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ABSTRACT 

Pulsed thermography is a promising method for detecting subsurface defects, but 

most pulsed thermographic inspection results are represented in the form of 2D 

images. Such a representation can limit the understanding of where the defects 

initiate and how they grow by time, which is a key to predict the remaining use of 

life of component and feedback to the design to avoid such defects. Three-

dimensional subsurface defect visualisation is a solution that can unlock this 

limitation. A straightforward approach to reconstruct 3D subsurface defect is 

conducting two inspections on both front and rear sides. However, the 

deployment of this approach can be limited because 1) one side of the inspected 

component could be inaccessible; 2) the accuracy of measurement could be 

compromised if the defect thickness is very thin due to extreme closed values of 

defect depths from two inspections; and 3) if the defect is too deep for one side, 

the defect could be missed. Addressing the challenge of 3D subsurface defect 

reconstruction and visualisation, this thesis proposes a novel technique to 

measure defect depth and estimate defect thickness simultaneously through 

estimating the thermal wave reflection coefficient value achieved by introducing 

a modified heat transfer model based on a single-side inspection method. 

The proposed method is validated through model simulations, experimental 

studies, and a use case. Four composite samples with different defect types, 

sizes, depths and thicknesses, are used for experimental studies; a steel sample 

with a ‘s’ shape triangular air-gap inside is used for a use case. The simulation 

results show that under the noise level of 25 dB, the percentage error of the 

developed depth measurement method is 0.25% whilst the minimum error of the 

best existing method is 2.25%. From the experimental study results, the averaged 

percentage error of the defect thickness estimation is less than 10% if the defect 

thickness is no more than 3 mm. For the use case, the reconstructed defect 

shape is similar to the X-ray image. 
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1 INTRODUCTION 

1.1 Background 

Nowadays, it is possible to extend the service life of vital infrastructural elements 

through the use of Non-Destructive Testing (NDT). The advantage of NDT is that 

it allows a structure to be examined without causing any adverse effect to that 

structure [1]. The technology is considered to offer a safe approach to detect both 

surface and subsurface faults without actually altering the properties, 

characteristics or operation of the structure or equipment itself [1], [2], [3]. This 

technique has been applied over the past three decades in a broad range of 

industries, including aviation, manufacturing, rail transport, agriculture, power 

plants, civil structures, manufacturing, the environment, art, medicine, and the 

automotive industry [4]. The methods used in NDT are diverse, encompassing 

techniques such as electromagnetic testing [5], ultrasonic testing [6], acoustic 

emission testing [7], radiographic testing [8], liquid penetrant testing [9], magnetic 

particle testing [10], and infrared thermography testing [11]. 

As a highly efficient and powerful NDT technique, pulsed thermography (PT) is 

contact-free and offers a rapid inspection while covering a large area within a 

short time frame [12] and thus readily adaptable to in-situ monitoring applications 

[13]. The technique is both quick and economical because it can be performed 

on-site, avoiding the need to first transport the object to a laboratory for the 

inspection [14], [15], [16]. It can detect various types of defect such as impact 

damage and cracks. Pulsed thermography can be used with a range of materials 

including concrete [17], [18], [19], high-density polyethylene [20], composite 

materials used in aviation [21], [22], wood and wood-based materials [23], and 

also adhesive bond evaluation [24], [25]. Other thermography technique-based 

NDTs, such as microwave thermography, eddy current thermography, ultrasound 

thermography, and lock-in thermography, take several measurements using 

signals of different frequencies to gain information about different depth; 

however, they require a longer inspection time. Pulsed thermography is more 

straightforward and faster because the flash time is a well-defined instant for time 

reference. Quantitative characterisation of defects by extracting shape, size and 
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depth, and estimation of thermal properties have been proven to be effective in 

pulsed thermography [14], [26]. Consequently, this technology has been 

successfully applied to a wide range of areas such as civil engineering, medicine 

and biology as well as agriculture, aerospace, automotive and manufacturing 

industries. 

Although many quantitative analysis approaches have been developed to 

characterise defects, the characterisation results of subsurface defects (e.g. size 

and depth) are usually presented and visualised in the form of 2D images. In 

general, the form of 3D images performs better in displaying depth information of 

defects rather than 2D images. Moreover, realistic 3D visualisation is essential in 

studying the mechanism of defect propagation. 

Currently, there are very limited reports about 3D subsurface defect 

reconstruction and visualisation using the pulsed thermography method. Most 

works in pulsed thermographic inspection focus on defect detection, sizing 

defect, and defect depth measurement. To reconstruct defect to the form of 3D 

images, the defect thickness is also required. However, there are very limited 

reports about defect thickness estimation. 

This thesis addresses the challenge to reconstruct and visualise the subsurface 

defect in the form of 3D images based on the pulsed thermography technique, as 

demonstrated in Figure 1-1. To achieve this target, this thesis will primarily focus 

on developing new experimental setups and corresponding data analysis 

algorithms to improve the accuracy of depth measurement, measure the defect 

thickness, reconstruct and visualise the volume image of defects. 

 
Figure 1-1 An example of 3D subsurface defect visualisation 
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1.2 Research Motivation 

The pulsed thermographic inspection, which is a technique of NDT, is a pragmatic 

and effective approach. Its applications are well understood and extensively 

applied to inspect, analyse and evaluate defects of a wide range of industrial 

parts. 

This thesis used PT because this method provides several advantages over other 

NDT methods. For example, in term of inspection time, PT offers a rapid 

inspection through covering a large area within a short period time. This method 

can also perform with contactless where the equipment (e.g., infrared (IR) camera 

and flash lamps) do not need to contact with the sample. In term of flexibility, PT 

can perform off-site inspections where the sample does not need to be 

transported to a laboratory. This method can also adapt to in-situ inspection 

applications. Furthermore, PT is a hazard-free method. IR camera is used for 

recording the thermal data and it does not emit any radiation. In addition, 

quantitative characterisation of defects by extracting shape, size and depth has 

been proven to be effective in PT. 

However, most PT results are represented in the form of 2D images. The 

representation in the form of 2D images can limit the analysing of the type of the 

defect and limit the understanding of the origin of the defect (where the defect 

initiates and how it grows by time). These are important information to predict the 

remaining use of life of the components and feedback to the design to prevent 

some problems such defects. 

Most inspectors have a desire to deskill the analysis of defect type and better 

understand the occurrence of the hidden defect. Three-dimensional 

representation of the inspected subsurface defect is a solution and could be a 

desirable tool for those inspectors because it facilitates to solve and unlock the 

abovementioned limitations. The 3D representation of subsurface defects is 

easier to understand for both experienced and non-experienced inspectors. The 

capability of 3D subsurface defect representation is not only able to visualise the 

defect dimension (size and thickness), but also helps the inspectors better 
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understand the mechanism of how the defect grows and where it starts from, 

including evaluating the defect volume. 

From the facts that the 3D subsurface defect representation provides several 

significant benefits over 2D subsurface defect representation and several 

abovementioned reasons, the motivations of this thesis are: 

- to make a valuable tool/algorithm/software to deskill the data analysis and 

monitor the subsurface defect of industrial components, 

- to reduce several limitations of the inspection and expand the ability to 

evaluate the size, depth, thickness, and volume of the defect, 

- to characterise the defects in a more comprehensive way, 

- to save the cost of inspection (in term of using an inexpensive device to 

represent the 3D defect images), 

- to save the operation time of inspection, 

- to help inspectors better understand the origin of the defect and the 

mechanism of the defect propagation, 

- to help inspectors better evaluate and predict the remaining use of life of 

the object,  

- and to decrease workload and improve the quality of life for the inspectors. 

It is expected that a wide range of people and industries can benefit from the 

outcomes of this research. 

 

1.3 Research Aim and Objectives 

1.3.1 Research Aim 

The overall scientific aim of this thesis is to develop a three-dimensional 

subsurface defect reconstruction and visualisation approach based on the pulsed 

thermography method with a single-side inspection. 
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1.3.2 Research Objectives 

The aim of this thesis is achieved through meeting the following objectives: 

Objective 1. Identification of appropriate technique for three-dimensional 

subsurface defect reconstruction and visualisation for industrial 

components 

Objective 2. Investigation of experimental setup and routine to capture data for 

three-dimensional subsurface defect reconstruction and 

visualisation 

Objective 3. Development of novel methods to estimate subsurface defect depth 

and thickness for three-dimensional subsurface defect 

reconstruction and visualisation 

Objective 4. Development of three-dimensional subsurface defect 

reconstruction and visualisation algorithms 

Objective 5. Validation of the results by using model simulations, experimental 

studies, and a use case 

 

1.4 Thesis Structure 

This thesis is divided into seven chapters, the structure of which is illustrated in 

Figure 1-2. 

Chapter 1 provides an introduction and a general overview of the NDT. This 

chapter also discusses the research motivation, aim and objectives of the 

research. 

Chapter 2 provides a review of the literature and identifies the research gap. This 

review includes the overview of NDT techniques, thermographic inspection, 

defects depth measurement based on pulsed thermography, and defects 

visualisation methods. 

Chapter 3 describes the strategy of research, research methods by addressing 

each objective. 
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Chapter 4 proposes two novel methods of subsurface defect depth 

measurement, compares and discusses the results from the developed method 

and the state-of-the-art methods in both model simulation and experimental 

study. 

Chapter 5 proposes a novel method of subsurface defect thickness estimation by 

further developing the method proposed in Chapter 4. 

Chapter 6 presents a framework to reconstruct and visualise the subsurface 

defect in a form of 3D images by utilising the developed method from Chapter 4 

and Chapter 5. 

Chapter 7 concludes the research findings of the thesis, discusses the 

advantages and limitations of the proposed solution, and describes future work. 

 

 

Figure 1-2 Thesis structure 
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2 LITERATURE REVIEW 

2.1 Introduction 

Inspection and evaluation of material flaws can be divided into two main types 

that are destructive testing and non-destructive testing (NDT). Destructive testing 

is often used to test the physical properties of materials such as impact 

resistance, toughness, ductility, and tensile strength. In contrast to destructive 

testing, NDT is a procedure of investigating, detecting, or assessing 

characteristics differences of components without destroying the inspected object 

[27]. NDT can be used to control manufacturing processes, to maintain the quality 

level, and to ensure integrity and reliability of products. It has been applied in 

various areas such as manufacturing, automotive, aerospace, and fabrication. 

The literature review is organised into four main sections: the overview of NDT 

techniques, the thermographic inspection techniques, the defect detection and 

depth measurement method, and the three-dimensional defect visualisation. The 

purpose of the first section, the overview of NDT techniques, is to study and 

understand the advantage and disadvantage of each common NDT technique 

and select the most suitable technique to do in this thesis. The purpose of the 

second section is to study the process of the subsurface defect inspection based 

on the thermography method. The purpose of the third section is to study the 

evolution of the defect detection and depth measurement method based on 

pulsed thermography. The purpose of the fourth section is to review subsurface 

defect visualisation in the form of 3D images based on pulsed thermography. 

After that, the research gaps are described in the next section. The outline of this 

chapter is illustrated in Figure 2-1. 
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Figure 2-1 The outline of Chapter 2 

 

2.2 Non-Destructive Testing Techniques 

There are various NDT techniques used in different applications, depending on 

criteria such as type of materials, type of defects, size of defects, and location of 

defects. Commonly used NDT techniques include visual and optical testing, dye 

penetrant testing, magnetic particle testing, electromagnetic testing, radiographic 

testing, ultrasonic testing, and infrared and thermal testing, the details of which 

are introduced below. 
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2.2.1 Visual and Optical Testing 

Visual and optical testing is the most common NDT method. It concerns the visual 

observation of the tested item’s surface to assess flaws [14]. This investigation 

can direct watching or can be enhanced by using optical tools such as magnifying 

glasses, mirrors, borescopes, and charge-coupled devices (CCDs). This method 

can only detect abnormalities on the exterior surface of the object, the internal 

defect cannot be detected by this method. Figure 2-2 shows examples of tool in 

visual and optical inspection. 

 

Figure 2-2 Crack microscope [28] 

 

2.2.2 Dye Penetrant Testing 

Dye penetrant testing, known as liquid penetrant inspection, are simple and are 

generally used for the detection of surface-breaking discontinuities, porosity, 

laps, fractures, and particularly cracks. The test object is coated with a visible or 

fluorescent dye solution. The dye solution seeps into any imperfect surface 

openings (defects). The abundance dye is removed from the surface, and a 

developer which deeds as a blotter is applied to draw penetrant out of the defects. 

In case of using a visible dye solution, the clear shading contrast between the 

penetrant and the developer is utilised. For using a fluorescent dye solution, an 

ultraviolet lamp is used to make the glow from the dye solution for observing the 

defect clearly. Dye penetrant method is suitable for inspecting the surface-
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breaking cracks in non-ferromagnetic materials [9], [14], [29]. Figure 2-3 shows 

an example of testing by the dye penetrant method. 

 

Figure 2-3 Example of testing by dye penetrant method [30] 

 

2.2.3 Magnetic Particle Testing 

Magnetic particle testing relies on the collection of magnetic particles (indicating 

particles) where the magnetic flux leakage on the object [10], [14]. The magnetic 

particles usually are iron oxide which can be made in a form of dry powder, liquid 

solution, or fluorescent substance. This technique utilises one or more magnetic 

fields to detect surface and near-surface discontinuities in the targeted object. 

The magnetic field can be generated from a permanent magnet or an 

electromagnet. When the magnetic field confronts a horizontal crack to the 

magnetic field direction, a magnetic flux leakage field will be produced by their 

flux lines. Because magnetic flux line travels through the air poorly, when 

magnetic particles are applied on the object’s surface, they will be drawn into the 

discontinuity and making visible sign on the object’s surface, as shown in Figure 

2-4. Magnetic particle method is mainly used to detect surface-breaking cracks 

in ferromagnetic materials such as steel. However, it is restricted to the surface 

or only near-surface defects. 
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Figure 2-4 Example of Magnetic flux leakage on an object [31] 

 

2.2.4 Electromagnetic Testing 

Electromagnetic testing, particularly Eddy current testing, is normally used to 

examine conductive materials [31]. Eddy current techniques use alternating 

currents adapt to a conducting coil stand near the tested object [5], [14], as shown 

in Figure 2-5. Accordingly, the test object produces eddy currents to resist the 

rotating current in the coil. The eddy currents are then detected by magnetic field 

sensors. The change of the induced eddy currents relates to the cracks inside 

the object. The Eddy current testing techniques usually perform well for 

evaluating cracks beneath the surface of metallic materials. However, the depth 

of penetration is an important problem in eddy current testing due to the 

penetration of eddy current is limited by the skin effect. 

 

Figure 2-5 An illustration of Eddy current testing equipment [31] 
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2.2.5 Radiographic Testing 

The tested object is placed between the source of radiation and the film, as shown 

in Figure 2-6. The X-rays go through the object and the amount of penetrating 

radiation after absorbed by material are captured on a film or a digital device. The 

different intensity of the radiation image on the film can be used to identify defects 

inside the object [31]. This technique can be used with various materials such as 

steel, composite materials, both metal and non-metal materials. However, both 

sides of the tested object should be accessible and accurately orientation 

between the radiation beam and the two-dimensional defects is required. The 

radiation of X-rays may be harmful to health. 

 

Figure 2-6 An illustration of radiography [31] 

 

2.2.6 Ultrasonic Testing 

Ultrasonic testing utilises high-frequency sound waves to identify flaws or 

changes in characteristics inside materials [6], [14], as shown in Figure 2-7. Most 

ultrasonic methods use frequencies in the range of 1 MHz to 10 MHz. In general, 

there is a couplant inserted between the probe and the object for better transmit 

the sound wave. The velocity of ultrasonic waves going through the object is a 



 

13 

basic function of density and modulus of the object. Ultrasonic methods can be 

used to estimate the thickness and detect crack of both non-metallic and metallic 

materials. However, it cannot detect defect which is parallel to the sound beam. 

It is not suitable to inspect very thin parts. The roughness surface can also be an 

issue for inspection. 

 

Figure 2-7 Ultrasonic detection of slag in a material using a normal probe [31] 

 

2.2.7 Infrared and Thermal Testing 

The infrared and thermal testing method analyses heat flow in the object which 

is a function of material properties [11], [14]. Thermal cameras are the most 

widely used sensors to capture thermal profiles on the tested object’s surface. 

Thermal imaging can be employed to identify defects or cracks in materials. For 

example, passive imaging can be utilised to detect hot or cold spots which 

indicate the problems. Figure 2-8 shows infrared thermal imaging of some flaws 

(cold spots) under roof. Infrared and thermal testing method can apply to inspect 

both surface and subsurface defect in various material such as composite 

materials, metal and non-metal, plastic, etc. It is also a rapid and onsite inspection 

method, and is widely used in various industrial areas. In addition, the infrared 

thermographic camera/video is hazard-free. It only records the infrared radiation 

emitted from the inspected object and does not emit any hazard radiation. 
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Infrared and thermal testing is focused on this thesis because it provides several 

advantages as mentioned above. The details of this method are described below. 

 

Figure 2-8 Example of infrared thermal imaging of some flaws under roof [32] 

 

2.3 Thermographic Inspection 

The thermographic inspection involves observing abnormally cold or hot spots on 

the object’s surface. Thermographic inspection in term of NDT is detecting, 

inspecting, analysing, and evaluating the hidden defects inside the object from 

the information of thermal image/video. Thermal image/video can be acquired 

from a thermal imaging camera/video or infrared camera/video. Thermographic 

cameras (infrared radiometer) regularly detect radiation in the wavelengths of the 

electromagnetic spectrum between 3 µm to 5 µm (mid-wave infrared bands) or 8 

µm to 14 µm (long-wave infrared bands) [33] and generate images of the 

radiation, called “thermograms” [34]. The infrared radiation bands in the 

electromagnetic spectrum are shown in Figure 2-9, the mid-wave (3 – 5 µm) and 

the long-wave (8 – 14 µm) of the electromagnetic spectrum are denoted as MWIR 

and LWIR, respectively. 
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Figure 2-9 The infrared bands in the electromagnetic spectrum [33] 

The energy fallen on the object can be dissipated in three ways: absorption, 

reflection, and transmission [35]. In 1860, Gustav Robert Kirchhoff defined a 

blackbody as a surface that does not have both reflection and transmission of the 

incident radiation [36]. Instead, the blackbody has only absorption of all incident 

radiation in all direction and wavelength. In physics, a blackbody is a theoretical 

object which emits electromagnetic radiation at its temperature. The 

electromagnetic radiation emitted from a blackbody is a function of wavelength 

and temperature. The radiation intensity from a blackbody can be calculated by 

Planck’s law, expressed as 

𝐸𝜆𝑏(𝜆, 𝑇) =
𝐶1𝜆

−5

𝑒
𝐶2
𝜆𝑇

−1
 (2-1) 

where 𝐸𝜆𝑏(𝜆, 𝑇) is the radiation intensity which is the function of wavelength and 

temperature emitted from the blackbody; 𝜆 [m] is the wavelength; 𝑇 [K] is the 

temperature; 𝐶1 and 𝐶2 are radiation constants: 𝐶1 = 3.742 ⋅ 108 W µm4/m2, 𝐶2 =

1.4389 ⋅ 104 µmK. 

In order to obtain the total radiation intensity of a blackbody, Equation (2-1) is 

integrated over all wavelengths from zero to infinity, expressed as  

𝐸𝑏 = 𝑘𝐵𝑇
4 (2-2) 
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where 𝐸𝑏  is the total radiation intensity emitted from the blackbody; 𝑘𝐵  is the 

Boltzmann constant, 𝑘𝐵 = 567 ⋅ 10−8 W/m2K4. 

The emissivity of a body defined for a specified wavelength (𝜀𝜆) is the ratio of the 

radiation intensity emitted by the body at the wavelength (𝐸𝜆) to the radiation 

intensity emitted by a blackbody at the wavelength (𝐸𝜆𝑏) at the same temperature, 

written as 

𝜀𝜆 =
𝐸𝜆
𝐸𝜆𝑏

 (2-3) 

A real body emits only a fraction of the thermal energy emitted by a blackbody at 

the same temperature (𝐸). The body will be considered as a graybody if the 

emissivity is constant and independent of the wavelength. The emissivity of real 

body (𝜀) can be calculated as 

𝜀 =
𝐸

𝐸𝑏
=

𝐸𝜆
𝐸𝜆𝑏

= 𝜀𝜆 (2-4) 

At a steady temperature, all of the energy absorbed must be emitted. A real 

blackbody is a perfect absorber and a perfect radiator. Therefore, the emissivity 

of real blackbody would be one. The emissivity of graybody could be less than 

one. 

Infrared radiation is the energy radiated by the object’s surface whose 

temperature equals to or above absolute zero (𝑇 ≥ 0  K) [37]. The emitted 

radiation is a function of the object’s temperature, the higher temperature is 

greater radiate the intensity of the infrared radiation. Based on the principle of 

infrared radiation, thermographic inspection/infrared thermography can be 

classified into two categories: passive thermography and active thermography 

[33], [38], [39], [40], [41]. 

Passive thermography investigates the features of interest which are naturally at 

a different temperature than the ambient [14]. The passive thermography is used 

when the object of interest has enough thermal contrast with respect to the 

background in order to be detected with an infrared sensor. Typical applications 
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include surveillance, people tracking, humidity assessment in buildings, liquid 

levels in storage tanks, insulation problems, and electrical components. 

Opposite to the passive thermography, active thermography [16], [17] requires 

external energy to induce a thermal contrast between the feature of interest and 

the background (defective area and non-defective area). Figure 2-10 shows the 

main classical methods and excitations used in the active thermography. There 

are three common types of energy source: optical excitation, mechanical 

excitation, and inductive excitation. Under the optical excitation, the energy is 

transmitted to the object by means of optical devices such as flash lamps and 

halogen lamps. The light is transformed into heat and then delivered to the 

surface of the object. The defects are stimulated externally. Under the mechanical 

excitation, the energy is transmitted to the object by means of mechanical 

oscillation such as using ultrasonic transducer. The defects are stimulated 

internally. Under the inductive excitation, the energy is transmitted to the object 

by the inductance such as using the eddy current. 

Many methods have been developed for active thermography. The selected 

evaluation method depends on the applications. The active thermography can be 

main sub-classified based on the source of excitation: pulsed thermography (PT), 

lock-in thermography (LT), ultrasound thermography (vibro-thermography (VT) 

[33], [42]), and eddy current thermography. The common methods using external 

excitation are pulsed thermography [43] and lock-in thermography [14], [44]. 

Base on the location of the external excitation source, it can be divided into two 

modes: reflection mode and transmission mode. The reflection mode refers to the 

position of the excitation source and the image acquisition camera is collocated 

on the same side, shown in Figure 2-11(a), whereas the transmission mode, the 

excitation source and the image acquisition are collocated in the opposite side, 

shown in Figure 2-11(b). Generally, the reflection mode is suitable for detect 

defects which located close to the heated surface while the transmission mode 

may be used to detect defects which located closer to the rear surface. It should 

be noted that in some cases only one side of surface is accessible, which means 

only the reflection mode is practicable. 
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Figure 2-10 A list of active thermography approaches 

 

 

(a) 

 

(b) 

Figure 2-11 Thermographic inspection under the (a) the reflection mode (b) the 
transmission mode 
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2.3.1 Pulsed Thermography 

Typical set-up of pulsed thermography is shown in Figure 2-12. In pulsed 

thermography (high power short pulse), a Dirac heat pulse is ideally transient 

waveform used to excite the specimen. The duration of the heat pulse may vary 

from a few milliseconds to several milliseconds (approximately 2 - 15 ms) 

depending on thermal properties of materials and defects. The excitation source 

normally uses flash lamps or photographic flashes. In long pulse thermography 

[45], which is similar to pulsed thermography, but the duration of heat pulse is 

longer from a few seconds to several minutes (e.g., 7 seconds [46]). This 

technique does not need a high power of stimulation. The excitation source 

commonly uses halogen lamps. The temperature on the surface is generally 

recorded by an infrared camera. After the specimen’s surface is heated by 

excitation sources, the thermal propagates from the surface through the 

specimen and the cooling process is then diagnosed. 

Pulsed thermography is more suitable for examining thin layers with shallow 

defects whilst long pulse thermography is more suitable for investigate a low 

conductivity material with a large structure which can be evaluated and imaged 

in a single shot [36]. 

 

Figure 2-12 A typical set-up of pulsed thermography [33] 
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Figure 2-13 shows the comparison between the temperature decay curve on the 

non-defective area and the defective area. The black curve shows an observed 

temperature decay curve in a non-defective area. If the energy from the excitation 

source travels through a non-defective area, the observed temperature on the 

specimen’s surface will decrease uniformly until the heat from excitation is gone. 

On the other hand, the red curve shows the observed temperature in a defective 

area. If the energy travels through an internal defective area, the observed 

temperature on the specimen's surface will drop abnormally and different pattern 

from the black curve because of the effect of the heat deviation. Although the 3D 

heat diffusion is a complex problem, many qualitative and quantitative techniques 

have been developed by using the relationship between time and defect depth, 

which is simplified by Equation (2-9). The advantages of this approach are the 

speed and straightforward inspection. 

 

 

Figure 2-13 A temperature decay curve [47] 

When the surface of solid material is heated by thermal energy, then some of the 

incident energy will be absorbed and diffused through the material, which can be 

described by Fourier’s partial differential equation [48] as 

𝑄 = 𝜌 ∙ 𝐶𝑝
𝜕𝑇

𝜕𝑡
+ ∇ ∙ (−𝑘 ∙ ∇𝑇) (2-5) 
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where 𝑇 [K] is the temperature, 𝑡 [s] is the sampling time, 𝑄 [J/m2] is the pulse 

energy absorbed by the surface, 𝜌 [kg/m3] is the mass density, 𝐶𝑝 [J/(kg·K)] is the 

specific heat capacity, 𝑘 [W/(m·K)] is the thermal conductivity of the material. 

The heat diffusion through isotropic solid is a complex 3D problem that can be 

simplified by Fourier’s law of heat diffusion [33], [39], [48] which can be expressed 

as 

∇2𝑇 −
1

𝛼
∙
𝜕𝑇

𝜕𝑡
= 0 (2-6) 

The one-dimensional solution of Fourier equation for the propagation of a Dirac 

heat pulse in a semi-infinite isotropic solid [33], [36], [39], [48] can be expressed 

as 

𝑇(𝐿, 𝑡) = 𝑇𝑖 +
𝑄

√𝜌𝐶𝑝𝑘𝜋𝑡
exp (−

𝐿2

4𝛼𝑡
) (2-7) 

where 𝑇(𝐿, 𝑡) means the temperature at time 𝑡 and depth 𝐿, 𝐿 [m] is the depth 

from the heated surface, 𝑇𝑖 [K] is the initial temperature, and 𝛼 =
𝑘

𝜌𝐶𝑝
 [m2/s] is the 

thermal diffusivity. Equation (2-7) can be rewritten as 

𝑇(𝐿, 𝑡) = 𝑇𝑖 +
𝑄

𝑒√𝜋𝑡
exp (−

𝐿2

4𝛼𝑡
) (2-8) 

where 𝑒 = √𝜌𝐶𝑝𝑘  is thermal effusivity of the material (J/(s1/2·m2·K)). At the 

surface (𝐿 = 0 mm), Equation (2-8) can be rewritten as 

𝑇(0, 𝑡) = 𝑇𝑖 +
𝑄

𝑒√𝜋𝑡
 (2-9) 

 

2.3.2 Lock-in Thermography 

Lock-in thermography is a periodic excitation method. It is also known as 

modulated thermography [33], [39], [42], [49], [50]. The one-dimensional solution 
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of the Fourier’s law for a periodic thermal wave through a semi-infinite 

homogeneous material [33], [39], [51] can be expressed as 

𝑇(𝐿, 𝑡) = 𝑇𝑖exp (−
𝐿

𝜇
) cos (

2𝜋𝐿

𝜆
− 𝜔𝑡) (2-10) 

𝜇 = √
2 ∙ 𝛼

𝜔
 (2-11) 

or 

𝜇 = √
𝛼

𝜋 ∙ 𝑓
 (2-12) 

where 𝑇(𝐿, 𝑡) is the temperature at time 𝑡 and depth 𝐿, 𝑡 [s] is sampling time, 𝐿 

[m] is the depth from the heated surface, 𝑇𝑖 [°C] is the initial temperature change 

produced by the heat source, 𝜔 = 2𝜋𝑓 [rad/s] is the modulation frequency, 𝑓 [Hz] 

is the thermal wave frequency, 𝜆 = 2𝜋𝜇 [m] is the thermal wavelength, 𝜇 [m] is 

the thermal diffusion length, and 𝛼 [m2/s] is the thermal diffusivity. The surface 

temperature in the time domain [52] can be expressed as 

𝑇(0, 𝑡) = 𝑞0√𝑅𝐸2 + 𝐼𝑀2 sin [𝜔𝑡 + tan−1 (
𝐼𝑀

𝑅𝐸
)] (2-13) 

the real part is expressed as: 

𝑅𝐸 =
1

2𝑘𝛽
[
1 − exp⁡(−4𝛽𝐿) + 2exp⁡(−2𝛽𝐿) sin(−2𝛽𝐿)

1 + exp(−4𝛽𝐿) − 2exp⁡(−2𝛽𝐿) cos(−2𝛽𝐿)
] (2-14) 

the imaginary part is expressed as 

𝐼𝑀 =
−1

2𝑘𝛽
[
1 − exp⁡(−4𝛽𝐿) + 2exp⁡(−2𝛽𝐿) sin(−2𝛽𝐿)

1 + exp(−4𝛽𝐿) − 2exp⁡(−2𝛽𝐿) cos(−2𝛽𝐿)
] (2-15) 

where 𝑞0 [W/m2] is the incident peak heat flux intensity, 𝑘 [W/(m·K)] is the thermal 

conductivity. 

𝛽 =
1

𝜇
 (2-16) 
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The real and imaginary parts of the complex transform are used to estimate the 

amplitude and phase. The amplitude (𝐴) [33] can be derived as 

𝐴 = √𝑅𝐸2 + 𝐼𝑀2 (2-17) 

the difference of phase angle (𝜑) between the surface temperature and reference 

excitation modulation heat flux [52] can be derived as 

𝜑 = tan−1 (
𝐼𝑀

𝑅𝐸
) (2-18) 

when 𝑅𝐸  and 𝐼𝑀  in Equation (2-18) are replaced with Equation (2-14) and 

Equation (2-15), Equation (2-18) can be rewritten as 

𝜑 = tan−1 [−
1 − exp(−4𝛽𝐿) − 2exp⁡(−2𝛽𝐿) sin(−2𝛽𝐿)

1 − exp(−4𝛽𝐿) + 2exp⁡(−2𝛽𝐿) sin(−2𝛽𝐿)
] (2-19) 

Empirical expressions of direct relationship between the defect depth and the 

thermal diffusion length have been proposed [16], [53]. The relationship is given 

as 

𝐿 = 𝐶1 ∙ 𝜇 (2-20) 

Equation (2-20) can be rewritten as 

𝐿 = 𝐶1 ∙ √
𝛼

𝜋 ∙ 𝑓𝑏
 (2-21) 

where 𝑓𝑏 [Hz] is the blind frequency [54], 𝐶1 is an empirical constant that is usually 

in the range of 1.5 to 2, such as 𝐶1 = 1.82 [16], [53]. 

Sinusoidal waves are typically used as a modulated periodic source, and the 

common excitation sources are halogen lamps or LED lamps. The periodic 

thermal wave from the excitation source propagates through the air and heat on 

the surface of the specimen. The heat propagates into the material and blocked 

by the internal defect, which produces the change of the amplitude and phase of 

the response signal at the surface of the specimen. Internal defects can be 
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evaluated from the phase shift and the amplitude of the measured signal. Typical 

set-up of lock-in thermography is shown in Figure 2-14. 

The lock-in thermography is suitable for analysing materials which have low 

thermal diffusivity and large surface. However, this approach is in general slower 

than other approaches such as pulsed thermography. 

 

Figure 2-14 A typical set-up of lock-in thermography [33] 

 

2.3.3 Ultrasound Thermography 

Ultrasound thermography is also well known as vibro-thermography (VT) [55] or 

thermosonic [56]. Typical set-up of ultrasound thermography is shown in Figure 

2-15. There are basically two configurations in ultrasound thermography: lock-in 

approach and burst approach, shown in Figure 2-15(a) and Figure 2-15(b), 

respectively. These two configurations can be considered as optical methods 

such as LT and PT. The lock-in approach is similar to LT and the burst approach 

is similar to PT. The specimen is stimulated internally by a mechanical excitation 

source. Normally, ultrasound wave, frequency between 15 kHz to 40 kHz, is 

applied into the specimen by using a transducer, which is connected to the 

specimen. Usually, coupling material, inserted between the transducer and the 

specimen, is used to avoid damage of the specimen and correct misalignment 

[33], [39]. The mechanical energy is transmitted into the specimen, is converted 
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to thermal energy and spread surround inside the material in the form of 

heatwave, then dissipates through the internal defect and travels to the 

specimen’s surface and is detected by an infrared camera. 

 

(a) 

 

(b) 

Figure 2-15 A typical set-up of ultrasound thermography (a) lock-in ultrasound 
thermography approach (b) burst ultrasound thermography approach [33] 

 

2.3.4 Eddy Current Thermography 

Eddy current thermography (ECT) is an induction thermography which 

compounds the advantages of eddy current testing and thermography. Based on 

the stimulation method, it can be divided into two main configurations: pulsed 

approach (eddy current pulsed thermography, ECPT) and lock-in approach (eddy 
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current lock-in thermography, ECLT) [57]. The basic configuration of eddy current 

thermography is shown in Figure 2-16. 

 

Figure 2-16 Basic configuration of eddy current thermography system [58] 

The sample is heated by eddy currents induced by electric currents in the coil 

produced from the induction heating unit. Then, the heat resistance in the 

conductive sample is generated. The change of the induced eddy current flow is 

used to detect defects through monitoring the temperature distribution on the 

sample’s surface which is captured by an IR camera and recorded in a PC [59]. 

The depth of the induction current flow can be described by the electromagnetic 

skin depth or penetration depth (𝛿) [60], [61], [62], expressed as 

𝛿 =
1

√𝜋𝑓𝜎𝜇
 (2-22) 

where 𝑓 [Hz] is the electromagnetic frequency of the excitation (typically 50 – 500 

kHz), 𝜇 [H/m] is the magnetic permeability of the material, and 𝜎 [S/m] is the 

electrical conductivity of the material. 

The flows of eddy current in the sample generate the resistive heat (𝑄), known 

as Joule heating, which is proportional to the square of the eddy current density 

(𝐽𝑠), 

𝑄 =
1

𝜎
|𝐽𝑠|

2 (2-23) 

or which is proportional to the square of the electric field intensity (𝐸), 
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𝑄 =
1

𝜎
|𝜎𝐸|2 (2-24) 

The heat conduction of the sample caused by Joule heating can be given by 

𝑄 = 𝜌𝐶𝑝
𝜕𝑇

𝜕𝑡
− ∇ ∙ 𝑘∇𝑇 (2-25) 

where 𝑘  [W/m·K] is the thermal conductivity of the material, 𝜌  [kg/m3] is the 

density of the material, 𝐶𝑝 [J/kg·K] is the specific heat capacity of the material. 

The thermal diffusion process is given by 

𝜕𝑇

𝜕𝑡
=

𝑘

𝜌𝐶𝑝
(
𝜕2𝑇

𝜕𝑥2
+
𝜕2𝑇

𝜕𝑦2
+
𝜕2𝑇

𝜕𝑧2
) +

1

𝜌𝐶𝑝
𝑞(𝑥, 𝑦, 𝑧, 𝑡) (2-26) 

where 𝑇⁡ = ⁡𝑇(𝑥, 𝑦, 𝑧, 𝑡) is the temperature distribution, 𝑞(𝑥, 𝑦, 𝑧, 𝑡) is the internal 

heat generation function per unit volume and unit time. 

In addition, the defect depth can be quantified from the heat waves (caused by a 

Joule heating) propagated within the material [63]. In pulsed approach, the depth 

of the thermal propagation at observation time 𝑡𝑜𝑏𝑠, the penetration depth (𝜇𝑇) is 

given by 

𝜇𝑇 = 2√𝛼𝑡𝑜𝑏𝑠 (2-27) 

In lock-in approach, the depth of the thermal propagation at modulation frequency 

𝑓𝑚𝑜𝑑, the penetration depth (𝜇𝑇) is given by 

𝜇𝑇 = √
𝛼

𝜋𝑓𝑚𝑜𝑑
 (2-28) 

where 𝛼 is thermal diffusivity of the material (m2/s),  

𝛼 =
𝑘

𝜌𝐶𝑝
 (2-29) 
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2.3.5 Comparison of Thermographic Inspection Method 

Each thermographic inspection method has advantages and limitations. Table 

2-1 compares the capability of inspection between optical thermography, 

ultrasound thermography and eddy current thermography. From the table, it is 

found that all methods can detect voids subsurface defect with various types of 

excitation waveform (e.g., pulse and lock-in), while optical thermography and 

eddy current thermography can also detect delamination defect. When 

considering the method of excitation, only optical thermography and eddy current 

thermography are non-contact method. In terms of the capability of the 

application for non-conductive materials between optical thermography and eddy 

current thermography, it is found that optical thermography is more suitable than 

eddy current thermography. 

 

Table 2-1 The comparison of capability between optical thermography, ultrasound 
thermography and eddy current thermography 

Capability of Inspection 
Optical 

Thermography 
Ultrasound 

Thermography 
Eddy Current 

Thermography 

Contactless of excitation source ✓  ✓ 

Various excitation waveform ✓ ✓ ✓ 

Suitable for voids subsurface defect ✓ ✓ ✓ 

Suitable for delamination defect ✓  ✓ 

Suitable for surface-breaking cracks   ✓ 

Suitable for non-conductive materials ✓ ✓  

 

Considering the aim of this thesis, pulsed thermography is selected because this 

technique offers the most rapid inspection, and also is proven as a high 

performance technique to quantify subsurface defect size and depths, which is 

crucial for 3D defect reconstruction. 
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2.4 Defect Depth Measurement based on Pulsed Thermography 

Many methods of defect detection and depth measurement in pulsed 

thermography have been presented in the last 20 years. Raw data for analysis 

may be stored in the form of a 3D matrix, as shown in Figure 2-17(a). The 

temperature decay on the surface by time was normally used to analyse the 

defect, as shown in Figure 2-17(b). The cooling behaviour between 𝑡∗ to 𝑡∗∗ is 

associated with the size, the depth, and the thickness of the defect. Most defect 

depth measurement methods relied on the relationship between defect depth and 

the temperature deviation time (𝑡∗). Various methods evaluate the defect depth 

from the thermal contrast or the peak time of the first or the second derivative of 

the temperature decay curve. For example, the peak slope time (PST) method 

[64] is corresponding to the peak time of the first derivative of thermal contrast. It 

was found that PST is approximately proportional to the square of the defect 

depth. The logarithmic second derivative (LSD) method [40] uses the peak time 

of the second derivative of temperature decay in the logarithmic scale to 

determine defect depth. Most methods start with heating to the surface of the 

specimen. The surface then absorbs the heat and its temperature increases 

immediately. After that, the thermal wave propagates inside the specimen 

causing diminution on the surface’s temperature. 

 

(a) 

 

(b) 

Figure 2-17 Temperature evolution (a) data3D matrix (b) temperature profile for a 
non-defect point (TSa, blue curve) and defect point (Td, red curve) [33] 
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The emissivity and reflectivity of the material’s surface can have strong effect on 

the measurement [65]. The performance of measurement based on optical 

thermography can be strongly influenced by uneven emissivity of the surface [66]. 

The level of emissivity can be influenced by several causes such as condition of 

surface, type of material, etc. Many works (e.g., [67], [68], [69], [70], [71], [72]) 

have attempted to reduce the influence of emissivity. For example, a classic and 

straightforward method is painting the matt black or non-reflective black on the 

sample’s surface to reduce the reflective light, increase the thermal absorption, 

and increase the uniform distribution of surface emissivity. 

 

2.4.1 Temperature Contrast Method 

At the early period, the temperature contrast method (TC) [14] was mainly used 

for the defect detection purpose. There are four common temperature contrast 

techniques including absolute contrast, running contrast, normalised contrast, 

and standard contrast. The basic definition of temperature contrast is the 

“Absolute Temperature Contrast”, which measures the dissimilarity in 

temperature between a faulty region and a non-faulty region [14]. A typical 

temperature contrast curve is shown in Figure 2-18. The absolute temperature 

contrast [14] method is defined as 

𝑇𝐶𝑎𝑏𝑠(𝑡) = 𝑇𝑑𝑒𝑓(𝑡) − 𝑇𝑠𝑛𝑑(𝑡) (2-30) 

where 𝑇𝑑𝑒𝑓(𝑡) is temperature over defect area and 𝑇𝑠𝑛𝑑(𝑡) is temperature over a 

sound area (non-defect area). Elevated 𝑇𝐶𝑎𝑏𝑠(𝑡) means higher visibility for the 

defect. The contrast of the temperature over a defective area is not constant. 

There is a divergence, with initial elevation followed by eventual diminishment.  

The running temperature contrast technique was developed to reduce the effects 

of emissivity different in surface, defined as 

𝑇𝐶𝑟𝑢𝑛 =
𝑇𝑑𝑒𝑓(𝑡) − 𝑇𝑠𝑛𝑑(𝑡)

𝑇𝑠𝑛𝑑(𝑡)
 (2-31) 
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The normalised temperature contrast technique is computed in the proportion of 

the temperature at the end time of the thermal process, 𝑡𝑒𝑛𝑑, (the temperature at 

the last frame) or the time of maximum temperature, 𝑡𝑚𝑎𝑥, (the temperature at 

the first frame), defined as 

𝑇𝐶𝑛𝑜𝑟 =
𝑇𝑑𝑒𝑓(𝑡)

𝑇𝑑𝑒𝑓(𝑡𝑛)
−

𝑇𝑠𝑛𝑑(𝑡)

𝑇𝑠𝑛𝑑(𝑡𝑛)
 (2-32) 

where 𝑡𝑛 is either 𝑡𝑒𝑛𝑑 or 𝑡𝑚𝑎𝑥. 

The standard temperature contrast technique was developed to dispose of 

contributions of the surrounding environment by subtracting with the temperature 

at pre-flash time,⁡𝑡𝑝, defined as 

𝑇𝐶𝑠𝑡𝑑 =
𝑇𝑑𝑒𝑓(𝑡) − 𝑇𝑑𝑒𝑓(𝑡𝑝)

𝑇𝑠𝑛𝑑(𝑡) − 𝑇𝑠𝑛𝑑(𝑡𝑝)
 (2-33) 

Temperature contrast relates to the depth of the defect, such an example in 

Figure 2-18. Defect depth can be estimated by the peak contrast time determined 

by the plot of temperature contrast and time. The peak contrast time (𝑡𝑃𝐶𝑇) refers 

the time at the maximum value of the temperature contrast. The peak contrast 

time increases follow the increase of defect depth, and it is also a function of 

defect size and shape [47]. 

 

Figure 2-18 A temperature contrast curve [47] 
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2.4.2 Peak Slope Time Method 

The peak slope time (PST) method is corresponding to the peak time of the first 

derivative of temperature contrast. Defect depth can be estimated by the time at 

the peak slope. The peak slope time (𝑡𝑃𝑆𝑇 ) is introduced as a peak contrast 

derivative time [64] and provided by 

𝑡𝑃𝑆𝑇 =
3.64𝐿2

𝜋2𝛼
 (2-34) 

alternatively, if the peak time is obtained, defect depth can be computed as 

𝐿 = √
𝜋2𝛼 ∙ 𝑡𝑃𝑆𝑇

3.64
 

(2-35) 

where 𝐿 [m] is defect depth, 𝛼 [m2/s] is thermal diffusivity. It was found that the 

contrast derivative method is also approximately proportional to the square of the 

defect depth, and the proportionality coefficient does not depend on defect size 

[73]. The major problem of this method is to determine a reference point from the 

sound area. Harry et al. [64] suggested a method to use the average temperature 

of the entire surface as the reference temperature. 

 

2.4.3 Logarithmic Second Derivative Method 

Shepard et al. [40] proposed that the time at the peak slope of the second 

derivative of temperature on the surface in a logarithmic domain can be used to 

determine defect depth. Temperature variation on the surface [74] is given by 

𝑇(𝑡) =
𝑄

√𝜋𝜌𝐶𝑝𝑘𝑡
 (2-36) 

where 𝑇(𝑡) is the temperature variation of the surface at time 𝑡, 𝑄 [J/m2] is the 

energy deposited on the surface of the material, 𝜌 [kg/m3] is the density of the 

material, 𝐶𝑝 [J/kg·K] is the specific heat capacity of the material, 𝑘 [W/m·K] is 

thermal conductivity of the material, and 𝑡 [s] is the observed time. 
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The temperature in the logarithmic domain [47] can be express below: 

𝑙𝑛(𝑇(𝑡)) = 𝑙𝑛 (
𝑄

√𝜋𝜌𝐶𝑝𝑘
) −

1

2
𝑙𝑛⁡(𝑡) (2-37) 

or 

𝑙𝑛(𝑇(𝑡)) = 𝑙𝑛 (
𝑄

𝑒√𝜋
) −

1

2
𝑙𝑛⁡(𝑡) (2-38) 

where 𝑒 [m] is thermal effusivity (𝑒 = √𝜌𝐶𝑝𝑘). It is found that the temperature and 

time curve in the logarithmic domain has a linear relationship with slope -0.5 [75]. 

Deviation from the linear response is related to the temperature response of a 

defective area. The peak time can be computed directly from the temperature 

decay curve (without the need of a reference point) by taking the second 

derivative of both log temperature and log time. The time at the peak slope of the 

second derivative [76] is given below: 

𝑡𝐿𝑆𝐷 =
𝐿2

𝜋𝛼
 (2-39) 

where 𝛼 is thermal diffusivity (𝛼 =
𝑘

𝜌𝑐
) and 𝐿 is defect depth. Alternatively, if the 

peak time is obtained, defect depth can be computed as 

𝐿 = √𝜋𝛼 ∙ 𝑡𝐿𝑆𝐷 (2-40) 

The peak time of the logarithmic second derivative method (LSD), 𝑡𝐿𝑆𝐷, is less 

than that of the temperature contrast derivative method, 𝑡𝑃𝑆𝑇, which means the 

peak second derivative time appears earlier, and has less affected by three-

dimensional heat diffusion. 

However, finding the peak time with the second derivative method is quite 

sensitive to noise. Shepard [75] proposed a Thermal Signal Reconstruction 

(TSR) method to reduce temporal noise using a high order polynomial model to 

fit the raw temperature decay curve. The model is written as 
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𝑙𝑛(𝑇(𝑡)) = ∑𝑎𝑛(𝑙𝑛(𝑡))
𝑛

𝑁

𝑛=0

 (2-41) 

where 𝑁  is the order of the polynomial function, 𝑎𝑛  are coefficients to be 

estimated from the polynomial function. The unknown coefficients 𝑎𝑛  can be 

estimated by the least square method. The raw temperature can be replaced by 

the reconstructed thermal data. The first derivative of 𝑙𝑛(𝑇(𝑡))  can be direct 

computed by 

𝑑 𝑙𝑛(𝑇(𝑡))

𝑑 𝑙𝑛(𝑡)
= ∑𝑎𝑛 ⋅ 𝑛 ⋅ (𝑙𝑛(𝑡))

𝑛−1

𝑁

𝑛=1

 (2-42) 

and the second derivative can be computed by 

𝑑2 𝑙𝑛(𝑇(𝑡))

𝑑 𝑙𝑛2(𝑡)
= ∑𝑎𝑛 ⋅ 𝑛 ⋅ (𝑛 − 1) ⋅ (𝑙𝑛(𝑡))𝑛−2

𝑁

𝑛=2

 (2-43) 

There are some advantages of using TSR data over raw thermal data, for 

example, increased signal to noise ratio (SNR), saving storage, etc. 

 

2.4.4 Absolute Peak Slope Time Method 

Zeng et al. [77] proposed a defect depth measurement based on the analysis of 

a theoretical one-dimensional solution of pulsed thermography [78], [79] given by 

∆𝑇(𝑡) =
𝑄

𝑒√𝜋𝑡
[1 + 2∑𝑒𝑥𝑝⁡(−

𝑛2𝐿2

𝛼𝑡
)

∞

𝑛=1

] (2-44) 

where 𝐿  is defect depth or sample thickness, 𝛼  is the thermal diffusivity, 𝑒  is 

thermal effusivity, 𝑄 is the energy. 

The Absolute Peak Slope Time (APST) method was developed from the concept 

of the PST method. PST method needs a reference point to estimate defect 

depth, but APST method does not need a reference point. In order to get a 

specific characteristic time with does not need a reference point, both sides of 
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Equation (2-44) are initially multiplied with √𝑡  and the new time-dependent 

function 𝑓(𝑡) can be characterised as 

𝑓(𝑡) = ∆𝑇(𝑡) ∙ √𝑡 =
𝑄

𝑒√𝜋
[1 + 2∑𝑒𝑥𝑝⁡(−

𝑛2𝐿2

𝛼𝑡
)

∞

𝑛=1

] (2-45) 

To find the absolute peak slope time, the first derivative of Equation (2-45) is 

taken as below: 

𝑓′(𝑡) =
2𝑄

𝑒√𝜋
[1 + 2∑𝑒𝑥𝑝⁡(

∞

𝑛=1

−
𝑛2𝐿2

𝛼𝑡
) ∙
𝑛2𝐿2

𝑎𝑡2
] (2-46) 

the second derivative of Equation (2-45) is expressed as 

𝑓′′(𝑡) =
2𝑄

𝑒√𝜋
[1 + 2∑𝑒𝑥𝑝⁡(−

𝑛2𝐿2

𝛼𝑡
)

∞

𝑛=1

∙
𝑛2𝐿2

𝑎𝑡3
∙ (
𝑛2𝐿2

𝛼𝑡
− 2)] (2-47) 

The absolute peak slope time (𝑡𝐴𝑃𝑆𝑇 ) is corresponding time that the second 

derivative of 𝑓(𝑡) equals to zero, Equation (2-47) equals zero (𝑓′′(𝑡) = 0): 

𝑡𝐴𝑃𝑆𝑇 =
𝐿2

2𝛼
 (2-48) 

The defect depth can be computed as 

𝐿 = √2𝛼 ∙ 𝑡𝐴𝑃𝑆𝑇 (2-49) 

 

2.4.5 Least-Squares Fitting Method 

Sun [76], [80] proposed a defect depth prediction based on a least-squares fitting 

method. Commonly, the curve fitting methods, including the least-squares fitting 

method, are not sensitive to noise. This method applies a theoretical heat transfer 

model to fit the temperature decay curve at each point on the surface. The 

proposed analytical model for the time period 0 < 𝑡 < 𝑡𝑏  is approximately 

expressed as 
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𝑇(𝑡) ≈ 𝐴 [1 + 2∑𝑒𝑥𝑝⁡(−
𝑛2𝜋2

𝐿2
𝛼𝑡)

∞

𝑛=1

] − 𝑠𝑡 (2-50) 

where 𝑇 is temperature on the surface, 𝐴 is an amplitude, 𝛼 is thermal diffusivity, 

𝑡 is sampling duration, 𝐿 is defect depth if the point on the defect area (point 1 in 

Figure 2-19(a)) or sample’s thickness if the point is on the sound area (point 2 in 

Figure 2-19(a)), and 𝑠 is slope which determined by a linear fitting in the time 

period 𝑡𝑎 < 𝑡 < 𝑡𝑏 (see in Figure 2-19(b)), by using various calculations from the 

experiment, time instants 𝑡𝑎 and 𝑡𝑏 were optimised and selected as 

𝑡𝑎 =
𝐿2

2𝛼
 (2-51) 

and 

𝑡𝑏 = 3𝑡𝑎 (2-52) 

Typically, the slope 𝑠 is small and zero for the inspected point which is on the 

sound area of uniform thickness. It is observed that the time instant 𝑡𝑎 coincides 

to the 𝑡𝐴𝑃𝑆𝑇 of absolute peak slope time method [77]. 

 

 

(a) 

 

(b) 

Figure 2-19 (a) Heat conduction through and around lateral crack at point 1 (b) 
Surface temperature decay curve at point 1 [76], [80] 
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2.5 Defect Reconstruction 

In inversion quantitative non-destructive evaluation (QNDE), defects can be 

analysed and reconstructed based on methods of inverse problem and forward 

problem. The inverse problem refers to the reconstruction of the unknown defect 

information (e.g., defect shape, defect size, defect depth, and defect thickness) 

from the inspection data (e.g., temperature sequences on the surface’s sample), 

which can be evaluated by inverse methods such as mathematical optimisation 

method and stochastic optimisation method (e.g., genetic algorithm and neural 

network). In contrast, the forward problem refers to the analysis of the acquiring 

inspection data from the known properties of sample and defect information, 

which can be performed by forward methods such as simulation methods. Figure 

2-20 illustrates the category of defect reconstruction methods and different data 

analysis between the inverse problem and the forward problem is compared in 

Table 2-2. 

Figure 2-21 illustrates the typical workflow of defect reconstruction by inversion 

analysis. The workflow starts with the establishing of the defect model (defect 

parameterisation) and forward problem simulation method. The residual error 

between the simulated data and the inspection data is then calculated. To 

calculate the residual error, an inverse problem approach (e.g., optimisation 

technique) is applied to compute the optimal defect parameters by iteratively 

updating the defect parameters until the residual error is less than the criterion. 

 

Figure 2-20 The category of defect reconstruction methods 
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Table 2-2 The comparison of the different analysis between inverse problem and 

forward problem 

Model Type Known input Prediction 

Inverse problem 

Inspection data: temperature 

decay on the surface’s sample 

Defect information: defect shape, 

defect size, defect depth, defect 

thickness, and defect location. 

Forward problem 

Properties of the sample and 

defect: thermal conductivity, 

specific heat capacity, mass 

density, dimension of the 

sample and defect, and location 

of the defect 

Inspection data: temperature profile 

occurred or changed of the sample 

 

 

Figure 2-21 Typical workflow of defect reconstruction by inversion analysis [81] 
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In inversion QNDE, three main components: defect model (defect parameters), 

forward problem simulation, and inverse problem approach have been studied in 

different application areas. Several studies have presented applications of 

inversion analysis based on techniques for reconstruction of various types of 

defect information, including wall-thinning depth [82] and material thermal 

property [83]. In infrared thermography NDE, the inversion reconstruction 

approach has been proven to be effective in measurement of corrosion depth and 

delamination size and depth [84]. 

Liu et al. [81] proposed a strategy based on Fourier series fitting radiative radius 

of defect parameterisation and fast forward simulation, shown in Figure 2-22, to 

evaluate and reconstruct delamination defects in multi-layered structures, shown 

in Figure 2-23. 

 

Figure 2-22 The defect profile reconstruction method proposed by Liu et al. [81] 
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Figure 2-23 Delamination defects in multi-layered structures [81] 

 

Figure 2-24 Defect parameterisation proposed by Liu et al. [81] 

The defect shape is described by polynomial model based on Fourier series fitting 

radiative radius, 𝑅(𝑥, 𝜃). 𝑅1 to 𝑅𝑛 are the length of the variable sweeping radius, 

as shown in Figure 2-24. 

𝑅(𝑥, 𝜃) = ⁡
1

2
𝑥0 + 𝑥𝑛 ∑cos(𝑛𝜃)

𝑁

𝑛=1

+ 𝜀(𝜃) (2-53) 

where 𝑥 is the vector of defect parameters; 𝜃 is the angle of radius sweep from 

the X-axis which the value of 𝜃 is between 0 to 2π; 𝑁 is the polynomial model 

order; 𝜀(𝜃) is the high order noise, and 𝑥0 and 𝑥𝑛 are Fourier series coefficients 

representing the 𝑅(𝑥, 𝜃). 
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The objective function is constructed to compute residual error, expressed as 

min𝑓(𝑥) = ⁡𝜓(𝑥) + 𝜇𝑝 ∙ 𝐵(𝑥) (2-54) 

where 𝑥 is the defect parameter vector, 𝜓(𝑥) is the residual between simulated 

feature data and experimental observed feature data, 𝜇𝑝 is the penalty factor, 

and 𝐵(𝑥) is the interior penalty function, Equation (2-54) is rewritten as 

min𝑓(𝑥) = ⁡∑|𝑇𝑛
𝑐𝑎𝑙(𝑥) − 𝑇𝑛

𝑜𝑏𝑠|2 +∑(
𝜇𝑝

𝑅𝑗(𝑥)
+

𝜇𝑝

𝑅𝑚𝑎𝑥 − 𝑅𝑗(𝑥)
)

𝑁𝑅

𝑗=1

𝑀

𝑛=1

 (2-55) 

where 𝑅  is the length of the variable sweeping radius, 𝑅𝑚𝑎𝑥  is the maximum 

radius length of suspect region that contains the delamination used in the fast 

forward simulation, 𝑇𝑛
𝑐𝑎𝑙 is the simulated feature data, 𝑇𝑛

𝑜𝑏𝑠 is the experimental 

observed feature data, 𝑀 is the number of feature data, 𝑁𝑅 is the number of 

radius used for defect parameterisation. The defect parameter is updated by the 

conjunction gradient (CG) algorithm, the updating direction (𝑑𝑘) is written as 

𝑑𝑘 = {
−𝑔𝑘⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝑖𝑓⁡𝑘 = 1)
−𝑔𝑘 + 𝛽𝑘𝑑𝑘−1⁡⁡⁡⁡⁡⁡(𝑖𝑓⁡𝑘 ≥ 2)

⁡⁡, 𝛽𝑘
𝐹𝑅 =

‖𝑔𝑘‖
2

‖𝑔𝑘−1‖2
 (2-56) 

where 𝛽𝑘 is the updating direction coefficient in CG, 𝛽𝑘
𝐹𝑅 is the updating direction 

strategy used in the Fletcher–Reeves nonlinear CG method, and 𝑘 is the iteration 

step. The gradient is calculated by 

𝑔𝑘(𝑥𝑖) = ⁡
𝜕𝑓(𝑥)

𝜕(𝑥𝑖)
 (2-57) 

Equation (2-57) is rewritten as 

𝑔𝑘(𝑥𝑖) = ⁡2∑((𝑇𝑛
𝑐𝑎𝑙 − 𝑇𝑛

𝑜𝑏𝑠) ∙
𝜕𝑇𝑛

𝑐𝑎𝑙(𝑥)

𝜕𝑥𝑖
)

𝑀

𝑛=1

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

+ 𝜇𝑝 ∙∑(
1

(𝑅𝑚𝑎𝑥 − 𝑅𝑗(𝑥𝑖))
2 −

1

(𝑅𝑗(𝑥𝑖))
2)

𝑁𝑅

𝑗=1

∙
𝜕𝑅𝑗(𝑥)

𝜕(𝑥𝑖)
 

(2-58) 
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where 
𝜕𝑇𝑛

𝑐𝑎𝑙(𝑥)

𝜕𝑥𝑖
 and 

𝜕𝑅𝑗(𝑥)

𝜕(𝑥𝑖)
 are calculated by the differential derivative method. The 

residual and defect parameter are iteratively computed and updated until the 

value of ‖𝑔𝑘(𝑥)‖, ‖𝜓(𝑥)‖, and ‖𝜇𝑝 ∙ 𝐵(𝑥)‖ are smaller than the criterion. 

Richter et al. [85] proposed Levenberg-Marquardt with echo defect shape method 

to reconstruct back wall geometry by means of active thermography. The 

reconstruction procedure is shown in Figure 2-25. 

 
Figure 2-25 Inversion procedure used for back wall geometry reconstruction by 
Richter et al. [85] 

The first procedure starts with initialling the back wall geometry by echo defect 

shape method [86]. The back wall geometry is yielded by the experimental data. 

The temperature on the sample’s surface is measured. The relative contrast with 

respect to a reference area is expressed as 

𝐶𝑟𝑒𝑙(𝑡) = ⁡
𝑇𝑑𝑒𝑓𝑒𝑐𝑡(𝑡) − 𝑇𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑡)

𝑇𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑡)
 (2-59) 

where 𝐶𝑟𝑒𝑙(𝑡) is the relative contrast at time 𝑡, 𝑇𝑑𝑒𝑓𝑒𝑐𝑡(𝑡) is the temperature above 

the defective area at time 𝑡 , 𝑇𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑡)  is the temperature above the non-

defective reference area at time 𝑡, the remaining thickness of the sample can be 

evaluated by 
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𝑦 = ⁡√−
𝑘𝑡

𝜌𝑐
∙ (ln⁡(𝐶𝑟𝑒𝑙(𝑡))) 

(2-60) 

where 𝑘 is the thermal conductivity, 𝜌 is the mass density, 𝑐 is the specific heat 

capacity, and 𝑡 is the time elapsed after the delta pulse heating. Richter et al. 

defined the 𝐶𝑟𝑒𝑙(𝑡) as 0.07 to evaluate the thickness/back wall geometry, the 

echo defect shape is applied as 

𝑦 = ⁡√−
𝑘𝑡

𝜌𝑐
∙ (ln⁡(0.07)) (2-61) 

The second procedure is simulation (forward calculation). The temperature 

devolution is simulated by using finite element method (FEM). COMSOL 

Multiphysics, FEM software, is used to solve the transient heat equation for 

temperature-dependent material coefficients. The properties of the material (e.g., 

thermal diffusivity) are needed to know for the simulation. 

The third procedure is reconstruction which means reversing the forward 

problem. The back wall geometry 𝑦 relatives to the temperature devolution 𝑇, 

𝐹(𝑦) = 𝑇, if the temperature is measured by the experiment, the inverse function 

can be written as 𝐹−1(𝑇) = 𝑦. The Levenberg-Marquardt method [87] is applied 

to reconstruct the back wall geometry, expressed as 

𝑦𝑘+1 = 𝑦𝑘 + [𝐹′(𝑦𝑘)
𝑇 ∙ 𝐹′(𝑦𝑘) + 𝛼 ∙ 𝐼]−1 ∙ 𝐹′(𝑦𝑘)

𝑇 ∙ (𝑇 − 𝐹(𝑦𝑘)) (2-62) 

where 𝑦𝑘+1 is the new back wall geometry, 𝑦𝑘 is the guess of back wall geometry, 

𝑇 is the experimental data, 𝐹(𝑦𝑘) is the simulation data, 𝐹′(𝑦𝑘) is the derivative 

of 𝐹(𝑦𝑘) , 𝐹′(𝑦𝑘)
𝑇  is the transpose matrix of the derivative of 𝐹(𝑦𝑘) , 𝐼  is the 

identity matrix, 𝛼 is a regularisation parameter adjusted to the signal-to-noise 

ratio, and subscript 𝑘 is iteration step. 

The last procedure, comparing the experimental data and the simulated results, 

and change/update the back wall geometry by reconstruction method 

(Levenberg-Marquardt method). This procedure is done iteratively until the 

difference between the experimental data and the simulated data reaches the 
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certain value. This standard method is called discrepancy method. The certain 

value is set as 0.017 K, expressed as 

√ ∑
(𝑇𝑖 − 𝐹𝑖(𝑦𝑘))2

475 ⋅ 591

475⋅591

𝑖=1

≤ 0.017 (2-63) 

It is noted that, the interesting data are 475 pixels at the time interval of [10, 600] 

seconds. 

Lugin and Netzelmann [86] proposed a method to reconstruct the defect shape 

from pulsed thermography data with known thermal properties. The method 

consists of two main units: defect shape correction unit and simulation unit. The 

structure of the proposed algorithm is shown in Figure 2-26. The defect shape 

correction unit is performed for extracting and refining the defect shape 

sequentially. The simulation unit is performed for simulating the process of 

thermal distribution in the tested sample (the thermal properties and the 

geometrical size are known). 

 

Figure 2-26 The algorithm structure of defect shape reconstruction proposed by 
Lugin and Netzelmann [86] 

The algorithm starts with expecting the unknown defect shape by the defect 

shape correction unit, and transmits it to the simulation unit. The first unknown 

defect shape is computed by the echo defect shape method, the echo defect 

depth (𝐷𝐸𝐷𝑆) is computed as 
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𝐷𝐸𝐷𝑆 = √−
𝜆𝑡𝑘
𝜌𝑐

log⁡(|𝑇𝑟𝑒𝑙−𝑖𝑛𝑐𝑟(𝑡𝑘)|) 
(2-64) 

where 𝜆 is thermal conductivity of the sample, 𝜌 is density of the sample, 𝑐 is 

specific that capacity of the sample, 𝑇𝑟𝑒𝑙−𝑖𝑛𝑐𝑟(𝑡𝑘)  is the relative temperature 

contrast at time 𝑡𝑘 . The extracted time 𝑡𝑘  is shown in Figure 2-27, and the 

recommended value of 𝑇𝑟𝑒𝑙−𝑐𝑜𝑛𝑡 is about 0.025.  

 

 

Figure 2-27 Extraction of the time 𝒕𝒌 proposed by Lugin and Netzelmann [86] 

 

The relative temperature contrast curve is computed by 

𝑇𝑟𝑒𝑙−𝑐𝑜𝑛𝑡(𝑡) = ⁡
𝑇𝑠(𝑡) − 𝑇𝑑𝑒𝑓𝑒𝑐𝑡−𝑓𝑟𝑒𝑒(𝑡)

𝑇𝑑𝑒𝑓𝑒𝑐𝑡−𝑓𝑟𝑒𝑒(𝑡)
 (2-65) 

where 𝑇𝑠(𝑡) is the temperature curve on the analysed point, 𝑇𝑑𝑒𝑓𝑒𝑐𝑡−𝑓𝑟𝑒𝑒(𝑡) is the 

temperature curve on the defect-free point. 

Then, the expected defect shape is transmitted to the simulation unit. The 

simulation unit simulates the thermal distribution from the expected defect shape, 

and returns the data to the defect shape correction unit. To simulate the thermal 

distribution, the thermal properties (e.g., thermal conductivity, density, and 
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specific heat capacity) and geometrical dimensions of the tested sample are pre-

known. A commercial FEM software is used in this simulation. 

Then, the defect shape correction unit is received the data from the simulation 

unit. The thermal distribution from the source measurement and the simulation is 

analysed and compared. The defect shape is refined and reconstructed by 

𝐷𝑆𝑆+1 = 𝐷𝑆𝑆 + (𝐸𝐷𝑆𝑀 − 𝐸𝐷𝑆𝑆) (2-66) 

where 𝐷𝑆𝑆+1 is the refined defect shape used for the next simulation (𝑆 + 1) or 

the output reconstructed defect shape, 𝐷𝑆𝑆 is the defect shape used in the last 

simulation, 𝐸𝐷𝑆𝑀 is the echo defect shape computed from the measurement, and 

𝐸𝐷𝑆𝑆  is the echo defect shape computed from the simulation. After that, the 

refined defect shape is sent to the simulation unit again. 

The process of the defect shape correction unit and simulation unit is repeated in 

the same order. The defect shape is refined iteratively until the simulation 

converges to the measurement. The reconstructed defect shape is produced 

after some iteration cycles. 

Rodriguez and Nicolau [88] proposed a method based on inverse heat transfer 

approach to estimate thermal conductivity and defect depth. The inverse problem 

of the estimation of thermal conductivity and defect, a general ill-posed problem, 

is solved by conjugate gradient method (CGM) [89] and numerical sensitivity 

analysis method [90]. Figure 2-28 shows the implementation methodology for the 

estimation of thermal conductivity and defect depth. 
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Figure 2-28 The implemented methodology for the estimation of defect depth and 
thermal conductivity proposed by Rodriguez and Nicolau [88] 

 

The methodology is implemented through five main steps, as described below: 

Step 1: Compute the sensitivity coefficients of thermal conductivity (𝐽𝑘 ), the 

sensitivity coefficients of defect depth (𝐽𝑦 ), the gradient direction of thermal 

conductivity at iteration 𝑝  (𝐽′𝑘
𝑝

), and the gradient direction of defect depth at 

iteration 𝑝 (𝐽′𝑦
𝑝
), defined by Equation (2-67) to (2-70), respectively. 
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𝐽𝑘 = ∑
𝜕𝑇𝑠(𝑥𝑚, 𝑡)

𝜕𝑘

𝑀

𝑚=1

 (2-67) 

𝐽𝑦 = ∑
𝜕𝑇𝑠(𝑥𝑚, 𝑡)

𝜕𝑦

𝑀

𝑚=1

 (2-68) 

𝐽′𝑘
𝑝 = −2 ∑ ∫

𝜕𝑇𝑠(𝑥𝑚, 𝑡)
𝑝

𝜕𝑘
[𝑌𝑚(𝑡) − 𝑇𝑠(𝑥𝑚, 𝑡; 𝑘

𝑝)]𝑑𝑡
𝑡𝑓

𝑡=0

𝑀

𝑚=1

 (2-69) 

𝐽′𝑦
𝑝 = −2 ∑ ∫

𝜕𝑇𝑠(𝑥𝑚, 𝑡)
𝑝

𝜕𝑦
[𝑌𝑚(𝑡) − 𝑇𝑠(𝑥𝑚, 𝑡; 𝑦

𝑝)]𝑑𝑡
𝑡𝑓

𝑡=0

𝑀

𝑚=1

 (2-70) 

where 𝑘 is the thermal conductivity, 𝑦 is the defect depth, 𝑡 is time, 𝑇𝑠(𝑥𝑚, 𝑡) is 

the simulated temperature at position 𝑚, 𝑌𝑚(𝑡) is the experimental temperature, 

superscript 𝑝 is iteration level or time step, 𝑀 is the total number of measured 

positions, and 𝑡𝑓 is final time of the experiment. The partial derivatives 
𝜕𝑇𝑠

𝜕𝑘
 and 

𝜕𝑇𝑠

𝜕𝑦
 

are computed by Equation (2-71) and (2-72), respectively. 

𝜕𝑇𝑠
𝜕𝑘

=
𝑇𝑠(𝑘 + Δ𝑘) − 𝑇𝑠(𝑘)

Δ𝑘
 (2-71) 

𝜕𝑇𝑠
𝜕𝑦

=
𝑇𝑠(𝑦 + Δy) − 𝑇𝑠(𝑦)

Δy
 (2-72) 

where Δ𝑘 is the perturbation of thermal conductivity and Δy is the perturbations 

of defect depth. 

Step 2: Compute the conjugation coefficients of thermal conductivity (𝛾𝑘
𝑝
), the 

conjugation coefficients of depth ( 𝛾𝑦
𝑝

), the direction of descent of thermal 

conductivity (𝐷𝑘
𝑝
), and the direction of descent of defect depth (𝛾𝑦

𝑝
), defined by 

Equation (2-73) to (2-76), respectively. 

𝛾𝑘
𝑝 = ∑ ∫

(𝐽′𝑘
𝑝)2

(𝐽′𝑘
𝑝−1)2

𝑑𝑡
𝑡𝑓

𝑡=0

𝑀

𝑚=1

 (2-73) 
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𝛾𝑦
𝑝 = ∑ ∫

(𝐽′𝑦
𝑝)2

(𝐽′𝑦
𝑝−1)2

𝑑𝑡
𝑡𝑓

𝑡=0

𝑀

𝑚=1

 (2-74) 

𝐷𝑘
𝑝 = 𝐽′𝑘

𝑝 − 𝛾𝑘
𝑝𝐷𝑘

𝑝−1 (2-75) 

𝐷𝑦
𝑝 = 𝐽′𝑦

𝑝 − 𝛾𝑦
𝑝𝐷𝑦

𝑝−1 (2-76) 

where  superscript 𝑝 − 1 denotes the previous iteration. 

Step 3: Calculate the search step size of thermal conductivity (𝛽𝑘
𝑝
) and the search 

step size of defect depth (𝛽𝑦
𝑝
) from Equation (2-77) and (2-78), respectively. 

𝛽𝑘
𝑝 = ∑ ∫

[𝑌𝑚(𝑡) − 𝑇𝑠(𝑥𝑚, 𝑡)][[𝐽𝑘]
𝑇𝐷𝑘

𝑝]

{[𝐽𝑘]𝑇𝐷𝑘
𝑝}

2 𝑑𝑡
𝑡𝑓

𝑡=0

𝑀

𝑚=1

 (2-77) 

𝛽𝑦
𝑝 = ∑ ∫

[𝑌𝑚(𝑡) − 𝑇𝑠(𝑥𝑚, 𝑡)][[𝐽𝑦]
𝑇𝐷𝑦

𝑝]

{[𝐽𝑦]𝑇𝐷𝑦
𝑝}

2 𝑑𝑡
𝑡𝑓

𝑡=0

𝑀

𝑚=1

 (2-78) 

With the initial parameter of thermal conductivity 𝑘𝑝 and the initial parameter of 

defect depth 𝑦𝑝, calculate the new estimated parameter of thermal conductivity  

(𝑘𝑝+1) and the new estimated parameter of defect depth (𝑦𝑝+1) from Equation 

(2-79) and (2-80), respectively. 

𝑘𝑝+1 = 𝑘𝑝 − 𝛽𝑘
𝑝𝐷𝑘

𝑝 (2-79) 

𝑦𝑝+1 = 𝑦𝑝 − 𝛽𝑦
𝑝𝐷𝑦

𝑝 (2-80) 

Step 4: Replace 𝑝 with 𝑝 + 1 and solve the direct problem (Thermal NDT Model) 

by using the computation algorithm TermoTest® in order to receive the 

temperature evolution map 𝑇𝑠(𝑖, 𝑘, 𝑡) , as shown in Figure 2-29. The used 

numerical solver is based on finite volume method (FVM). The energy balance 

for an element volume is shown in Figure 2-30. The discrete energy balance for 

internal volume is expressed as 
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𝜌𝐶𝑝∆𝑥∆𝑦∆𝑧

∆𝑡
(𝑇(𝑖,𝑗,𝑘)

𝑝+1 − 𝑇(𝑖,𝑗,𝑘)
𝑝 )

=
𝑘

∆𝑥
(𝑇(𝑖−1,𝑗,𝑘)

𝑝+1 − 𝑇(𝑖,𝑗,𝑘)
𝑝 ) ∆y∆z

+
𝑘

∆𝑥
(𝑇(𝑖+1,𝑗,𝑘)

𝑝+1 − 𝑇(𝑖,𝑗,𝑘)
𝑝 ) ∆y∆z

+
𝑘

∆𝑦
(𝑇(𝑖,𝑗−1,𝑘)

𝑝+1 − 𝑇(𝑖,𝑗,𝑘)
𝑝 )∆x∆z

+
𝑘

∆𝑦
(𝑇(𝑖,𝑗+1,𝑘)

𝑝+1 − 𝑇(𝑖,𝑗,𝑘)
𝑝 )∆x∆z

+
𝑘

∆𝑧
(𝑇(𝑖,𝑗,𝑘−1)

𝑝+1 − 𝑇(𝑖,𝑗,𝑘)
𝑝 ) ∆x∆y

+
𝑘

∆𝑧
(𝑇(𝑖,𝑗,𝑘+1)

𝑝+1 − 𝑇(𝑖,𝑗,𝑘)
𝑝 ) ∆x∆y 

(2-81) 

where 𝑘 is the thermal conductivity, 𝜌 is the density, is 𝐶𝑝  is the specific heat 

capacity, 𝑇 is temperature, 𝑡 is time, (𝑖, 𝑗, 𝑘) is the grind points, and superscript 𝑝 

is the time step. 

 

Figure 2-29 The thermal NDT model with the temperature evolution map 𝑻𝒔(𝒊, 𝒌, 𝒕) 
proposed by Rodriguez and Nicolau [88] 
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Figure 2-30 The energy balance for an element volume proposed by Rodriguez 
and Nicolau [88] 

Step 5: Check the stopping criterion, if it is satisfied, return the estimated thermal 

conductivity and defect depth; if it is not satisfied, return to Step 1. The stopping 

criterion is given by 

𝐽𝑝+1 < 𝜀 (2-82) 

𝜀 = ∑ 𝜎𝑚𝑡𝑓

𝑀

𝑚=1

 (2-83) 

𝜎𝑚 ≈ |𝑌𝑚(𝑡) − 𝑇𝑠(𝑥𝑚, 𝑡)| (2-84) 

where 𝐽𝑝+1 is the sensitivity matrix or Jacobian, 𝜀 is the value of the tolerance, 𝜎𝑚 

is the standard deviation of the measurement error at each instant time. 

Elhassnaoui and Sahnoun [91] proposed a method for 3D reconstruction of a 

geometry defect located on the inaccessible surface of homogeneous materials 

without the need for thermal properties such as thermal diffusivity. Based on 

thermal distribution, this method analyses the thermal response on the sample’s 

surface and computes defect distance (defect depth and sample thickness). It 

modifies the APST method [77], to evaluate defect distance of the sample 
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(distance from the sample’s surface). They eliminated thermal diffusivity (𝛼 ), 

which is a material’s property, by dividing arbitrary two points from the sample 

surface. It can be written as 

𝐿𝑖
𝐿𝑗

= √
𝑡𝐴𝑃𝑆𝑇𝑖
𝑡𝐴𝑃𝑆𝑇𝑗

 (2-85) 

Equation (2-85) can be rewritten as 

𝐿𝑖 = √
𝑡𝐴𝑃𝑆𝑇𝑖
𝑡𝐴𝑃𝑆𝑇𝑗

∙ 𝐿𝑗 (2-86) 

where 𝐿𝑖 is the defect depths at any point in the front of the surface, 𝐿𝑗 is the 

sample thickness of the reference point which is chosen from the non-defect 

region. The 3D defect image is reconstructed from the values of 𝐿𝑖 and 𝐿𝑗. The 

plate of steel and aluminium are simulated for the experiment. Each type of 

material is simulated with two defect shapes on the surface, an elliptical and a 

triangular shape, as shown in Figure 2-31(a) and Figure 2-31(b), respectively. 

The inspected side is shown in Figure 2-32. The examples of 3D reconstruction 

of the defect shapes are shown in Figure 2-33 and Figure 2-34. However, this 

method can only be applied to the characterisation of surface defects. 

 

(a) 

 

(b) 

Figure 2-31 The simulated samples (a) elliptical defect (b) triangular defect [91] 
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Figure 2-32 The inspected side of the simulated sample [91] 

 

 

(a) 

 

(b) 

Figure 2-33 (a) 3D reconstruction of the triangular defect of the simulated steel 
sample (b) the corresponding section along the plane at the side view [91] 
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(a) 

 

(b) 

Figure 2-34 (a) 3D reconstruction of the triangular defect of the simulated 
aluminium sample (b) the corresponding section along the plane at the side view 
[91] 

Ramirez-Granados et al. [92] proposed a 3D subsurface defect reconstruction 

method by using the finite-difference model. Firstly, a non-defect nodal network 

with the same geometry, structure, properties, and characteristics as the tested 

sample is established for performing the detection of internal defects, as shown 

in Figure 2-35. As can be seen in Figure 2-35, ∆𝑥, ∆𝑦, and ∆𝑧 are the length of 

the node size, the spatial coordinates take multiples of the node-side lengths, 

including discretization of time, 𝑡 takes multiples of the time increment (∆𝑡); the 

discrete values are given by 𝑥 = 𝑙∆𝑥, 𝑦 = 𝑚∆𝑦, 𝑧 = 𝑛∆𝑥, and 𝑡 = 𝑝∆𝑡, where 𝑙, 

𝑚, 𝑛, and 𝑝 are positive integer. The finite difference equation [92] can be written 

as 

∇2𝑇(𝑥, 𝑦, 𝑧, 𝑡) =
1

𝛼

𝜕𝑇(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑡
 (2-87) 
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where 𝛼 =
𝑘

𝜌𝐶𝑝
 [m2/s] is thermal diffusivity, surface, 𝜌 [kg/m3] is the mass density, 

𝑘 [W/(m·K)] is the thermal conductivity of the material, and 𝐶𝑝 [J/(kg·K)] is the 

specific heat capacity. 

 

Figure 2-35 A nodal network is generated for the finite difference modelling [92] 

Then, detecting the internal defects by analysing the difference of temperature 

between the temperature evolution of the inspected object surface and the 

established non-defect finite-difference model with a threshold. If the computed 

different temperature is more than the threshold value, it will be considered as an 

internal defect. The temperature difference threshold (∆𝑇𝑡ℎ) is set as 25 mK. The 

finite-difference equation in the explicit form used to describe the temperature 

evolution of the internal node as a function of time is derived from Equation (2-87), 

expressed as 

𝑇𝑙,𝑚,𝑛
𝑝+1 =

𝛼∆𝑡

(∆𝑥)2
(𝑇𝑙+1,𝑚,𝑛

𝑝 + 𝑇𝑙−1,𝑚,𝑛
𝑝 ) +

𝛼∆𝑡

(∆𝑦)2
(𝑇𝑙,𝑚+1,𝑛

𝑝 + 𝑇𝑙,𝑚−1,𝑛
𝑝 )

+
𝛼∆𝑡

(∆𝑧)2
(𝑇𝑙,𝑚,𝑛+1

𝑝 + 𝑇𝑙,𝑚,𝑛−1
𝑝 ) + (1 − 2

𝛼∆𝑡

(∆𝑥)2
− 2

𝛼∆𝑡

(∆𝑦)2

− 2
𝛼∆𝑡

(∆𝑧)2
)𝑇𝑙,𝑚,𝑛

𝑝
 

(2-88) 

And the finite difference equation in explicit form applied a balance of energy to 

any surface node (𝑛 = 0). Its temperature along time can be expressed as 
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𝑇𝑙,𝑚,0
𝑝+1 = 2

𝛼∆𝑡

(∆𝑥)2
(𝑇𝑙+1,𝑚,0

𝑝 + 𝑇𝑙−1,𝑚,0
𝑝 ) + 2

𝛼∆𝑡

(∆𝑦)2
(𝑇𝑙,𝑚+1,0

𝑝 + 𝑇𝑙,𝑚−1,0
𝑝 )

+ 2
𝛼∆𝑡

(∆𝑥)2
𝑇𝑙,𝑚,1
𝑝 + (1 − 4

𝛼∆𝑡

(∆𝑥)2
− 4

𝛼∆𝑡

(∆𝑦)2
− 2

𝛼∆𝑡

(∆𝑧)2
)𝑇𝑙,𝑚,0

𝑝

+ 2
𝛼∆𝑡

(∆𝑧)2
)
ℎ∆𝑧

𝑘
𝑇∞ 

(2-89) 

where 𝑇∞ [K] is the room temperature environment (normally 300 K) with average 

convection coefficient ℎ. 

After that, adjust the depth 𝑑(𝑙,𝑚) and thickness 𝑒(𝑙,𝑚) of the detected internal 

defects in the nodal network (see in Figure 2-36) by minimising the cost function 

(Equation (2-90)) with an iterative algorithm method and then replace the non-

defect node by the adjusted defect nodes. Defect detection and defect depth and 

thickness adjustment algorithm are shown in Figure 2-37. 

𝑄𝑝 = ∑ ∑|𝑇𝑟𝑙,𝑚,0
𝑝 − 𝑇𝑠𝑙,𝑚,0

𝑝 |

𝑀−1

𝑚=0

𝐿−1

𝑙=0

∆𝑇 (2-90) 

where 𝑄𝑝 [K·s] is the value of the cost function at time 𝑝, 𝐿 and 𝑀 are the total 

numbers of columns and rows on the surface of the nodal network, respectively, 

𝑇𝑟 [K] is the temperature distributions of the real inspected object, and 𝑇𝑠 [K] is 

the temperature distributions of the nodal network. 

 

Figure 2-36 Internal defect in three-dimensional with a depth 𝒅(𝒎, 𝒍)  and a 

thickness 𝒆(𝒎, 𝒍) [92] 
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Figure 2-37 Flow chart of the algorithm to detect internal defects and to determine 
the defect depth and thickness [92] 

Finally, creating a mesh graph of the nodal network to display the 3D shape, 

location, size, depth, and thickness of the internal defects. The dimensions of the 

modelled sample, the modelled internal defect, and the reconstructed internal 

defect are shown in Figure 2-38, Figure 2-39(a), and Figure 2-39(b), respectively. 

 

Figure 2-38 The dimension in millimetres of the modelled sample [92] 
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(a) 

 

(b) 

Figure 2-39 The 3D internal defect visualisation (a) actual geometry of the defect 
(b) the reconstruction of the detected defect [92] 

The final step of the inspection is to visualise the testing results such as the 

location and size of the defects. These results can be reconstructed and 

visualised in the form of either 2D images or 3D images. If 3D visualisation is 

realised, the location and size of the defect inside the specimen can be presented 

more directly, clearly, and understand easily. Three-dimensional defect 

visualisation in the field of infrared and thermal testing has attracted a few studies. 
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Plotnikov and Winfree [93] visualised different depths of the defect in the form of 

3D tomograms. Pulsed phase thermography technique is used to detect defect 

area and defect depth. To detect the defect areas, defect maps are extracted with 

the thermal contrast and phase distribution method, then multiply the two 

extracted maps together. Different depths of the defect are constructed by using 

reversed time of the peak slope. A used sample in the experiment (the aluminium 

plate with three artificial defects) is shown in Figure 2-40(a), the binary image of 

the defect reconstructed from the contrast distribution is shown in Figure 2-40(b), 

the binary image of the defect reconstructed from the phase distribution is shown 

in Figure 2-40(c), and the binary image of the defect multiplied by Figure 2-40(b) 

and Figure 2-40(c) is shown in Figure 2-40(d). The 3D thermogram of the defects 

in different depth is shown in Figure 2-41. However, the quantitative values of 

defect depth are not computed. It shows only different depths. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 2-40 Binary image of the defects [93] 
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Figure 2-41 3D tomogram of the aluminium plate having three voids [93] 

Soldan et al. [94] proposed to mapping the 3D model with its thermal information. 

The thermal 3D model is reconstructed by using three main tools: a motion 

tracking system, a handheld 3D scanner, and an infrared camera. The motion 

tracking system and markers are used for referencing the position of the 3D 

image and the thermal image. The geometry of the object with complex shape 

(surface data) is modelled by the 3D scanner. The subsurface data of the object 

are captured by the infrared camera, analysed, mapped onto the geometry model 

of the object. The sample of 3D reconstruction of this method is shown in Figure 

2-42. The thermal data is mapped on the 3D structure model, consequently, 

where it is easy to observe the abnormal point. However, this method does not 

have any defects characterisation such as defect depth. 

 

Figure 2-42 The sample of 3D images by mapping the geometry of the object with 
the thermal [94] 

Akhloufi et al. [95] proposed a framework to fuse the 3D image of the object with 

thermal images, and visualise the measured defect depth overlay to the 3D 

model. The framework is shown in Figure 2-43. The 3D images of the object are 
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captured by a 3D camera, and the thermal images are captured by an infrared 

camera under an active thermography configuration. The 3D images captured by 

the 3D camera are represented in the form of a heightmap or a point cloud. Both 

images from the 3D camera the infrared camera are extracted their features to 

project the infrared images in the 3D data space. Pulsed thermography technique 

is used to detect defect and estimate defect depth. The warping transform 

technique is used to produce 3D mesh by projecting the thermal images with a 

texture map of the captured data in 3D space. Example of a virtual 3D image and 

their depth estimation is shown in Figure 2-44. The colour-coded display 

represents defect depth. However, only defect depth information is overlaid in the 

3D model. The defect thickness is not mentioned. 

 

Figure 2-43 The multimodal fusion framework [95] 
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Figure 2-44 Example of virtual 3D image and their depth estimation [95] 

 

2.6 Research Gaps 

The pulsed thermographic inspection, as one of typical NDTs, is commonly used 

in the wide range of laboratory and practical industry. Because this method has 

many advantages, for example, it can fast scan large areas without contacting 

and destroying the sample during testing and can detect various types of defects 

(e.g., impact damage and cracks). 

Considerable methods have been developed on defect detection and defect 

depth evaluation. The relationship between the decay of temperature on the 

inspected surface and time is a widely-used tool to measure defect depth, 

denoted by 𝑑 in Figure 2-45. Majority of pulsed thermography works focus on 

measuring the location and sizes of damages, but very limited studies on the 

characterisation of their damage thickness, denoted by ℎ  in Figure 2-45. To 

evaluate the thickness of a subsurface defect, most of the existing techniques 

need to inspect from two sides (front and rear side) of the object. A target of this 

thesis is to address the challenge to measure the defect thickness based on a 

single-side inspection using pulsed thermography under the reflection mode. 

Such an approach is attractive because, in some situations, some industrial 
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components are accessible only on one surface, where measuring the defect 

depth from both sides to estimate ℎ is not applicable. Furthermore, even both 

surfaces are accessible, the defect could be too deep to be detected from one 

surface. 

In addition, currently, 3D visualisation is playing a paramount role and widely 

used to analyse problems in several areas. For example, in the field of medical, 

the X-ray and MRI images of the brain are reconstructed and visualised in the 

form of 3D to help doctors better understand the position of the abnormal point in 

the brain. For another instance, in the area of manufacturing, 3D image from CT 

scanner is used to help specialists analyse the types of porosity defects occurred 

in the materials from castings. However, the visualisation of defects/damage of 

most software of pulsed thermographic inspection is limited to the form of 2D 

images. For the pulsed thermographic inspection, 2D visualisation could limit the 

understanding of where the defects initiate and how they grow by time, which is 

the key to predict the remaining use of life of components and feedback to design 

to avoid such defects. Evaluation and visualisation of defects in 3D can unlock 

this limitation. In several cases, 3D images provide significant benefits over 2D 

images. The visualisation of the defect in the 3D form can display both of defect 

size and defect thickness, and evaluate the volume of defects. It can help better 

understand the mechanism of how the defects grow. It can also reduce 

operational time and improve quality control of production in the industry. 

Characterisation of subsurface defects from 2D to 3D is a big step increment of 

degradation assessment. To represent a subsurface defect in the 3D form, the 

dimensions of the defect (width and length), defect depth and defect thickness 

are required. 

Considering the abovementioned problems, subsurface defect thickness 

estimation and 3D subsurface defect reconstruction and visualisation are very 

important. This thesis aims to reduce the identified gap in these problems. This 

thesis proposes a novel method to estimate the thickness of subsurface defect 

with single-side inspection by using pulsed thermography technique, included 

reconstructing and visualising the subsurface defect in the form of 3D images. 
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Figure 2-45 Position and dimension of defects 

 

2.7 Summary 

Non-destructive testing and evaluation (NDT&E), particularly infrared 

thermography method, can be used to inspect, detect, and evaluate the location, 

depth, and size of defects without contacting the sample. 

In infrared thermography, a thermographic inspection, many inversion 

quantitative non-destructive evaluation (QNDE) methods have been developed 

to reconstruct subsurface defect such using finite element method (FEM). There 

are very few works which report three-dimensional subsurface defect 

reconstruction based on unknown thermal properties of the test sample. Most 

works need to know thermal properties of the test sample and the hidden defect 

to reconstruct the subsurface defect which could be a huge problem in several 

applications of inspection. 

In pulsed thermography, a subsurface defect evaluation approach based infrared 

thermography, some defect detection and depth measurement methods need a 

reference point such as temperature contrast method (TC) and peak slope time 

method (PST). To eliminate the need of reference point, logarithmic second 

derivative method (LSD), absolute peak slope time method (APST), least-

squares fitting method (LSF) were developed. The state-of-the-art methods of 

defect depth measurement based on pulsed thermography are summarised in 
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Table 2-3. After the testing process is finished, most results are displayed in the 

form of coded colour 2D images or 3D tomograms. 

 

Table 2-3 Summary of the reviewed methods of defect depth measurement 

Method 
Reference 

Point 
Requirement 

Key Equation 

Absolute Temperature Contrast 
(TC) [14]  

Yes 𝑇𝐶𝑎𝑏𝑠 = 𝑇𝑑𝑒𝑓 − 𝑇𝑠𝑛𝑑 

Peak Slope Time (PST) [64]  Yes 𝑡𝑃𝑆𝑇 =
3.64𝐿2

𝜋2𝛼
 

Logarithmic Second Derivative 
(LSD) [40] 

No 𝑡𝐿𝑆𝐷 =
𝐿2

𝜋𝛼
 

Absolute Peak Slope Time (APST) 
[77] 

No 𝑡𝐴𝑃𝑆𝑇 =
𝐿2

2𝛼
 

Least-Squares Fitting (LSF) [80] No 𝑇(𝑡) ≈ 𝐴 [1 + 2∑ 𝑒𝑥𝑝⁡(−
𝑛2𝜋2

𝐿2
𝛼𝑡)

∞

𝑛=1

] − 𝑠𝑡 

 

From the reviews, it is found that: 

(1) There are very limited studies on subsurface defect thickness estimation 

by using single-side inspection method. Most works focus on the 

evaluation of defect size and defect depth. 

(2) There are very few reports on three-dimensional subsurface defect 

thickness reconstruction and visualisation by using pulsed thermography 

without the needing to know thermal properties of the subsurface defect. 

Most results are represented in the form of 2D image. 

The next chapter will provide approaches and methods to achieve the aim of this 

thesis.
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3 RESEARCH METHODOLOGY 

3.1 Introduction 

This chapter presents the research methodology. The first section describes the 

overview of the research approach. The second section describes the research 

method follow each objective. The last section summaries the chapter. The 

outline of this chapter is illustrated in Figure 3-1. 

 

Figure 3-1 The outline of Chapter 3 
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3.2 Research Approach 

The research is divided into three phases: literature reviews, algorithm 

development, and validation. The research approach is illustrated in Figure 3-2. 

The first phase is literature reviews, which covers non-destructive testing and 

evaluation (NDT&E) techniques with a specific focus on thermographic 

inspection, defect depth measurement, and defect reconstruction. The purpose 

of this literature review is to identify an appropriate NDT&E method for 

reconstructing the subsurface defect in the form of 3D images. 

The second phase is algorithm development. The main target of this phase is to 

develop a solution to reconstruct and represent the defect in a 3D form. This 

phase involves the improvement of the accuracy of depth measurement and 

estimation of the defect thickness. This phase is subdivided into three steps. The 

first step is defect depth measurement, proposed in Chapter 4. Due to the defect 

depth is essential for the three-dimensional subsurface defect reconstruction, the 

performance of the state-of-the-art methods is compared with the developed 

method to identify the best method in terms of the accuracy of depth 

measurement. The second step is defect thickness estimation, proposed in 

Chapter 5. This step involves studying the relationship between defect thickness, 

defect depth, defect size and thermal reflection coefficient. And the last step is 

three-dimensional defect reconstruction and visualisation, proposed in Chapter 

6. The data from the first step (defect depth measurement) and the second step 

(defect thickness estimation) will be used to reconstruct 3D defect model. The 

surface information (size and dimension of the inspected sample) and the 

subsurface defect information (depth, thickness, location, size and dimension of 

the defect) will be merged together and visualised in a form of 3D images (volume 

image). 

The final phase is validation. The developed method and the results will be tested 

with model simulation, experimental studies, and a use case. Firstly, the 

performance of the developed method and the state-of-the-art methods will be 

compared by testing the data from the model simulation. Then, the quantitative 

results from the experimental studies will be compared with the ground truth of 
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the designed samples. And lastly, the developed method will be tested with a use 

case (an industrial component) and the results will be compared with X-ray 

image. 

 

 

Figure 3-2 Research approach diagram 

 

3.3 Research Methods 

The approach of research is implemented through the following five research 

objectives. 

3.3.1 Identification of Appropriate Technique for 3D Subsurface 

Defect Reconstruction and Visualisation for Industrial 

Components 

To identify appropriate imaging technique for 3D subsurface defect 

reconstruction, various types of NDT&E technique have been reviewed such as 

ultrasonic testing, radiographic testing, electromagnetic testing, and infrared and 

thermal testing etc. The infrared thermography is specially focussed, particularly, 

the pulsed thermography. The review of pulsed thermography consists of the type 
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of thermographic inspection, defect depth measurement, and three-dimensional 

defect reconstruction. 

Concluded from the review, the pulsed thermographic inspection under the 

reflection mode is selected for developing the three-dimensional subsurface 

defect reconstruction and visualisation approach in this thesis because of its 

various advantages. This technique is rapid, low-cost, non-contact and can be 

applied to diverse materials such as composite material, plastic, aluminium, steel, 

metal, and non-metal material. This technique has been widely used in a variety 

of industrial. 

 

3.3.2 Investigation of Experimental Setup and Routine to Capture 

Data for 3D Subsurface Defect Reconstruction 

The experimental setup is illustrated in Figure 3-3(a), where a short and high 

energy light pulse is projected onto the sample surface through two flash lamps. 

Heat conduction then takes place from the heated surface to the interior of the 

sample, leading to a continuous decrease of the surface temperature [76] (see 

Figure 3-3(b)). An infrared camera controlled by a computer captures the time-

dependent response of the sample surface temperature. If the sample is defect-

free, the time when the temperature deviation occurs can be used to estimate the 

sample thickness (if thermal diffusivity is known) or thermal diffusivity of local 

materials (if the thickness is known). For example, as shown in Figure 3-3(b), if 

the thermal diffusivity is known, the thickness of the point 1 and point 2 on the 

inspected surface can be estimated based on the time of temperature deviation, 

𝑡1 and 𝑡2, respectively. This approach can be extended to measure defect depth 

by considering the first time of temperature deviation. The surface temperature 

due to the back-wall at depth 𝐿 for a homogeneous plate [74] is given by 

𝑇(𝑡) =
𝑄

√𝜌𝑘𝐶𝑝𝜋𝑡
[1 + 2∑𝑅𝑛exp⁡ (−

𝑛2𝐿2

𝛼𝑡
)

∞

𝑛=1

] (3-1) 

where 𝑇(𝑡)  is the temperature variation on the surface at time 𝑡 , 𝑡  [s] is the 

sampling time, 𝑄 [J/m2] is the pulse energy absorbed by the surface, 𝜌 [kg/m3] is 
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the mass density, 𝑘  [W/(m·K)] is the thermal conductivity of the material, 𝐶𝑝 

[J/(kg·K)] is the specific heat capacity, 𝑅 is the thermal reflection coefficient of the 

interface with air, and 𝛼 [m2/s] is the thermal diffusivity. Equation (3-1) can be 

rewritten as 

𝑇(𝑡) =
𝑄

𝑒√𝜋𝑡
[1 + 2∑𝑅𝑛exp⁡ (−

𝑛2𝐿2

𝛼𝑡
)

∞

𝑛=1

] (3-2) 

where 𝑒 = √𝜌𝑘𝐶𝑝 is the thermal effusivity of the material [J/(s1/2·m2·K)]. 

 

(a) 

 

(b) 

Figure 3-3 Experimental configuration of the pulsed thermographic inspection 
under the reflection mode, where point 1 denotes a location on the sample surface 
with a defect underneath and point 2 denotes a location on the sample surface 
with no defect underneath; (b) Typical observed time-temperature decay curves in 
the logarithmic domain for the point 1 and 2, respectively, where the time of 𝒕𝟏 and 
𝒕𝟐 is the key to measure the defect depth of the thickness of local materials [96] 
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Most defect evaluation methods aim to classify the curve based on the cooling 

behaviour. The time when the temperature deviation occurs (𝑡1 in Figure 3-3(b)) 

is usually used to estimate defect depth. 

In this thesis, although Equation (3-2) only applies to 1D heat transfer, it is 

proposed to approximate the 3D heat transfer in the real world to simplify the 

problem. Without this simplification, the model will be over complex and potential 

lead to over-fitting due to involving too many parameters. 

The experiments in this thesis were conducted with Thermoscope® II pulsed-

active thermography system that comprises of two capacitor banks powered 

Xenon flash lamps mounted in an internally reflective hood as shown in Figure 

3-4. The thermoscope, FLIR SC7000 series infrared radiometer operating 

between 1.5 and 5.1 µm, has a spatial resolution of 640×512 pixels. The technical 

specification of the thermoscope is highlighted in Table 3-1. The workpieces are 

placed with their surface perpendicular to the infrared camera’s line of sight at a 

distance of 250 mm from the lens. The applied energy is approximately 2 kJ over 

the inspection area of approximately 160 mm × 200 mm. 

 

Table 3-1 Thermoscope FLIR SC7000 series technical specifications 

Technical Specification Detail 

Model FLIR SC7600 

Sensor Type InSb 

Waveband Mid-Wave 

Spectral Range 1.5 to 5.1 µm 

NETD (Sensitivity and noise levels) <20 mK 

Temperature Calibration Range 5 °C to 300 °C 

Temperature Measurement Accuracy ±1 °C or ±1% 

Pixel Pitch 15 µm 

Image Size 640×512 pixels 

Full Frame Rate 100 Hz 

Aperture F/3 

Dynamic Range 14 bit 

Size (L×W×H) (mm) 403×130×168 

Weight 4.95 kg 
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(a) 

 

(b) 

Figure 3-4 ThermoScope FLIR SC7000 series (a) the side view (b) the back view 
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3.3.3 Development of Novel Methods to Estimate Subsurface Defect 

Depth and Thickness for 3D Subsurface Defect Reconstruction 

The most important step to reconstruct subsurface defect in a 3D form is the 

depth and thickness evaluation of defects. A novel method of subsurface defect 

depth and thickness measurement has been developed, named, New Least-

Squares Fitting (NLSF) method. This developed method is established upon an 

extension of the theoretical heat transfer model. The accuracy of depth 

measurement under various levels of noise is tested and compared with the state-

of-the-art methods. The developed NLSF method has been published in the 

“Infrared Physics & Technology” journal. The title of the published paper is 

"Determination of Thermal Wave Reflection Coefficient to Better Estimate Defect 

Depth using Pulsed Thermography" [97]. 

The developed NLSF method is also utilised to estimate defect thickness inside 

samples. The estimation of defect thickness has been published in “IEEE 

Transactions on Industrial Informatics” journal. The title of the published paper is 

“Estimation of Damage Thickness in Fiber-Reinforced Composites using Pulsed 

Thermography” [98]. The detail of the defect depth measurement and thickness 

estimation using the developed NLSF method is described in Chapter 4 and 

Chapter 5, respectively. In this thesis, the developed NLSF method has been 

chosen as the main method for three-dimensional subsurface defect 

reconstruction and visualisation because it can estimate both of defect depth and 

defect thickness simultaneously. 

 

3.3.4 Development of 3D Subsurface Defect Reconstruction and 

Visualisation Algorithms 

The 3D subsurface defect reconstruction and visualisation is a process to 

reconstruct the subsurface defect based on the estimated dimension (size, depth, 

and thickness of the defect) and visualise it in the form of 3D images. The defect 

depth and defect thickness can be estimated by the developed NLSF method. 

Two potential solutions to reconstruct defect are introduced: double-side 

inspection and single-side inspection. The double-side inspection method can be 
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mainly used in the case of both sides of the inspected object can be accessed. 

This inspection reconstructs the 3D structure of defects by evaluating the defect 

depth 𝑑1 and 𝑑2, as shown in Figure 3-3(a). The single-side inspection can be 

used in the scenario where only one side is accessible. This inspection 

reconstructs the 3D structure of the defects by evaluating the defect depth (𝑑1 or 

𝑑2) and the defect thickness (ℎ), as shown in Figure 3-3(a).  

The information of subsurface defect (defect depth and thickness from the 

double-side inspection or the single-side inspection) and the dimension (width, 

height, and deep) of the sample will be fused to construct a 3D volume image. 

The detail of 3D subsurface defect reconstruction and visualisation is described 

in Chapter 6. The method of 3D subsurface defect reconstruction and 

visualisation has been published in “Infrared Physics and Technology” journal. 

The title of the paper is “Three-Dimensional Subsurface Defect Shape 

Reconstruction and Visualisation by Pulsed Thermography” [99]. 

 

3.3.5 Validation of The Results by using Model Simulations, 

Experimental Studies and a Use Case 

Validation is a procedure to evaluate and test the capability of the developed 

solution. This procedure is undertaken for data from both model simulations and 

experimental studies. In this thesis, model simulations were used to compare the 

performance of the developed NLSF method with four existing state-of-the-art 

methods (peak slope time [64], logarithm second derivative [40], absolute peak 

slope time [77], and least-squares fitting [80]) against different values of thermal 

wave reflection coefficient (𝑅) and noise levels. For the experimental studies, the 

created specimens (carbon fibre-reinforced polymer material made from the local 

manufacturing) were used to test the performance and accuracy of defect depth 

and thickness measurement of the developed NLSF method. 

The created specimens consist of several different artificial defect depths and 

thicknesses: 

- Sample 1, a flat-bottom holes sample with same defect size but different 

three defect depths; 
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- Sample 2, a semi-close air-gaps sample with the same defect depth but 

five different defect thicknesses; 

- Sample 3, a semi-close air-gaps sample with the same defect thickness 

but five different depths; 

- Sample 4, a flat-bottom hole sample with four different defect depths and 

four different defect sizes (totally 16 different defects). 

After testing the developed method with the model simulations and experimental 

studies, a use case (Sample 5, a steel sample with ‘S’ shape triangular air-gap 

through the sample made by the additive manufacturing), is used to test the 

proposed method. The defect image from the developed method is compared 

with the X-ray technique. 

 

3.4 Summary 

This chapter presented the research methodology. The approach of this research 

consists of three phases: literature reviews, algorithm development, and 

validation. The research approach is performed through the five research 

objectives. To achieve the target, three main methods are presented: defect 

depth measurement, defect thickness estimation, and three-dimensional defect 

reconstruction, which described in Chapter 4, Chapter 5 and Chapter 6, 

respectively. These methods are tested by model simulations, experimental 

studies, and a use case. There are five samples used for experiments in this 

thesis. Sample 1 is used for testing the defect depth measurement in Chapter 4. 

Sample 2, 3, and 4 are used for testing the defect thickness estimation in Chapter 

5. Sample 2 and Sample 5 are used for testing the three-dimensional defect 

reconstruction and visualisation in Chapter 6. 
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4 DEFECT DEPTH MEASUREMENT 

4.1 Introduction 

Quantitative characterisation of defects by extracting shape, size and depth, and 

estimation of thermal properties have been proven to be effective in Pulsed 

Thermography [76], [79], [100], [101], [102], [103], [104], [105], [106]. 

Considerable methods have been developed on defect detection and defect 

depth evaluation. The relationship between the decay of temperature on the 

inspected surface and time is a widely-used tool to measure defect depth and 

most of the methods are based on frequency domain [15], [107], [108] or time 

domain [14], [109]. 

Many depth measurement methods require a reference point that defines the pre-

known sound areas, such as peak contrast time method (PCT) [110], [111] and 

peak slope time method (PST) [73], [109]. PCT measures the peak time of the 

temperature contrast between the considered point and the reference point, and 

PST detects the peak time of the first derivative of temperature contrast. Both 

PCT and PST are approximately proportional to the square of the defect depth, 

whereas the proportionality coefficient of the PCT method depends on the size of 

the defect, but the proportionality coefficient of the PST method does not depend 

on the size of the defect [112]. In general, the reference point is manually chosen 

from the sound area. 

Some researchers attempted to obtain the reference point automatically such as 

Ringermacher et al. [64] and Pilla et al. [113]. The methods without a reference 

point include logarithm second derivative method (LSD) [40], absolute peak slope 

time method (APST) [77], lease-squares fitting method (LSF) [80] and nonlinear 

system identification method (NSI) [96]. In LSD method, the temperature decay 

curve is converted to the logarithm domain, and a polynomial model is then used 

to fit the curve to reduce temporal noise and save storage space, where the fitting 

method is called as thermal signal reconstruction (TSR) [75]. The peak of the 

second derivative of TSR fitting is then used to estimate the defect depth. The 

APST method multiplies the square root of its time to temperature decay curve 
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and then computes the peak-time of the first derivative of the modified curve, 

which is used to estimate the defect depth. Similar to APST, the NSI method fits 

the modified temperature curve using a polynomial model but the difference is 

that the model order is chosen automatically for each pixel to produce more 

reliable depth measurement. These methods, including other recently developed 

fitting methods of thermal data, such as least-square fitting [114] and partial least 

squares regression [115], can be categorised as parametric methods where the 

characteristic time for depth estimation is calculated from the fitted model rather 

than the raw data. 

A limitation of all above-mentioned methods is that they are susceptible to noise, 

typically large in thermography data because the fitted models are data-driven 

without considering the underlying physics-based models. The LSF method uses 

a curve fitting technique to fit the temperature decay curve based on a theoretical 

heat transfer model to determine the defect depth directly. This method is less 

susceptible to noise but it presumes that the thermal wave reflection coefficient 

(𝑅) is 1, which is not true for most real situations [112]. Such an assumption can 

affect the accuracy of the estimated parameters of the heat transfer model using 

optimisation techniques. It is therefore crucial to estimate the value of 𝑅 before 

detecting defect depth or simultaneously. Moreover, the value of 𝑅 can be used 

to investigate thermal effusivity of the defect, which has the potential to help 

quantify the volume of defect or identify the material of defect (e.g., air, water or 

oil). 

This chapter proposes a new defect depth measurement method to increase the 

accuracy of depth measurement against different noise levels by estimating the 

thermal wave reflection coefficient value based on pulsed thermography under 

the reflection mode, named, New Least-Squares Fitting method (NLSF) [116]. 

Furthermore, this chapter introduces a new method to improve the reliability and 

confidence level of defect depth measurement by addressing the over-fitting 

problem, named, Nonlinear System Identification method [96]. The outline of this 

chapter is illustrated in Figure 4-1. 



 

78 

 

Figure 4-1 The outline of Chapter 4 
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4.2 The New Least-Squares Fitting Method (NLSF) 

Sun [80] introduced a least-square fitting (LSF) method for the pulsed 

thermography using a speculative heat transfer model. This theoretical model is 

roughly applicable for the time period 0 < 𝑡 < 𝑡𝑏 , expressed as Equation (2-50) 

in Chapter 2. One limitation of this method is that the value of 𝑅 in this model is 

assumed to be 1, which is true when the thickness of defect (e.g., air-gap) is 

infinite. However, for most real applications (e.g., detecting delamination of 

composite), the thickness of defect is very limited and the value of 𝑅 can be 

significantly smaller than 1. For such cases, the accuracy of the estimated defect 

depth is therefore compromised if 𝑅 is assumed to be 1. Another limitation is that 

the estimation of 𝑠 can be difficult due to the challenge to determine the values 

of 𝑡𝑎 and 𝑡𝑏, unless both 𝐿 and 𝛼 are pre-known. 

To address the above limitations, this thesis introduces a modified analytical 

model aiming to not only estimate the depth more accurately but also measure 

the thermal wave reflection coefficient. The proposed analytical model is written 

as 

𝑇̃(𝑡, 𝐴,𝑊, 𝑅, 𝑡𝑠, 𝑠) =
𝐴

√𝑡 + 𝑡𝑠
[1 + 2∑𝑅𝑛exp⁡ (−

𝑛2𝑊

𝑡 + 𝑡𝑠
)

𝑀

𝑛=1

] − 𝑠(𝑡 + 𝑡𝑠) (4-1) 

where 𝐴 =
𝑄

√𝜋𝜌𝑐𝑘
 , 𝑊 =

𝐿2

𝛼
 , 𝐿 is the defect depth or the thickness of the sample, 𝛼 

is the thermal diffusivity of the material, 𝑅 is thermal wave reflection coefficient, 𝑡 

is sampling duration, 𝑡𝑠 is the starting time of sampling, 𝑠 is slope, and 𝑀 is a 

large iteration number. 

Two extra parameters are introduced, 𝑅 and 𝑡𝑠. In practical applications, 𝑅 is not 

always equal to 1. It depends on the thermal property of the materials between 

the interface, including thermal effusivity, shape, size, and depth of the defect. 

Some amount of the thermal energy transmit through the interface (blue arrow) 

while some amount of the thermal energy reflect back (red arrow) at the interface, 

as illustrated in Figure 4-2(a). For the interface between the material and infinite 

air-gap, 𝑅 value could be close to 1. In contrast, for finite thin air-gap (defect), as 
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illustrated in Figure 4-2(b), 𝑅  could be much less than 1. The thermal wave 

reflection coefficient can be described as a function of thermal effusivity [117] by 

𝑅 =
𝑒1 − 𝑒2
𝑒1 + 𝑒2

 (4-2) 

where 𝑒1 is thermal effusivity of the first layer of material, 𝑒2 is thermal effusivity 

of the second layer of material. The introduced 𝑅 can apply to real applications 

even without needing to know the 𝑅 value to improve the performance of depth 

evaluation. 

 

(a) 

 

(b) 

Figure 4-2 Thermal reflection between two interfaces of (a) different material (b) 
material and thin finite air-gap 
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The introduced 𝑡𝑠 can apply to any segment of collected data without knowing 

the starting time. Such a feature is attractive for data with a low sampling rate 

where the starting time could be larger than 0 due to accumulated latency by 

hardware and software of data acquisition. 

There are totally five parameters to be estimated including 𝐴, 𝑊, 𝑅, 𝑡𝑠, and 𝑠. 

This thesis employs a nonlinear least-squares solver in Matlab (lsqnonlin) to solve 

this five-parameters optimisation problem. Through initially setting the lower and 

upper bounds for each parameter, the proposed New Least-Squares Fitting 

method (NLSF) estimates the optimal parameters that has 

min
𝐴,𝑊𝑅,𝑡𝑠,s⁡

‖𝑇̃(𝑡) − 𝑇(𝑡)‖ (4-3) 

The initial value of the parameter 𝑡𝑠 is selected as zero and the lower and upper 

bounds are selected as -1 and 1, respectively, because it is usually very small. 

The initial value of 𝑅  is selected as 1 and the lower and upper bounds are 

selected as 0 and 1. The selection of 𝐴 depends on the energy applied on the 

inspection surface, and the selection of 𝑊 depends on the material and thickness 

of samples (estimated by 𝑊 =
𝐿2

𝛼
). The lower and upper bounds of 𝑊 and 𝐴 are 

usually selected as 5 times lower and 5 times higher than the initial values. The 

lower and upper bounds of 𝑠 are selected as -50 and 50, and the initial value is 

chosen as 0, the slope 𝑠 usually is a small value and almost equal 0 when the 

inspected point is on a sound area. It should be noted that the computational time 

of this method depends on the selection of initial value and lower and upper 

bounds. 

Once the optimal parameters are estimated, if 𝛼 is known, the thickness of the 

sample or the defect depth can be estimated by 

𝐿 = √𝑊 ∙ 𝛼 (4-4) 

Alternatively, if 𝐿 is known, the thermal diffusivity can be estimated by 

𝛼 =
𝐿2

𝑊
 (4-5) 
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The temperature contrast ∆𝑇 between a defect region and a sound region is 

dependent not only on the difference between the defect depth and the sample 

thickness, but also on the lateral size of the defect because of induced 3D heat 

conduction around the defect. Most of the existing methods, such as PST, LSD, 

NSI, and APST, tried to estimate the defect depth as early as possible before the 

three-dimensional heat conduction takes place. These methods work well when 

the defect size is large, but the accuracy is reduced when the defect size is small 

due to severe three-dimensional heat conduction, as the results shown in Sun’s 

paper [26]. The proposed equation introduces two extra parameters 𝑅 and 𝑠 that 

consider part of the three-dimensional conduction effect. It can also incorporate 

the duration effect by introducing the parameter 𝑡𝑠. Therefore, this method can 

perform better when the three-dimensional conduction and the flash duration 

effects are present in the flash thermography data. 

 

4.3 Experiments and Results of NLSF 

4.3.1 Model Simulations 

The aim of these model simulations is to compare the performance of the 

proposed NLSF method with other existing methods against different values of 𝑅 

and noise levels. Based on the one-dimension solution of the Fourier equation 

for a Dirac delta function when there is any subsurface defect [78], [112], [118], 

the temperature-time curves with noise [96], [119] were simulated by 

𝑇(𝑡) =
𝑄

𝑒√𝜋𝑡
[1 + 2∑𝑅𝑛exp⁡ (−

𝑛2𝐿2

𝛼𝑡
)

∞

𝑛=1

] + 𝜀(𝑡) (4-6) 

and the temperature contrast between defective areas and sound areas by the 

time [112] with noise was simulated by 

∆𝑇(𝑡) = 2
𝑄

𝑒√𝜋𝑡
[∑𝑅𝑛exp⁡ (−

𝑛2𝐿2

𝛼𝑡
)

∞

𝑛=1

] + 𝜀(𝑡) (4-7) 
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where 𝑄  is the pulse energy (J), 𝑒  is thermal effusivity (J/(s1/2·m2·K)), 𝑡  is 

sampling time (s),  the parameters 
𝑄

𝑒√𝜋
 is set to 1, 𝛼 was set to 4×10-6 m2/s, 𝐿 was 

set to 4×10-3 m, and  𝑅 was varied from 0.1 to 1. The sampling rate was set as 

50 Hz and the sampling duration was set as 5 s.  The latency of data acquisition 

was set as zero. The symbol 𝜀(𝑡) denotes a white noise sequence with a zero 

mean and a standard deviation of 𝜎𝜀. Assume 𝜎𝑇 denotes the standard deviation 

of a signal without noise, the signal-to-noise ratio (SNR) [96], [120], [121], 

representing the level of noise, is written as 

𝑆𝑁𝑅 = 20 log10
𝜎𝑇
𝜎𝜀

 (4-8) 

Figure 4-3 shows the plots of temperature decay in the logarithmic domain with 

different values of 𝑅. It can be clearly observed that the time of temperature 

deviation, representing the depth, is independent of the value of 𝑅. Furthermore, 

the value of 𝑅 determines the slope of the curve after the temperature deviation. 

If 𝑅 is 1, the slope is zero, which indicates 100% thermal wave is reflected by the 

defect or back-wall. If 𝑅 is zero, there is no temperature deviation occurred. 

 

Figure 4-3 The comparison of model simulation with different values of 𝑹, where 
other parameters are shown on the top of the graph. 
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In the first test, the value of 𝑅 was set as 1, 0.9, 0.7 and 0.5, respectively, and 

the noise level was set as ‘no noise’, 45 dB, 35 dB and 25 dB, respectively. The 

LSD, APST, LSF and NLSF methods were applied on the data produced from 

Equation (4-6), while the PST method (temperature contrast based) was applied 

on the data from Equation (4-7). The produced data for PST, LSD and APST 

methods were fitted by a polynomial model (8th order). For the LSF and NLSF 

methods, the bounds of optimisation parameters were set as 0 ≤ 𝐴 ≤ 2000, 0 ≤ 

𝑊 ≤ 50, -50 ≤ 𝑠 ≤ 50; for the NLSF method, two extras parameters are added with 

the bounds of 0 ≤ 𝑅 ≤ 1 and -1 ≤ 𝑡𝑠 ≤ 1. Assuming that the value of 𝛼 is pre-known, 

the mean and standard deviation of depth measurement are summarised in Table 

4-1. The key plots of the compared methods, including the characterise time of 

PST, LST and APST, and the model fitting of LSF and NLSF, are shown in Table 

4-2. 

 

Table 4-1 The comparison of thickness measurement against different noise levels 
and 𝑹  values for five selected methods, where the most accurate values are 
highlighted. 

Noise Level 
(SNR) 

𝑹 
Measured Thickness (mm) 

PST LSD APST LSF NLSF 

No-noise 

1 4.06 4.07 4.06 4.00 4.00 

0.9 4.06 4.10 4.06 4.01 4.00 

0.7 4.06 4.16 4.04 4.04 4.00 

0.5 4.06 4.22 4.02 4.08 4.00 

45 dB 

1 4.06±0.04 4.08±0.03 4.06±0.05 4.00±0.01 4.00±0.01 

0.9 4.06±0.04 4.10±0.03 4.06±0.06 4.01±0.01 4.00±0.01 

0.7 4.06±0.05 4.17±0.05 4.05±0.08 4.03±0.01 4.00±0.01 

0.5 4.06±0.07 4.24±0.07 4.05±0.12 4.08±0.01 4.00±0.02 

35 dB 

1 4.07±0.12 4.09±0.08 4.17±0.34 3.99±0.02 3.99±0.02 

0.9 4.06±0.13 4.12±0.10 4.19±0.39 4.01±0.03 4.00±0.03 

0.7 4.07±0.16 4.19±0.15 4.19±0.42 4.04±0.03 4.00±0.04 

0.5 4.08±0.25 4.29±0.24 4.30±0.59 4.09±0.03 4.01±0.05 

25 dB 

1 4.14±0.48 4.14±0.34 4.74±0.82 3.97±0.05 3.97±0.05 

0.9 4.13±0.48 4.16±0.37 4.81±0.86 4.01±0.08 4.00±0.08 

0.7 4.21±0.74 4.23±0.67 4.87±0.87 4.05±0.10 4.01±0.12 

0.5 4.34±1.02 4.17±0.95 4.88±0.89 4.09±0.12 4.01±0.16 
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Table 4-2 The characteristic time of PST, LST and APST, and the model fitting of 
LSF and NLSF where the blue scatter represents the observations and the red 
curve represents the fitting. 

SNR 𝑹 Measured Thickness (mm) 

No 
Noise 

1 

 

0.9 

 

0.7 

 

0.5 

 

45 dB 

1 

 

0.9 

 

0.7 

 

0.5 

 

35 dB 

1 

 

0.9 

 

0.7 
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SNR 𝑹 Measured Thickness (mm) 

0.5 

 

25 dB 

1 

 

0.9 

 

0.7 

 

0.5 

 

 

Under a perfect condition, where there is no noise and 𝑅 equals to 1, as shown 

in Table 4-1, the measured thickness of PST, LSD and APST methods is about 

4.06 - 4.07 mm, within 1.5% percentage error of the ground truth (4.00 mm), and 

the LSF and NLSF methods produced perfect results (4.00 mm). When 𝑅 

decreases from 1.0 to 0.5, the measurement error of LSD increases to 0.22 mm 

(5.5% percentage error), whereas the PST and APST methods produced 

relatively good and consistent results. The error of estimated thickness of LSF 

increases slightly (up to 2% percentage error) following the decrease of 𝑅. The 

NLSF method still produced the perfect results for all four 𝑅 values. Summarily, 

this test demonstrates that in the case of noise-free, the PST, APST, and LSF 

methods are less sensitive to 𝑅, whereas the LSD method is more sensitive to 𝑅. 

The NLSF method is not sensitive to the value of 𝑅 because the proposed mode 

considers 𝑅 as a parameter, estimation of which is a by-product of this method. 

In practice, raw data are contaminated with noise and other signal degradations 

[14], [39]. Errors of temperature measurement with the infrared camera are 

typically classified into errors of the method, errors of the calibration, and errors 
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of the electronic part [122]. The performance of all five considered methods was 

analysed and evaluated by adding white Gaussian noise to the simulated signal. 

Three levels of noise were considered: low level of noise (45 dB), medium level 

of noise (35 dB), and high level of noise (25 dB). For each considered noise level, 

1000 tests were repeated and the mean and standard variation of the estimated 

thickness was computed. The mean indicates the accuracy of measurement, and 

the standard deviation (std) indicates the precision of measurement. It can be 

observed from Table 4-1 that at the low level of noise (45 dB), the mean of 

measurement of each method is similar as those of no noise. The LSF and NLSF 

methods produced a high precision (std: 0.01-0.02 mm) than the other three 

methods (std: 0.07 - 0.12 mm) when 𝑅 = 0.5. Considering both accuracy and 

precision, the proposed NLSF performs best. At the medium level of noise (35 

dB), the accuracy of the PST, LSF, and NLSF methods is relatively high (< 3%) 

and consistent, while the accuracy of the LSD and APST method is relatively low 

(< 7.5%) and more sensitive to the change of 𝑅. The NLSF method has the best 

accuracy and the LSF method has the best precision. At the high level of noise 

(25 dB), the accuracy of the PST is significantly reduced (< 8.5%) and the APST 

method produced the largest error (< 22%).  The NLSF method still has the best 

accuracy and almost the same level of precision as LSF. All these observations 

demonstrate the superior performance of the proposed method against noise. 

To further evaluate the performance of LSF and NLSF, Table 4-3 shows the 

results for data with the very high noise level and very low 𝑅 value, where the 

value of  𝑅 changes from 0.4 to 0.1, and SNR changes from 20 dB to -10 dB. In 

the case of no noise, it is inferred that the estimated thickness using LSF is 

strongly dependent on the value of 𝑅. The error is increased from 3% to 8% when 

𝑅 is changed from 0.4 to 0.1. However, the results produced by the proposed 

NLSF method are all perfect. An example of curve fittings using the NLSF and 

LSF methods is illustrated by Figure 4-4 where 𝑅 is chosen as 0.1 and noise level 

is 40 dB. Inspection shows that NLSF offers better fitting than LSF due to the 

introduction of the extra parameters. When the noise level is increased from 20 

dB to -10 dB, the accuracy of NLSF is consistently higher than that of LSF, while 

there is no significant difference in precision between two methods. 
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Figure 4-4 An example of curve fitting comparison between NLSF and LSF 
method 

 

Table 4-3 The comparison of thickness measurement of the LSF and NLSF 
methods against high noise level and lower 𝑹 values, where the most accurate 
values are highlighted. 

Noise Level 𝑹 
Measured Thickness (mm) Percentage Error (%) 

LSF NLSF LSF NLSF 

No-noise 

0.4 4.12 4.00 3.00% 0.00% 

0.3 4.16 4.00 4.00% 0.00% 

0.2 4.23 4.00 5.75% 0.00% 

0.1 4.32 4.00 8.00% 0.00% 

20 dB 

0.4 4.19±0.33 4.06±0.32 4.75% 1.50% 

0.3 4.29±0.52 4.05±0.44 7.25% 1.25% 

0.2 4.55±0.84 4.10±0.67 13.75% 2.50% 

0.1 5.14±1.42 4.33±1.21 28.50% 8.25% 

10 dB 

0.4 4.30±0.73 4.03±0.85 7.50% 0.75% 

0.3 4.50±0.93 4.09±1.10 12.50% 2.25% 

0.2 4.74±1.17 4.25±1.36 18.50% 6.25% 

0.1 5.01±1.56 4.42±1.79 25.25% 10.50% 

0 dB 

0.4 4.19±1.14 4.04±1.50 4.75% 1.00% 

0.3 4.32±1.33 4.16±1.59 8.00% 4.00% 

0.2 4.36±1.54 4.26±1.89 9.00% 6.50% 

0.1 4.44±1.56 4.39±2.00 11.00% 9.75% 

-10 dB 

0.4 3.59±1.58 3.94±1.90 10.25% 1.50% 

0.3 3.54±1.59 3.97±1.94 11.50% 0.75% 

0.2 3.68±1.70 4.03±1.98 8.00% 0.75% 

0.1 3.64±1.63 4.16±1.90 9.00% 4.00% 
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Table 4-4 shows the estimated values of 𝑅 against different noise levels where 𝑅 

is varied from 1.0 to 0.1. For the cases without noise, the proposed method can 

estimate the 𝑅 value perfectly. With the increase of noise level, the estimation 

error increases. For the noise level of less than 30 dB, the error of estimation is 

less than 0.02. Furthermore, the sensitivity of 𝑅  estimation to noise level is 

dependent on the value of 𝑅. Higher the 𝑅 value is, less influence from the noise. 

 

Table 4-4 The estimated values of 𝑹 against different noise levels. 

𝑹 
Noise Level (SNR) 

No-noise 45 dB 35 dB 25 dB 20 dB 10 dB 0 dB -10 dB 

1 1.00 1.00±0.00 1.00±0.01 0.99±0.02 0.98±0.04 0.95±0.09 0.90±0.19 0.96±0.13 

0.9 0.90 0.91±0.01 0.92±0.03 0.94±0.05 0.94±0.07 0.92±0.13 0.92±0.19 0.96±0.14 

0.8 0.80 0.81±0.01 0.82±0.03 0.86±0.08 0.87±0.11 0.89±0.16 0.89±0.21 0.96±0.14 

0.7 0.70 0.71±0.01 0.72±0.03 0.76±0.09 0.80±0.13 0.85±0.20 0.88±0.23 0.95±0.14 

0.6 0.60 0.61±0.01 0.62±0.03 0.67±0.11 0.71±0.15 0.80±0.24 0.86±0.25 0.95±0.14 

0.5 0.50 0.51±0.01 0.52±0.03 0.57±0.10 0.63±0.17 0.76±0.27 0.84±0.27 0.96±0.14 

0.4 0.40 0.41±0.01 0.42±0.03 0.47±0.11 0.53±0.18 0.70±0.31 0.84±0.27 0.95±0.18 

0.3 0.30 0.31±0.01 0.32±0.03 0.37±0.11 0.43±0.18 0.66±0.32 0.86±0.27 0.95±0.17 

0.2 0.20 0.21±0.01 0.22±0.03 0.27±0.10 0.36±0.19 0.64±0.35 0.84±0.28 0.95±0.16 

0.1 0.10 0.11±0.01 0.12±0.03 0.19±0.12 0.30±0.22 0.63±0.37 0.85±0.28 0.95±0.17 

 

Another benefit of the proposed method is the introduction of the parameter 𝑡𝑠, 

which measures the potential latency of the sampled timestamp of thermal data. 

This time shift could be caused by the latency of data acquisition or data storage. 

Similar to the impact of the estimation of 𝑅, the estimation of 𝑡𝑠 aims to further 

improve the accuracy of depth measurement. This feature is particularly 

important for data collected using a slow sampling rate. Considering the sample 

rate as 50 Hz, the potential latency was in the range from 0 to 0.02 seconds. To 

evaluate the influence of the latency on the depth measurement, Table 4-5 shows 

the results of estimation using the proposed method with and without estimation 

of 𝑡𝑠, where the noise level was set as 30 dB and 𝑅 was set as 0.4. Inspection of 

the result shows that the proposed method can successfully estimate the value 

of 𝑡𝑠, which is not achievable for the characteristic time-based methods such as 

PST, APST and LSD due to the neglect of the physical model. The value of 𝐿⁡was 

estimated with an error of less than 1%. However, if the parameter 𝑡𝑠  is not 
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considered in the model (4-1), the error of 𝐿 measurement increases dramatically 

following the increase of 𝑡𝑠 , which suggests the key role of this parameter. It 

should be noted that in the real applications the ground truth of 𝑡𝑠 is unknown. 

Providing a capability to estimate 𝑡𝑠 will increase the reliability of measurement. 

Based on above observations, it can be concluded that the proposed NLSF 

method has significantly improved the robustness and accuracy of depth 

measurement, particularly when the value of 𝑅 is significantly lower than 1 or the 

noise level is high. Meanwhile, the value of 𝑅  can be effectively estimated. 

Furthermore, the accuracy of depth measurement of NLSF is immune to the 

latency of data acquisition while other methods are not. 

 

Table 4-5 Estimated errors of 𝑳  using the proposed method with and without 

estimation of 𝒕𝒔, where the noise level was set as 30 dB and the 𝑹 value was set 
as 0.4. 

True 
𝒕𝒔 
(s) 

Including 𝒕𝒔 in the model (4) Excluding 𝒕𝒔 in the model (4) 

Estimated  
𝒕𝒔 
(s) 

𝑳 𝑹 𝑳 𝑹 

Value 
(mm) 

% 
Error 

Value 
% 

Error 
Value 
(mm) 

% 
Error 

Value 
% 

Error 

0.019 0.019059 4.0185 0.46 0.4418 10.46 0.0228 99.43 0.9095 127.37 

0.017 0.017094 4.0270 0.68 0.4676 16.91 0.1016 97.46 0.6345 58.62 

0.015 0.015452 4.0418 1.04 0.5472 36.81 0.1781 95.55 0.4460 11.50 

0.013 0.013059 4.0184 0.46 0.4418 10.45 0.2398 94.01 0.3387 15.32 

0.011 0.011059 4.0177 0.44 0.4416 10.39 0.3037 92.41 0.2614 34.64 

0.009 0.009056 4.0185 0.46 0.4418 10.45 0.3834 90.41 0.2018 49.56 

0.007 0.007059 4.0181 0.45 0.4417 10.42 2.3247 41.88 0.2549 36.27 

0.005 0.005059 4.0185 0.46 0.4418 10.45 3.0314 24.22 0.3093 22.68 

0.003 0.003059 4.0186 0.46 0.4418 10.46 3.4899 12.75 0.3494 12.64 

0.001 0.001059 4.0185 0.46 0.4418 10.46 3.8543 3.64 0.3874 3.15 
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4.3.2 Experimental Study 

A flat plate of carbon fibre reinforced polymer (CFRP) material was used in this 

experiment.  The size of the composite sample is 153 mm × 102 mm × 4 mm. 

The plate was made of unidirectional Toray 800 carbon fibres pre-impregnated 

with Hexcel M21 epoxy resin and manufactured in a traditional autoclaving 

process to a quasi-isotropic layup. Three flat-bottom holes were drilled with the 

same diameter of 6 mm at different depths (1 mm, 2 mm and 3 mm, respectively), 

as illustrated in Figure 4-5. The distance between the holes is 25 mm. The 

scheme of the experimental set-up is illustrated by Figure 3-3(a) in Chapter 3. 

Thermographic images were captured by FLIR SC7600, as shown in Figure 3-4. 

Considering the thickness of the sample and its low thermal diffusivity, a sampling 

rate of 25 Hz was used, and totally 1000 frames, equally 40 seconds data length, 

were captured and analysed. 

 

Figure 4-5 The composite material sample with drilled in various depth 
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(a) 

 
(b) 

 
(c) 

Figure 4-6 (a) Raw thermal image at the time of 8 sec where three points are 
sampled from the sound area, middle hole and bottom hole, respectively; (b) 
Temperature decay curve of the selected three points in logarithmic domain and 
(c) Temperature contrast of point 1 and point 2 
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Figure 4-6(a) shows a snapshot of the captured thermal image at the time of 8 

seconds, where the middle and bottom holes can be clearly seen. However, the 

top hole is not detectable in this experiment due to the close distance to the back 

surface. To further inspect the thermal behaviour, Figure 4-6(b) shows the plots 

of raw temperature curve of three selected pixels overtime on the sound area, 

the middle hole and the bottom hole, respectively, the positions of which are 

marked in Figure 4-6(a). The temperature deviation of defective pixels (Point 1 

and Point 2) can be clearly observed at different times while the difference of 

slope after this deviation is difficult to be distinguished visually. It can be seen 

that the temperature deviation of the defective points (Point 1 and Point 2) and 

the non-defective point (Point 3) in Figure 4-6(b) matches the theory of heat 

transfer shown in Figure 3-3(b). The time of temperature deviation on the 

defective points (which have thinner thickness/depth) happens before the non-

defective point (which has thicker thickness) [76]. The value of estimated defect 

depth is dependent on the selection of sample data, which is a common issue for 

all depth measurement methods. If the thermal diffusivity and defect depth are 

known, this selection is straightforward, as suggested by Sun [22]. This thesis 

proposes to use the time when the maximal temperature contrast between the 

considered defective pixel and the reference pixel from the sound area is 

achieved as the end of sampling. Figure 4-6(c) shows the temperature contrast 

Point 1 and Point 2, where two peak time 𝑡1 and 𝑡2 are detected. 

In this proposed method, the data segments of [0, 𝑡1] and [0, 𝑡2] were sampled 

for the bottom and middle holes, respectively. For the sound pixels, the full data 

length is sampled. To reduce the measurement error of defect depth (𝐿) and 

thermal wave reflection coefficient (𝑅), ten pixels on the sound region, the middle 

hole and bottom hole were manually selected and the estimated parameters were 

averaged. The used thermal diffusivity (α) in this experiment is 0.55×10-6 m2/s. 

This value was calculated from Equation (4-5) on the sound area by considering 

the thickness of the sample as 4 mm. 

Both LSF and NLSF methods were applied and the results are shown in Table 

4-6. The averaged estimated depth of NLSF on the sound area is 3.98 mm and 
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the standard deviation, as an indicator of precision, is 0.04 mm, which is more 

accurate than those of LSF (3.67±0.05 mm). The measured defect depths of the 

middle and bottom holes are 2.05 mm and 1.03 mm, respectively, which is closer 

to the ground truth than those of LSF (1.90 mm and 1.06 mm, respectively). 

However, the LSF method produced less standard deviation (0.01 mm and 0.03 

mm, respectively) than the NLSF method (0.04 mm and 0.06 mm, respectively). 

This observation could be caused by the introduction of two extra parameters. 

The estimated 𝑅 value on the sound area is 0.84, which is close to 1, while the s 

value is 0. The estimated 𝑅 values for the middle hole and the bottom hole are 

much smaller (0.18 and 0.25, respectively) and the s values are much larger (0.87 

and 16.46, respectively). 

Table 4-6 The measurement of the experimental data using the LSF and NLSF 
methods. 

Position 
Ground 
Truth 
(mm) 

Estimated Depth 
(mm) 

Estimated 
𝑹 

(NLSF) 

Estimated 
𝒔 

(NLSF) 

Estimated  
𝒕𝒔 

(NLSF)  LSF NLSF 

Sound area 4.00 3.67±0.05 3.98±0.04 0.84±0.04 0.00±0.00 0.0226±0.0023 

The middle hole  2.00 1.90±0.01 2.05±0.04 0.18±0.02 0.87±0.43 0.0256±0.0011 

The bottom hole 1.00 1.06±0.03 1.03±0.06 0.25±0.02 16.46±2.22 0.0269±0.0012 

 

 

Figure 4-7 Scatter chart of the estimated 𝑹 and 𝒔 parameters, which shows ten 
pixels for each of the three sampled regions 
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To further inspect the estimated parameters on difference positions, Figure 4-7 

plots the scatter of the estimated values of 𝑅 and 𝑠, where ten pixels for each of 

the three regions were sampled. It can be observed that for each region the 

estimated parameters are relatively consistent while for different regions they are 

significantly different. Therefore, the clustering of these two parameters can be a 

potential approach to effectively classify the pixels. 

For further analysis, the estimated 𝑅 and and 𝑠 values from the NLSF method in 

Table 4-6 are plotted in Figure 4-7, where three groups can be clearly observed. 

The value of 𝑅 in sound area is naturally higher and close to 1 and the value of 𝑠 

in sound area is usually small and close to 0 [80]. 𝑅 value also varies following 

the depth of the defect. Larger defect depth provides lower 𝑅 value. 

The proposed method can estimate both the thickness and defect depth 

effectively. The error of estimation of the proposed method in the sound area is 

less than 1% while the LSF method has error up to 7%. For the defective region, 

the LSF method produced higher error than the NLSF method around 2%. It 

should be noted that Equation (3-1) is valid only for a homogeneous plate. The 

composites are non-homogeneous materials. In previous Zhao’s work [45], the 

measured thermal diffusivity of CFRP is about 0.47±0.03 m2/s, which also 

depends on the lay-up configuration of the sample. As far as we are concerned, 

there is no heat diffusion models for non-homogeneous materials, so the 

assumption that the thermal diffusivity of the tested composite sample is uniform 

was applied in this research. 

 

4.4 Nonlinear System Identification Method (NSI) 

This thesis also proposes a new method to improve the reliability of defect depth 

measurement based on the pulsed thermographic inspection by addressing the 

over-fitting problem. Different from existing methods using a fixed model structure 

for all pixels, the proposed method adaptively detects the optimal model structure 

for each pixel thus targeting to achieve better model fitting while using fewer 

model terms. Fitting a heat transfer model as shown in Equation (2-45) is 
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challenging because in most real-world scenarios too many parameters are 

unknown. Without considering any physical parameters, a polynomial model can 

be used to represent complex thermal behaviour. This can be expressed as 

𝑓(𝑡) = ∑𝑎𝑛 ∙ 𝑡
𝑛

𝑁

𝑛=0

+ 𝜀(𝑡) (4-9) 

where 𝑁  is the model order, 𝜀(𝑡)  is the noise and 𝑎𝑛  are coefficients to be 

estimated. LSD uses such a model to fit the time-temperature dependency in the 

logarithmic domain [75]. The challenge is how to automatically select the model 

order 𝑁. This value should be large enough to ensure a good fit to the observed 

data. However, 𝑁 should also not be too large as it will cause overfitting problems 

[123]. There is very limited literature to report how to select the model order for 

fitting time-temperature dependence of active thermographic inspections or 

discuss the challenge. 

Initially, consider the linear-in-the-parameters model [124] 

𝑓(𝑡) = ∑ 𝜃𝑚𝑝𝑚(𝑡) + 𝜀

𝐵

𝑚=1

(𝑡) (4-10) 

where 𝑝𝑚  are candidate model terms, 𝐵  denotes the number of all candidate 

model terms, and 𝜃𝑚 are model coefficients. Let 

𝐹 = [𝑓(1), 𝑓(2),⋯ , 𝑓(𝑀)]𝑇 (4-11) 

be a vector of measured data with a total number of 𝑀, and 

𝑃𝑚 = [𝑝𝑚(1), 𝑝𝑚(2),⋯ , 𝑝𝑚(𝑀)]𝑇 (4-12) 

be a vector formed the 𝑚th candidate model term. Let 

𝐷 = {𝑃1, 𝑃2, ⋯ , 𝑃𝐵} (4-13) 

be a dictionary compost of the 𝐵 candidate bases. The finite-dimensional set 𝐷 

is usually redundant. The model term selection problem is equivalent to find a 

subset of 𝑁(𝑁 ≤ 𝐵) bases, 
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𝐷𝑁 = {∅1, ∅2, ⋯ , ∅𝑁} = {𝑃𝑗1 , 𝑃𝑗2 , ⋯ , 𝑃𝑗𝑁} 
(4-14) 

from the dictionary 𝐷 , where ∅𝑖 = 𝑃𝑗𝑖 , 𝑗𝑖 ∈ {1,2,⋯ , 𝑁} , so that 𝐹  can be 

satisfactorily approximated using a linear combination of ∅𝑚 as below: 

𝐹 = 𝜃1∅1 + 𝜃2∅2 +⋯+ 𝜃𝑁∅𝑁 + 𝜀 (4-15) 

The first step of the search starts with the initial full model (4-10) and the initial 

full dictionary 𝐷 = {𝑃1, 𝑃2, ⋯ , 𝑃𝐵} = {1, 𝑡, 𝑡2, ⋯ , 𝑡𝐵−1}. Note that the candidate term 

is not necessary to be 𝑡𝑗(𝑗 ∈ ℤ). It can be any linear or nonlinear relationship, 

such as 𝑒𝑗∙𝑡, sin(𝑗 ∙ 𝑡), where 𝑗 ∈ ℝ. Since the polynomial fitting has been well 

accepted in this application, the selection of 𝐷 is straightforward. For applications 

where the prior knowledge is limited, some methods have been proposed [125], 

[126], such as bootstrap based structure detection algorithm [127], which is not 

the research scope of this thesis. For 𝑚 = 1,2,⋯ , 𝐵, let 𝑞𝑚 = ∅𝑚 and 𝜎 = 𝐹𝑇𝐹, 

calculate 

𝑔𝑚
(1)

=
𝐹𝑇𝑞𝑚
𝑞𝑚𝑇 𝑞𝑚

 (4-16) 

𝐸𝑅𝑅𝑚
(1)

=
(𝑔𝑚

(1)
)
2

𝑞𝑚
𝑇 𝑞𝑚

𝜎
 

(4-17) 

Let 

𝑙1 = 𝑎𝑟𝑔 max
1≤𝑚≤𝐵

{𝐸𝑅𝑅𝑚
(1)} (4-18) 

The first significant term can be selected as ∅1 = 𝑃𝑙1 , and the first associated 

orthogonal vector can be chosen as 𝑞1 = 𝑃𝑙1. 

Assume that a subset 𝐷𝑠−1, consisting of (𝑠 − 1)⁡significant terms⁡∅1, ∅2, ⋯ , ∅𝑠−1, 

has been determined at the (𝑠 − 1)th  step. In the 𝑠 th step, for 𝑚 = 1,2,⋯ , 𝐵 

where 𝑚 ∉ {𝑙1, 𝑙2,⋯𝑙𝑠−1}, calculate 
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𝑞𝑚
(𝑠)

= ∅𝑚 −∑
∅𝑚
𝑇 𝑞𝑟
𝑞𝑟𝑇𝑞𝑟

𝑠−1

𝑟=1

𝑞𝑟 , ∅𝑚 ∈ 𝐷 − 𝐷𝑠−1 (4-19) 

𝑔𝑚
(𝑠)

=
𝐹𝑇𝑞𝑚

(𝑠)

𝑞𝑚
(𝑠)𝑇

𝑞𝑚
(𝑠)

 (4-20) 

𝐸𝑅𝑅𝑚
(𝑠)

=
(𝑔𝑚

(𝑠)
)
2

[𝑞𝑚
(𝑠)𝑇

𝑞𝑚
(𝑠)
]

𝜎
 

(4-21) 

Let 

𝑙𝑠 = 𝑎𝑟𝑔 max
1≤𝑚≤𝐵

{𝐸𝑅𝑅𝑚
(𝑠)} (4-22) 

The 𝑠th significant terms can then be chosen as ∅𝑠 = 𝑃𝑙𝑠, 𝐸𝐸𝑅𝑚 = 𝐸𝑅𝑅𝑚
(𝑙𝑠)

 and 

the 𝑠th associated orthogonal vector can be chosen as 𝑞𝑠 = 𝑞𝑙𝑠
(𝑠)

. At each step, 

the term with the strongest capability to represent the output is selected. The 

significance of each selected model term is measured by an index, called the 

Error Reduction Ratio (ERR), which indicates how much of the variance change 

in the system response, in percentage terms, can be accounted for by including 

the relevant model terms. Values of ERR range from 0% to 100%. The larger 

ERR of a term, the higher the dependence is between this term and the output. 

To stop the search procedure and determine the number of significant terms 𝑁, 

a criterion called Penalised Error-to-Signal Ratio (PESR) is introduced [128]. It 

can be written as 

𝑃𝐸𝑆𝑅𝑛 =
1

(1 −
𝜆𝑛
𝑀)

2 (1 −∑𝐸𝑅𝑅𝑖

𝑛

𝑖=1

) (4-23) 

This term was introduced to monitor the search procedure, where 𝑛 denotes the 

index of the selected terms. The search procedure stops when 𝑃𝐸𝑆𝑅𝑛 arrives at 

the first valley. The effect of the adjustable parameter 𝜆  on the results is 

discussed in [128], which suggested that 𝜆 should be chosen between 5 and 10. 



 

99 

PESR has been used to monitor the search of model structure for various 

application [129], [130], [131]. 

Once the model structure is determined, the unknown parameters 𝜃i in Equation 

(4-15) can then be estimated using the least square method. The temperature 

decay curve can be reconstructed by 

𝑇̂(𝑡) =
𝑓(𝑡)

√𝑡
=
𝜃1∅1(𝑡) + 𝜃2∅2(𝑡) + ⋯+ 𝜃𝑁∅𝑁(𝑡)

√𝑡
 (4-24) 

The first derivative of 𝑓(𝑡) can be calculated by 

𝑓′(𝑡) = 𝜃1∅1
′(𝑡) + 𝜃2∅2

′(𝑡) + ⋯+ 𝜃𝑁∅𝑁
′(𝑡) (4-25) 

If 𝛼 is known, the thickness can be estimated by 

𝐿̂ = √2𝛼 ∙ 𝑡𝑁𝑆𝐼 (4-26) 

where 𝑡𝑁𝑆𝐼 denotes the highest peak time of 𝑓′(𝑡). Or if 𝐿 is known, the thermal 

diffusivity can be estimated by 

𝛼̂ =
𝐿2

2𝑡𝑁𝑆𝐼
 (4-27) 

Note the examples of this thesis focus on the measurement of sample thickness 

and thermal diffusivity, so the coefficient of 2 was used. To inspect a defective 

sample, especially when the defect is small, multiple reflections should be 

considered by replacing the coefficient 2 in Equation (4-26) and (4-27) with 1.93. 

The procedure of the proposed NSI method can be summarised: 

1) Extract the temperature decay data for a pixel; 

2) Define a set of candidate terms as shown in Equation (4-13). This thesis 

used {1, 𝑡, 𝑡2, ⋯ , 𝑡𝐵−1} for all examples; 

3) Calculate the ERR value of each candidate term, and the term with 

maximum ERR value is selected; 

4) Calculate the PESR value after a new term is selected. The term selection 
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procedure stops when PESR arrives at the first valley. 

5) Reconstruct the time-temperature functions 𝑇̂(𝑡)  and 𝑓(𝑡)  by Equation 

(4-24); 

6) Calculate the first derivative of 𝑓(𝑡) by Equation (4-25), and then detect 

the peak time; 

7) Estimate the sample thickness or defect depth by Equation (4-26) or the 

thermal diffusivity by Equation (4-27); 

8) Repeat the steps 1-7 for all pixels. 

 

4.5 Experiments and Results of NSI 

4.5.1 Model Simulation without Noise 

To validate the proposed method, model simulations were produced by Equation 

(4-6), where the parameters 𝑄, 𝑅 and 𝑒 were set to 1 and the thermal diffusivity 

(𝛼) was set to 1×10-6 m2/s. 

Initially, simulation data without noise for the thickness value of 2 mm were 

produced. The proposed NSI method was then applied to these data to estimate 

the thickness assuming 𝛼 is known. The sample rate was chosen as 100 Hz and 

totally 500 data points (5 s) were sampled. The principle of the proposed method 

can be demonstrated by Figure 4-8 and Table 4-7. The observed temperature 

curves 𝑇(𝑡) and 𝑓(𝑡) are plotted by the solid blue curve in Figure 4-8(a) and 

Figure 4-8(b), respectively. The maximum order of the candidate terms 𝐵 was 

chosen as 15. 
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Table 4-7 PESR values for different numbers of selected model terms against 
different values of 𝝀. The final number of model term 𝑵 is chosen when the PESR 
arrives at the first valley. 

Number of terms 
𝝀 

5 6 7 8 9 

1 5.132E-01 5.153E-01 5.174E-01 5.195E-01 5.216E-01 

2 2.322E-01 2.341E-01 2.361E-01 2.380E-01 2.400E-01 

3 2.430E-03 2.460E-03 2.490E-03 2.520E-03 2.560E-03 

4 8.770E-04 8.918E-04 9.070E-04 9.226E-04 9.386E-04 

5 5.320E-04 5.434E-04 5.551E-04 5.672E-04 5.798E-04 

6 8.755E-05 8.983E-05 9.220E-05 9.467E-05 9.723E-05 

7 8.284E-05 8.540E-05 8.807E-05 9.087E-05 9.380E-05 

8 7.946E-06 8.229E-06 8.529E-06 8.844E-06 9.178E-06 

9 2.387E-06 2.484E-06 2.587E-06 2.697E-06 2.814E-06 

10 2.390E-06 2.499E-06 2.617E-06 2.743E-06 2.879E-06 

11 1.624E-06 1.708E-06 1.798E-06 1.895E-06 2.000E-06 

12 3.571E-07 3.774E-07 3.995E-07 4.236E-07 4.499E-07 

13 5.997E-07 6.372E-07 6.783E-07 7.236E-07 7.736E-07 

14 1.544E-06 1.650E-06 1.767E-06 1.897E-06 2.042E-06 

15 2.502E-06 2.688E-06 2.897E-06 3.130E-06 3.392E-06 

Table 4-7 shows the values of PESR with different numbers of terms against the 

selection of the parameter 𝜆. It can be observed that the PESR arrives at the first 

valley when the number of terms is 9, which is therefore selected as the final 

number of model terms 𝑁. Furthermore, it is inferred that the selection of 𝜆 is not 

sensitive to the selection of 𝑁  due to the fact that 𝑁  is chosen as 9 for all 

considered values of 𝜆. In this thesis, 𝜆 was chosen as 6 for all examples. The 

reconstructed 𝑇(𝑡) and 𝑓(𝑡) can then be produced using Equation (4-24), and 

they are plotted by the dash red curve in Figure 4-8(a) and Figure 4-8(b), 

respectively. Inspection shows that the reconstructed signals fit the observed 

signals very well, which is also confirmed by inspection of the fitting error between 

𝑓(𝑡)  and 𝑓(𝑡),  shown in Figure 4-8(c). The first derivatives of 𝑓(𝑡)  was then 

calculated by Equation (4-25) and the result is illustrated by Figure 4-8(d). The 

peak of 𝑓′(𝑡), marked by the arrow, was then detected at 2.04 s. If 𝛼 is known, 

the estimated thickness based on Equation (4-26) is 2.02 mm. The error is within 

1% considering the true value of 2 mm. 
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Figure 4-8 (a) The simulated temperature 𝑻(𝒕) (blue solid plot) and reconstructed 

temperature 𝑻̂(𝒕)  (red dash plot) with a thickness of 2 mm, plotted in the 

logarithmic domain; (b) The simulated 𝒇(𝒕) (blue solid plot) and reconstructed 𝒇̂(𝒕) 

(red dash plot) temperature curves; (c) The errors between 𝒇(𝒕) and 𝒇̂(𝒕); (d) The 

first derivative of 𝒇̂(𝒕), where the arrow highlights the peak at the time of 2.04 s. 

 

To assess the sensitivity of the number of the fitting model order for the LSD and 

APST methods, Figure 4-9(a) compares the estimated thickness using three 

considered methods (LSD, APST, and NSI) for simulation data without noise 

against the true thickness. The number of terms was chosen in the range 

between 5 and 20. Note that the number of terms determines the model order for 

the LSD and APST methods, which is not the case for the NSI method. It has 

been observed that, not surprising, for both LSD and APST methods, a higher 

number of model terms produces better results. It indicates that for data without 

noise a selection of a high order model of both LSD and APST methods can 

guarantee an accurate result. 
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(a) 

 

(b) 

 

(c) 

 

(d) 
Figure 4-9 Comparison of estimated thickness using the APST method (the blue 
plot), the LSD method (the green plot) and the propose NSI method (the red dash 
line) as well as the true thickness (the black dash line). For the APST and LSD 
methods, different model orders, from 5 to 20, were tested. For the proposed NSI 
method, the number of model terms is automatically chosen. This process was 
applied to model simulations data with different levels of noise: (a) no noise, (b) 
SNR = 40 dB, (c) SNR = 30 dB, and (d) SNR = 20 dB. The results were produced by 
averaging 100 tests for each considered SNR. 

 

4.5.2 Model Simulation with Noise 

In practice, raw data are contaminated with noise and other signal degradations 

[14], [39]. Errors of temperature measurement with infrared cameras are typically 

classified into (a) errors of method, calibration errors and electronic path errors 

[122]. The level of noise is different case to case. To evaluate the performance 

of all three considered methods against different levels of noise, model 

simulations were produced and analysed with the SNR from 20 dB to 40 dB. For 

each considered SNR, 100 tests were repeated and the estimated thickness was 
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averaged. Figure 4-9(b) - (d) illustrate the results of three examples with the noise 

level at 40 dB, 30 dB, and 20 dB, respectively. Inspection of these figures clearly 

indicates that the results for both LSD and APST methods are sensitive to the 

selection of the model order. The LSD method produced relatively large errors of 

the estimated thickness when the model order is larger than 14 for the noise level 

at 40 dB (see Figure 4-9(b)), 13 for the noise level at 30 dB (see Figure 4-9(c)) 

and 10 for the noise level at 20 dB (see Figure 4-9(d)). Similar results have been 

observed for the APST method. Determining an optimal number of model order 

automatically is a challenge because it depends on the level of noise unless the 

noise level can be determined before applying these methods. This is usually 

difficult and sometimes impossible for real-world data. It can also be observed 

that the errors of depth measurement for all considered methods increase 

following the decrease of SNR. These observations are not surprising because a 

model with a high order will over-fit the observed signal corrupted by noise. Over-

fitting generally occurs when a model is excessively complex, such as having too 

many parameters relative to the number of observations. The model will describe 

noise instead of the underlying relationship. This problem can be further amplified 

during the calculation of the first or second derivative of the model fitting. Figure 

4-10 aims to explain this problem in more detail. A numerical simulation was 

produced with an SNR of 20 dB. The mode order was chosen as 13 for both LSD 

and APST methods. Figure 4-10(a) and (c) show the raw 𝑇(𝑡) and 𝑓(𝑡) with 

corresponding fitting using LSD and APST, respectively. Figure 4-10(b) shows 

the plot of the second derivative of 𝑇̂(𝑡) in the logarithmic domain, where the red 

arrow marks the highest peak selected and the blue arrow marks the peak that 

should be selected. The over-fitting problem caused an underestimation of the 

detected thickness, i.e., the detected thickness is 0.22 mm based on Figure 

4-10(b), which is much smaller than the true value. The plot of the first derivative 

of 𝑓(𝑡) is shown in Figure 4-10(d), where the red arrow marks the highest peak 

and the blue arrow marks the peak that should be selected. The over-fitting 

problem caused in this case an overestimation, i.e., the detected thickness is 2.18 

mm based on Figure 4-10(d), which is larger than the true value. However, for 

the proposed NSI method, the number of model terms is selected automatically 
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by monitoring the trade-off between the model complexity, fitting error and the 

number of sampling using Equation (4-23). This advantage is especially 

important to analyse real experimental data where the noise levels are unknown. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4-10 An example of the over-fitting problem where the SNR of the model 
simulation is 20 dB, and the model order was chosen as 13 for both LSD and APST 
methods. (a): The simulated temperature 𝑻(𝒕) (the blue plot) and reconstructed 

temperature 𝑻̂(𝒕) (the red plot) using the LSD method plotted in the logarithmic 
domain; (b) the second derivative of the LSD fitting where the red arrow marks the 
peak actually detected and the blue arrow marks the peak that should be detected; 

(c) The simulated 𝒇(𝒕) (the blue plot) and reconstructed 𝒇̂(𝒕) (the red plot) using 
the APST method; (d) the first derivative of the APST fitting where the red arrow 
marks the peak actually detected and the blue arrow marks the peak that should 
be detected. 

To further evaluate the performance of the proposed technique, Figure 4-11 

shows the histogram of the estimated thickness for different noise levels. With a 

decrease of SNR to 20 dB, it has been observed that both accuracy and 

precision, described by the mean and standard deviation, respectively, are 

reduced by inspecting that 𝐿̂ = 2.02± 0.02 mm for 40 dB, 𝐿̂ = 2.07±0.13 mm for 

30 dB, and 𝐿̂ = 2.30±0.32 mm for 20 dB. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4-11 Histogram of the estimated thickness using the proposed NSI method 
based 100 tests for different levels of noise: (a) no noise, (b) SNR = 40 dB, (c) SNR 
= 30 dB, and (d) SNR = 20 dB. 

To further explore the results using the proposed method in higher resolution, 

Figure 4-12 shows the averaged values of the selected 𝑁  and estimated 

thickness against the value of SNR as well as corresponding standard 

derivatives. Figure 4-12(a) shows that the value of 𝑁 was set to 8 for signals with 

SNR in the range from 45 dB to 30 dB. For signals with SNR larger than 45 dB, 

a higher number of 𝑁 (𝑁>8) was chosen. For signals with SNR smaller than 30 

dB, a relatively small number of 𝑁 (5≤⁡𝑁≤8) was chosen to avoid the over-fitting 

problem. 
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Inspection of Figure 4-12(b) shows that for signals with SNR larger than 32 dB, 

the error of the estimated thickness is within 0.02 mm. For signals with SNR 

smaller than 32 dB, the error increases almost exponentially following the 

decrease of SNR (increase of noise level), which is mainly due to finding the 

wrong peak as shown in Figure 4-10. The precision of thickness measurement, 

described by the standard deviation, has a similar trend as the accuracy. 

 

(a) 

 

(b) 

Figure 4-12 The statistical performance of the proposed NSI method for model 
simulations with different levels of noise. The results were calculated based on 
100 tests for each considered SNR. (a) Mean and standard deviation of the 
selected number of terms against noise level; (b) Mean and standard deviation of 
the estimated thickness against noise level. 

 

4.5.3 Selection of Sampling Parameters 

This section discusses how the selection of sampling parameters affects the 

results. Assume that the sampled data length is expressed as 𝑀𝑡 in the unit of 

time and 𝑀𝑝 is the amount of data point. Obviously, 

𝑀𝑝 = 𝑀𝑡 ∙ 𝑓 (4-28) 

where 𝑓 is the sample rate. Let 

𝑀𝑡 = 𝑘 ∙ 𝑡𝑁𝑆𝐼 = 𝑘
𝐿2

2𝛼
 (4-29) 

Obviously, to ensure the peak time of 𝑓′(𝑡) is detectable, the coefficient 𝑘 must 

be larger than 1. Figure 4-13 shows the estimated thickness with different values 
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of 𝑘 where 𝑀𝑝 was fixed as 500 to ensure sufficient data for sampling. It has been 

observed that if 𝑘 is between 1 and 1.5 the error of estimation can be up to 0.5 

mm due to insufficient sampling. If 𝑘 is between 1.5 and 10, the error can be up 

to 0.2 mm, which is within a more acceptable range. If 𝑘 is more than 10, the error 

is significantly increased because the model primarily fits the data where the 

temperature is almost stable while the key segment of rapid temperature decay 

is fitted badly. It is inferred from these plots that the value of 𝑘 is recommended 

to be chosen between 2 and 3. 

 

Figure 4-13 The estimated thickness against the value of ratio 𝒌 for the model 
simulations with SNR of 50 dB, 40 dB and 35 dB, respectively. 

To determine the minimum number of data points required to produce reliable 

results, Figure 4-14 shows the effect on the results from different values of 𝑀𝑡 

where 𝑘 was chosen as 2. It has been observed that the error can be up to more 

than 0.5 mm when 𝑀𝑡 is between 10 and 20. This observation is another proof of 

over-fitting where the number of observation is insufficient with a relatively 

complex model structure. When 𝑀𝑡 is between 20 and 80, the error is significantly 

reduced. For example, the error is reduced from 0.3 mm to 0.02 mm at a noise 

level of 50 dB. If 𝑀𝑡 is larger than 80, the variation of error is relatively small for 

all three cases. Hence, to ensure the reliability of results produced by the 

proposed method, at least 100 data points are required if the noise level is lower 

than 35 dB. More data points are suggested if the noise level is higher. Suggested 
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selections for both parameters should be applicable for other data-driven 

methods. 

 

Figure 4-14 The estimated thickness against the number of sampled data for the 
model simulation with SNR of 50 dB, 40 dB, and 35 dB, respectively. 

 

4.5.4 Thermal Diffusivity Measurement 

A real example to use the proposed method to measure thermal diffusivity is 

presented in this session. A defect-free specimen was produced with the 

dimension of 150 mm × 100 mm × 4 mm, which was made of unidirectional Toray 

800 carbon fibres pre-impregnated with Hexcel M21 epoxy resin. The sample 

was placed with its surface perpendicular to the camera’s line of sight at a 

distance of 300 mm from the lens. Considering the thickness of the sample and 

its low thermal diffusivity, a sampling rate of 25 Hz was used, and totally 1000 

frames, equally 40 seconds data length, were captured and analysed. More 

details can be found in [132]. 

Figure 4-15(a) shows the raw temperature 𝑓(𝑡) for three randomly selected pixels 

from the sample. Note the unit of the 𝑦 axis is not Celsius but digital intensity 

outputted by the camera. Similar thermal behaviours for these pixels have been 

observed. The observed minor difference may be caused by non-uniform 

illumination. The value of 𝑁 was automatically selected as 8 for all three pixels. 

Assuming the thermal decay of this experiment follows Equation (4-24), the value 
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of SNR for each pixel was calculated and results are 30.13 dB, 30.26 dB, and 

30.27 dB, respectively. Although the selection of 𝑁 was not determined directly 

by the noise level, the result matches the learned relationship between 𝑁 and 

SNR from model simulations, as shown in Figure 4-12(a). The plots of the first 

derivative of the reconstructed 𝑓(𝑡) for three considered pixels after applying the 

proposed NSI method are illustrated in (b). They exhibit very similar trends from 

the 5th to 35th second. The peak time, 𝑡𝑁𝑆𝐼 was then detected (17.61 s, 17.57 s, 

and 17.00 s, respectively) and the thermal diffusivity was calculated by Equation 

(4-27) (0.47 mm2/s, 0.47 mm2/s, and 0.49 mm2/s, respectively), where 𝐿 was 

assumed to be the same across the specimen. To consider the spatial variation, 

a region of 100×100 pixels, equal to 33 mm × 33 mm, was selected and each 

pixel inside this region was analysed by the proposed NSI technique and other 

two methods. 

Figure 4-16(a) - (c) show the thermal diffusivity maps for the selected region from 

LSD, APST and the proposed method respectively. The result from NSI shows 

more variations than those from LSD and APST. To evaluate the distribution of 

the estimated thermal diffusivities, Figure 4-16(d) - (e) show the histograms and 

the corresponding Gaussian fittings for three tested methods respectively. 

 

(a) 

 

(b) 

Figure 4-15 Results for three randomly selected pixels. (a) Raw values of 𝒇(𝒕); (b) 
the first derivative of the reconstructed 𝒇(𝒕). 
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(a) 

 

(d) 

 

(b) 

 

(e) 

 

(c) 

 

(f) 

Figure 4-16 Produced thermal diffusivity map (mm2/s) by (a) LSD, (b) APST, (c) the 
proposed method; histogram of the measurement with corresponding Gaussian 
fitting from (d) LSD, (e) APST, and (f) the proposed method. 
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It has been observed that the estimated values are located within a narrow range 

with an approximately Gaussian distribution. LSD produced a smaller averaged 

thermal diffusivity (0.41 mm2/s) in comparison to those from APST (0.48 mm2/s) 

and NSI (0.47 mm2/s). The NSI method produced the most accurate 

measurement considering the thermal diffusivity reported by other papers (0.45 

mm2/s) [53]. LSD fits the curve in the logarithmic domain, which compresses the 

data of the later stage. If the peak time is in the later stage, the accuracy of peak 

time measurement will be sacrificed due to the compression, which could be the 

reason why the measured thermal diffusivity from LSD is not as accurate as those 

from other two methods. If the peak time is in the early stage, LSD should have 

no such an issue. 

To further explore the results, Figure 4-17(a) and (b) show the maps of SNR and 

the selected 𝑁 for the selected region. It can be clearly observed that the bottom 

side has relatively higher SNR than the top side. The values of 𝑁 for most pixels 

were chosen between 6 and 8. 

 

(a) 

 

(b) 

Figure 4-17 : (a) SNR map (dB) measured by the proposed method; (b) the map of 
the selected 𝑵. 
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4.6 Summary 

This chapter proposed two defect depth measurement methods, NLSF and NSI 

methods. NLSF method aims to improve the performance of depth measurement 

through the determination of 𝑅  value. Whilst, NSI method improves the 

performance of depth measurement by automatically choosing the model order 

of polynomial fitting. The comparison between NLSF method and NSI method is 

shown in Table 4-8. The summarised highlight of each method are described in 

Section 4.6.1 and 4.6.2. 

Table 4-8 The comparison between NLSF method and NSI method 

Items NLSF NSI 

- Improving the performance of 
depth measurement based on 

Determining 𝑅 value 
Automatically choosing model 
order of polynomial fitting pixel by 
pixel 

- Data analysis based on Model optimisation Curve fitting 

- Technique of optimisation or 
curve fitting 

Nonlinear parameter optimisation 
based on least-squares 

Polynomial fitting based on Least-
squares fitting 

- Number of parameters or 
coefficients 

Fixed as 5 parameters 
Not fixed, depends on the chosen 
model order 

- Suitable sampling data length 
Approximately three times of the 
peak time of temperature contrast 

Two to three times of 
𝐿2

2𝛼
 

- Dimension of data analysis 
One-dimensional heat diffusion 
model 

One-dimensional heat diffusion 
model 

- Estimation of thermal diffusivity Yes Yes 

- Estimation of 𝑅 value directly Yes No 

 

4.6.1 NLSF Method 

The NLSF method proposed a new method that improves the accuracy of defect 

depth measurement against different levels of noise through estimating the 

thermal wave reflection coefficient (𝑅 ) based on the pulsed thermographic 

inspection. All previous research either neglect the 𝑅 value or presume that it is 

pre-known, which increases the uncertainty of depth measurement. This thesis 

firstly provides a solution to estimate the 𝑅 value directly from observed data. A 

modified analytical modelling with five parameters is introduced to better fit the 

observed temperature curve using a nonlinear optimisation technique. The 

results of the proposed method have been evaluated and compared with four 
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state-of-the-art methods namely PST, LST, APST and LSF based on model 

simulations. The main conclusions of this chapter can be summarised as below: 

a. Under a noise-free condition: when 𝑅 = 1, the proposed NLSF method and 

LSF methods produce perfect results for depth measurement while the other 

three methods have errors up to 2%. When the value of 𝑅 is smaller than 1, 

the NLSF method still produces the perfect results while the other four 

methods produce different levels of imperfect results due to the neglect of 𝑅. 

b. Under a noise condition: The observation of measurement accuracy is similar 

to the noise-free condition. The LSF and NLSF have higher precision of 

measurement in comparison to PST, LSD and APST method. APST method 

has the most sensitivity against noise level and NLSF has the least sensitivity. 

Such features are important because the signal-noise ratio in real applications 

usually is difficult to be measured and the value of 𝑅  can be different at 

different places if the material is inhomogeneous. 

c.  Due to the introduction of 𝑡𝑠 , the proposed method can be applied to any 

segment of observed data without knowing the start time. Such a feature is 

attractive for data with a low sampling rate where 𝑡𝑠 could be larger than 0 due 

to accumulated latency by hardware and software of data acquisition. All other 

four methods neglect the potential variation of 𝑡𝑠, which leads to a guaranteed 

error, the value of which dependents on the value of 𝑡𝑠.  

d. For the experimental studies, the performance of the proposed method was 

compared with LSF using the same optimisation technique. Results show that 

the NLSF method has higher accuracy on defect depth estimation than the 

LSF method for both defective area and sound area, which suggests improved 

reliability of measurement for real data. 

One limitation the proposed method is that the accuracy of the estimation 

depends on data length. The depth estimation in the sound area needs more data 

length than the defective area. Measurement of deep defect needs more data 

length than shallow defect. This thesis proposes to use the time when maximal 

temperature contrast between the considered defective pixel and the reference 

pixel from the sound area is achieved to determine the sample length, and the 

results show that this solution works effectively. The efficiency of this method is 
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affected by the selection of parameters bounds before applying the optimisation 

technique. Limiting the parameter bounds and setting the initial values closer to 

ground truth based on the result of neighbours could be a solution to reduce the 

computational time. 

The proposed method has only been applied to flat bottom holes where a defect 

has the same depth. This approach has been used for most of the other research. 

If a defect has different depths, the three-dimensional heat conduction is more 

complex and will have an influence on the results. However, due to the 

consideration of three-dimensional heat conduction by introducing two extra 

parameters 𝑅 and 𝑠, it is expected that the proposed method will perform even 

better than other methods though the increased error is inevitable due to the 

utilisation of one-dimensional heat diffusion model. Performance evaluation for 

more complex defects requires further study. 

 

4.6.2 NSI Method 

The NSI method introduces a new method to improve the reliability and 

confidence level of defect depth measurement based on the pulsed 

thermographic inspection by addressing the over-fitting problem. To 

quantitatively measure defect depth, a polynomial model is normally used in 

existing methods to fit either the temperature decay in the logarithmic domain or 

the variation of temperature decay in the time domain. There is very limited 

literature reporting how the selection of model order affects the results and how 

to automatically determine the order. A model with a too low order cannot 

sufficiently fit the observed data, and consequently, depth estimation maybe not 

sufficiently accurate. While a model with a too high order may fit the observed 

data too well to model the noise rather than the underlying relationship. Such 

noise will be further amplified when the first or second derivative of the fitting is 

used to measure the depth. These problems have been demonstrated and 

evaluated in this thesis. This is a potential issue towards automation of the pulsed 

thermographic inspection. 
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Addressing this problem, this thesis has developed a nonlinear system 

identification (NSI) method to model the temperature decay. Different from other 

methods that build the polynomial model in a one-off manner, the NSI method 

searches through a relatively large set of candidate model terms to select the 

most significant model terms one by one. Hence, the model is built in a term-by-

term manner. This search will automatically stop when the first valley of the 

penalized error-to-signal ratio is detected. Furthermore, this method 

accommodates any linear or nonlinear relationship through the set of candidate 

terms. The performance of the proposed method including accuracy and 

precision has been compared with the start-of-the-art depth measurement 

methods based on model simulation with different levels of noise. The impact of 

the selection of sampling parameters has also been discussed and 

recommendations have been proposed. The proposed method has been further 

validated through an experimental example by measuring thermal diffusivity for a 

composite sample. The results allow the following conclusions: 

a. The NSI method is able to adaptively detect the model structure for each 

considered pixel which ensures a better model fitting with relatively fewer 

model terms. This characteristic considers the spatial variation of the model 

structure among pixels. Comparing with the LSD and APST methods, this 

more sophisticated version of model fitting can often measure the depth more 

accurately while reducing model complexity. 

b. The number of model terms is determined automatically, which is particularly 

important for automation of defect/damage depth measurement. Although the 

model simulations in this thesis were produced by varying noise levels, in real 

applications, the noise level is not necessary to be pre-determined because 

the method itself will evaluate the relationship between the model complexity, 

fitting error and the number of sampling. 

c. It has been observed that the number of terms was chosen as about 8 for 

signals with the SNR in the range from 45 dB to 30 dB. For signals with the 

SNR larger than 45 dB, a high number of terms (8-10) was chosen. For signals 

with the SNR smaller than 30 dB, a relatively small number of terms (5-8) was 
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chosen. This conclusion should also be applicable to the APST and LSD 

methods. 

d. It has been observed from the results of model simulations that a sampling 

data length with twice to three times of 
𝐿2

2𝛼
 usually produces reliable results. 

Model simulations also show that at least 100 data points are required if the 

noise level is lower than 35 dB. More data points are suggested if the noise 

level is higher. These conclusions will aid the practical selection of 

thermographic parameters such as sampling rate and integration time. 

One limitation of the proposed technique is that it is a data-driven method without 

considering the heat diffusion model underlying the inspection process. Accurate 

evaluation of noise level is challenging because to achieve this the observed 

signal has to be clearly divided into ‘true signal’ and noise. The proposed method 

can be applied to either measure the thickness of defect-free materials or the 

defect depth of large defects. Further investigation is required to consider 3D heat 

conduction for small defects. 

Another limitation is that the damage is usually assumed to be parallel to the 

surface, this is necessary to measure the depth using the NSI technique. 

Addressing these limitations, further research will focus on reconstructing a 3D 

representation for defect/damage, degradation volumetric measurement, and 

determination of the orientation of degradation. 



 

118 

5 DEFECT THICKNESS ESTIMATION 

5.1 Introduction 

Majority of NDT research focuses on measuring the location and sizes of defects 

or damages, but limited studies on the characterisation of their thickness. 

Microwave thermography has been used to study the effect of corrosion layer 

thickness on reinforcing steel bars [63], [133],  but has not been applied on 

composites. Wang et al. proposed a microwave equiphase frequency truncation 

method to detect and evaluate the thickness of kissing defects in GFRP laminate 

[134]. Pulsed Eddy Current technique has been used in thickness evaluation of 

aluminium plate [135], and the ultrasonic testing has been widely used for 

gauging of the local thickness of a solid element [136], but very limited related 

research for the subsurface defect or damages. X-ray computed tomography is 

able to provide highly accurate 3D inspections of manufacturing defects of fibre 

architectures [137], however, the inspection time and equipment is relatively 

costly. 

Pulsed Thermography is an NDT method which is contact-free and offers a rapid 

inspection while covering a large area within a short time frame and thus readily 

adaptable to in-situ monitoring applications [13]. Other thermography-based 

NDTs, such as microwave thermography, eddy current thermography, lock-in 

thermography, and ultrasonic thermography, takes several measurements using 

signals of different frequencies to gain information about different depths, 

however, it requires a longer inspection time. Pulsed thermography is more 

straightforward and faster because the flash time is a well-defined instant for time 

reference. Most of the existing pulsed thermography methods, such as Peak 

Slope Time [109], Logarithm Second Derivative [40], Absolute Peak Slope Time 

[77], Nonlinear System Identification [96], Least Square Fitting [76], and New 

Least Square Fitting [116], are able to estimate the defect depth (the distance 

from the inspected surface to the top surface of a defect) before the three-

dimensional heat conduction takes place. However, currently, characterisation of 

defects is limited to 2-dimensional measurement, which represents a collation of 

all damage through-the-thickness. None of these methods is able to estimate the 
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defect thickness in order that the estimation can be extended to 3-dimension. A 

straightforward approach to tackle this challenge is conducting two inspections 

(two sides measurement), one of which is applied on the front side and another 

on the rear side. The defect thickness can then be quantified by considering the 

measured defect depths from both inspections and the sample thickness. This 

chapter aims to propose a new method to estimate defect thickness based on 

pulsed thermography with a single-side inspection [98]. The outline of this chapter 

is illustrated in Figure 5-1. 

 

Figure 5-1 The outline of Chapter 5 
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5.2 Methods 

Defect thickness estimation consists of three main steps: estimating of 𝑅 value, 

estimating of defect depth, and finding the correlations, as illustrated in Figure 

5-2. In the first step, the value of 𝑅 is obtained by NLSF method proposed in 

Chapter 4. 𝑅 value is an important key used to estimate defect thickness. The 

value of 𝑅 correlates with multiple parameters such as defect depth (𝑑), defect 

defect thickness (ℎ) and defect size (𝑟). Thus, the relationship between 𝑅 and 𝑑, 

𝑅 and ℎ, and 𝑅 and 𝑟 are studied. These relationships will be used to establish 

ℎ-𝑅 model in the last step. In the second step, defect depth can be obtained by 

NLSF, NSI, or other methods. This thesis used NLSF method to estimate defect 

depth 𝑑 because 𝑑 can be estimated simultaneous with 𝑅 value that can be used 

to estimate the defect thickness. The last step is to find the correlated relationship 

between ℎ, 𝑅, 𝑑, and 𝑟, and establish the prediction model based on nonlinear 

finite impulse response (NFIR), ℎ⁡ = ⁡𝑓(𝑅, 𝑑, 𝑟), in a form of such as polynomial 

model and exponential model. 

 

Figure 5-2 The diagram of defect thickness estimation method 

 

5.2.1 Estimation of Thermal Wave Reflection Coefficient 

In areas of the sample surface above a defect/damage (see the point 2 in Figure 

5-3) the transient flow of heat from the surface into the sample bulk is wholly or 
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partially obstructed, thus causing a temperature deviation from the sound areas 

(see the point 1 in Figure 5-3. Figure 5-3(b) plots two typical observed 

temperature decay curves of the point 1 (blue) and point 2 (red) in the logarithmic 

domain. Damage detection methods aim to classify the pixels based on the 

cooling behaviour. The time when the temperature deviation occurs, represented 

by 𝑡∗  in Figure 5-3(b), is usually used to estimate the defect depth 𝑑 . On a 

sufficiently large time scale, the 𝑡∗  can be viewed as a transition from one-

dimensional steady state diffusion before incident heat encounters a subsurface 

interface to a second asymptotic steady-state [109]. We can also observe a later 

event 𝑡∗∗  (see in Figure 5-3(b)), indicating the asymptotic return to one-

dimensional diffusion. The detection of 𝑡∗  and 𝑡∗∗  can be achieved through 

detecting the peak of the second derivative of thermographic signal 

reconstruction (TSR) [138]. The cooling behaviour between 𝑡∗ to 𝑡∗∗ is associated 

with the size 𝑟, the depth 𝑑, the thickness ℎ of damage and the material, as 

labelled in Figure 5-3(a). Estimation and understanding of the corresponding 

between them is the key to characterise the volume of damage and will be studied 

in this thesis. 

 

(a) 

 

(b) 

Figure 5-3 (a) Side view of the sample (b) Typical observed time-temperature decay 
curves in the logarithmic domain for point 1 and the point 2, respectively 
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The surface temperature dynamics due to the back-wall at depth 𝐿  for a 

homogeneous plate is given by [74], expressed as Equation (3-1). For most of 

the research, the value of 𝑅 in Equation (3-1) is assumed to be 1, which is true 

when the thickness or the size of damage (e.g., air-gap) is infinite, where there is 

no three-dimensional heat conduction takes place. However, for most of the real 

applications (e.g., detecting impact damage of composite), the thickness and size 

of damage could be very small and the heat leakage can be severe. The value of 

𝑅, therefore, can be significantly smaller than 1 [116] if the whole transient lifetime 

is considered. By monitoring the cooling temperature during the period from the 

flash time to 𝑡∗∗. 

This thesis proposes to characterise the damage thickness by establishing an 

empirical model between 𝑅 and measurable geometrical parameters; and uses 

the new least-squares fitting method (NLSF) [116], proposed in Chapter 4, to 

estimate the 𝑅 value directly from the observed data. The analytical model of the 

NLSF method written as Equation (4-1) in Chapter 4. The model also introduces 

two parameters 𝑅  and 𝑠  that consider the three-dimensional heat conduction 

effect. It can also incorporate the duration effect of flash by introducing the 

parameter 𝑡𝑠. 

 

5.2.2 Correlation Analysis and Modelling 

It has been mentioned above that the 𝑅 value could be related to geometrical 

parameters including defect size, depth and thickness. This section aims to 

introduce an approach to quantify correlations between 𝑅 and these parameters, 

and identify an empirical model to establish their relationship, by which means, 

the defect thickness can be inferred if 𝑅  and other two parameters are 

measurable. From the system engineering point of view, to study this multiple-

input single-output correlation, the simplest approach is to fix two inputs and vary 

the third input and then evaluate this input’s influence on the output (𝑅). The 

problem is now simplified to study a single-input single-output system. Least 

square fitting approaches, based on either linear or nonlinear models, can be 

employed to establish the relationship between 𝑅  and the third input. This 
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procedure can then be repeated until the relationship between 𝑅  and each 

geometrical parameter is studied. 

To consider the compound influence of these three parameters on 𝑅 , their 

relationship must be considered as a multi-input single-output problem. 

Considering a system with three inputs 𝑢1, 𝑢2, 𝑢3, and an output 𝑦, to describe 

their relationship, this thesis proposes to use the nonlinear finite impulse 

response (NFIR) model, written as 

𝑦 = 𝑓(𝑢1, 𝑢2, 𝑢3) + 𝜀 (5-1) 

where 𝑓 is some unknown linear or nonlinear mapping, which links the system 

output to the system inputs; 𝜀 denotes the model residual. 

A commonly employed model type to specify the function 𝑓 in Equation (5-1) is a 

polynomial function [124], [139]. A second-order polynomial function can be 

written as 

𝑦 = 𝜃0 + 𝜃1𝑢1 + 𝜃2𝑢2 + 𝜃3𝑢3 + 𝜃4𝑢1
2 + 𝜃5𝑢2

2 + 𝜃6𝑢3
2 + 𝜃7𝑢1𝑢2 + 𝜃8𝑢1𝑢3

+ 𝜃9𝑢2𝑢3 
(5-2) 

The next step is to estimate the parameters 𝜃𝑚(𝑚 = 0,1, … ,9)  based on the 

observations⁡{𝑦, 𝑢1, 𝑢2, 𝑢3}. The procedure begins by determining the structure, or 

the important model terms, using the orthogonal least squares (OLS) estimation 

procedures. A more detailed description of this method can be found in the work 

of Zhao et al. [131]. 

As a feasibility study, this thesis focuses on inspecting commonly studied defects 

including flat-bottom holes and block defects. Considering a block-shaped defect 

as shown in Figure 5-3(a), the defect size 𝑟 , depth 𝑑 , and thickness ℎ  are 

considered as the system inputs, and the value of 𝑅 is considered as the output. 

Through establishing an NFIR model, the influence of 𝑟, 𝑑, and ℎ on 𝑅 will be 

evaluated initially. An inverse model, written as 

ℎ = 𝑓(𝑅, 𝑑, 𝑟) (5-3) 

can then be inferred to reconstruct ℎ based on 𝑅, 𝑑, and⁡𝑟. 
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5.3 Experimental Studies 

5.3.1 Sample Design 

Flat plates of carbon fibre reinforced polymer (CFRP) material were used in this 

study. The plates were made of unidirectional Toray 800 carbon fibres pre-

impregnated with Hexcel M21 epoxy resin and manufactured in a traditional 

autoclaving process. Based on this material, three samples were designed to 

simulate different types of defect. The dimension of Sample 2 is 75 mm × 230 

mm × 8 mm. As illustrated by Figure 5-4(a), it includes five-block defects with a 

thickness (ℎ) of 0.5 mm, 1.0 mm, 2.0 mm, 3.0 mm, and 4.0 mm, respectively. The 

width (𝑟), length, and depth (𝑑) for all defects are 10 mm, 75 mm, and 2 mm, 

respectively. The distance between two adjacent defects is 30 mm, which aims 

to reduce the influence from the adjacent defects on the thermal behaviour. A 

side view of the produced sample is shown in Figure 5-4(b). It should be noted 

that these defects are not fully closed because two sides of the defects are open. 

It is called as “semi-closed defect”. This sample is aimed at studying the 

relationship between 𝑅 and ℎ when 𝑑 is fixed. Sample 3 also includes five semi-

closed defects, as illustrated by Figure 5-5, which have the same defect thickness 

ℎ of 1.5 mm but different defect depth of 1.0 mm, 1.5 mm, 2.0 mm, 2.5 mm, and 

3.0 mm, respectively. Other parameters are the same as Sample 2. This sample 

is aimed at evaluating the relationship between 𝑅 and 𝑑 when ℎ is fixed. Sample 

4, with the dimension of 155 mm × 155 mm × 8 mm, includes 16 flat-bottom holes. 

As illustrated by Figure 5-6(a), the holes were drilled with four groups of diameters 

(5 mm, 10 mm, 15 mm, and 20 mm) and four groups of thicknesses (7 mm, 6 

mm, 5 mm, and 4 mm). It can be inferred that the defect depths are 1 mm, 2 mm, 

3 mm, and 4 mm, respectively. The distance between the centre of two adjacent 

holes is 31 mm. This sample is aimed at studying the relationship between 𝑅, ℎ, 

𝑑, and 𝑟 for “open defect”. It should be noted that for this sample, the parameters 

ℎ and 𝑑 are dependent and the sum of them is a constant (8 mm). 
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(a) 

 

(b) 

Figure 5-4 Illustration of Sample 1, where the defect size, depth and thickness are 
defined (a) sample design (b) side view 

 

 

(a) 

 

(b) 

Figure 5-5 Illustration of Sample 2 (a) sample design (b) side view 
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(a) 

 

(b) 

Figure 5-6 Illustration of Sample 3 (a) sample design (b) side view 

 

5.3.2 Experimental Setup 

The configuration of the experimental setup is illustrated in Figure 3-3(a) in 

Chapter 3. The thermographic imaging was conducted by FLIR SC7600, as 

shown in Figure 3-4 in Chapter 3. Sample 2 and Sample 3 were inspected from 

the top side. Sample 4 was inspected from the surface opposite to the drilled side. 

Considering the thickness of the samples and the low thermal diffusivity () of 

carbon fibre reinforced polymer (CFRP), a sampling rate of 10 Hz was used, and 

totally 900 frames, equally 90 seconds data length, were captured. Due to the 

large width of Sample 2 and Sample 3 (230 mm), the area on both left and right 

side of the sample is almost outside of the camera hood, as demonstrated in 

Figure 5-7. The defects of both samples suffer non-uniform heating for a single-

side inspection, which could lead to unreliable results [140]. The non-uniform 

heating could be caused by the variable distance from the sample’s surface to 

the heat source and by the radiation pattern of the heat source [86]. In this study, 

to reduce this effect, each sample (Sample 2 and Sample 3) has been captured 

for five times, where each defect was placed on the centre of the camera’s view 

once. A region of interest of the centralised defect with the size of 160×120 pixels 
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for five raw data files was then cropped and merged into one file with a size of 

160×600 pixels for easier analysis. 

 

 

Figure 5-7 Non-uniform heating on the sample’s surface 

 

For the setting up of the five unknown parameters of the NLSF method, written 

as Equation (4-1) in Chapter 4, the initial value of the parameter 𝑡𝑠 is selected as 

0, and the lower and upper bounds are selected as -1 and 1, respectively, 

because it is usually very close to zero. The initial value of 𝑅 is selected as 1, and 

the lower and upper bounds are selected as 0 and 1, respectively. The initial 

value of 𝐴 is selected as 1000, and the lower and upper bounds are selected as 

0 and 2000, respectively, due to the energy applied on the inspection surface 

around 2 kJ. The selection of 𝑊  depends on the material and thickness of 

samples, the initial value of 𝑊 is selected as 1, and the lower and upper bounds 

are selected as 0 and 200, respectively, because the thickness of the three 

samples is around 8 mm and the thermal diffusivity () of them is about 0.5×10-6 

m2/s, 𝑊 can be calculated as 𝑊 =
𝐿2

𝛼
=

82

0.5
= 128. And the initial of 𝑠 is chosen as 

0, and the lower and upper bounds of 𝑠 are chosen as -50 and 50, respectively. 
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5.4 Results and Discussion 

5.4.1 Results of Testing Sample 2 

This sample aims to evaluate the dependence between 𝑅 and ℎ when 𝑑 is fixed. 

Figure 5-8 shows a snapshot of the raw thermal image at time 10 seconds where 

the colour represents the temperature. It should be noted that the exported data 

of the used IR camera is in the unit of “digital intensity”, which was used for the 

analysis below instead of temperature. To reduce the influence of the heat leaked 

to each opened side on results, ten pixels on the centre of each defect were 

sampled, as marked in Figure 5-8, and then were averaged to reduce spatial 

noise. The defects are labelled as “(1)”, “(2)”, “(3)”, “(4)”, and “(5)” to represent 

the defect thickness of 0.5 mm, 1.0 mm, 2.0 mm, 3.0 mm, and 4.0 mm, 

respectively, and the sampled sound area is marked as “S”. Ten pixels (1×10) for 

each defect and the selected sound area were sampled, and the averaged 

temperature decays of each defect and sound area are plotted in the logarithmic 

domain, as illustrated in Figure 5-9. 

 

 

Figure 5-8 A snapshot of the captured thermal image of at time 10 seconds for 
Sample 2, where the unit is digital intensity, a representation of temperature 
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Figure 5-9 Average temperature decay, plotted in the logarithmic domain, for the 
sampled pixels of each defect and a sound region of Sample 2, the sampled total 
data length is 24 seconds 

Considering that the thermal behaviour of sound area around the centre has a 

very limited variation for the five tests, in this thesis the sound area was selected 

on the first test only. It can be clearly observed that the time of the temperature 

deviation from the curve of the sound pixel that occurs for each defect (𝑡∗) is 

similar since they have the same depth. The thermal cooling behaviours before 

𝑡∗  are almost identical, while after 𝑡∗ , they start to exhibit a difference. 

Quantification of the influence of the defect thickness on thermal cooling 

behaviours purely based on the observation of these plots is almost impossible. 

The NLSF method was then applied to each time-temperature decay data to 

estimate the unknown parameters. The thermal diffusivity (𝛼) was chosen as 

0.5×10-6 m2/s. We measure the defect depth 𝑑  and 𝑅  of the ten pixel (black 

marked shown in Figure 5-8) of each defect (Defect 1 to Defect 5), and then 

average the ten measured 𝑑 and 𝑅 of each defect. The measured values of 𝑑 

and 𝑅 are shown in Table 5-1. It can be calculated that the average measured 

depth is 1.989±0.098 mm and the average percentage error is about 5% against 

the reference of 2 mm, which suggests a fine performance of depth estimation. 

Table 5-1 also shows that the value of 𝑅  increases following the increase of 

defect thickness, although the relationship is not linear. This interesting 

observation is probably caused by the heat around the air-gap that is more 
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difficult to be leaked through the three-dimensional conduction if the volume of 

the air-gap is larger. The variation of 𝑅 , therefore, can be considered as an 

indicator of the variation of the damage thickness if the diameter is the same. To 

further analyse the relationship between 𝑅 and ℎ, Figure 5-10 plots the scatters 

between them, which suggests that the relationship is not linear, but 

approximately exponential. Based on the observed curve, an exponential model 

was applied to fit the relationship between the measured 𝑅 and the artificial defect 

thickness ℎ in Table 5-1. The model can be described by 

𝑅 = −0.29𝑒−
ℎ

0.93 + 0.6 
(5-4) 

 

Table 5-1 Measured parameters of Sample 2 

Defect Thickness 

(mm) 
𝑹 𝒅 (mm) 

0.5 0.431 1.896 

1.0 0.498 2.079 

2.0 0.565 1.985 

3.0 0.588 2.072 

4.0 0.591 1.866 

 

 

Figure 5-10 Scatter plot between the defect thickness and the measured R with the 
corresponding exponential fitting for the Sample 2 
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The fitting error is quantified by calculating the Pearson correlation coefficient 

(PCC) between the measured 𝑅 and reconstructed 𝑅 based on Equation (5-4) 

using the known ℎ. If PCC equals to 1, it indicates a perfect fitting. The fitting 

curve is represented by the red plot of Figure 5-10, and the calculated PCC value 

is 0.999. Both observations suggest that the identified model (5-4) can well 

represent their relationship. To estimate the value of ℎ using the measured 𝑅, the 

model (5-4) can be rewritten as 

ℎ = −0.93𝑙𝑛
𝑅 − 0.6

−0.29
 (5-5) 

It should be noted that the empirical model (5-5) is established only for this 

specified defect depth, size, and material, any change of which requires to 

recalculate the coefficients. However, it is expected that the model structure is 

similar. 

 

5.4.2 Results of Testing Sample 3 

This sample aims to evaluate the dependence between 𝑅 and 𝑑 when ℎ is fixed. 

Figure 5-11 shows a snapshot of the raw thermal image at time 10 seconds after 

the flash. The defects are marked as “(1)”, “(2)”, “(3)”, “(4)”, and “(5)” to represent 

the defect depth 𝑑 of 1.0 mm, 1.5 mm, 2.0 mm, 2.5 mm, and 3.0 mm, respectively, 

and the sampled sound area is marked as “S”. The sampling procedure was the 

same as that for Sample 2. The temperature decay for each defect and selected 

sound region, plotted in the logarithmic domain, are shown in Figure 5-12. It is 

expected that the time of the temperature deviation that occurs for each defect 

(𝑡∗) is different and increases following the increase of defect depth, which is 

caused by the difference of defect depth. 
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Figure 5-11 A snapshot of the captured thermal image of at time 10 seconds for 
Sample 3 

 

 

Figure 5-12 Average temperature decay, plotted in the logarithmic domain, for the 
sampled pixels of each defect and a sound region of Sample 3, the sampled total 
data length is 24 seconds 

 

The measured values of 𝑅 and 𝑑 by applying the NLSF method are shown in 

Table 5-2. The absolute error of measured depth is 0.040±0.050 mm and the 

average percentage error is 2.2%. It has been observed that the value of 𝑅 

decreases following the increase of defect depth. Figure 5-13 plots the scatters 

between 𝑅 and 𝑑, which suggests that the relationship is approximately linear. 
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Table 5-2 Measured parameters of Sample 3 

Defect Depth (mm) 𝑹 𝒅 (mm) 

1.0 0.783 0.999 

1.5 0.685 1.572 

2.0 0.562 2.113 

2.5 0.410 2.496 

3.0 0.249 2.991 

 

 

Figure 5-13 Scatter plot between the defect thickness and the measured R with the 
corresponding linear fitting for the Sample 3 

A linear fitting process was applied to the measured data and the relationship can 

be written by 

𝑅 = −0.27𝑑 + 1.07 (5-6) 

The red plot of Figure 5-13 illustrates the fitting and the PCC value is 0.993, both 

of which suggests the identified model (5-6) can well represent the relationship. 

It should be noted that the empirical model (5-6) is established only for the 

specified defect thickness, size, and material, any change of which requires to 

recalculate the coefficients. However, the linear model structure is expected. 

The above results show that the value of 𝑅 depends on both the defect depth and 

thickness. The dependence on depth is linear, and the dependence on thickness 

is nonlinear. The models (5-4) and (5-6) have a single input and single output, 
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which has limited applications due to the rigorous assumption. To analysis how 

𝑑 and ℎ together affect the value of 𝑅, the NFIR model (5-1) with two inputs was 

employed and the data in Table 5-1 and Table 5-2 were sampled, the second-

order polynomial model is used to fit these data. The identified model is written 

as 

𝑅 = −0.37𝑑 + 0.07𝑑ℎ − 0.02ℎ2 + 1.11 (5-7) 

with a PCC value of 0.98. This result suggests that the 𝑅  value can be well 

explained by the defect thickness and depth. To construct a model for predicting 

ℎ  based on the values of 𝑅  and 𝑑  measured by the NLSF method, ℎ  is 

considered as the system output of the NFIR model and 𝑅 as the system input. 

The results produced from both samples, presented in Table 5-1 and Table 5-2, 

were sampled, and the predictive model is identified as 

ℎ = 170.72 − 33.96𝑅 − 81.3𝑑 + 163.81𝑅2 + 9.44𝑑2 + 82.56𝑅𝑑 (5-8) 

with a PCC value of 0.75. To validate its performance of prediction, Table 5-3 

shows the predicted values of ℎ based on model (5-8) using the measured 𝑅 and 

𝑑 from Table 5-1 and Table 5-2, against the ground truth for the ten defects in 

Sample 2 and Sample 3. 

 

Table 5-3 Defect thickness comparison of ten studied defect in Sample 2 and 
Sample 3 between the ground truth and estimation using the model (5-8) 

Defect ID 
Ground Truth 

(mm) 

Estimation 

(mm) 

Error 

(mm) 

Percentage 

Error (%) 

Sample 2-1 0.5 1.34 0.84 168.00 

Sample 2-2 1.0 1.23 0.23 23.00 

Sample 2-3 2.0 1.56 0.44 22.00 

Sample 2-4 3.0 3.68 0.68 22.67 

Sample 2-5 4.0 2.54 1.46 36.50 

Sample 3-1 1.5 1.47 0.03 2.00 

Sample 3-2 1.5 1.95 0.45 30.00 

Sample 3-3 1.5 1.25 0.25 16.67 

Sample 3-4 1.5 1.53 0.03 2.00 

Sample 3-5 1.5 1.45 0.05 3.33 
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The experimental result from Table 5-3 indicates that, the averaged estimation 

error of Sample 2 is higher than Sample 3. The minimum percentage error of 

Sample 2 is 22.00% whilst Sample is 2.00%. 

Although the estimation is not perfect, the result clearly demonstrates the 

potential to estimate the defect thickness using the introduced approach. There 

are a few potential reasons of the relatively large error: 1) the material properties 

of Sample 2 and Sample 3 are not identical due to the manufacturing deviation, 

which is usually greater for inhomogeneous materials (e.g., composites); 2) the 

second-order polynomial model structure cannot fully represent the mechanism; 

and 3) there are some other parameters apart from 𝑅 and 𝑑 to be included in 

model (5-8) to better estimate ℎ. It is expected that the estimation performance 

will be further improved by including the defect size in this model. 

5.4.3 Results of Testing Sample 4 

This sample aims to investigate how the geometrical parameters of flat-bottom 

holes affect the thermal wave reflection coefficient. It should be noted that the 

definition of “defect thickness” for this case is slightly different than the previous 

two cases since the defects are open on the backside. We can consider this 

parameter as a representation of defect volume when the diameter is fixed, which 

is applicable to Sample 2 and Sample 3. A snapshot of the raw thermal image at 

time 10 seconds is shown in Figure 5-14, where nine holes on the top-right side 

can be easily spotted while the holes with 4 mm depth and 5 mm diameter cannot 

be clearly detected due to low diameter to depth (aspect) ratios. Beemer and 

Shepard [141] acknowledge the difficulty in detecting flat-bottom holes if the 

aspect ratio is smaller than 5. For this reason, in this experiment, only the nine 

marked holes in Figure 5-14 were studies. 
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Figure 5-14 A snapshot of the captured thermal image of at time 10 seconds for 
Sample 4 

 

Figure 5-15(a) plots the temperature decay of the sampled pixels “1”, “2”, and “3”, 

which have the same defect depth of 1 mm, but with different defect size (20 mm, 

15 mm, and 10 mm, respectively). The point “(10)” was randomly sampled from 

the sound region. As expected, the values of 𝑡∗ for the considered three defects 

are similar, and the cooling behaviours between 𝑡∗ and 𝑡∗∗ are different due to 

the difference of size. Figure 5-15(b) plots the temperature decay of the sampled 

defects “1”, “4”, and “7”, which have the same defect size of 20 mm, but with 

different defect depth (1 mm, 2 mm, and 3 mm, respectively). Both the value of 

𝑡∗ and the cooling behaviours of [𝑡∗, 𝑡∗∗] are different due to the difference in size 

and depth. 
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(a) 

 

(b) 
Figure 5-15 The temperature decay, plotted in the logarithmic domain, for the 
selected defects and sound pixel; (a) defects have the same depth, but different 
size (b) defects have the same size, but different depth 

 

The measured values of 𝑅 and 𝑑 by applying the NLSF method are shown in 

Table 5-4. It can be observed that the depth can be estimated satisfactorily with 

an absolute error of 0.033±0.025 mm, and the average percentage error is 2.3%. 

It has also been observed that the larger diameter of defects leads to a higher 

value of 𝑅, and the deeper defect leads to the smaller value of 𝑅. This observation 

is similar to that of Sample 3. 

 

Table 5-4 Estimated parameters of Sample 4 

Defect Depth 

(mm) 

𝒓: 10 mm 𝒓: 15 mm 𝒓: 20 mm 

𝑹 
𝒅 

(mm) 
𝑹 

𝒅 

(mm) 
𝑹 

𝒅 

(mm) 

1.0 0.224 0.926 0.512 1.011 0.792 1.072 

2.0 0.214 1.974 0.396 1.991 0.666 2.029 

3.0 0.210 2.968 0.359 3.005 0.487 2.962 

 

To further understand their relationship, Figure 5-16(a) plots the 𝑅 value against 

the defect diameter for three defect depths, where the relationship was observed 

as approximately linear. Figure 5-16(b) plots the 𝑅 value against the defect depth 

for three defect diameters, where the relationship was also observed as 

approximately linear. This observation is very similar to that shown in Figure 5-13 

for Sample 3. 
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(a) 

 

(b) 

Figure 5-16 Results of Sample 4 (a) scatter plot between the defect diameter and 
the measured R (b) scatter plot between the defect depth and the measured R 

 

The sensitivity of the 𝑅 value on the defect depth increases following the increase 

of defect size. The 𝑅 values are almost the same for the defects with the diameter 

of 10 mm. To fully reveal their relationship, an NFIR model was identified and is 

written as 

𝑅 = 0.043𝑟 − 0.079𝑑 − 0.062 (5-9) 

which confirms the relations between 𝑅 and 𝑟, and 𝑅 and 𝑑 are approximately 

linear. The calculated PCC value is 0.965, which suggests an excellent 

performance of the model. The prediction of ℎ, equivalent to the prediction of 𝑑, 

can be written as 

ℎ = 3.14 − 37.18𝑅 + 1.77𝑟 − 1.67𝑅2 − 0.06𝑟2 + 1.65𝑅𝑟 (5-10) 

with a PCC value of 0.85. To evaluate the performance of the model (5-10), the 

measured 𝑅  and size 𝑟  in Table 5-4 are used to test. Table 5-5 shows the 

estimated values and the ground truth of ℎ for the nine defects in Sample 4. The 

averaged percentage error of nine defect is around 5%. The result clearly 

demonstrates that the measured 𝑅 value has a potential to estimate the defect 

thickness for flat-bottom holes through considering the defect diameter. 
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Table 5-5 The defect thickness comparison of nine studied defect in Sample 4 
between the ground truth and estimation using the model (5-10) 

Defect ID 
Ground Truth 

(mm) 

Prediction 

(mm) 

Error 

(mm) 

Percentage 

Error (%) 

Sample 4-1 7 6.91 0.09 1.29 

Sample 4-2 7 7.24 0.24 3.43 

Sample 4-3 7 6.17 0.83 11.86 

Sample 4-4 6 6.09 0.09 1.50 

Sample 4-5 6 5.63 0.37 6.17 

Sample 4-6 6 5.96 0.04 0.67 

Sample 4-7 5 5.00 0.00 0.00 

Sample 4-8 5 5.13 0.13 2.60 

Sample 4-9 5 5.87 0.87 17.40 

 

The experimental results in Table 5-3 (block-shaped defect) and Table 5-5 (flat-

bottom hole defect) reveal that the performance of defect thickness estimation of 

flat-bottom hole defect is better than block-shaped defect. When considering the 

method to create the predictive model, the model of block-shaped defect is 

established based on the correlated relationship of 𝑅-ℎ and 𝑅-𝑑, which are a non-

linear model and linear model, respectively. The model of flat-bottom hole defect 

is established based on the correlated relationship of 𝑅-𝑑 and 𝑅-𝑟, which are both 

linear models. From this observation, it is possible that the model established 

from the same model type (e.g., linear model & linear model) provides the 

performance better than the model established from the different model type 

(e.g., linear model & nonlinear model). 

 

5.5 Summary 

Different with most of degradation assessment research focusing on 

damage/defects detection and depth measurement, this thesis addresses the 

challenge to estimate the defect thickness based on a single-side inspection of 

pulsed thermography under the reflection mode. This thesis proposes to use the 

thermal reflection coefficient (𝑅) and measurable geometrical parameters of the 

damage, including size and depth, to estimate the thickness using a Nonlinear 
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Finite Impulse Response (NFIR) model. Applications of the proposed approach 

on three CFRP laminates show that: 

a. The proposed method considerably improves the degradation assessment 

performance by extending the measurement of damage/defects from two 

dimensions to three dimensions. 

b. For a specific material, the 𝑅 value is strongly correlated with the defect size, 

depth and thickness. It has been observed that the relationship of 𝑅 with the 

defect depth and the relationship of 𝑅 with the defect size are approximately 

linear, while that for 𝑅 and the defect thickness is approximately exponential. 

This observation allows deriving an empirical model to establish their 

independence, which enables the quantification of defect thickness using a 

single-side pulsed thermographic inspection. 

c. The identified NFIR models demonstrated the potential to estimate the defect 

thickness using 𝑅 and other measurable physical parameters. The Pearson 

Correlation Coefficients of the prediction for block defects and flat-bottom 

holes are 0.75 and 0.85, respectively. 

With this developed approach, the interlaminar bond integrity of composite joints 

can be better evaluated by accurately estimating the thin air-gap in the interface 

of dissimilar polymer composite materials. The single-side inspection not only 

reduces the inspection time but also extends the application on components 

where one side is not accessible. 

A potential disadvantage of this approach is that the air-gap thickness is a 

function of multiple correlated parameters, which may limit its application on 

irregular air-gap. One potential solution is to use the Principle Component 

Analysis to select the most important parameter to simplify the model or convert 

to a function of multiple independent parameters. 
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6 THREE-DIMENSIONAL DEFECT RECONSTRUCTION 

6.1 Introduction 

It has been observed that the results of most subsurface defect measurement 

methods such as Peak Slope Time (PST [73], [109]), Absolute Peak Slope Time 

(APST [77]), Logarithm Second Derivative (LSD [40]), Nonlinear System 

Identification (NSI [96]), and Least-Squares Fitting (LSF [76], [80]) methods are 

usually presented as 2D images. However, 2D visualisation is rather limited in 

representing and explaining the evolution and progression of a defect. Defects 

are typically not two-dimensional objects but evolve in 3D space over time. It is 

of great significance to predict the life of in-service components and to give 

feedback to design and maintenance [142]. 3D visualisation of inspected parts 

can provide a better understanding and more details of the defects and reduce 

operational time and improve quality control of production in the industry. For 

example, in the area of manufacturing, 3D images from computed tomography 

(CT) has been widely used to analyse the types of porosity defects occurred in 

the materials from castings [143], [144], [145], [146]. In the area of nuclear and 

aerospace industries, 3D visualisation is reconstructed from the digital X-ray 

images and has been used to view the location, shape and size of the defects 

like corrosion, delamination and crack, and evaluate the thickness of walls in the 

object of titanium aerospace investment casting [147], [148]. However, the X-rays 

technology is comparatively time-consuming [149], comes with potential health 

risks [150] to the user and is typically limited with respect to the maximum size of 

the parts to be analysed [137], [147], [151], [152], [153]. 

Only very few publications have studied the 3D reconstruction and visualisation 

of subsurface defects by pulsed thermographic inspection. Plotnikov and Winfree 

[93] visualised a 3D tomogram of the defects by using reversed time of the peak 

slope masked by the binary contrast image which is constructed by the thermal 

contrast method. Although this method can visualise the defects in the form of a 

3D image, it can visualise only the depth of the defect and cannot visualise the 

thickness of the defect. Ramirez-Granados et al. [92] proposed an approach for 

3D reconstruction of subsurface defects by using a finite-difference model. Firstly, 
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a non-defect nodal network is established with the properties and characteristics 

of the inspected object for detecting the inner defects. Next, the shape, size, 

depth, thickness, and location of subsurface defects are computed by means of 

the minimisation of a cost function and the determination of depth and a thickness 

function. After that, each non-defect node of the established nodal network is 

replaced with the computed defect node. This method requires the knowledge of 

a-priori properties of the defects such as thermal conductivity, density, and 

specific heat capacity at constant pressure, which are typically unknown in on-

site inspections. Elhassnaoui and Sahnoun [91] proposed a method for 3D 

reconstruction of defect shape located on the inaccessible back of a 

homogeneous material without the need for thermal properties such as thermal 

diffusivity. Based on thermal distribution, this method analyses thermal response 

on the object’s surface and computes defect distance (defect depth and sample 

thickness). It modifies the APST method [77] to evaluate defect distance of the 

object by dividing arbitrary two points from the sample surface to eliminate the 

thermal diffusivity. However, this method can only be applied to the 

characterisation of surface defects. 

Three-dimensional visualisation of hidden defects based on PT is promising, 

attractive but challenging. A direct approach using pulsed thermography could be 

conducting two inspections from both the front and back of a part. The defect 

depth for each inspection is calculated based on the aforementioned methods, 

by which means the defect thickness can be computed by considering the sample 

thickness. However, the deployment of this approach can be limited because 1) 

one side of the inspected component could be inaccessible e.g. an aircraft wing 

or fuselage; 2) the accuracy of measurement could be compromised if the defect 

thickness is very thin due to extreme closed values of defect depths from two 

inspections; 3) if the defect is too deep one side, the defect could be missed, and 

4) it introduces extra cost of inspection time. 

This chapter proposes a new three-dimensional subsurface defect reconstruction 

and visualisation method [99]. Several of the aforementioned problems can be 

solved by this proposed method. For instance, in the case of one side of the 
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component could not be accessible, the proposed method provides a single-side 

inspection method to evaluate it. For another example, when considering the 

inspected material, in the case of composite materials such as carbon fibre 

reinforced polymer (CFRP), it is very difficult to analyse and visualise subsurface 

defects by using directly general 3D heat transfer theory because it is an 

inhomogenous material which is compounded with several layers of polymer. The 

proposed method can also solve this problem by indirectly estimating 3D heat 

flow from the 1D heat transfer solution to reduce the complexity of 3D heat 

transfer analysis. In addition, a big amount of cost can be saved by the proposed 

method. Generally, a 3D subsurface defect could be visualised by using 3D 

image technology device such as 3D CT scanner which is very expensive, while 

the proposed method can use a general 2D image device technology which is 

cheaper to produce and visualise 3D images. The outline of this chapter is 

illustrated in Figure 6-1. 
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Figure 6-1 The outline of Chapter 6 

 

6.2 Methods 

This thesis proposes double-side inspection and single-side inspection methods 

to reconstruct and visualise 3D subsurface defect. 
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6.2.1 Double-side Inspection 

The method of double-side inspection reconstructs the 3D structure of defects by 

evaluating the defect depth (𝑑1 and 𝑑2) from both sides of the sample (front and 

back side). As seen in Figure 6-2 The side view of subsurface defects, the defect 

thickness (ℎ), at the position of 𝑥 and 𝑦, can be calculated by 

ℎ(𝑥, 𝑦) = 𝐿(𝑥, 𝑦) − (𝑑1(𝑥, 𝑦) + 𝑑2(𝑥, 𝑦)) (6-1) 

where ℎ(𝑥, 𝑦)  is the defect thickness, 𝐿(𝑥, 𝑦)  is the thickness of the sample, 

𝑑1(𝑥, 𝑦) is the defect depth from the top surface, and 𝑑2(𝑥, 𝑦) is defect depth from 

the bottom surface. The thickness of the sample can be measured by general 

measurement tools such as a ruler or Vernier callipers. Defect depth can be 

estimated by methods such as PST [73], [109], LSD [40], APST [77], NSI [96], 

LSF [76], [80], or NLSF [116] method. In this thesis, the NLSF method is 

employed to estimate the defect depth due to its fine performance. 

 

Figure 6-2 The side view of subsurface defects 

 

6.2.2 Single-side Inspection 

Although the double-side inspection is straightforward, there are a few limitations. 

This thesis introduces a novel single-side inspection approach to overcome these 

limitations. The proposed method estimates the defect thickness ℎ(𝑥, 𝑦)  by 

establishing a predictive model between ℎ, the defect depth 𝑑 (e.g. either 𝑑1 or 

𝑑2) estimated from a single-side inspection, thermal wave reflection coefficient 

(𝑅), and shortest distance from the boundary of the defect to the inspected point 

location 𝑝(𝑥, 𝑦) (𝐷𝑑𝑖𝑠), written as 
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ℎ(𝑥, 𝑦) = 𝑓(𝑅(𝑥, 𝑦), 𝑑(𝑥, 𝑦), 𝐷𝑑𝑖𝑠(𝑥, 𝑦)) (6-2) 

The defect thickness can then be inferred based on this model. The values of 

𝑑(𝑥, 𝑦)  and 𝐷𝑑𝑖𝑠(𝑥, 𝑦)  are achievable using the existing methods, but the 

challenge is to measure 𝑅(𝑥, 𝑦). In this thesis, the developed New Least-Squares 

Fitting method (NLSF) [116] is applied to estimate 𝑅 and 𝑑 simultaneously. 

The thermal wave reflection coefficient (𝑅) can be directly computed from the 

analytical model is written in the Equation (4-1) in Chapter 4. 

 

6.2.3 Inspection Process 

The single-side inspection and the double-side inspection can be described in the 

flowcharts as shown in Figure 6-3. For the single-side inspection, the first step is 

to select the region of interest (ROI), which aims to select a region for defect 

estimation and visualisation to reduce overall processing time. The ROI was 

selected manually in this thesis. The second step is defect measurement to obtain 

subsurface information of ROI including defect depth (𝑑), the shortest distance 

from the boundary of the defect to the inspecting point (𝐷𝑑𝑖𝑠), and the thermal 

wave reflection coefficient of the defect (𝑅), which are achieved by the NLSF 

method. The third step is noise reduction to enhance image quality (𝑅 image and 

𝑑 image), which is achieved by the application of a Median Filter [154] in this 

thesis. The fourth step is to establish the relationship model between ℎ, 𝑅, and 

𝐷𝑑𝑖𝑠, shown in Equation (6-2), based on the estimated parameters in the second 

step. The fifth step is to estimate the defect thickness based on the established 

model. The last step is to visualise the defect in the form of a 3D image, where 

the reconstructed defect (size, depth, thickness, and location of the defect) is 

fused with the dimension (width, length and thickness) of the sample to produce 

a volume image. This volume image is then rendered and displayed in the form 

of a 3D image. For the double-side inspection, most steps are similar to the 

single-side inspection except the second, the fourth, and the fifth step. In the 

second step, the sample’s thickness and defect depth of both side of the sample 

is required, whilst the defect depth from the single-side inspection requires one 
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side only. The fourth step is to align the position of the defect region between the 

front side and the backside and the fifth step is to estimate the defect thickness 

from Equation (6-1). 

 

(a) 

 

(b) 

Figure 6-3 Inspection process (a) single-side inspection (b) double-side inspection 

 

6.3 Experimental Studies 

6.3.1 Testing Sample 2 

Sample 2 in Chapter 5 was used in this study. The dimension of Sample 2 is 75 

mm × 230 mm × 8 mm, shown in Figure 5-4(a). It includes five-block defects with 

a thickness (ℎ) of 0.5 mm, 1.0 mm, 2.0 mm, 3.0 mm, and 4.0 mm, respectively, 

named Defect 1 to Defect 5. The distance between two adjacent defects is 30 

mm. The width (𝑟), length, and depth (𝑑) for all defects are 10 mm, 75 mm, and 

2 mm, respectively. The side view of Sample 2 is shown in Figure 5-4(b). This 

sample is aimed at studying the relationship between the thermal wave reflection 
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coefficient 𝑅(𝑥, 𝑦), defect thickness ℎ(𝑥, 𝑦), and the shortest distance from the 

boundary of the defect to the inspected point location 𝐷𝑑𝑖𝑠(𝑥, 𝑦) when the defect 

depth 𝑑(𝑥, 𝑦) is fixed. 

 

6.3.2 Testing Sample 5 

As a use case, Sample 5 was made from steel with a dimension of 210 mm × 240 

mm × 35 mm, as shown in Figure 6-4. There is an ‘S’ shape triangular air-gap 

through the sample. By measurement, at the top side of the sample, the defect is 

estimated to be triangular in shape, which has the base about 25 mm and the 

maximal thickness about 20 mm, illustrated in Figure 6-4(c). At the bottom side 

of the sample, the defect is also estimated to be triangular in shape, which has 

the base about 16 mm and the maximal thickness about 16 mm, illustrated in 

Figure 6-4(d). The sample was inspected at the flat side using the proposed 

single-side thermographic inspection, illustrated in Figure 6-4(b). 

 

(a) 
 

(b) 

 
(c) 

 
(d) 

Figure 6-4 Snapshots of Sample 5: a steel plate with triangle air-gap defects (a) the 
backside of the sample (b) the front side of the sample (c) the top side of the 
sample (d) the bottom side of the sample 
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6.3.3 Experimental Setup 

The configuration of the experiment is shown in Figure 3-3(a) in Chapter 3. The 

experiments were conducted using the Thermoscope FLIR SC7600 with two 

capacitor banks powered Xenon flash lamps mounted in an internally reflective 

hood, as shown in Figure 3-4 in Chapter 3. Considering the thickness of Sample 

2 and the low thermal diffusivity of CFRP, a sampling rate of 10 Hz was used and 

totally 900 frames (equivalent to 90 s) were captured after the flash. Considering 

the thickness of Sample 5 and the high thermal diffusivity of steel, a sampling rate 

of 50 Hz was used and totally 500 frames (equivalent to 10 s) were captured. 

 

6.4 Results and Discussion 

6.4.1 Results of Testing Sample 2 

6.4.1.1 Double-side Inspection 

In this experiment Defect 4 and Defect 5, with a thickness of 3 mm and 4 mm, 

respectively, were in the focus because they can be detected from both sides of 

the sample. Defect 1, Defect 2 and Defect 3 were not selected because the defect 

depth of the back of these defects is too deep (5.5 mm, 5.0 mm, and 4.0 mm, 

respectively) to measure considering the depth to width ratio of a defect. The 

NLSF method was applied to the selected regions to estimate the defect depth 

where the thermal diffusivity (α) was chosen as 0.5×10-6 m2/s. The estimated 

defect depth after reducing noise from inspection of two sides are shown in Figure 

6-5. Observation from the front of the part shows that the measured depths for 

Defect 4 and Defect 5 is similar. This is expected as both defects have a 2 mm 

depth, as illustrated in Figure 5-4. The depth map from the back shows that 

Defect 4 (light blue) is much deeper than Defect 5 (deep blue). In the data 

analysis process, the defect position at the front and the back of the part was 

aligned and registered. After that, the defect thickness was calculated by 

Equation (6-1). The estimated parameters including defect depths and thickness 

are shown in Table 6-1. It is observed that, on the front, the average of the 

estimated defect depth of Defect 4 is approximately identical to the design (2 mm) 
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with an error of 1%, while Defect 5 has about 10% error. For the back of the part, 

the average error of the estimated defect depth for Defect 4 and Defect 5 are 

around 18% and 16%, respectively. The computed defect thickness of Defect 4 

and Defect 5 are 3.55 mm and 4.50 mm, which have the percentage error of 

18.33% and 12.50%, respectively. It is observed that the performance of the 

double-side inspection method is better when the defect is thicker. Finally, the 

surface information (dimension of the sample) and subsurface information (defect 

depth and defect thickness) were used to build the 3D volume image and 

visualised in the form of a 3D image, as shown in Figure 6-6. It is clearly visible 

that Defect 5 is thicker than Defect 4, and the estimated 3D volume for both 

defects is close to the design shown in Figure 5-4. It should be noted that the z-

axis is scaled up to better visualise the detail of the defect surface. 

 

(a) 

 

(b) 

Figure 6-5 The estimated defect depth image of Sample 1 after reducing noise (a) 
at the front side (b) at the backside, where the left defect is Defect 4 and the right 
one is Defect 5 
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Table 6-1 Estimated values of Sample 1 from the double-side inspection method 

Defect ID 

Ground Truth (mm) 
Average of The Estimated Value 

(mm) 

Defect Depth Defect 
Thickness 

Defect Depth Defect 
Thickness Front Side Back Side Front Side Back Side 

𝒅𝟏 𝒅𝟐 𝒉 𝒅𝟏 𝒅𝟐 𝒉 

Defect 4 2.00 3.00 3.00 1.98±0.05 2.47±0.05 3.55±0.10 

Defect 5 2.00 2.00 4.00 1.82±0.07 1.68±0.06 4.50±0.10 

 

 

Figure 6-6 The 3D visualisation of Sample 1 from the double-side inspection 

 

6.4.1.2 Single-side Inspection 

Due to the large width of Sample 2 (230 mm), the defects of this sample suffer 

non-uniform heating for a single inspection, described in Section 5.3.2 in Chapter 

5, which could lead to unreliable results [140]. To reduce this effect, in this study, 

the sample has been captured five times, where each defect was placed on the 

centre of the camera’s view once. An area of the centralised defect with the size 

of 160×120 pixels for five data files was then cropped and merged into one file 

with a size of 160×600 pixels for easier analysis. Figure 6-7 shows a snapshot of 

the raw thermal image at time 23 s. The defects are labelled as “(1)”, “(2)”, “(3)”, 

“(4)”, and “(5)” to represent the defect thickness of 0.5 mm, 1.0 mm, 2.0 mm, 3.0 
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mm, and 4.0 mm, respectively. The ROI of each defect is about 10 mm × 10 mm 

(around 30×30 pixels), as highlighted in Figure 6-7, which are used for evaluating 

the performance of the proposed technique. In case of unknown defect, the 

region of defect which has smooth values of 𝑅 can be used for extracting data. 

 

Figure 6-7 The raw thermal image at frame 230 for Sample 2 after combining 5 
inspections, where the regions of interest are highlighted 

The relationship between defect thickness ( ℎ ) and thermal wave reflection 

coefficient (𝑅) requires to be established before the prediction of ℎ. To reduce the 

influence of the heat leaked to each opened side on the results, only a region of 

630 pixels on the middle area of each defect were sampled. Measured 𝑅 values 

were averaged (𝑹𝒂𝒗𝒆) and are shown in Table 6-2. 

Table 6-2 The average of estimated 𝑹 values in the middle area of each defect 

Defect ID 
The Designed 𝒉 

(mm) 
The averaged 𝑹 (𝑹𝒂𝒗𝒆) in the 
middle area of 6×30 pixels 

Defect 1 0.5 0.4765±0.0025 

Defect 2 1.0 0.5461±0.0037 

Defect 3 2.0 0.5858±0.0071 

Defect 4 3.0 0.6004±0.0034 

Defect 5 4.0 0.5940±0.0039 

 

The averaged 𝑅 values, denoted by 𝑅𝑎𝑣𝑒, in the middle area were used as the 

representative of 𝑅 to establish the 𝑅𝑎𝑣𝑒 vs ℎ relationship. It is observed that the 

averaged value of 𝑅 increases following the increase of defect thickness. This 

observation is expected because the heat is more difficult to be leaked through 

the 3D conduction around air-gap if the defect is thicker. As can be seen from the 

plot between 𝑅𝑎𝑣𝑒  and ℎ  in Figure 6-8, the associate is not linear but 
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approximately exponential. An exponential fitting was applied on them, and the 

relationship between 𝑅𝑎𝑣𝑒 and ℎ can be written as 

𝑅𝑎𝑣𝑒 = −0.2820𝑒
−ℎ

0.5898 + 0.5974 
(6-3) 

To estimate the value of ℎ using the measured 𝑅𝑎𝑣𝑒 , the model (6-3) can be 

reversed as 

ℎ = −0.5898𝑙𝑛
𝑅𝑎𝑣𝑒 − 0.5974

−0.2820
 (6-4) 

 

 

Figure 6-8 The plot of 𝑹𝒂𝒗𝒆 − 𝒉 curve of Sample 1 

It is observed that the curve of 𝑅-ℎ in Figure 6-8 is similar to Figure 5-10 in 

Chapter 5. Nevertheless, the value of 𝑅 is slightly different due to 𝑅 in Figure 6-8 

is averaged by the area of 630 pixels, whilst 𝑅 in Figure 5-10 is averaged by the 

area of 110 pixels. 

Figure 6-10 shows plots of estimated 𝑅 and 𝑑 of the cross-section at line 90 (see 

in Figure 6-9), where it can be clearly seen that the 𝑅 values are not consistent 

for one defect even though the five defects have a consistent thickness. It 

indicates that there are some other factors affected the 𝑅 value. It is suggested 

in Figure 6-10 that 𝑅 value at both sides of the defect’s boundary is less than the 

middle region. This observation could be caused by the fact that the heat around 
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the middle of the defect is more difficult to leak than that around the boundary of 

the defect. This issue must be addressed if the identified model from the regions 

of 6×30 pixels is applied to the ROI of 30×30 pixels. 

 

Figure 6-9 Snapshot at line 90 of the depth image and 𝑹 image after noise filtering 

 

 

Figure 6-10 Plots of estimated 𝑹 and 𝒅 of the cross-section at line 90 
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To improve the accuracy of 𝑅 estimation, the shortest distance from the boundary 

of the defect to the inspected point (𝐷𝑑𝑖𝑠), shown in Figure 6-2, is taken into 

account to correct the 𝑅 value. The re-calculated 𝑅 (𝑅𝑛𝑒𝑤) is a function of 𝑅 and 

𝐷𝑑𝑖𝑠 

𝑅𝑛𝑒𝑤 = 𝑓(𝑅, 𝐷𝑑𝑖𝑠) (6-5) 

This function can be approximated by a polynomial model, parameters of which 

can be estimated based on the known 𝐷𝑑𝑖𝑠. The estimated model is written as 

𝑅𝑛𝑒𝑤 = 0.2214 + 0.7413𝑅 − 0.0168𝐷𝑑𝑖𝑠 + 0.6135𝑅2 + 0.0011𝐷𝑑𝑖𝑠
2

− 0.0326𝑅𝐷𝑑𝑖𝑠 
(6-6) 

after that, the defect thickness can be reconstructed by 

ℎ = −0.5898𝑙𝑛
𝑅𝑛𝑒𝑤 − 0.5974

−0.2820
 (6-7) 

The average of the estimated defect thickness of each defect for the regions of 

30×30 pixels is shown in Table 6-3. It is suggested that the maximum error of the 

estimated depth for all defect is less than 13%. For Defect 2 to Defect 4, the error 

is less than 5%. It is interesting to observe that Defect 1 and Defect 5, which are 

close to the boundary of the sample, have a larger error than others, which could 

be caused by the manufacturing error. The average 𝑅 value increases following 

the increase of the estimated defect thickness (ℎ). The error of the estimated 

defect thickness is less than 19%, particularly for Defect 1 to Defect 4, the error 

is less than 10%. The large error of ℎ for Defect 5 is caused by the saturated 𝑅 

value, which is 0.53, the same as the 𝑅 value for Defect 4. The reconstructed 

defects for the regions of 30×30 pixels are visualised in Figure 6-11, which 

suggests that the proposed technique can effectively reconstruct the 3D structure 

of simple defects. The estimation of the bottom surface has an increasing error 

following the increment of defect thickness. 
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Table 6-3 Estimated values of Sample 1 from the single-side inspection method 

Defect ID 

Ground Truth 
(mm) 

Average of The Estimated Value Error (mm) 

𝒅 𝒉 𝒅 (mm) 𝒉 (mm) 𝑹 𝒅 𝒉 

Defect 1 2.00 0.50 1.74±0.05 0.45±0.01 0.41±0.06 0.26 0.05 

Defect 2 2.00 1.00 1.96±0.06 1.02±0.16 0.48±0.06 0.04 0.02 

Defect 3 2.00 2.00 1.91±0.05 2.15±0.38 0.51±0.07 0.09 0.15 

Defect 4 2.00 3.00 2.00±0.07 2.96±0.50 0.53±0.07 0.00 0.04 

Defect 5 2.00 4.00 1.79±0.06 3.25±1.04 0.53±0.06 0.21 0.75 

 

 

Figure 6-11 The 3D visualisation of the five defects of Sample 2 using the proposed 
single-side inspection 

 

In terms of the performance of single-side inspection method and double-side 

inspection method, the experimental results reveal that the double-side 

inspection method performs better in thicker defects such as Defect 5. The 

average error of the estimated defect thickness of Defect 5 by double-side 

inspection method is 12.50% whilst the single-side inspection method is 18.75%. 

However, in case of thin defect, the single-side inspection method performs better 

than double-side inspection method. The single-side inspection method can 

evaluate Defect 1 to Defect 3, which have thinner thickness, while the double-

side inspection method cannot evaluate them. 
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6.4.2 Results of Testing Sample 5 

Sample 5 was tested by the single-side inspection because the defect was too 

deep to measure from the other side. To find the relationship between 𝑅 and ℎ, 

𝑅 values in three areas with a size of 100×60 pixels were sampled as highlighted 

in Figure 6-12. It should be pointed out that the 𝑅 values of 100 vertical pixels 

were averaged. Figure 6-13 plots the cross-section at line 200 of the estimated 𝑅 

and 𝑑, where the three selected areas are highlighted. 

 

 

Figure 6-12 The averaged 𝑹  region over the top side triangle defect area for 
Sample 5 
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Figure 6-13 Plots of estimated 𝑹 and 𝒅 of the cross-section at line 200 of Sample 
5 

 

It can be observed that the middle area has the highest value of 𝑅, then the left 

one and the right now. Proven in the experiments of Sample 2, a higher value of 

𝑅 suggests a thicker defect. As illustrated in Figure 6-4, the maximal thickness of 

the left defect is about 20 mm, and the right one is about 16 mm. Based on the 

observation of the 𝑅  values, the maximum thickness of the middle area is 

assumed to be 24 mm. A numerical model was then established to represent the 

relationship between 𝑅 and ℎ, written as 

ℎ = (1.0698 ∙ 106)𝑒
𝑅

0.1050∙106 − 1.0698 ∙ 106 
(6-8) 

 

As the last step, the 3D volume image was reconstructed by combing the surface 

dimension (size and thickness of the sample) and subsurface information (defect 

depth and defect thickness) and the result is shown in Figure 6-14. 
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Figure 6-14 3D defect visualisation of Sample 5 using the proposed single-side 
inspection 

 

The triangular ‘S’ shape defect can be clearly observed which matches the 

appearance of the defect shown in Figure 6-4(c) and Figure 6-4(d). To validate 

the result using other NDT methods, Figure 6-15 shows the comparison of the 

2D image of the defect from pulsed thermography and X-ray. It can be seen that 

the defect shape of both images is similar. A quantitative comparison between 

these two imaging modalities in terms of 3D defect reconstruction was not 

conducted in this thesis due to the distortion of thermal images caused by the 

lens. A further study is required to correct this distortion before conducting a 

comprehensive comparison. 
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(a) 

 

(b) 

 

(c) 

Figure 6-15 The inspection results in the form of a 2D image for Sample 5 from (a) 
pulsed thermography (b) X-ray (c) overlay of two modalities 
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6.5 Summary 

This thesis has developed a novel 3D reconstruction and visualisation approach 

for subsurface defect based on one single-side PT inspection under the reflection 

mode. The defect thickness, a key parameter to reconstruct defect in a 3D form, 

was measured through estimating thermal wave reflection coefficient value and 

establishing its relationship with defect thickness using an empirical model. For 

the comparison purpose, this thesis also introduces a double-side inspection 

approach that estimates the defect thickness by measuring the defect depths 

from both sides of a part. And then the estimated thickness, depth and size of the 

defect, including the dimension of the part were combined and visualised in the 

form of a 3D image. 

The proposed technique has been tested on two samples with artificial defects 

on CFRP and steel materials, and the results show that: 

a. In comparison with the double-side inspection, the proposed single-side 

inspection is not only faster but also increases the applicability of 3D defect 

reconstruction. There are many cases where industrial components can be 

accessed only on one side, such as an aeroplane wing. Furthermore, some 

defects are too deep to detect or measure the depth, such as Defect 1-3 in 

Sample 2 and Sample 5, which limits the applications of the double-side 

inspection. 

b. For Sample 2, the single-side inspection can measure the defect thickness 

with an error of less than 10% if the thickness is less than 3 mm. The error 

increases if the thickness increases. For example, the error for the defect with 

a thickness of 4 mm is 19%. 

c. The double-side inspection can produce more accurate thickness 

measurement if the defect is thick. For defects with a thin thickness, the single-

side inspection is more appropriate. 

d. The thermal wave reflection coefficient is not only related to the thickness of 

defect but also related to the shortest distance to the defect boundary. 

e. The proposed 3D defect reconstruction solution can effectively assess the 

defect or damage in CFRP and steel by offering more details of the structure 

and friendly visualisation. 
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A drawback of this method is that the defect thickness is a function of multiple 

correlated parameters, which may constrain its application on irregular shape 

defects. Based on experiments in this research, it is also discovered that the 

model to estimate defect thickens is subject to materials. Besides, changing of 

material properties of tested specimen and defect shape may also have an impact 

on the precision of the model and then the estimation of defect thickness. To fully 

explore its potential and improve the applicability of the proposed method, a 

further study is required by considering different materials with a variety of defect 

shape, size, depth and thickness. 
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7 CONCLUSIONS 

This thesis has developed a novel three-dimensional subsurface defect 

reconstruction and visualisation approach with a single-side inspection based on 

the pulsed thermography method. This chapter describes the accomplishment, 

explains challenges, highlights major findings, summarises main contributions, 

discusses limitations, and suggests recommendations of the thesis for the future 

work. 

 

7.1 Accomplishment of The Research Objectives 

This section discusses the challenges and achievement of the research 

objectives identified in Chapter 1. The description of the corresponding 

achievement in each objective is discussed below. 

 

7.1.1 Objective 1 

The aim of this objective is to identify the most appropriate NDT method for 3D 

subsurface defect representation. The initial objective was focused on 

overviewing and understanding the fundamental knowledge of NDT methods 

such as ultrasonic testing and infrared and thermal testing. To find the best NDT 

method to achieve the aim of this thesis, the weaknesses and strengths of the 

classical NDT methods were compared. The factors used for the consideration 

are the type of materials (e.g. homogeneous or inhomogeneous material, and 

metallic or non-metallic), the type of defects, location of defects (e.g. inner and 

outer surface), inspection time, and cost. The main target of this thesis is to 

advance the inspection of subsurface defect of industrial components. This thesis 

especially focuses on composite materials, such as carbon fibre-reinforced 

polymer (CFRP), which is widely used in aerospace, automotive and 

manufacturing industry. It has been identified that the most suitable and reliable 

NDT method for this purpose is infrared and thermal testing (IRT). 
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In order to achieve this objective, the active thermography techniques were 

reviewed. Based on the properties of the main materials used in this thesis, 

pulsed thermography, lock-in thermography, and vibro-thermography were 

reviewed. Summarily, this thesis selected the pulsed thermography under the 

reflection mode because this technique requires only a short pulse from flash 

lamps to heat the object’s surface which consumes less time of inspection than 

lock-in thermography. Vibro-thermography is neglected because this technique 

requires a transducer to excite the object, which needs to contact the object. 

After pulsed thermography is selected, a review to find the most appropriate 

method to represent the subsurface defect in the form of 3D images has been 

performed. The methods of 3D subsurface defect representation, defect 

detection, and depth measurement have been reviewed. From the review, there 

is no method able to directly perform for three-dimensional subsurface defect 

reconstruction and visualisation. It is found that there are very limited reports on 

this topic. Even for the published work, most of the studies were conducted in a 

simulation environment. 

 

7.1.2 Objective 2 

This objective aims to determine the best configuration of the acquisition system 

for the experiments in this thesis. The main equipment of the pulsed 

thermography configuration consists of infrared camera/video, flash lamps, 

controller, computer and software. Commonly, limitations of equipment, device, 

or system can make some issues or make more difficult to experiment. One 

configuration in this system is the number of frames to be captured for analysis. 

The number of frames is important to the experiment and data analysis because, 

if the number of frames is too less or not enough, the analysed result could be 

incorrect. 

The suitable data can help better analyse the data, reduce the complexity of the 

inspection, increase overall performance, and decrease the operating time. In this 

thesis, the raw data is defined that raw digital temperature data from the infrared 

camera. The best quality means that the most suitable data for three-dimensional 
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subsurface defect reconstruction and visualisation approach. This objective was 

achieved through heavily and repeatedly experiments. To obtain the best raw 

thermal data, several experimental parameters have been taken into account, 

including frame rate, duration time of the capture, the distance between the 

sample and the camera lens, the amount of excitation energy, and the sample’s 

thickness. The experiments were set up systematically, and variable and factors 

were controlled precisely. For instance, to test the effects of frame rate, all other 

factors were fixed and only the frame rate is varied. 

In summary, the workpiece was placed in front of the infrared camera’s line of 

sight at a distance of 250 mm from the lens. The applied energy is approximately 

2 kJ over the inspection area of approximately 160 mm × 200 mm. The suitable 

frame rate of the capture for the CFRP specimen is 10 Hz or 25 Hz and for the 

metallic specimen is 25 Hz or 50 Hz. The length of data capture depends on the 

sample’s thickness and defect depth. 

 

7.1.3 Objective 3 

This objective is to estimate essential parameters of defect for later 3D 

reconstruction. In order to achieve this objective, first of all, the state-of-the-art 

methods relative to defect detection and depth measurement were studied. It was 

found that there is no method that can directly be used for this thesis because 

most of them can perform depth measurement but not thickness measurement. 

Thus, a new method to perform for defect thickness measurement is needed. The 

performance of the state-of-the-art methods was compared under a numerical 

simulation environment. From the comparison, it has been identified that the 

least-squares fitting method (LSF) provided the high accuracy of depth 

measurement and robustness to noise. This method is based on a modification 

of the heat transfer function. From the analysis of the LSF method, it is found that 

the estimation of the thermal wave reflection coefficient can not only improve the 

accuracy of depth measurement but also estimate the defect thickness. However, 

the LSF method sets the thermal wave reflection coefficient with a constant value 

of one. From the theory, this value can vary from zero to one depending on 
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several factors such as the size of the air-gap defect and materials inside the 

defect. Consequently, the hypothesis is that the thermal wave reflection 

coefficient value has some relations with the defect depth and thickness. To test 

this hypothesis, the new least-squares fitting (NLSF) method established on the 

LSF method has been developed. The experimental results support the 

hypothesis. It is concluded that the improvement of the accuracy of depth 

measurement and the thickness estimation can be achieved by the developed 

NLSF method. 

In addition, it was found that most defect depth measurement methods based on 

polynomial fitting have an over-fitting issue. Thus, a nonlinear system 

identification method (NSI) method to measure the depth was developed to tackle 

this issue. This method can improve the reliability and confidence level of defect 

depth measurement in a more automatic and flexible manner. 

 

7.1.4 Objective 4 

This objective is to develop a method to represent the subsurface defect in the 

form of 3D images. Most defect depth measurement methods can measure 

defect size with only one side inspection. However, for measuring defect 

thickness, they can calculate the defect thickness from defect depth based on 

double-side inspection. In some situations, access to both sides of the sample 

could be impossible due to the limitation of space. To solve this limitation, 

estimating the defect thickness with a single-side inspection is a solution. 

This objective was fulfilled by using the developed novel defect depth 

measurement method, named new least-squares fitting (NLSF) method. Based 

on the assumption that the defect thickness is related to the thermal wave 

reflection coefficient, a systematic experiment was set up. The specimens for the 

experiment were made from carbon fibre-reinforced polymer. The artificial 

defects were designed in different defect thickness and depth, both of semi-close 

air-gap (block defect) and open air-gap (flat bottom defect). From the 

experimental results, the relationship between the defect thickness and thermal 

wave reflection coefficient was established and represented by a mathematic 
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model. The reconstructed defect thickness, the defect depth, the defect size, and 

the sample dimension were then merged and converted to a volume image to 

represent the 3D subsurface defect images. 

 

7.1.5 Objective 5 

This objective was achieved through three processes of validation: model 

simulation, experimental studies, and a use case. In the first stage, experiments 

in numerical simulation environment were taken action to study and test the 

characteristics and capability of each state-of-the-art defect depth measurement 

method (PST, LSD, APST, and LSF) and the developed novel method (NLSF). 

In such an environment, variables are adjusted and controlled easily such as 

noise adjustment (real experiment environment are much more difficult to adjust 

and control noise level and thermal wave reflection coefficient value). Several 

noise levels and thermal wave reflection coefficient values were simulated to 

compare the performance, accuracy, and precision of each defect depth 

measurement method. The comparison results in numerical simulation can imply 

the overall performance of each method. In term of principle, the results from the 

comparison from numerical simulation can indicate that the developed method 

has the overall highest performance. 

Results from numerical simulation can be different from the real environment. In 

order to validate the results, the real experiment environment was co-operated. 

A sample with artificial defects was created to test the performance of the 

developed defect depth measurement method. The LSF method, which is the 

best existing method from the overall tested results and based on the same 

concept of a heat transfer solution, was chosen to compare the results. The 

experimental results confirm that the developed NLSF method has the highest 

accuracy of depth measurement against the ground truth. Collectively, the results 

from both numerical simulation environment and real experiment environment 

support that the developed defect depth measurement method is superior to 

existing methods. 
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The developed method was also tested for defect thickness estimation. To test 

the thickness estimation of the subsurface defect, samples which compound with 

different defect depth and thickness were created. The relationship between the 

thermal wave reflection coefficient and the defect thickness was examined, 

plotted, and established a model. The Pearson correlation coefficient (PCC) was 

used as a tool to validate the examined relationship. After the proposed algorithm 

was ensured, it then was applied to test with a use case. The method was used 

to inspect a steel sample with triangular air-gap defect inside. The tested results 

successfully demonstrated that the proposed solution can detect and visualise 

the hidden triangular shape of the defect. It is noted that the models for different 

materials and types of defect are different, but the method to examine the 

relationship is the same. 

 

7.2 Conclusions 

The overall conclusions of this thesis can be highlighted below: 

(1) This thesis proposed a new method to reconstruct a three-dimensional 

subsurface defect by using thermal wave reflection coefficient value based on 

optical pulsed thermography with a single-side inspection. 

(2) The three-dimensional subsurface defect reconstruction is achieved through 

three main steps: defect depth measurement, defect thickness estimation, 

and 3D defect reconstruction. 

(3) The proposed method is tested and validated by model simulations, 

experimental studies, and a use case. 

(4) The used samples in this thesis consist of four carbon fibre reinforced polymer 

(CFRP) samples with different artificial defect size, defect depth, and defect 

thickness, and a steel sample with a ‘s’ shape triangular air-gap inside. 

(5) Under the model simulations, even with the noise level of 25 dB, the averaged 

percentage error of the proposed defect depth measurement method is less 

than 0.25%. 
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(6) Under the experimental studies, the averaged percentage error of defect 

thickness estimation is less than 10% when the defect thickness is no more 

than 3 mm. 

 

7.3 Major Findings 

The major findings of this thesis can be highlighted below: 

(1) The determination of thermal wave reflection coefficient value can improve 

the overall performance of defect depth measurement. 

(2) In case of semi-close defect and open defect, there are some relationship 

between thermal wave reflection coefficient, defect size, defect depth, and 

defect thickness. 

(3) At the same size and depth of block air-gap defect, thermal wave reflection 

coefficient has a trend to increase following the increase of defect thickness. 

The value of thermal wave reflection coefficient of thicker defect is more than 

thinner defect. 

(4) The relationship between thermal wave reflection coefficient, defect size, 

defect depth, and defect thickness can be applied to reconstruct subsurface 

defect in the form of 3D image. 

 

7.4 Contributions to Knowledge 

The main contributions of this thesis can be summarised below: 

(1) The over-fitting problem can be solved. A polynomial model with too low order 

cannot sufficiently fit the observed data, and consequently, depth estimation 

maybe not sufficiently accurate. While a model with too high order may fit the 

observed data too well to model the noise rather than the underlying 

relationship. The NSI method provides the optimal order for model fitting 

automatically, which significantly deskills the data analysis process. In 

addition, the performance of depth measurement against heavy noise is 

improved dramatically. 
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(2) The accuracy of defect depth measurement can be improved. The NLSF 

method is established through introducing a new heat transfer model that 

includes multiple physical parameters to better describe the observed thermal 

behaviour in pulsed thermography inspection. A modified analytical modelling 

with five parameters is introduced to better fit the observed temperature curve 

using a nonlinear optimisation technique. This method is not only able to 

estimate the defect depth more accurately but also able to estimate the 

thermal wave reflection coefficient (𝑅) directly at the same time. The thermal 

wave reflection coefficient is an important parameter to build the 3D 

subsurface images. 

(3) The defect thickness can be quantified by a single-side inspection. The 

introduced single-side inspection method not only reduces the inspection time 

but also extends the application on component where one side is not 

accessible. 

(4) The hidden defect inside both homogeneous material and inhomogeneous 

material can be reconstructed and visualised in the form of 3D images. In 

general, three-dimensional heat transfer solution is used to analyse the 3D 

heat flow for homogeneous material (e.g. steel). It is very difficult and complex 

to apply it on inhomogeneous material (e.g. CFRP). The developed method 

reduced the complexity by introducing a modified one-dimensional heat 

transfer function to approximate the three-dimensional heat transfer function. 

To produce the 3D image of subsurface defect, the 3D imaging technology device 

(expensive price) is usually used to scan the object such as 3D CT scan. The 

proposed technique in this thesis can use the 2D imaging device technology 

(relatively low cost) to produce and visualise the 3D image of defects. 

 

7.5 Research Limitations 

The aim and objectives of the thesis were achieved completely, however, there 

are some limitations relating to the research, which are described below: 

(1) The proposed defect depth measurement method has been modified from an 

equation which commonly used for homogenous materials. To test with 
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inhomogeneous materials or porous materials, there are some potential error 

due to the heat may not be spread consistently in these materials. 

(2) The accuracy of defect depth measurement of the NLSF method depends on 

data length. The time when maximal temperature contrast between the 

considered defect pixel and the reference pixel from the non-defective area 

was used to determine the data length. The depth measurement in the non-

defective area needs more data than the defective area. Measurement of 

deep defect needs more data length than shallow defect. Furthermore, the 

efficiency of the NLSF method is affected by the selection of parameters 

bounds before applying the optimisation technique. Setting the parameter 

bounds and the initial values far from the ground truth could be a solution to 

increase the computational time. 

(3) The defect thickness is a function of multiple correlated parameters, which 

may constrain its application on irregular shape of defects. The model to 

estimate the defect thickness is subject to materials. Besides, changing of 

material properties of tested sample and defect shape may also have an 

impact on the precision of the used model and then the estimation of defect 

thickness. 

(4) The performance of the identified models of the defect thickness estimation 

using the NLSF method is limited to the produced specimens. The change of 

materials or defect shape may have an influence on the results. To fully 

explore its potential and improve the versatility of the identified model, further 

study is required by considering different materials with a variety of defect 

shape, size, depth, and thickness. 

(5) The CFRP samples were produced from local manufacturing in the university. 

The preciseness of production could be slightly less than the high standard of 

manufacturing. 

(6) The visualised 3D images, which is in the form of a volume image, was 

reconstructed from the defect size, defect depth, defect thickness, and 

sample’s dimension. This process consumes a lot of computer memory if the 

tested sample is large. 
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7.6 Recommendation for Future Work 

This thesis shows outcomes of using pulsed thermography with single-side 

inspection method to reconstruct the subsurface defect in the form of 3D image. 

However, there are some issues need to be further addressed. 

Recommendations for future work are suggested below: 

(1) Quality improvement of the testing samples: 

Samples quality can be improved to meet the high standard of manufacturing. 

High quality of sample can further refine the validation of the proposed 

technique. 

(2) Testing Addition of material samples and artificial defects: 

More CFRP sample and new material sample (e.g., steel) with different defect 

types, defect size, defect thickness, and defect shape can be tested and 

evaluated to make a more comprehensive assessment of the proposed 

technique. In this thesis, basic defect shape (rectangle and triangle) were 

tested and visualised in the form of 3D images. More complex defect shape 

can be experimented to test the flexibility and reliability of the proposed 

method. Including, more validation of their visualisation is recommended. 

(3) More inspection technique comparison: 

The experimental results can be validated and compared quantitatively with 

other NDT methods such as ultrasonic testing or radiographic testing. The 

experiments in this thesis were only tested by pulsed thermography under the 

reflection mode, other infrared thermographic inspection technique such as 

long pulse thermography, lock-in thermography, and eddy current pulsed 

thermography, can be experimented. 

(4) Visualisation Improvement of the reconstructed three-dimensional defect: 

The reconstructed 3D defect in this thesis is visualised in the form of a 3D box 

view without any outer surface texture. The visualisation of the outer surface 

can be improved. For example, the 3D subsurface defect can merge with real 

3D sample’s surface image such as using 3D scanner or 3D camera to make 

more beautiful. 
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