hide_spines = False, colors = 'white,gray') 

plt.legend(loc='upper left') 

plt.title("Randomforest (n_estimators=1)") 

 

rf_10 = RandomForestClassifier(n_estimators=10)  

rf_10.fit(X_train_reduced,t) 

plt.figure(figsize = [15,10]) 

plot_decision_regions(X_train_reduced, t, clf = rf_10, hide_spines = False, colors = 'white,gray') 

plt.legend(loc='upper left') 

plt.title("Randomforest (n_estimators=10)") 

 

rf_100 = RandomForestClassifier(n_estimators=100)  

rf_100.fit(X_train_reduced,t) 
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plt.figure(figsize = [15,10]) 

plot_decision_regions(X_train_reduced, t, clf = rf_100, hide_spines = False, colors = 'white,gray') 

plt.legend(loc='upper left') 

plt.title("Randomforest (n_estimators=100)") 

 

rf_1000 = RandomForestClassifier(n_estimators=1000)  

rf_1000.fit(X_train_reduced,t) 

plt.figure(figsize = [15,10]) 

plot_decision_regions(X_train_reduced, t, clf = rf_1000, hide_spines = False, colors = 'white,gray') 

plt.legend(loc='upper left') 

plt.title("Randomforest (n_estimators=1000)") 

 

rf_10000.fit(X_train_reduced,t) 

plt.figure(figsize = [15,10]) 

plot_decision_regions(X_train_reduced, t, clf = rf_10000, hide_spines = False, colors = 'white,gray') 

plt.legend(loc='upper left') 

plt.title("Randomforest (n_estimators=10000)") 

 

linear_svm = SVC(kernel='linear') 

linear_svm.fit(X_train_reduced,t) 

plt.figure(figsize = [15,10]) 

plot_decision_regions(X_train_reduced, t, clf = linear_svm, hide_spines = False, colors = 'white,gray') 

plt.legend(loc='upper left') 

plt.title("Support Vector Machines (kernel='linear')") 

 

sigmoid_svm = SVC(kernel='sigmoid') 

sigmoid_svm.fit(X_train_reduced,t) 

plt.figure(figsize = [15,10]) 

plot_decision_regions(X_train_reduced, t, clf = sigmoid_svm, hide_spines = False, colors = 'white,gray') 
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plt.legend(loc='upper left') 

plt.title("Support Vector Machines (kernel='sigmoid')") 

 

"""# Predictions and Evaluations""" 

 

def evaluate(classifier_name, predictions, y_test): 

  TP, TN, FP, FN = 0, 0, 0, 0 

  for i in range(len(predictions)): 

    if predictions[i] == 1 and y_test[i] == 1: 

      TP += 1 

    elif predictions[i] == 0 and y_test[i] == 0: 

      TN += 1 

    elif predictions[i] == 1 and y_test[i] == 0: 

      FP += 1 

    else: 

      FN += 1 

  print( 

      """ 

                   Confusion Matrix of {} 

        Original type  human robot 

  Classified as human   {}    {} 

  Classified as robot   {}    {} 

      """.format(classifier_name, TN, FN, FP, TP) 

  ) 

  print('Precision: ', TP/(TP + FP), 'recall: ', TP / (TP + FN)) 

 

rf_1 = RandomForestClassifier(n_estimators=1) 

rf_1.fit(X_train,y_train) 

rf_1_predictions = rf_1.predict(X_test) 
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evaluate('Randomforest (n_estimators=1)',rf_1_predictions,y_test) 

 

rf_10 = RandomForestClassifier(n_estimators=10) 

rf_10.fit(X_train,y_train) 

rf_10_predictions = rf_10.predict(X_test) 

evaluate('Randomforest (n_estimators=10)',rf_10_predictions,y_test) 

 

rf_100 = RandomForestClassifier(n_estimators=100) 

rf_100.fit(X_train,y_train) 

rf_100_predictions = rf_100.predict(X_test) 

evaluate('Randomforest (n_estimators=100)',rf_100_predictions,y_test) 

 

rf_1000 = RandomForestClassifier(n_estimators=1000) 

rf_1000.fit(X_train,y_train) 

rf_1000_predictions = rf_1000.predict(X_test) 

evaluate('Randomforest (n_estimators=1000)',rf_1000_predictions,y_test) 

 

rf_10000 = RandomForestClassifier(n_estimators=10000) 

rf_10000.fit(X_train,y_train) 

rf_10000_predictions = rf_10000.predict(X_test) 

evaluate('Randomforest (n_estimators=10000)',rf_10000_predictions,y_test) 

 

linear_svm.fit(X_train, y_train) 

linear_svm_predictions = linear_svm.predict(X_test) 

evaluate('Linear_SVM',linear_svm_predictions,y_test) 

 

sigmoid_svm.fit(X_train, y_train) 

sigmoid_svm_predictions = sigmoid_svm.predict(X_test) 

evaluate('Sigmoid_SVM',sigmoid_svm_predictions, y_test) 


