

CRANFIELD UNIVERSITY

HANLIN CHEN

WEB ROBOT DETECTION USING SUPERVISED LEARNING

ALGORITHMS

SCHOOL OF AEROSPACE, TRANSPORT AND

MANUFACTURING

MSc by Research

MSc

Academic Year: 2019 - 2020

Supervisor: Hongmei He

Associate Supervisor: Andrew Starr

June 2020

CRANFIELD UNIVERSITY

SCHOOL OF AEROSPACE, TRANSPORT AND

MANUFACTURING

MSc by Research

MSc

Academic Year 2019 – 2020

HANLIN CHEN

Web Robot Detection using Supervised Learning Algorithms

Supervisor: Hongmei He

Associate Supervisor: Andrew Starr

June 2020

This thesis is submitted in partial fulfilment of the requirements for

the degree of MSc

(NB. This section can be removed if the award of the degree is

based solely on examination of the thesis)

© Cranfield University 2020. All rights reserved. No part of this

publication may be reproduced without the written permission of the

copyright owner.

i

ABSTRACT

Web robots or Web crawlers have become the main source of Web traffic.

Although some bots perform well, such as search engines, other bots can perform

DDoS attacks, posing a huge threat to websites. The project aims to develop an

offline system that can effectively detect malicious web robots, which is not only

conducive to network traffic cleaning, but also conducive to improving the network

security of IoT systems and services. A comprehensive literature review for the

years 2010-2019 was conducted to identify the research gap. The key

contributions of the research are: 1) it provided a systematic methodology to

address the web robot detection problem based on the log file from industrial

company; 2) it provided an approach of feature engineering, thus overcoming the

challenge of curse of dimensionality; 3) It made a big progress in the accuracy of

off-line web robot detection through a holistic study on the three types of machine

learning techniques based on real data from industry.

Three algorithms based on Keras sequential model, random forest, and SVM,

were developed with python to detect web robots from human visitors on the

TensorFlow 2.0 platform. Experimental results suggested that random forest

obtained the best performance in accuracy and training time.

The parameters of each model were adjusted using trial and error approach. For

the Keras sequential model, the impact of parameters such as activation function,

training epoch and dropout on the detection performance were examined. The

linear activation function obtained higher accuracy than sigmoid activation

function. Training accuracy increased with the increase of training epoch and

tended to stabilize when the training epoch reached 40. Experiments suggested

that dropout could prevent overfitting. For random forest, the impact of the

number of trees on the detection performance was examined. The training

accuracy decreased slightly when the number of estimators exceeded one. For

the SVM model, the impact of the kernel function was examined. The linear kernel

obtained higher accuracy than the nonlinear kernel.

ii

Feature importance was investigated through random forest and information gain.

The calculation results of these two methods are consistent. Then an incremental

approach was applied to observe the impact of features in the order of decreased

feature importance. The accuracy of all models showed a trend of rising volatility.

A feature could have different effects on different models, for example, when

feature os (operating system of user machine) and app version (the version of

the application which is running on user machine) was added to training, the

accuracy of Keras sequential model increased, while the accuracy of random

forest and SVM decreased slightly. When more features were added to training,

the accuracy of random forest and SVM increased, and the accuracy of neural

network slowly decreased. This indicates that different features could have

different effect on different decision processes, although we have sorted the order

of attribute importance through random forest and information gain. When top 6

important features were used to the training of neural network, it achieved the

highest accuracy of 100%; when the selected 22 features were added to the

training process of random forest, it obtained the highest accuracy of 100%. This

project uses the confusion matrix as an evaluation method, combined with

training time, to measure the performance of a model. Although both neural

networks and random forests can achieve 100% accuracy under certain

conditions, when the same accuracy is achieved, the training time of random

forests is 50% less than that of neural networks. Thus, the conclusion of this

project is that random forest is the best model for offline detection of web robots.

Keywords:

Web robot, Web crawler, Sequential model, Random forest, SVM, Feature

importance, TensorFlow 2.0.

iii

ACKNOWLEDGEMENTS

Firstly, I would like to thank Dr. Hongmei He and Dr. Andrew Starr. Without their

supervision, I may not be able to complete my research on time. They pointed

out the direction of my research and sought opportunities for my academic

development. When I needed any support, they always offered a helping hand

without hesitation.

Secondly, I want to thank Cranfield University, including Registry, Education

Support, SASSATM-Research, and other departments who may have helped me

even I have not remembered their name. Especially, I would like to thank the

manufacturing department who offered financial support and a lot of other help to

my research.

Thirdly, I would like to give my great thanks to my parent and my family. I could

not have studied at a wonderful university without the love and support of them.

At the same time, in this difficult period, it is hard for me to study and live with

peace of mind if they had not sent me their care and greetings.

Finally, I want to thank my girlfriend and my amazing friends. They always

showed great warmth and support to me. In this difficult time, we always

encourage each other and be there when needed.

iv

TABLE OF CONTENTS

ABSTRACT ... i

ACKNOWLEDGEMENTS... iii

LIST OF FIGURES ... vi

LIST OF TABLES .. vii

LIST OF EQUATIONS .. viii

LIST OF ABBREVIATIONS .. ix

1 INTRODUCTION ... 10

1.1 Web Robot .. 10

1.2 Machine-Learning and Web Robot Detection ... 12

1.3 Python and TensorFlow .. 13

1.4 Research Motivation, Aim, and Objectives ... 14

1.4.1 Motivation and aim ... 14

1.4.2 Objectives .. 14

1.5 Thesis Structure .. 15

2 RESEARCH METHODOLOGY ... 16

3 LITERATURE REVIEW ... 19

3.1 Web Log Analysis ... 19

3.2 Honeypot .. 23

3.3 Online Web Robot Detection .. 25

3.4 The Identified Research Gap and Challenges .. 28

4 FEATURE ENGINEERING .. 29

4.1 Data Cleaning ... 31

4.1.1 Handling the missing values ... 31

4.1.2 Data transformation .. 31

4.2 Feature Selection .. 32

4.2.1 Information gain ... 33

4.2.2 Feature importance evaluation with random forest 33

4.3 Getting Features Ready for Model Training .. 35

5 INVESTIGATED MODELS FOR WEB ROBOT DETECTION 36

5.1 Keras Sequential Model .. 36

5.1.1 Implementation ... 38

5.2 Random Forest ... 39

5.2.1 Implementation ... 41

5.3 Support Vector Machine ... 42

5.3.1 Linear SVM .. 42

5.3.2 Non-linear SVM .. 44

5.3.3 Implementation ... 45

6 EXPERIMENTS AND EVALUATION .. 46

6.1 Experiment Design.. 47

6.1.1 Experiment design and evaluation methods 47

v

6.1.2 Experiment environment .. 49

6.2 Experiments with TensorFlow Keras Sequential Model 50

6.2.1 Experiments with two different activation functions 50

6.2.2 Experiments with dropouts ... 51

6.2.3 Experiments with selected features .. 52

6.3 Experiments with Random Forest ... 53

6.3.1 Experiments with different amount of estimators 53

6.3.2 Experiments with selected features .. 54

6.4 Experiments with SVM .. 55

6.4.1 Experiments with two different kernels ... 55

6.4.2 Experiments with selected features .. 58

6.5 Evaluation and Discussion .. 59

6.5.1 The importance of feature selection ... 59

6.5.2 Time efficiency ... 60

6.5.3 Discussion .. 61

7 CONCLUSIONS AND FUTURE WORK .. 63

7.1 Conclusions .. 63

7.2 Future Work .. 65

REFERENCES ... 66

APPENDIX ... 70

vi

LIST OF FIGURES

Figure 1-1 Bad bot vs. good bots vs. human traffic 2018 (Distil Networks, 2019)
 .. 10

Figure 3-1 Data flow diagram of the crawler detection system (Priyanka et al.,
2016) ... 24

Figure 3-2 PathMarker architecture (Wan et al., 2019) 25

Figure 3-3 PathMarker suppressing distributed crawler (Wan et al., 2019) 27

Figure 3-4 Evaluation scores of the sequential classification approach (Cabri et
al., 2018) .. 27

Figure 4-1 Feature importance ... 34

Figure 5-1 Structure diagram of Keras sequential model 36

Figure 5-2 Schematic diagram of dropout (Srivastava, et al., 2014) 37

Figure 5-3 Flowchart of the algorithm using Keras sequential model 38

Figure 5-4 The internal structure of Keras sequential model 38

Figure 5-5 Flowchart of the algorithm using random forest 41

Figure 5-6 Maximum-margin hyperplane and margins for an SVM 42

Figure 5-7 Kernel machine ... 44

Figure 5-8 Flowchart of the algorithm using SVM ... 45

Figure 6-1 Epoch accuracy with different activation function 50

Figure 6-2 Epoch accuracy with different percentage of dropout applied 51

Figure 6-3 Epoch accuracy with different amount of features........................... 52

Figure 6-4 Decision region of SVM using different kernels 56

Figure 6-5 Accuracy of models without feature selection 59

Figure 6-6 Accuracy of models with feature selection 59

Figure 6-7 Average training time using different number of features 60

Figure A-1 Raw dataset. ... 70

Figure A-2 Dataset after pre-processing .. 71

vii

LIST OF TABLES

Table 2-1 Overview of the research methodology .. 16

Table 3-1 Comparison between different web robot classification methods 21

Table 3-2 Performance of the models using the simple, the semantic and both
simple and semantic features (Lagopoulos et al., 2018) 22

Table 3-3 Performance of C4.5 and SVM (Gržinić, Mršić and Šaban, 2015) ... 24

Table 3-4 Confusion matrix of PathMarker (Wan et al., 2019).......................... 26

Table 3-5 Challenges in web robot detection ... 28

Table 4-1 Field definition of the dataset ... 30

Table 4-2 Number of columns with each data types ... 32

Table 6-1 Experiment design.. 47

Table 6-2 Confusion matrix .. 48

Table 6-3 Hardware and Software configurations .. 49

Table 6-4 Parameters of each model ... 49

Table 6-5 Confusion matrixes of random forest with different number of trees 53

Table 6-6 Confusion matrixes of one-estimator random forest with different
number of features .. 54

Table 6-7 Confusion matrixes of SVM using different kernels 57

Table 6-8 Confusion matrixes of SVM with linear kernel with different number of
features .. 58

viii

LIST OF EQUATIONS

(4-1) .. 33

(4-2) .. 33

(4-3) .. 33

(5-1) .. 40

(5-2) .. 40

(5-3) .. 43

ix

LIST OF ABBREVIATIONS

IT Information Technology

ML Machine Learning

NN Neural Network

SVM Support Vector Machine

RF Random Forest

WBA Weak Bayesian Approach

SBA Strong Bayesian Approach

BDT Boosted Decision Tree

NNGE Non-Nested Generalized Exemplar

CSS Cascading Style Sheets

CV Computer Vision

10

1 INTRODUCTION

1.1 Web Robot

Web robots, also known as spiders, crawlers, walkers, wanderers and harvesters,

are computer programs that travel across the Internet and collect data

autonomously (Schmidt, 2015; Udapure, Kale and Dharmik, 2014).

The most popular way for people to grasp information from the web is by

searching with a search engine (Udapure, Kale and Dharmik, 2014). Search

engines like Google use web robot to index web pages to be used in their page

ranking process (Algiriyage, 2017). Except for search engines, web robots can

be used to collect data for analysis, monitoring public opinions or even booking

tickets.

Recent academic report suggests web robots accounted for 60% http requests

on the internet (Zabihimayvan et al., 2017). According to the 2019 Bad Bot Report

shown in Figure 1-1, which was published by Distil Networks. Web robots

accounted for 37.9 percent of all online traffic during 2018 among which 20.4

percent are bad (Distil Networks, 2019).

Figure 1-1 Bad bot vs. good bots vs. human traffic 2018 (Distil Networks, 2019)

The illegitimate robots can perform some activities that violate the robot.txt file,

collect sensitive information and consume large amounts of bandwidth by staging

Distributed Deny of Service (DDoS) attacks. This could cause serious loss to

companies that rely on web traffic (Catalin and Cristian, 2017). The behaviour of

web robots might be different on different websites. Menshchikov et al. (2017)

analysed the behaviour of web robots on different websites.

62%20%

18% Human

Bad Bot

Good Bot

11

According to a report from robotattaack.org, between 2012 and 2018, more than

20 companies received the effects of robot attacks. These include well-known

companies such as Cisco and IBM. Specifically, the Cisco products affected

include WebEx Business Suite (including Meeting Center, Training Center, Event

Center, Support Center), and services including Cisco ACE 4710 Application

Control Engine Appliance. These attacks were promptly repaired without causing

serious damage. However, this still suggests that any traffic-centric site is likely

to be threatened by a robot attack. For IBM, more than 16 software was attacked,

and the main action of robots’ attack is exposing sensitive information to

unauthorized actors.

With the development of Internet of Things technology, network traffic security

has become an even more challenging issue, it is also a critical challenge for IoT

enabled systems and services. Effectively detecting malicious web robots will

benefit not only for the security of network traffic but also for the IoT enabled

systems and services.

12

1.2 Machine-Learning and Web Robot Detection

ML is the algorithms and statistical models that computer systems use to

complete certain tasks without explicit instructions. Instead, ML algorithms rely

on patterns and inference. It is a subset of AI (Artificial Intelligence). ML

algorithms can build a mathematical model based on given data, or so called

“training data”, then the models can make predictions when similar data is fed

into them (Koza et al., 1996; Bishop, 2006). ML are widely used in various

scenarios, such as spam detection and auto pilot, in which it is extremely difficult

to develop a conventional algorithm for the task.

ML algorithms could be categorized into several broad themes, such as

unsupervised learning, supervised learning, reinforcement learning and so on.

The supervised learning algorithms will build a mathematical model from a

dataset which contains both features and labels (Russell et al., 2010). While in

unsupervised learning, the algorithm builds a mathematical model from a dataset

that contains only features.

Doran and Gokhale (2011) classified web robot detection techniques to four

themes: (1) Syntactical log analysis; 2) Traffic pattern analysis; (3) Analytical

learning techniques; (4) Turing test systems. In the recent decade, three major

themes, such as offline web robot detection based on web log analysis with

machine-learning techniques (Menshchikov et al., 2017; Doran et al., 2011; Ma

et al., 2017; Rovetta et al., 2020; Iliou et al., 2019; Doran et al., 2016), honeypots

(McKenna, 2016; Priyanka et al., 2016; Abdullahi et al., 2019; Selvaraj et al.,

2015), and online web robot detection (Guo et al., 2019; Balla et al., 2011), were

popularly investigated in the literature.

13

1.3 Python and TensorFlow

Python is an interpreted, high-level, general-purpose programming language.

Python’s design philosophy emphasizes code readability with its notable use of

significant whitespace. It supports multiple programming paradigms and it is often

described as a “batteries included” language due to its comprehensive standard

library (Kuhlman et al., 2004; Python Software Foundation, 2012). Python has a

wealth of libraries for data science and machine learning. For example, numpy,

which is an efficient library to deal with numeric data; pandas, which is suitable

for string process; sklearn, which contains various classical machine-learning

algorithms (e.g. SVM, Decision Tree), Boosting algorithms (e.g. Adaboost), and

Bagging algorithms (e.g. random forest).

TensorFlow is an open source software library that uses data flow graphs for

numerical calculations. The nodes in the graph represent mathematical

operations, and the edges in the graph represent the multidimensional arrays

(tensors) passed between these nodes. With this flexible architecture, you can

deploy computing work to one or more CPUs or GPUs in desktop devices,

servers, or mobile devices through an API. TensorFlow was originally developed

by researchers and engineers in the Google Brain team (belonging to Google's

machine intelligence research department) and was designed to be used for

machine learning and deep neural network research. However, the system has

good versatility and can also be applied to many other fields (2018).

14

1.4 Research Motivation, Aim, and Objectives

1.4.1 Motivation and aim

The motivation for this project can be summed up as follows: Today's Internet is

growing rapidly, with more and more companies with traffic at its core, yet

malicious bots can attack such corporate websites, affecting their business and

even suffering serious financial losses. At the same time, websites attacked by

malicious reptiles often block normal human access, which seriously affects their

browsing activities. Besides, they waste bandwidth resources, mislead people,

and they can trick search engine to gain unfair search results (T. H. Sardar and

Z. Ansari, 2014). If such a network robot is detected and blocked in a timely

manner, the normal user's online experience will be greatly improved. So, this

project was started. The project aims to develop an offline system that can

effectively detect malicious web robots, which is not only conducive to network

traffic cleaning, but also conducive to improving the network security of IoT

systems and services. The key contributions of the research are: 1) it provided a

systematic methodology to address the web robot detection problem based on

the log file from industrial company; 2) it provided a methodology for feature

selection, overcoming the challenge of curse of dimensionality; 3) it investigated

three types of machine learning techniques based real data from industry, making

a big progress in the accuracy of off-line web robot detection.

1.4.2 Objectives

To achieve the goal, this research will implement the following objectives:

1) To identify research gaps through literature review.

2) To find out important features in web log files determine the identity of web

robots.

3) To develop cutting-edge machine learning techniques, such as neural

network, random forest, and SVM algorithms for web robot detection.

4) To assess and compare the developed machine learning models for web

robot detection.

15

1.5 Thesis Structure

The rest of the thesis is structured as follows:

Chapter 2: Research methodology

This chapter illustrates what methods were employed in each phase of the

research.

Chapter 3: Literature review

This chapter gives a comprehensive review of existing works that related to web

robot detection and identifies research gap.

Chapter 4: Feature engineering

This chapter shows how the dataset was pre-processed and how the feature

importance was calculated.

Chapter 5: Investigated model for web robot detection

This chapter explains the mathematical principles of the investigated models and

their implementation.

Chapter 6: Experiments and evaluation

This chapter demonstrates the experimental process using the investigated

model, after which the experimental results are evaluated and discussed.

Chapter 7: Conclusion and future work

This chapter describes the key findings and contributions to knowledge. There

are also ideas for future work.

16

2 RESEARCH METHODOLOGY

This section introduces the methods and tools used in this research program.

Table 2-1 illustrates the research methodology.

Table 2-1 Overview of the research methodology

Literature Review (Hanlin
et al., 2020)
Chapter 3

• Reviewing the literatures related to web robot
detection; machine-learning

• Taking a close look to the existing web robot
detection strategies.

• Identifying research gap

Feature Engineering
Chapter 4

• Data cleaning: Inspecting the industrial data; deleting
the obviously irrelevant fields, Dealing with missing
values

• Data editing: Normalize data that cannot be
recognized by models.

• Feature selecting: Two methods were used to
calculate the influence of each features on the
classification results.

• Splitting the dataset into two subsets: training data
and test data

Investigated Model for
Web Robot Detection

Chapter 6

• Inspecting 5 types of models/ algorithms that will be
used in this project, including: decision tree, SVM,
Boosting, Bagging and TensorFlow Keras sequential
model.

• Part of training data was used to train the mentioned
models.

• Selecting models that has the best and the worst
results for further experiments

Experiments and
Evaluation
Chapter 7

• Experiment are conducted using all features and
using selected features

• Training data was fed to each model that were
trained with different parameters.

• Test each model with test dataset and evaluate the
test results.

Conclusion and Future
Work

Chapter 8

• Random forest is the most accurate and the fastest
algorithm for distinguishing the robots from humans by
web log-based-learning.

• Further research could be undertaken to carry out
this study to focus on online detection, web robot
detection devices, web robot datasets, and cloud-
based web robot detection.

17

This research project includes five stages. They are:

Stage 1: Literature Review

To identify the research gap review in web robot detection, a comprehensive

literature was conducted. The review covers main works in the last decade.

Database used include Google Scholar, Springer, IEEE Xplore Library, Wikipedia

and so on.

The documents that have been viewed are sorted according to their views. The

views of these documents were refined and summarized, and an attempt was

made to find their shortcomings. Thus, identified the research gap. As the final

step, summary of the literature is to identify the research gap of web robot

detection.

Stage 2: Feature engineering

The dataset is a comma separated value file which has columns and row when

opened by Microsoft Excel. Each column is a feature in machine learning

progress. At this stage, Python machine-learning libraries (numpy,

pandas, TensorFlow, and sklearn) were imported and used to pre-processing

the data.

The first step of data pre-processing includes fill in the missing values, deleting

the duplicated values, normalize numerical values and using hash to transform

string values into vectors.

In the second step, random forest and Information Gain were used to evaluate

the importance of each feature. Feature importance is a key factor for some

algorithms.

18

Stage 3: Models and implementation

This stage focuses on the mathematical theory of investigated models and how

they were implemented in this project.

Stage 4: Training, Test and Evaluation

At this stage, the dataset will be divided into three parts: training set, validation

set and test set. Then some parameters of investigated models will be adjusted

for the training process. After training, decision region, confusion matrix, and

time-efficiency test were implied to evaluate models’ performance.

Stage 5: Conclusion and Future Work

At this stage, the key findings and conclusions were listed according to the

research objectives. random forest algorithm obtained the highest accuracy and

the fastest training speed.

19

3 LITERATURE REVIEW

This chapter introduces a literature review covering the past 10 years. These

documents are all related to web robot detection. This part contains three topics,

web log analysis, honeypot technology and online web robot detection. For each

topic, this review compares the performance of the systems proposed in the work,

listing their respective advantages and their shortcomings. Finally, summarize

their performance, and on this basis, put forward the main challenges and

research gaps.

3.1 Web Log Analysis

This section focuses on the use of web log analysis methods to detect web

crawlers. In this section, a total of five types of web robot detection methods are

introduced, all of which are based on offline web log analysis.

Rajabnia and Jahan (2016) proposed a hybrid fuzzy inference system based on

NNGE (non-nested generalized exemplar) algorithm. In the proposed NNGE

algorithm, only the main features are used to train the model. In addition, a hybrid

inference system was developed in this work to infer the possibility that the web

log came from a robot.

Bayesian network is a popular method in web robot detection. Suchacka and

Sobków (2015) used a Bayesian approach to robot detection based on pattern of

user sessions. In their work the performance of Weak Bayesian Approach (WBA)

and Strong Bayesian Approach (SBA) were compared. Under normal

circumstances, the accuracy of SBA is better than that of WBA. However, how to

choose these two methods depends on the tolerance for errors. If a small amount

of errors is allowed in the usage scenario, one can use SBA, otherwise one can

only use WBA.

Sisodia et al. (2015) believed the result of web server log analysers are not very

reliable due to the highly inflated input log files. They proposed an agglomerative

approach combining web logs with actual visitors’ knowledge extraction, and

evaluated the performance of these ensemble learners with recall, precision, and

20

F1 measure. The precision for the web robot sessions with ensemble classifiers

is more than 80% in the first experiment and 98% in the second experiment.

Haidar (2017) developed a two-class Boosted Decision Tree (BDT) for web robot

detection based on website navigation behavior analysis. In addition to DBT, his

works also involve SVM, neural network and random forest. These were used in

controlled trials. Two websites (named wheelers and wherever) provide the data

needed for this experiment. The biggest advantage of this system is that it can

be retrained according to the evolution of web robot types. The experiment results

are shown in Table 3-1. The fields in Table 3-1 are defined as follows:

• TP: true positive, is the percentage of positive cases correctly classified as

belonging to the positive class.

• FP: false positive, is the percentage of negative cases misclassified as

belonging to the positive class.

• Precision: (also called positive predictive value) is the fraction of relevant

instances among the retrieved instances: Precision = TP / (TP + FP)

• Recall: (also known as sensitivity) is the fraction of the total amount of

relevant instances that were retrieved: Recall = TP / (TP + FN)

• F1-score is a measure of a test's accuracy. It considers both the precision

and the recall of the test to compute the score, and it is the harmonic mean

of the precision and recall: F1 = 2 × Precision × Recall / (Precision + Recall)

21

Table 3-1 Comparison between different web robot classification methods

Lagopoulos et al. (2018) proposed a semantic approach for web robot detection.

They designed this system based on a basic assumption, that is, web robots will

randomly grab the content they encounter, but humans will follow a topic to

access related web content.

Typical features extracted from sessions includes:

• Total Requests

• Session Duration

• Average Time: average time between two consecutive requests.

• Standard Deviation Time: the standard deviation of the time between two

consecutive requests.

• Repeated Requests: a request for an already visited page using the same

HTTP method as the previous one.

• HTTP requests: four features, each containing the percentage of requests

associated with one of the following HTTP response codes: Successful

(2xx), Redirection (3xx), Client Errors (4xx) and Server Errors (5xx).

Classification

Methods

Source of Data No. of

Selected

Features

Precision Recall F1-score Accuracy

NNGE-fuzzy

Inference

system

Pars Web

Server 4 0.9931 0.9931 0.9931 0.993

SBA Real E-

commerce Site
20 N/A N/A N/A 0.931

Agglomerative

Approach

Unclear
23 0.9800 0.9800 0.9800 N/A

Random Forest Wheelers /

Whereleb
Unknown 0.828 0.739 0.756 0.797

BDT Wheelers 496 0.920 0.765 0.815 0.831

Whereleb 472 0.916 0.502 0.601 0.731

22

• Specific Type Requests: The percentage of requests of a type over the

number of all requests. This feature is application dependent.

While the semantic features extracted from a session are:

• Total Topics (TT): The number of topics with non-zero probability.

• Unique Topics (UT). The number of unique topics with non-zero

probability.

• Page Similarity (PS). The ratio of unique topics with non-zero

probability over all the topics with non-zero probability.

• Page Variance (PV). The semantic variance of the pages of a session.

• Boolean Page Variance: It is a Boolean version of PV.

The experiments were carried out with four different models: an SVM with an RBF

kernel (RBF), a gradient boosting (GB) model, a multi-layer perceptron (MLP),

and an eXtreme Gradient Boosting (XGB) model. From Table 3-2, it can be seen

that RBF achieved the best performance when using semantic features; MLP

performed relatively poorly; GB and XGB achieved the best performance when

both semantic features and simple features were used at the same time;

(Lagopoulos, Tsoumakas and Papadopoulos, 2018).

Table 3-2 Performance of the models using the simple, the semantic and both

simple and semantic features (Lagopoulos et al., 2018)

Performance
Indicator

Feature sets RBF MLP GB XGB

 Simple 0.655 0.784 0.907 0.905

F1-score Semantic 0.848 0.749 0.848 0.846

 Both 0.648 0.816 0.918 0.917

 Simple 0.651 0.768 0.900 0.898

Accuracy Semantic 0.848 0.771 0.845 0.841

 Both 0.651 0.801 0.913 0.912

 Simple 0.583 0.743 0.898 0.896

G-mean Semantic 0.847 0.767 0.843 0.839

 Both 0.565 0.781 0.912 0.911

23

3.2 Honeypot

Honeypot is represented as an invisible link or vulnerable web page that

intentionally designed by developers to mislead web robots. A human cannot see

the links or other resources that have been hidden. However, a web crawler,

looking at the source code, does not check the visibility before requesting them.

Based on this assumption, McKenna (2016) proposed a strategy to detect and

classify web robots with honeypots. He used a CSS rule named display: none to

construct hidden contents. Besides, they built a sand trap, which implements a

server-side PHP script to catch crawlers. This system will also detect whether a

certain web robot complies with the constraints of robot.txt. If it complies, the

system will classify it as a good robot, otherwise it will mark it as a bad robot. But

his experiment did not distinguish between good robots and bad robots as

expected In his final conclusion, he indicated that pure honeypot technology is

not suitable for direct web robot detection and classification, because good robots

may also be misclassified as bad ones. (McKenna, 2016).

In 2015, Gržinić and his colleagues developed a data collection system called

Lino. This system will simulate an unsafe web page to attract web robots. For the

collected data, select the characteristics. And use the data set to train the

decision tree C4.5 and SVM model. Both models were used in two sets of

experiments. In Experiment 1, only the selected features were used in the training

process. In Experiment 2, in addition to using the selected features, two additional

features were added, the country and the customer's ASN. Experiment results

are shown in Table 3-3

With Lino they selected top 5 features that dominate the dataset including:

• Post data, which shows us whether the client has filled/not filled the fake

form in the Lino system.

• Session change, which shows us if user, during the session, has changed

the session identifier or not.

• Session duration, duration of the session in seconds.

• Robots, which shows us whether the user accessed /not accessed to the

robots.txt file, which defines the rules of robot conduct.

24

Table 3-3 Performance of C4.5 and SVM (Gržinić, Mršić and Šaban, 2015)

 Class TP FP F1 AUC

C 4.5 Experiment #1
Human
Robot

0.177
1

0
0.823

0.301
0.972

0.773
0.773

C 4.5 Experiment #2
Human
Robot

0.793
0.998

0.002
0.207

0.872
0.992

0.985
0.985

SVM Experiment #1
Human
Robot

0.625
1

0
0.735

0.419
0.979

0.801
0.801

SVM Experiment #2
Human
Robot

0.962
0.998

0.006
0.042

0.942
0.997

0.976
0.978

The flaw of this algorithm is that the false positive rate is too high. In other words,

many human users may be marked as web robots. (Gržinić, Mršić and Šaban,

2015).

Priyanka et al. (2016) employed similar strategy to detect malicious web robot.

However, honeypot was utilized in a different way. The flow chart of the system

is shown in Figure 3-1. This system was designed to be deployed on the server

side. This system uses a combination of honeypot technology and an intrusion

detection system.

Figure 3-1 Data flow diagram of the crawler detection system (Priyanka et al., 2016)

25

Figure 3-1 shows that the web-side application will do two things at the same time.

Transaction A is to send the webpage traffic log to the intrusion detection system

for analysis. If the analysis result is abnormal, the producer of a certain log is

induced into the honeypot and analyzed in the honeypot whether he is an internal

attacker or an external attacker. Transaction B is: when the detection result of the

intrusion detection system in transaction A is no abnormal, the information of the

web log and the information of the server log are combined to create an extended

log, and then the extended log is subjected to session extraction, feature

extraction, and session labeling. And divide the log file into a training set and a

test set, and then perform classification operations to distinguish malicious

crawlers from non-malicious crawlers.

3.3 Online Web Robot Detection

Most of the existing web robot detection systems are offline web log analysis.

Few systems can detect web robots online.(Cabri et al., 2018). In 2019, Wan et

al. (2019) proposed an online web robot detection system called PathMarker. It

can trace the page that leads to the access to an URL by adding a marker to the

URL and identify the user, who accesses to this URL. SVM was utilized to

distinguish malicious web crawler from normal users. Experimental results

showed the proposed system could successfully identify 96.74% crawlers’ long

sessions and 96.43% normal users’ long sessions. The architecture of

PathMarker is shown in Figure 3-2.

Figure 3-2 PathMarker architecture (Wan et al., 2019)

26

PathMarker's workflow consists of two parts: Preprocessing and Real-time

detection. In preprocessing period this system will add a tag to some URLs in the

page. when. Then the system will create an extended access log table containing

IP address, visited URL, timestamp, and extended information. In real-time

detection period, First, extract the features of the web page request and send

these features to its unique A and B subsystems, and finally send the output of

these two subsystems to CAPTCHA verification to finally determine the identity

of the requester.

Experimental results are shown in the Table 3-4. Type 0 stands for human users.

Type 1, 2, and 3 stands for breadth-first crawlers, depth-first crawlers, and

random-like crawlers. The system could successfully identify 96.74% crawlers’

long sessions and 96.43% normal users’ long sessions.

Table 3-4 Confusion matrix of PathMarker (Wan et al., 2019)

Original type Classify as 0 Classify as 1 Classify as 2 Classify as 3

0 96.43% 0% 3.57% 0%

1 0% 100% 0% 0%

2 0% 6.25% 93.75% 0%

3 1.51% 1.77% 0% 96.72%

Except for web robot identification, Wan also conducted experiments to inspect

the impact PathMarker has on distributed crawlers. They take the crawling

efficiency of a distributed web robot with only one worker as a reference standard

when the PathMarker system is not used. Figure 3-3 illustrates the relationship

between the crawling efficiency of a single worker and the total number of workers

when the PathMarker system is applied.

27

Figure 3-3 PathMarker suppressing distributed crawler (Wan et al., 2019)

This figure shows that when the PathMarker system is used, if there is only one

worker in the distributed web pages and robots, then its crawling efficiency will

not be greatly affected. However, as the number of workers increases, the

efficiency of each worker will be increasingly affected. When the number of

workers reaches 100, the work efficiency of each worker is less than half of their

expected efficiency.

In the same year, Cabri et al. (2018) proposed a novel approach for binary

classification of a multivariate data stream incoming on a web server. Deep neural

networks and Wald’s sequential Probability Ratio Test were utilized to represent

the relation between subsequent HTTP requests. Results showed that the

proposed approach could detect robots with a high accuracy and had slight

impact on human visitors. Figure 3-4 shows that the developed system could

achieve stable Precision (0.979), Accuracy (0.963), F1 (0.959) and Recall (0.940)

after the number of requests reached 8.

Figure 3-4 Evaluation scores of the sequential classification approach (Cabri et al.,

2018)

91.80%
77.50% 71.90%

59.40%
45.60%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

1 10 20 50 100

Si
n

gl
e

 W
o

rk
e

r
Ef

fi
ci

e
n

cy

Number of Workers in a Distributed Crawler

0.9

0.92

0.94

0.96

0.98

1

0 2 4 6 8 10 12

Number of Requests

Recall

Precision

Accuracy

F1

28

Figure 3-4 shows that as the number of requests increases, the recall rate of the

system is low, and the accuracy is high. Using the formula of Recall and Precision

(mentioned in 3.1) to analyze the experimental results, it shows that the FN rate

of this system is greater than the FP rate, which in turn indicates that this system

is more inclined to classify web robots as normal users.

3.4 The Identified Research Gap and Challenges

A review of the relevant literature shows that the existing methods have their

advantages and disadvantages. This section summarizes the advantages and

disadvantages mentioned above. This leads to the challenges and research gaps

in the field of web robot detection, which is listed in Table 3-5.

Table 3-5 Challenges in web robot detection

Detection methods Challenges

Web log analysis
• Curse of dimensionality (D. Stevanovic et al., 2012).
• Positive case labelling is a critical challenge (D. Doran and
S. S. Gokhale, 2011).

• Web log analysis systems cannot detect and block web
robots in real-time (A. Mason et al., 2019).

• The detection accuracy is not high enough.

Honeypot
• It could drop the performance of a web browser (Gržinić et
al., 2015).

• Normal users could be fooled too (Gržinić et al., 2015).

• Honeypot defence techniques can be thwarted if web robots
are employing certain countermeasures (McKenna, 2016).

Online web robot

detection

• Uncertainty of web robot situations (Cabri et al.,2018).

• Poor session labelling (A. Mason et al., 2019).

• Unknown web robots.

• The real-time performance of online web robot detection
system.

• The diversity of web robots.

According to the results of the literature review, the current research status of

web robots can be summarized as follows: First, most of the existing systems

detect web robots based on offline web log analysis. Although these methods

have achieved considerable accuracy, they cannot detect web crawlers in real

time. Second, honeypot technology is not recommended for direct detection of

web robots. Instead, it can be used as a good data collector. Third, the accuracy

of some online detection systems is generally lower than that of offline detection

29

systems, and most online monitoring systems are only effective for certain types

of crawlers.

Through this review, we can draw conclusions: First, some specific algorithms or

models are only suitable for specific samples, so the choice of model will have a

great impact on the detection results. Second, the choice of features will also be

crucial to the test results. Third, to get a good understanding of the performance

of an algorithm or system, a variety of evaluation methods should be adopted.

When researching related topics, you should first consider the browsing

experience of web users. In other words, the system used to detect web crawlers

online should not have a significant impact on the loading speed of web pages.

In the latest research, there is a method for online detection of web robots. It is

to study the relationship between each request of a certain user in a session, and

then determine the identity of the user. For future study, it is demanded to design

and develop high performance and highly efficient online web techniques or

methods for detecting web robots and/or distributed web crawlers. This is

required by “Security by Design” for Industry 4.0.

4 FEATURE ENGINEERING

The dataset for the project comes from an Internet company whose business

area is local living services. The original datasets are two comma-separated-

value (csv) files, one of which contains 1000 human traffic records, and the other

contains 1000 web crawler traffic records. The dataset has 43 columns among

which 42 are features and 1 column is label. The outlook and the field definition

of the dataset is shown in the Table 4-1 below. Note that the definition of some

features may be somewhat vague, as this involves the interests of the company.

30

Table 4-1 Field definition of the dataset

Field name Definition
_mt_datetime log generation time
_mt_servername log generation server
_mt_appkey log generated service appkey
_mt_leve log level
_mt_thread the thread which generated the log
_mt_action logger name generated by the log
_mt_message log content
request_id request id
request_time request time
union_id user device tag
user_id user id
Os operating system of user machine
app_version application version number
Mac no data due to permission problems
page _city_id page city id
locate_city_id target city id
Lat Latitude
Lng Longitude
page_index page order, counting from 0
Offset page offset
page_size length of each page
Stock number of ads requested
page_id the page ID of the requested ad slot
lx_page_id the actual page ID of the requested ad
Channel ad request channel
channel_source distinguish between search requests on the homepage or

channel page
area_id area id
cate_id front desk category id
Keyword search keyword
query_type query type
slot_id ad slot id
intent_type intent type of request
Extensions extended field
cate_ids request the front desk category ids, multiple id stitching
query_analysis keyword understanding result JSON
search_request original request
search_info search Information
ab_trace_tag experiment id
slot_ids request ad slot ids
dt date
hour hour
ctime time

31

In this project, a Python library named pandas was used to pre-process the data

for further experiment.

4.1 Data Cleaning

The original dataset has 43 columns among which 42 are features and 1 column

is label. However, many columns have the same meaning, or the other case is

many columns have too much null values, which may bring too much extra

calculation or causing overfitting when training the model. If users think the data

is messy, they are less likely to believe that the mining results based on this data,

that is, the output results are unreliable. The main idea of data cleaning is to

"clean up" the data by reducing missing values, smoothing noisy data, deleting

outliers, and resolving data inconsistencies.

4.1.1 Handling the missing values

The methods for dealing with these missing values are mainly based on the

distribution characteristics of the variables and the importance of the variables,

the amount of information and the ability to predict. The following operations are

performed in this project to handle missing values:

• Deleting a column: if a column has a high rate of null value (greater than

80%), and it has a minor importance, the column will be deleted.

• Statistics filling: If the missing rate is lower (less than 95%) and the

importance is low, the filling is performed according to the data distribution.

For data that conforms to a uniform distribution, use the mean of the

variable to fill in the missing. For data that have a skewed distribution, use

the median to fill.

After deleting the columns that are not needed. The dataset has twenty-one

columns left plus one label column.

4.1.2 Data transformation

Data transformation includes normalizing, discretizing, and thinning the data to

make them suitable for machine learning. Before transforming the data, a built-in

function in pandas called dtype was applied to inspect each column in the dataset

32

file to find out what type they are. The number of columns with the following data

types is shown in the Table 4-2.

Table 4-2 Number of columns with each data types

Data type of columns Number of columns

String 10

Categorical column 2

Numeric column 9

There are three types of features in the given dataset. However, machine learning

models can only recognize numbers and matrices. All these types of features

were transformed into the format of number or matrices.

This section illustrates the methods applied to transform each column to the

format which can be fed into machine learning models. For random forest and

SVM all the values of each feature in the dataset were digitized by a built-in

function called factorize () from a python library called “pandas”. After that, all the

same values in each column of the table will be replaced by the same number.

This number will increase one by one starting from zero and is only used to

indicate how many different states there are in this column. However, for the

TensorFlow models, they can be digitalized by a TensorFlow built-in function

called categorical_column_with_hash_bucket ().

At this stage, the final step is to split the dataset into training set, validation set

and test set using a function called train_test_split () imported from sklearn library.

4.2 Feature Selection

Feature selection could have a huge impact on the performance of models. In

this project, feature selection will be used as a variable to observe its influence

on each model. In this section, two method were employed to evaluate the

importance of each feature: information gain and random forest.

33

4.2.1 Information gain

In machine learning, information gain has the same meaning as Kurbach-

Leeblier's divergence. The amount of information about one random variable

obtained by observing another random variable. In decision trees, information

gain is sometimes synonymous with mutual information, which is the univariate

probability distribution of one variable and the Kullback-Leibler’s divergence

given the conditional distribution of another variable.

The information gain of random variable X obtained from the observation value

of random variable A with value A = a is defined as below

𝐼𝐺𝑋,𝐴(𝑋, 𝑎) = 𝐷𝐾𝐿(𝑃𝑋(𝑥|𝑎)||𝑃𝑋(𝑥|𝐼)) (4-1)

the Kullback–Leibler divergence of the prior distribution 𝑃𝑋(𝑥|𝐼) for x from the

posterior distribution 𝑃𝑋|𝐴(𝑥|𝑎) for x given a.

In summary, the expected information gain change information entropy Η from

the previous state requires some information:

𝐼𝐺(𝑇, 𝑎) = 𝐻(𝑇) − 𝐻(𝑇|𝑎), (4-2)

Where 𝐻(𝑇|𝑎) is the conditional entropy of 𝑇 given the value of attribute 𝑎.

Then the information gain of 𝑻 for attribute 𝒂 is the difference between the a priori

Shannon entropy 𝑯(𝑻) of the training set and the conditional entropy 𝑯(𝑻|𝒂).

𝐻(𝑇|𝑎) = ∑
|𝑆𝑎(𝑣)|

|𝑇|
∙ 𝐻(𝑆𝑎(𝑣)).

𝑣∈𝑣𝑎𝑙𝑠(𝑎)

(4-3)

4.2.2 Feature importance evaluation with random forest

The idea of evaluating the importance of features in a random forest is to

determine the contribution of each feature to each tree in the random forest, then

take the average, and finally compare the contributions between the features.

The first step to calculate the variable importance in a data set 𝐷𝑛 = {(𝑋𝑖, 𝑌𝑖)}𝑖=1
𝑛

is to fit a random forest to the data. During the fitting process an out-of-bag error

34

(OBE) is recorded and averaged over the forest (errors on an independent test

set can be substituted if bagging is not used during training).

To measure the importance of the 𝑗-th feature after training, the values of the 𝑗-

th feature are permuted among the training data and the OBE is again computed

on this perturbed data set. The importance score for the 𝑗-th feature is computed

by averaging the difference in OBE before and after the permutation over all trees.

The score is normalized by the standard deviation of these differences. Features

importance is shown in Figure 4-1.

Figure 4-1 Feature importance

Figure 4-1 shows the importance of each feature in the dataset which was pre-

processed. The abscissa is the name of each feature, and the ordinate is the

importance of each feature. The larger the ordinate value, the more important a

certain feature is, and vice versa. This figure shows that the first six most

important features are server name, thread, request id, request time, os, and app

version. Subsequent experiments will study the impact of these first six important

features on the accuracy of the model.

35

4.3 Getting Features Ready for Model Training

For TensorFlow Keras sequential model, all features of type string should be

transformed into their hash matrix using a TensorFlow built-in function named

feature_column.categorical_column_with_hash_bucket()

And all the categorical columns should transform to matrices with another

TensorFlow built-in function called:

feature_column.categorical_column_with_vocabularty_list ()

And for the numeric columns, they should be fed in to another TensorFlow built-

in function called:

feature_column.numeric_column ()

After defining each feature, they were ready to be added into Keras feature layers.

36

5 INVESTIGATED MODELS FOR WEB ROBOT

DETECTION

The goal of this project is to develop machine learning models that can accurately

identify web robots from the given log dataset. In this project, TensorFlow Keras

model, random forest, and SVM were investigated. The reason for choosing

TensorFlow Keras Model is that we have not found any existing research using it

for web robot detection. There are two reasons for choosing random forest. First,

few works mainly study random forest; second, in the existing works, random

forest did not perform well. For example, in Haidar and Elbassuoni ’s work that

aimed to develop a classifier which can identify various classes of web robots.

They used random forest as comparison. And the model only achieved an

accuracy of 80% and a recall of 73.9%. The reason for choosing SVM is that it

is a very classic machine learning model, and it is often used to study binary

classification problems.

5.1 Keras Sequential Model

Keras sequential model is a linear stack of layers. It is a multi-layer feedforward

neural network. The structure diagram of this model is shown in Figure 5-1

Figure 5-1 Structure diagram of Keras sequential model

37

The Keras sequential model shown in the diagram has three layers. Each layer

could be a dense neural network that contains multiple neurons. The number of

neurons can range from 1 to a very big number. But it will have a huge impact on

performance of the model. Too many neurons may cause overfitting, but too few

may cause underfitting. Within each layer, every neural has its weighs and bias,

model will adjust those weighs and bias in the training process as the training

epoch moving forward.

In artificial neural networks, the activation function of a node defines the output

of that node given an input or set of inputs. In Keras sequential model, each layer

could have its own activation function. There are at least five types of activation

function in machine learning. They are identity function, binary step function,

bipolar step function, sigmoidal function, and ramp function. Activation function

has significantly impact on the model’s performance too.

Dropout is a regularization technique patented by Google for reducing overfitting

in neural networks by preventing complex co-adaptations on train data.

Figure 5-2 Schematic diagram of dropout (Srivastava, et al., 2014)

In the training process of the neural network, for a part of the layered neural

network trained at a time, some of the neurons in the random selection are hidden

first, and then this training and optimization is performed. In the next iteration,

continue to hide some neurons randomly, and so on until the end of training.

38

5.1.1 Implementation

Figure 5-3 Flowchart of the algorithm using Keras sequential model

Figure 5-4 The internal structure of Keras sequential model

39

Figure5-3 demonstrates the algorithm using the Keras sequential model. The

model has two hidden layers, each with 20 neurons. After each hidden layer, a

dropout layer that can control the active neurons is added. Stage 1: Data pre-

processing, including data cleaning and data normalization; Stage 2, model

parameter tuning, including the use of different kernel functions and different

proportions of dropout. The next stage is two parallel sub-experiments.

Experiment A did not use feature selection, training and test was conducted

right after parameter adjustment, followed by training and test results, while

Experiment B conducted model training and output training and test results after

feature selection. Figure 5-4 is the internal structure of Keras sequential model.

Data goes into the model through input layer and then two dense neural layers

where activation function and dropouts will be applied. Then the result comes

out from output layer. In the following experiments, parameters activation

function, dropout will be examined.

5.2 Random Forest

In machine learning, a random forest is a classifier containing multiple decision

trees, and the output category is determined by the mode of the category output

by the individual trees. Leo Breiman and Adele Cutler developed an algorithm to

infer random forest. And "random forest" is their trademark. This term is derived

from random decision forests proposed by Tin Kam Ho of Bell Labs in 1995. This

method combines Breimans' "Bootstrap aggregating" idea and Ho's "random

subspace method" to build a set of decision trees. (Ho,1995).

Random forests correct for decision trees' habit of overfitting to their training set

(Hastie, 2008). To tree learners. Given a training set 𝑋 = 𝑥1, . . . , 𝑥𝑛 with

responses 𝑌 = 𝑦1, . . . , 𝑦𝑛, bagging repeatedly (𝐵 times) selects a random sample

with replacement of the training set and fits trees to these samples:

For 𝑏 = 1, . . . , 𝐵:

1. Sample, with replacement, 𝑛 training examples from 𝑋, 𝑌, call these 𝑋𝑏, 𝑌𝑏.

2. Train a classification or regression tree 𝑓𝑏on 𝑋𝑏, 𝑌𝑏.

40

After training, predictions for unseen samples 𝑥′ can be made by averaging the

predictions from all the individual regression trees on 𝑥′:

𝑓 =
1

𝐵
∑ 𝑓𝑏(𝑥

′)

𝐵

𝑏=1

(5-1)

or by taking the majority vote in the case of classification trees.

Additionally, an estimate of the uncertainty of the prediction can be made as the

standard deviation of the predictions from all the individual regression trees on 𝑥′:

𝜎 = √
∑ (𝑓𝑏(𝑥′) − 𝑓)2𝐵

𝑏=1

𝐵 − 1

(5-2)

The above procedure describes the original tree bagging algorithm. There is only

one difference between random forest and this generic scheme: they use an

improved tree learning algorithm to select a random subset of features at each

candidate segmentation point during the learning process. (Ho et al., 2002).

41

5.2.1 Implementation

Figure 5-5 Flowchart of the algorithm using random forest

Figure 5-5 demonstrates the algorithm flow using random forest. Stage 1: Data

pre-processing, including data cleaning and data normalization; Stage 2, model

parameter tuning, including the number of estimators (trees). The next stage is

two parallel sub-experiments. Experiment A did not use feature selection, but

directly conducted model training and output training and test results, while

Experiment B conducted model training and output training and test results after

feature selection.

42

5.3 Support Vector Machine

A Support-vector machine (SVM) is a supervised learning model with associated

learning algorithms that analyze data used for classification and regression

analysis. Given a set of training examples, each marked as belong to one or the

other of two categories, an SVM training algorithm builds a model that assigns

new examples to one category or the other, making is a non-probabilistic binary

linear classifier. An SVM model is a representation of the examples as points in

space, mapped so that the examples of the separate categories are divided by a

clear gap that is as wide as possible. New examples are then mapped into that

same space and predicted to belong to a category based on the side of the gap

on which they fall.

5.3.1 Linear SVM

As shown in Figure 5-6, given a training dataset of 𝑛 points of the form

(𝑥1⃗⃗ ⃗, 𝑦1),… , (𝑥𝑛⃗⃗⃗⃗ , 𝑦𝑛), where the 𝑦𝑖 are either 1 or -1, each indicating the class to

which the point 𝑥𝑖⃗⃗ ⃗ belongs. Each 𝑥𝑖⃗⃗ ⃗ is a 𝑝 − dimensional real vector. The

objective is to find the ‘maximum-margin hyperplane” that divides the group of

points 𝑥𝑖⃗⃗ ⃗ for which 𝑦𝑖 = −1, which is the defined so that the distance between the

hyperplane and the nearest point 𝑥𝑖⃗⃗ ⃗ from either group is maximized. Any

hyperplane can be written as the set of points 𝑥𝑖⃗⃗ ⃗ satisfying 𝜔⃗⃗ ∙ 𝑥 − 𝑏 = 0, where

𝜔⃗⃗ is the normal vector to the hyperplane. Samples on the margin are called the

support vectors.

Figure 5-6 Maximum-margin hyperplane and margins for an SVM

43

If the training data is linearly separable, two parallel hyperplanes can be selected

to separate the two types of data, making the distance between them as large as

possible. The area defined by these two hyperplanes is called the "boundary",

and the maximum boundary hyperplane is the hyperplane between the two. For

normalized and standardized data sets, 𝜔⃗⃗ ∙ 𝑥 − 𝑏 = 1 described by these

hyperplane equations (any of the above boundaries is a class, and label 1) and

𝜔⃗⃗ ∙ 𝑥 − 𝑏 = −1 (or below this boundary) Any other class of, with label −1).

The distance between the two hyperplanes is
2

‖𝜔⃗⃗⃗ ‖
 so to maximize the distance

between the planes, ‖𝜔⃗⃗ ‖ needs to be minimized. The distance is calculated by

the distance from a point to the plane equation. To prevent data points from

falling into the margin, following constraint is added: for each 𝑖 either 𝜔⃗⃗ ∙ 𝑥𝑖⃗⃗ ⃗ − 𝑏 ≥

1, if 𝑦𝑖 = 1, or 𝜔⃗⃗ ∙ 𝑥𝑖⃗⃗ ⃗ − 𝑏 ≤ −1 if 𝑦𝑖 = −1. These constraints state that each data

point must lie on the correct side of the margin. This can be rewritten as

𝑦𝑖(𝜔⃗⃗ ∙ 𝑥𝑖⃗⃗ ⃗ − 𝑏) ≥ 1, for all 1 ≤ 𝑖 ≤ 𝑛. (5-3)

Now the optimization problem becomes:

“Minimize ‖𝜔⃗⃗ ‖ subject to 𝑦𝑖(𝜔⃗⃗ ∙ 𝑥𝑖⃗⃗ ⃗ − 𝑏) ≥ 1 for 𝑖 = 1,… , 𝑛.”

The‖𝜔⃗⃗ ‖ and 𝑏 that solve this problem determine the classifier, 𝑥 → 𝑠𝑔𝑛(𝜔⃗⃗ ∙ 𝑥 −

𝑏).

An important result of this geometric description is that the maximum margin

hyperplane is determined entirely by the 𝑥𝑖⃗⃗ ⃗ data that is closest to it. These 𝑥𝑖⃗⃗ ⃗ are

called support vectors.

44

5.3.2 Non-linear SVM

In 1992, Boser et.al proposed a method to create a nonlinear classifier by

applying the nuclear technique to the maximum margin hyperplane (1992). The

proposed algorithm is similar in form, except that each dot product is replaced by

a nonlinear kernel function. This allows the algorithm to fit the maximum margin

hyperplane into the transformed feature space. See Figure 5-7, The

transformation can be nonlinear, the space after transformation can be high

dimensional. Although the classifier is a hyperplane in the transformed

eigenspace, it may be nonlinear in the original input space.

Figure 5-7 Kernel machine

45

5.3.3 Implementation

Figure 5-8 Flowchart of the algorithm using SVM

Figure 5-8 demonstrates the algorithm flow using SVM. Stage 1: Data pre-

processing, including data cleaning and data normalization; Stage 2, model

parameter tuning, including the kernel selection. The next stage is two parallel

sub-experiments. Experiment A did not use feature selection, but directly

conducted model training and output training and test results, while Experiment

B conducted model training and output training and test results after feature

selection. In the following experiments, parameter kernel will be inspected and

adjusted.

46

6 EXPERIMENTS AND EVALUATION

Google's Colab was chosen as the experimental environment, Python3.7 as the

programming language, TensorFlow as the deep learning framework, and python

sklearn library as the provider of random forest and SVM. Accuracy and confusion

matrices were chosen to evaluate experimental results. The tools and methods

mentioned above was considered appropriate for 4 reasons:

1) Google Colab is a cloud-based Python development environment that can

debug and run python programs in a browser without any download, and it can

automatically save code on a google cloud drive.

2) TensorFlow is a free, open source machine learning platform that integrates

popular machine learning libraries such as Keras;

3) Python is a rapidly growing programming language that can run on any server,

making Python programs very easy to port.

4) Accuracy and confusion matrix are commonly used performance measures in

machine learning research, especially in the dichotomy problem, that is, the field

to which this project belongs.

47

6.1 Experiment Design

6.1.1 Experiment design and evaluation methods

To improve the performance of each model for web robot detection, the

experiments in Table 6-1 are conducted. For the Keras sequential Model, the

impact of kernal, dropout, features on the accuracy and time efficiency are

examined. For the random forest Model, the impact of estimator number and

features and time efficiency are examined; For the SVM model, the impact of

kernels and features as well as time efficiency are assessed.

Table 6-1 Experiment design

EXPERIMENT

PHASE

KERAS SEQUENTIAL

MODEL (NN)

RF SVM

1 Activation function Number of

estimators

Kernel

2 Dropout

3 Feature selection Feature

selection

Feature

selection

4 Time efficiency Time

efficiency

Time efficiency

Table 6-1 demonstrates the experiment design of the project. At phase 1, the

kernel of Keras sequential model and SVM were adjusted. And the number of

estimators in random forest was adjusted. At phase 2, the dropout of Keras

sequential model was adjusted. At phase 3, feature selection was applied to all

the models. At phase 4, time efficiency tests were conducted on every model.

Two performance measurements used in this project :1) confusion matrix, which

was used to evaluate all models; 2) accuracy, which was used in the training

process of neural network model. The following table illustrates a basic confusion

matrix:

48

Table 6-2 Confusion matrix

 Positive Sample Negative Sample

Classified as Positive True Positive (TP) False Positive (FP)

Classified as Negative False Negative (FN) True Negative (TN)

⚫ TP: cases are classified as positive samples and are actually positive

samples.

⚫ FP: cases are classified as positive samples, but actually negative samples.

⚫ FN: cases are not classified as positive samples, but they are actually positive

samples.

⚫ TN: cases are not classified as positive samples and are actually negative

samples.

⚫ Accuracy: ratio of the number of samples correctly classified to the total

number of samples, (TP + TN) / (TP + TN + FP + FN).

⚫ Precision: ratio of the number of samples correctly classified to the total

number of samples classified, TP / (TP + FP).

⚫ Recall: ratio of the number of samples correctly detected to the number of

samples to be detected, (TP / TP + FN).

In this project, positive samples are log records generated by web robots, and

negative samples are log records generated by humans.

49

6.1.2 Experiment environment

This section introduces the experimental environment of this project, including

hardware equipment, software and configurations, and model parameters.

Table 6-3 Hardware and Software configurations

Hardware Software

CPU: Intel Core i7-4720HQ (2.6GHz/L3
6M)
Memory: 8GB DDR3 1600
Hard drive: 1TB HDD

Platform: Google Colab, TensorFlow 2.0
Programming language: Python3.7

Table 6-3 illustrates the environment of the project. The experiments of this

project were performed on a laptop. Google Colab is a free online Python

programming service from Google that integrates with TensorFlow, a popular

deep learning framework. It can be run in a browser, as long as there is Internet

access.

Table 6-4 Parameters of each model

Keras Sequential Model Random Forest SVM

layer 1: feature layer
layer 2: dense layer, 20 neural, activation
function linear, dropout 0.6
layer 3 dense layer, 20 neural, activation
function linear, dropout 0.6
layer 4 dense layer, 1 neural, activation
function linear
learning rate: 0.001
batch size: 32
epochs: 40
loss function: binary cross entropy

criterion: Gini
max features: None
max depth: None

C: 1.0
gamma: auto

Table 6-4 shows the key parameters of each model. Keras sequential model is a

linear stack of multiple neural network layers. The default learning rate of the

model is 0.001 (adjustable), and the batch size is 32 (adjustable). Binary cross

entropy is a loss function recommended in the Keras Sequential model document

for binary classification problems. The parameters of the random forests and

support vector machines shown in the table are all default, and the following

experiments focused on the number of estimators in random forests and the

kernels of SVM.

50

6.2 Experiments with TensorFlow Keras Sequential Model

6.2.1 Experiments with two different activation functions

In this period, all features were used to train the model, no dropout were

employed, the variable between two experiments was kernel. The training epoch

was set to 40 to observe the accuracy and overfitting during the training process.

Overfitting means the model is over trained. The main phenomenon of overfitting

is accuracy on training set surpass that on test set.

(a) Linear (b) Sigmoid

Figure 6-1 Epoch accuracy with different activation function

Figure 6-1 shows that sequential model with linear activation function has a better

accuracy (0.9085) than the model with sigmoid activation function (0.7314). For

the model with linear activation function, overfitting happened between epoch 8

and 20. And for the model with sigmoid activation function, there was no obvious

sign of overfitting, but the peak epoch accuracy was much lower. So sequential

model with linear kernel was selected for further experiment.

51

6.2.2 Experiments with dropouts

In this period, four different proportions of dropouts were applied to the model

with linear activation function.

(a) 20% dropout (b) 40% dropout

(c) 60% dropout (d) 80% dropout

Figure 6-2 Epoch accuracy with different percentage of dropout applied

As shown in the graphs, over fitting gradually disappeared as dropout percentage

went up. This suggested reducing model complexity could reduce overfitting. It

can be inferred by comparing Figure 6-2 (c) and (d) that too much dropout may

cause decrease in peak epoch accuracy. The best performance was achieved by

60% dropout experiments. Its test accuracy was 0.9725.

52

6.2.3 Experiments with selected features

In this period, the model was trained with different number of features.

(a) top 2 features (b) top 4 features

(c) top 6 features (d) top 8 features

Figure 6-3 Epoch accuracy with different amount of features

Horizontal axis represents the number of epochs in training. The four subfigures

in Figure 6-3 suggests that epoch accuracy can be improved by adding more

features. But adding features may cause overfitting in different epoch of training.

The best accuracy on validation set without overfitting is 100% using top 6

features. This may suggest that training with the selected features allow the

model to obtain higher accuracy on the validation set while too much unimportant

features may cause the accuracy of the model to decrease. The reason for this

is phenomenon is that unimportant features will cause model parameters to tend

to value that are not conducive to the performance of the model.

53

6.3 Experiments with Random Forest

6.3.1 Experiments with different amount of estimators

At this stage, all features were used to train the model, the number of estimators

(trees) were set to 1, 10, 100 and 1000.

Table 6-5 Confusion matrixes of random forest with different number of trees

No. of

Estimators

 Original Type

Classified as

Human Robot Precision Recall

1

Human 186 0

1.000 1.000

Robot 0 214

10

Human 186 1

1.000 0.9953

Robot 0 213

100

Human 186 1

1.000 0.9953

Robot 0 213

1000

Human 186 1

1.000 0.9953

Robot 0 213

Table 6-5 shows that as the number of trees increases, the accuracy did not

change, but some robots are classified as human, in other words, false negative

went up. Therefore, experiments were carried out with one-tree-Random Forest

at next stage.

54

6.3.2 Experiments with selected features

At this stage, different amounts (2, 4, 6 and 8) of features were employed to train

the random forest with one estimator.

Table 6-6 Confusion matrixes of one-estimator random forest with different

number of features

No. of

Features

 Original Type

Classified as

Human Robot Precision Recall

2

Human 94 117

0.5123 0.4532

Robot 92 97

4

Human 182 6

0.9811 0.9720

Robot 4 208

6

Human 179 2

0.9680 0.9907

Robot 7 212

8

Human 184 2

0.9907 0.9907

Robot 2 212

As is shown in Table 6-6, Precision and Recall goes up as the number of training

features increase. A quite high accuracy and recall can be achieved when using

top 8 important features to train the model. Meanwhile the training time dropped

significantly compared to using all features.

55

6.4 Experiments with SVM

6.4.1 Experiments with two different kernels

In this period, all the features were used to train the model with different kernels.

Top 2 important features (server name and thread) were employed to plot the

decision boundary. Decision boundary shows the distribution of samples in the

problem space and how the kernel function separates two different samples., the

outputs of the classifier are scattered in different regions with triangle and square

symbols. Obviously, there are misclassified outputs.

(a) Linear kernel

56

(b) Sigmoid kernel

Figure 6-4 Decision region of SVM using different kernels

In Figure 6-4 (a) and (b), the abscissa represents the distribution of the sample

in the server name parameter, and the ordinate represents the distribution of the

sample in the thread parameter. Specifically, for a certain sample, there is a

server name feature, a thread feature, and a label, indicating that it is a web robot

(positive case) or a human (negative case). First, the positive cases are

represented by purple squares, and the negative cases are represented by lime

green triangles. Second, convert the pre-processed values of the two parameters

again to make them conform to the range of the coordinate system. Then,

according to the parameter value after conversion of each sample, the sample is

put into the coordinate system to observe the distribution of the sample on these

two parameters. By comparing Figure 6-4 (a) and (b), it can be concluded that

the sample is more linear separable than sigmoid separable.

57

Table 6-7 Confusion matrixes of SVM using different kernels

Kernel Original

Type

Classified as

Human Robot Precision Recall

Linear

Human 184 2

0.9906 0.9906

Robot 2 212

Sigmoid

Human 109 106

0.5838 0.5046

Robot 77 108

For further validation. Samples with all features were fed into two models with

different kernel. After training and test, the result is shown in table 6-7. SVM with

linear kernel obtained a precision of 0.9906 and a recall of 0.9906. SVM with

sigmoid kernel reached a precision of only 0.5838 and recall of 0.5046. Therefore,

the SVM with linear Kernel was taken to further experiments.

58

6.4.2 Experiments with selected features

At this stage, different amounts (2, 4, 6 and 8) of features were employed to train

the model. The performance of the model on test set are showed in the confusion

matrixes below.

Table 6-8 Confusion matrixes of SVM with linear kernel with different number of

features

No. of

Features

 Original Type

Classified as

Human Robot Precision Recall

2

Human 186 214

0 0

Robot 0 0

4

Human 158 26

0.8704 0.8785

Robot 28 188

6

Human 152 6

0.8595 0.9720

Robot 34 208

8

human 183 2

0.9860 0.9907

Robot 3 212

From the confusion matrixes shown in table 6-8, it can be indicated that SVM

cannot tell robots from human visitors by the top 2 important features. It classified

all the robot samples as human. The precision and recall go up as more features

were employed to train the model.

59

6.5 Evaluation and Discussion

To identify which algorithm/model is the best offline web robot detection

algorithm/model, both accuracy and running time are assessed. In order to

examine the running time of each algorithm, the average training time and

accuracy of each algorithm on different numbers of features at a training process

were calculated.

6.5.1 The importance of feature selection

This section will make a summary of the feature selection experiment mentioned

above.

Figure 6-5 Accuracy of models without feature selection

Figure 6-6 Accuracy of models with feature selection

0.9725

1

0.9906

0.95

0.96

0.97

0.98

0.99

1

Neural Network Random Forest SVM

A
cc

u
ra

cy

Model (Algorithm)

0.47

0.85

1 0.98
0.9725

0.512

0.981 0.968
0.9907

1

0

0.87 0.86
0.986

0.9906

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

2 4 6 8 22

A
cc

u
ra

cy

Number of features applied in training
Neural Network Random Forest SVM

60

Figure 6-5 shows that when no feature selection applied, random forest has the

highest accuracy of 100%, SVM 99.06%, and NN 97.25%.

Figure 6-6 shows that when features were added to training in terms of their

importance from high to low, the variation of model accuracy presents different

trends. When top 2 important features applied, the accuracy of SVM model is 0,

it classified every sample as human. When 2 more features applied, the accuracy

of all models experienced a sharp growth: NN 38%, RF 46.9%, SVM 87%. When

the top 6 features were applied to the training, the NN reached its peak accuracy

of 100%, while the accuracy of RF and SVM declined slightly. As more features

were added to the training, the accuracy of the NN declined slowly, while SVM

and SVM rose slowly. Here, the NN and the RF are probably the best algorithms.

6.5.2 Time efficiency

This section will focus on the time efficiency of each model trained with different

amounts of features.

Figure 6-7 Average training time using different number of features

As shown in Figure 6-7 from the perspective of the training time of the model, the

random forest model has an absolute advantage, and the SVM model takes the

6.5 6.18 6.01 6.38 6.23

9.83 11.12 12.43 13.5 15.48

35.23

82.9
88.3

36.27 36.97

0

20

40

60

80

100

120

2 4 6 8 22

Tr
ai

n
in

g
ti

m
e

(s
)

Number of features

RF Sequential SVM

61

most time. As for the Keras sequential model, the time it takes is acceptable.

Perhaps it could be achieved to reduce the training time by reducing the number

of neurons, but this may cause the accuracy of the model to decrease.

From the perspective of the influence of the number of features on the training

time, with the increase of the number of training features, the training time of the

random forest model has not increased significantly, the training time of the Keras

sequential model increases linearly, and the training time of the SVM model also

shows Increasing trend.

Although both neural networks and random forests can achieve 100% accuracy

under certain conditions, when the same accuracy is achieved, the training time

of random forests is 50% less than that of neural networks. Here, it can be

concluded that random forest is the best web crawler detection algorithm

regarding both accuracy and training time.

6.5.3 Discussion

In this project, two challenges mentioned in Table 3-5 were addressed: 1) the

curse of dimensionality was solved by applying feature selection; 2) very high

accuracy is achieved when the appropriate number of features is used for model

training. Specifically, in this project, when the features were added to the training

process of the neural network in the order of decreasing importance, the accuracy

of the neural network increases gradually, and reaches the highest accuracy 100%

when the number of features was 6, and then began to decrease. This suggested

that the use of feature selection could ease the dimensional curse. For the model

using random forest, when all 22 features selected were applied to training and

the number of estimators was set to 1, the highest accuracy of 100% was

achieved, and the training time of the model was about 50% less than that of the

neural network. In addition, the data set of this project came from an Internet

industry. Although the data set was not able to mark and distinguish between

good web crawlers and bad ones, it can be inferred that these web crawler

records were not expected, or at least worthy of attention. Because no enterprise

will spend time on things they don't care about.

62

The data set contains only positive and negative cases, it does not contain more

types of web bots. This make the web robot detection become a decision-making

problem or a binary classification problem. To train models that can recognize

more types of web robots, a data set with detailed tags is required. One way to

build such a data set is to build a website and design different types of web bots.

Let the bots crawl the information on the site and produce a set of tagged weblog

data. This could be future work.

TensorFlow was used to identify web robot logs for the first time. Even though

the Keras sequential model produced a very high accuracy of 100% when top 6

features were used in training period, it is slower than random forest. To improve

the training speed of the model, it might be possible to further reduce the number

of neurons.

In random forest experiments, only the number of estimators was used as a

variable, and high accuracy was achieved when the number of estimators (trees)

was set to 1 and no feature-selection applied. In fact, the random forest has more

parameters that can affect the training results, such as the depth of the tree, the

maximum number of features and so on. This could be studied in future. For

more complex samples, parameters tuning can be used to optimize the model.

Request Time and Request ID were not accounted in the influential features.

However, the experimental results show that these two characteristics have

significant effects on the accuracy of all models. This indicates web robots may

usually come from specific IDs at specific times

63

7 CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

The project aims to develop an offline system that can effectively detect malicious

web robots, which is not only conducive to network traffic cleaning, but also

conducive to improving the network security of IoT systems and services. The

key contributions of the research are: 1) it provided a systematic methodology to

address the web robot detection problem based on the log file from industrial

company; 2) it provided a methodology for feature selection, overcoming the

challenge of curse of dimensionality; 3) it investigated three types of machine

learning techniques based real data from industry, making a big progress in the

accuracy of off-line web robot detection. Overall, this project solved two of the

challenges mentioned in Table 3-5: overcoming the curse of dimensionality by

applying feature selection and improving the accuracy of offline web robot

detection by using proper features and parameters.

Feature engineering, modelling, model implementation, parameters impact and

verification of the developed models were conducted with comprehensive

experiments. The key findings are listed as below:

Feature Engineering: The investigated dataset was a csv file with 2000 web log

records. It has 43 columns in which 42 were features and 1 was the decision

labels. After data cleaning and data transformation 21features were reserved for

feature selection. During feature selection information gain and random forest

were applied to evaluate feature importance.

Machine learning models: Three models (sequential model, random forest, and

SVM) were developed as web robot classifiers. When feature selection was not

performed, the accuracy of the random forest algorithm was 3% higher than the

Keras sequential Model, and 1% higher than the SVM algorithm, reaching 100%.

The training time of the random forest saves 59.1% compared to the Keras

sequential model and 83.1% compared to the SVM.

64

Feature importance to the decision is assessed. The most important features

were identified. They are server name, thread, request time, request id, os, app

version. Among them, the request id and request event had the greatest impact

on the accuracy of the model. They increased the accuracy of the neural network

by 38%, the random forest by 46.9%, the SVM by 87%.

The impact of features on the performance of model for tested data is examined.

The accuracy of random forest and SVM fluctuated upward with the number of

features. The accuracy of the Keras sequential model reached a peak of 100%

when using the six most important features, and then decreases slowly. This

phenomenon indicated that feature selection has an important impact on the

performance of models. For different models, the influence of a certain feature is

not the same. That is, the addition of a certain feature may help improve the

accuracy of one model, but it will reduce the accuracy of another model. In terms

of training time, random forest is still the most time-saving algorithm.

Impact of parameters on the performance of models for the tested data. Keras

sequential model (NN) and random forest (RF) obtained accuracy of 0.47 and

0.512 with server name and thread, while SVM obtained none. When request id

and request time were added, accuracy of three models increased significantly:

NN to 0.85, RF to 0.981, and SVM to 0.87. when os and app version were added,

NN reached its peak accuracy of 1, RF and SVM experienced a slight drop to

0.968 and 0.86. when page city id and locate city id were added. The accuracy

of NN dropped a bit to 0.98 while RF and SVM increased to 0.9907 and 0.986.

This project uses the confusion matrix as a performance matrix, combined with

training time, to measure the performance of a model. Although both neural

networks and random forests can achieve 100% accuracy under certain

conditions, when the same accuracy is achieved, the training time of random

forests is 50% less than that of neural networks. Thus, the conclusion of this

project is that random forest is the best model for offline detection of web robots.

65

7.2 Future Work

The present work focused on off-line web log analysis using machine-learning

techniques. In the literature, there are very few methods to investigate the

distributed web robots. When distributed web robots are performing DDoS

attacks, off-line methods are not able to react to handle these attacks in real-time.

The further work will investigate the following areas:

• Investigate online detection of web robot based on user behaviours pattern

learning.

• Develop hardware equipment for web crawler detection based on machine

learning.

• Create web robot datasets for future research and share them on public

repository.

• Investigate cloud-computing based web robot detection method and

service.

66

REFERENCES

A. Cabri, G. Suchacka, S. Rovetta, and F. Masulli, Online Web Bot Detection

Using a Sequential Classification Approach, Proceedings - 20th International

Conference on High Performance Computing and Communications, 16th

International Conference on Smart City and 4th International Conference on Data

Science and Systems, HPCC/ SmartCity/ DSS 2018, 2018, pp. 1536–1540.

N. Algiriyage, Offline Analysis of Web Logs to Identify Offensive Web Crawlers,

International Research Symposium on Pure and Applied Sciences (IRSPAS

2017), Kelaniya, Sri Lanka, 20 Oct. 2017.

M. Catalin, and A. Cristian, An Efficient Method In Pre-processing Phase of

Mining Suspicious Web Crawlers, 2017 21st International Conference on System

Theory, Control and Computing, ICSTCC 2017, 2017, pp. 272–277.

T. Gržinić, L. Mršić, and J. Šaban, Lino - An Intelligent System for Detecting

Malicious Web-Robots, Intelligent Information and Database Systems. Cham:

Springer International Publishing, 2015, pp. 559–568.

Distil Networks, 2019 Bad bot report available on

https://www.bluecubesecurity.com/wp-content/uploads/bad-bot-report-

2019LR.pdf, accessed on 11/5/2020, pp. 8.

S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach (2nd ed.).

Prentice Hall, 2002, ISBN 978-0137903955.

A. Menshchikov, A. Komarova, Y. Gatchin, A. Korobeynikov and N. Tishukova, A

Study of Different Web-crawler Behavior, The 20th Conference of Open

Innovations Association (FRUCT), St. Petersburg, 2017, pp. 268-274.

D. Doran and S. S. Gokhale, Web Robot Detection Techniques: Overview and

Limitations, Data Mining Knowledge Discovery, 2011, pp. 183–210, DOI

10.1007/s10618-010-0180-z.

K. Ma, R. Jiang, M. Dong, Y. Jia, and A. Li, Neural Network Based Web Log

Analysis for Web Intrusion Detection, International Conference on Security,

67

Privacy, and Anonymity in Computation, Communication, and Storage, 2017, pp.

194–204. ISBN: 978-3-319-72395-2

S. Rovetta, G. Suchacka, and F. Masulli, Bot Recognition in a Web Store: An

Approach Based on Unsupervised Learning, Journal of Network and Computer

Applications, 157, 102577, 2020.

C. Iliou, T. Kostoulas, T. Tsikrika, V. Katos, S. Vrochidis, and Y. Kompatsiaris,

Towards a Framework for Detecting Advanced Web Bots, Proceedings of the 14th

International Conference on Availability, Reliability and Security, 2019, pp. 1-10.

D. Doran and S. S. Gokhale, An Integrated Method for Real Time and Offline

Web Robot Detection, Expert Syst., 33(6), pp. 592–606, 2016, DOI:

10.1111/exsy.12184.

P. V. Patankar, and S. Jangale, Malicious Web Crawler Detection Using Intrusion

Detection System, IJMTER, 3(3), pp. 364–371, 2016.

M. Abdullahi, S. Aliyu, and S. B. Junaidu, An Enhanced Intrusion Detection

System Using Honeypot and CAPTCHA Techniques, FUDMA Journal of Science,

3(3), 2019, pp. 202–209.

R. Selvaraj, V. M. Kuthadi and T. Marwala, Honey Pot: A Major Technique for

Intrusion Detection, Proceedings of the 2nd International Conference on

Computer and Communication Technologies, IC3T 2015, Hyderabad, India, 2015.

Y. Guo, J. Shi, Z. Cao, C. Kang, G. Xiong and Z. Li, Machine Learning Based

Cloud Bot Detection Using Multi-Layer Traffic Statistics, 2019 IEEE 21st

International Conference on High Performance Computing and Communications,

IEEE 17th International Conference on Smart City, IEEE 5th International

Conference on Data Science and Systems (HPCC/SmartCity/DSS), Zhangjiajie,

China, 2019, pp. 2428-2435.

A. Balla, A. Stassopoulou and M. D. Dikaiakos, Real-time Web Crawler Detection,

18th International Conference on Telecommunications, Ayia Napa, Cyprus, 8(11),

2011, DOI: 10.1109/CTS.2011.5898963.

68

J.R. Koza, F.H. Bennett, D. Andre, and M.A. Keane, Automated Design of Both

the Topology and Sizing of Analog Electrical Circuits Using Genetic Programming,

In Artificial Intelligence in Design '96. Dordrecht: Springer Netherlands, 1996, pp.

151–170.

A. Lagopoulos, G. Tsoumakas, and G. Papadopoulos, Web robot detection: A

semantic approach, Proceedings - International Conference on Tools with

Artificial Intelligence, 2018, pp. 968–974.

S.F. McKenna, Detection and Classification of Web Robots with Honeypots. MSc

thesis. Naval Postgraduate School, 2016.

D. Kuhlman, A Python Book: Beginning Python, Advanced Python, and Python

Exercises. Section 1.1. Archived from the original (PDF) on 23 June 2012.

Python Software Foundation. Retrieved 24 April 2012, second section Fans of

Python use the phrase "batteries included" to describe the standard library, which

covers everything from asynchronous processing to zip files.

M. Schmidt, Web crawler. Master of Science. Governors State University, 2015.

All symbols in TensorFlow, Retrieved February 18, 2018.

T. V. Udapure, R.D. Kale, and R.C. Dharmik, Study of Web Crawler and its

Different Types, IOSR Journal of Computer Engineering, 16(1), 2014, pp. 01–05.

M. Zabihimayvan, R. Sadeghi, H.N. Rude, and D. Doran, A Soft Computing

Approach for Benign and Malicious Web Robot Detection, Expert Systems with

Applications, 87 Elsevier Ltd., 2017, pp. 129–140.J. Rajabnia and M. V. Jahan,

Web Robot Detection with Fuzzy Inference System Based on NNGE, available

on

https://www.academia.edu/8753500/Web_Robot_Detection_With_Fuzzy_Infere

nce_System_Based_On_NNGE, accessed on 20/01/2020.

G. Suchacka and M. Sobkow, Detection of Internet Robots Using a Bayesian

Approach, Proc-2015 IEEE 2nd Int. Conf. Cybern. (CYBCONF), Gdynia, Poland,

2015, pp. 365–370, DOI: 10.1109/CYBConf.2015.7175961.

69

D. S. Sisodia, S. Verma, and O. P. Vyas, Agglomerative Approach for

Identification and Elimination of Web Robots from Web Server Logs to Extract

Knowledge about Actual Visitors, J. Data Anal. Inf. Process., 3(1), 2015, pp. 1–

10.

R. Haidar and S. Elbassuoni, Website Navigation Behavior Analysis for Bot

Detection, Proc. - 2017 Int. Conf. Data Sci. Adv. Anal. DSAA 2017, Tokyo, Japan,

2017, pp. 60–68, DOI: 10.1109/DSAA.2017.13.

T. H. Sardar and Z. Ansari, Detection and Confirmation of Web Robot Requests

for Cleaning the Voluminous Web Log Data, 2014 International Conference on

the Impact of E-Technology on US (IMPETUS), Bangalore, 2014, pp. 13-19, DOI:

10.1109/IMPETUS.2014.6775871.

D. Stevanovic and A. A. N. Vlajic, Feature Evaluation for Web Crawler Detection

with Data Mining Techniques, Expert Systems with Applications, 39(10), 2012,

pp. 8707-8717.

A. Mason, Y. Zhao, and H. He, et al. Online Time-Series Anomaly Detection at

Scale, Cyber Science 2019, University of Oxford, 3-4 Jun. 2019.

DOI: 10.1109/CyberSA.2019.8899398

H. Chen, H. He, and A. Starr, An Overview of Web Robots Detection Techniques,

Cyber Science 2020, Cranfield University, 15 Jun. 2020. DOI:

10.1109/CyberSecurity49315.2020.9138856.

70

APPENDIX

Appendix A Dataset Files

Figure A-1 Raw dataset.

71

Figure A-2 Dataset after pre-processing

72

Appendix B Code of Experiments

B.1 Experiments with Keras Sequential model

Import libraries

!pip install sklearn

from __future__ import absolute_import, division, print_function, unicode_literals

import numpy as np

import pandas as pd

try:

 %tensorflow_version 2.x

except Exception:

 pass

import tensorflow as tf

from tensorflow import feature_column

from tensorflow.keras import layers

from keras.layers import Input, Dense, Dropout

from keras.models import Model

from sklearn.model_selection import train_test_split

Initialize Tensorboard

import datetime

%load_ext tensorboard

from tensorboard import notebook

73

Create a dataframe

dataframe = pd.read_csv("/Dataset.csv", na_filter=False, header=0)

dataframe.fillna('', inplace=True)

Split the dataframe into train, validation, and test

train, test = train_test_split(dataframe, test_size=0.2)

train, val =train_test_split(train, test_size=0.2)

Create an input pipeline using tf.data

def df_to_dataset(dataframe, shuffle=True, batch_size=20):

 dataframe = dataframe.copy()

 labels = dataframe.pop('traffic_type')

 ds = tf.data.Dataset.from_tensor_slices((dict(dataframe), labels))

 if shuffle:

 ds = ds.shuffle(buffer_size=len(dataframe))

 ds = ds.batch(batch_size)

 return ds

batch_size = 5 # A small batch sized is used for demonstration purposes

train_ds = df_to_dataset(train, batch_size=batch_size)

val_ds = df_to_dataset(val, shuffle=False, batch_size=batch_size)

test_ds = df_to_dataset(test, shuffle=False, batch_size=batch_size)

74

Read the input pipeline

for feature_batch, label_batch in train_ds.take(1):

 print('Every feature:', list(feature_batch.keys()))

 print('A batch of traffic_type',label_batch)

Demonstrate several types of feature columns

print(dataframe.dtypes)

We will use this batch to demonstrate several types of feature columns

example_batch = next(iter(train_ds))[0]

A utility method to create a feature column and to transform a batch of data

def demo(feature_column):

 feature_layer = layers.DenseFeatures(feature_column)

 print(feature_layer(example_batch).numpy())

Hashed feature columns

servername_hashed = feature_column.categorical_column_with_hash_bucket('servername',

hash_bucket_size=1000)

demo(feature_column.indicator_column(servername_hashed))

thread_hashed = feature_column.categorical_column_with_hash_bucket('thread', hash_bucket_size=1000)

demo(feature_column.indicator_column(thread_hashed))

75

request_id_hashed = feature_column.categorical_column_with_hash_bucket('request_id',

hash_bucket_size=1000)

demo(feature_column.indicator_column(request_id_hashed))

request_time_hashed = feature_column.categorical_column_with_hash_bucket('request_time',

hash_bucket_size=1000)

demo(feature_column.indicator_column(request_time_hashed))

query_analysis_hashed = feature_column.categorical_column_with_hash_bucket('query_analysis',

hash_bucket_size=1000)

demo(feature_column.indicator_column(query_analysis_hashed))

search_request_hashed = feature_column.categorical_column_with_hash_bucket('search_request',

hash_bucket_size=1000)

demo(feature_column.indicator_column(search_request_hashed))

search_info_hashed = feature_column.categorical_column_with_hash_bucket('search_info',

hash_bucket_size=1000)

demo(feature_column.indicator_column(search_info_hashed))

ab_trace_tag_hashed = feature_column.categorical_column_with_hash_bucket('ab_trace_tag',

hash_bucket_size=1000)

demo(feature_column.indicator_column(ab_trace_tag_hashed))

slot_ids_hashed = feature_column.categorical_column_with_hash_bucket('slot_ids', hash_bucket_size=1000)

demo(feature_column.indicator_column(slot_ids_hashed))

app_version_hashed = feature_column.categorical_column_with_hash_bucket('app_version',

hash_bucket_size=1000)

76

demo(feature_column.indicator_column(app_version_hashed))

Categorical columns

os = feature_column.categorical_column_with_vocabulary_list('os', ['pc', 'android', 'iphone', 'other'])

os_one_hot = feature_column.indicator_column(os)

demo(os_one_hot)

query_type = feature_column.categorical_column_with_vocabulary_list('query_type', ['select', 'search'])

query_type_one_hot = feature_column.indicator_column(query_type)

demo(query_type_one_hot)

Numeric cols

Num_cols = ["locate_city_id","page_city_id", "lat", "lng", "page_index", "offset", "page_size", "cate_id",

"stock"]

for i in Num_cols:

 demo(feature_column.numeric_column(i))

feature_columns = []

Hashed feature columns

feature_columns.append(feature_column.indicator_column(servername_hashed))

feature_columns.append(feature_column.indicator_column(thread_hashed))

feature_columns.append(feature_column.indicator_column(request_id_hashed))

feature_columns.append(feature_column.indicator_column(request_time_hashed))

feature_columns.append(feature_column.indicator_column(query_analysis_hashed))

feature_columns.append(feature_column.indicator_column(search_request_hashed))

feature_columns.append(feature_column.indicator_column(search_info_hashed))

77

feature_columns.append(feature_column.indicator_column(ab_trace_tag_hashed))

feature_columns.append(feature_column.indicator_column(slot_ids_hashed))

feature_columns.append(feature_column.indicator_column(app_version_hashed))

Categorical columns

feature_columns.append(os_one_hot)

feature_columns.append(query_type_one_hot)

Numeric cols

feature_columns.append(feature_column.numeric_column('page_city_id'))

feature_columns.append(feature_column.numeric_column('locate_city_id'))

for i in Num_cols:

 feature_columns.append(feature_column.numeric_column(i))

Create a feature layer

feature_layer = tf.keras.layers.DenseFeatures(feature_columns)

batch_size = 32

train_ds = df_to_dataset(train, batch_size=batch_size)

val_ds = df_to_dataset(val, shuffle=False, batch_size=batch_size)

test_ds = df_to_dataset(test, shuffle=False, batch_size=batch_size)

clear existing log filed

!rm -rf ./logs/

train the model

model = tf.keras.Sequential([

 feature_layer,

 layers.Dense(20, activation='linear'),

78

 layers.Dropout(0.6),

 layers.Dense(20,activation='linear'),

 layers.Dropout(0.6),

 layers.Dense(1, activation='linear')

])

model.compile(optimizer='adam',

 loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),

 metrics=['accuracy'])

log_dir="logs/fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")

tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1)

model.fit(train_ds,

 validation_data=val_ds,

 epochs=40,

 callbacks=[tensorboard_callback])

print('\n Test')

result = model.evaluate(val_ds)

dict(zip(model.metrics_names, result))

Test the model

model.evaluate(test_ds)

%tensorboard --logdir logs

79

B.2 Experiments with Random Forest and SVM

import numpy as np

import pandas as pd

from sklearn.tree import DecisionTreeClassifier

from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, BaggingClassifier,

ExtraTreesClassifier

from sklearn.linear_model import LogisticRegression

from sklearn.svm import SVC

from sklearn.neighbors import KNeighborsClassifier

from xgboost import XGBClassifier, plot_importance

from sklearn.model_selection import train_test_split, KFold, cross_val_score, GridSearchCV

from sklearn.preprocessing import StandardScaler

import matplotlib.pyplot as plt

df = pd.read_csv('/Dataset.csv')

for i in list(df.head(0)):

 df[i] = pd.factorize(df[i])[0].astype(np.uint64)

df.head(100)

df.columns = ['servername', 'thread', 'request_id', 'request_time', 'os',

 'app_version', 'page_city_id', 'locate_city_id', 'lat', 'lng',

 'page_index', 'offset', 'page_size', 'stock', 'cate_id', 'query_type',

 'query_analysis', 'search_request', 'search_info', 'ab_trace_tag',

80

 'slot_ids', 'traffic_type']

print('traffic_type: ', np.unique(df['traffic_type']))

label = np.unique(df['traffic_type'])

print(label)

X, y = df.iloc[:,:-1].values,df.iloc[:,-1].values

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)

features = df.columns[:-1]

"""# Performance of models"""

clf_rf = RandomForestClassifier()

clf_et = ExtraTreesClassifier()

clf_bc = BaggingClassifier()

clf_ada = AdaBoostClassifier()

clf_dt = DecisionTreeClassifier()

clf_xg = XGBClassifier()

clf_lr = LogisticRegression()

clf_svm = SVC()

Classifiers =

['RandomForest','ExtraTrees','Bagging','AdaBoost','DecisionTree','XGBoost','LogisticRegression','SVM']

scores = []

models = [clf_rf, clf_et, clf_bc, clf_ada, clf_dt, clf_xg, clf_lr, clf_svm]

for model in models:

 score = cross_val_score(model, X_train, y_train, scoring = 'accuracy', cv = 10, n_jobs = -1).mean()

81

 scores.append(score)

mode = pd.DataFrame(scores, index = Classifiers, columns = ['score']).sort_values(by = 'score', ascending

= False)

mode

"""# Training of RandomRorest, SVM (kernel = linear), and SVM (kernel = sigmoid)"""

rf_10000 = RandomForestClassifier(n_estimators=10000)

rf_10000.fit(X_train,y_train)

importances = rf_10000.feature_importances_

indices = np.argsort(importances)[::-1]

for f in range(X_train.shape[1]):

 # Evaluate feature importance based on calculation of average impure decay of 10,000 decision trees

 print ("%2d) %-*s %f" % (f+1,30, features[f], importances[indices[f]]))

Visualize Feature Importance

plt.title('Feature Importance of RandomForest')

plt.bar(range(X_train.shape[1]), importances[indices], color='gray', align='center')

plt.xticks(range(X_train.shape[1]), features, rotation=90)

plt.xlim([-1, X_train.shape[1]])

plt.tight_layout()

plt.show()

"""# Decision Boundary Visualization of RandomForest and SVM"""

82

from sklearn.preprocessing import StandardScaler

from sklearn.decomposition import PCA

from matplotlib.colors import ListedColormap

from mlxtend.plotting import plot_decision_regions

x = StandardScaler().fit_transform(X)

X_train_reduced = PCA(n_components = 2).fit_transform(X_train)

X_test_reduced = PCA(n_components= 2).fit_transform(X_test)

t = np.array(y_train)

t = t.astype(np.integer)

rf_1 = RandomForestClassifier(n_estimators=1)

rf_1.fit(X_train_reduced,t)

plt.figure(figsize = [15,10])

plot_decision_regions(X_train_reduced, t, clf = rf_1, hide_spines = False, colors = 'white,gray')

plt.legend(loc='upper left')

plt.title("Randomforest (n_estimators=1)")

rf_10 = RandomForestClassifier(n_estimators=10)

rf_10.fit(X_train_reduced,t)

plt.figure(figsize = [15,10])

plot_decision_regions(X_train_reduced, t, clf = rf_10, hide_spines = False, colors = 'white,gray')

plt.legend(loc='upper left')

plt.title("Randomforest (n_estimators=10)")

rf_100 = RandomForestClassifier(n_estimators=100)

rf_100.fit(X_train_reduced,t)

83

plt.figure(figsize = [15,10])

plot_decision_regions(X_train_reduced, t, clf = rf_100, hide_spines = False, colors = 'white,gray')

plt.legend(loc='upper left')

plt.title("Randomforest (n_estimators=100)")

rf_1000 = RandomForestClassifier(n_estimators=1000)

rf_1000.fit(X_train_reduced,t)

plt.figure(figsize = [15,10])

plot_decision_regions(X_train_reduced, t, clf = rf_1000, hide_spines = False, colors = 'white,gray')

plt.legend(loc='upper left')

plt.title("Randomforest (n_estimators=1000)")

rf_10000.fit(X_train_reduced,t)

plt.figure(figsize = [15,10])

plot_decision_regions(X_train_reduced, t, clf = rf_10000, hide_spines = False, colors = 'white,gray')

plt.legend(loc='upper left')

plt.title("Randomforest (n_estimators=10000)")

linear_svm = SVC(kernel='linear')

linear_svm.fit(X_train_reduced,t)

plt.figure(figsize = [15,10])

plot_decision_regions(X_train_reduced, t, clf = linear_svm, hide_spines = False, colors = 'white,gray')

plt.legend(loc='upper left')

plt.title("Support Vector Machines (kernel='linear')")

sigmoid_svm = SVC(kernel='sigmoid')

sigmoid_svm.fit(X_train_reduced,t)

plt.figure(figsize = [15,10])

plot_decision_regions(X_train_reduced, t, clf = sigmoid_svm, hide_spines = False, colors = 'white,gray')

84

plt.legend(loc='upper left')

plt.title("Support Vector Machines (kernel='sigmoid')")

"""# Predictions and Evaluations"""

def evaluate(classifier_name, predictions, y_test):

 TP, TN, FP, FN = 0, 0, 0, 0

 for i in range(len(predictions)):

 if predictions[i] == 1 and y_test[i] == 1:

 TP += 1

 elif predictions[i] == 0 and y_test[i] == 0:

 TN += 1

 elif predictions[i] == 1 and y_test[i] == 0:

 FP += 1

 else:

 FN += 1

 print(

 """

 Confusion Matrix of {}

 Original type human robot

 Classified as human {} {}

 Classified as robot {} {}

 """.format(classifier_name, TN, FN, FP, TP)

)

 print('Precision: ', TP/(TP + FP), 'recall: ', TP / (TP + FN))

rf_1 = RandomForestClassifier(n_estimators=1)

rf_1.fit(X_train,y_train)

rf_1_predictions = rf_1.predict(X_test)

85

evaluate('Randomforest (n_estimators=1)',rf_1_predictions,y_test)

rf_10 = RandomForestClassifier(n_estimators=10)

rf_10.fit(X_train,y_train)

rf_10_predictions = rf_10.predict(X_test)

evaluate('Randomforest (n_estimators=10)',rf_10_predictions,y_test)

rf_100 = RandomForestClassifier(n_estimators=100)

rf_100.fit(X_train,y_train)

rf_100_predictions = rf_100.predict(X_test)

evaluate('Randomforest (n_estimators=100)',rf_100_predictions,y_test)

rf_1000 = RandomForestClassifier(n_estimators=1000)

rf_1000.fit(X_train,y_train)

rf_1000_predictions = rf_1000.predict(X_test)

evaluate('Randomforest (n_estimators=1000)',rf_1000_predictions,y_test)

rf_10000 = RandomForestClassifier(n_estimators=10000)

rf_10000.fit(X_train,y_train)

rf_10000_predictions = rf_10000.predict(X_test)

evaluate('Randomforest (n_estimators=10000)',rf_10000_predictions,y_test)

linear_svm.fit(X_train, y_train)

linear_svm_predictions = linear_svm.predict(X_test)

evaluate('Linear_SVM',linear_svm_predictions,y_test)

sigmoid_svm.fit(X_train, y_train)

sigmoid_svm_predictions = sigmoid_svm.predict(X_test)

evaluate('Sigmoid_SVM',sigmoid_svm_predictions, y_test)

