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Localization of user equipment (UE) in mobile communication networks has been
supported from the early stages of 3rd generation partnership project (3GPP). With
5th Generation (5G) and its target use cases, localization is increasingly gaining
importance. Integrated sensing and localization in 6th Generation (6G) networks
promise the introduction of more efficient networks and compelling applications
to be developed.

Many use cases such as factories of future, healthcare, autonomous vehicles,
energy, and urban environment require not only low latency, low jitter, and high
availability data transmission applications that include closed-loop control on one
side and ultra-high data rate communication applications that include video or
large sensor data traffic on the other side, but also localization accuracy with a pre-
cision of up to 1 mm that would be an essential enabler for opening up a lot of new
applications.

5G localization systems utilize received signal strength (RSS), time-of-arrival
(ToA), and angle-of-arrival (AoA) technologies with sub-6 GHz, mmWave, and
optical wireless communication (OWC) for estimating position of UE, whereas
simultaneous localization and mapping (SLAM) systems could combine the uti-
lization of communication technologies such as orthogonal frequency division
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Figure 4.1. Expected sensing use cases in an Industry 4.0.

multiplexing (OFDM), orthogonal time frequency space (OTFS), OTFS-like, or
frequency-modulated continuous wave (FMCW) modulation with sensing tech-
nologies such as terahertz (THz) beam technologies to sense point cloud of its envi-
ronment by identifying landmarks for estimating position of UE. Essentially, the
plurality of multiple-sensing technologies and multiple-sensing nodes will ensure
the continued ability to obtain localization of UE despite the occurrence of any
obstructions.

Figure 4.1 depicts expected sensing use cases in an Industry 4.0 setting, where,
e.g., the localization accuracy requirement for automated guided vehicles (AGVs)
and collaborative drones is 1 cm every 1 s, for augmented reality (AR) headsets it is
1 mm every 100 ms, for collaborating mobile robots (cobots) it is 1 mm with cycle
time of motion control function of 1 ms, synchronicity of 10 ns, and for motion,
temperature, humidity, etc., sensors is 10 cm every 1 to 10 s, whilst all require
the provision of localization with 99.99% reliability. The motivation for using 6G
mobile networks for localization as opposed to a dedicated radar/LIDAR system is
the pervasiveness of mobile networks means that they can be applied universally and
can employ the economies of scale to produce new and cheaper pervasive services
that use high accuracy localization. The best LIDAR systems can obtain a precision
from between 0.5 cm over 200 m (Ouster OS1) [1] to 2 cm over 400 m (Ouster
OS2) [2] accuracy, which is an indication of what accuracy can be expected from a
6G communication and sensing system.

The sensing stratum uses the control plane for issuing reference signals for mea-
suring RSS, ToA, and AoA for scheduling measurement frequency and accuracy
for UE, the management plane for providing administrative data for computing
UE position from distance measurements, and the vertical application Application
Programming Interface (API) for accessing the UE position, see Figure 2.3 in
Chapter 2.
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In particular, highly advanced industrial environments will present significant
challenges even for 5G specifications (up to Release 18 3GPP specifications), span-
ning congestion, interference, security and safety concerns, high power consump-
tion, restricted propagation, poor location accuracy within the radio, and core
backbone communication networks for the massive IoT use cases, especially inside
buildings. 6G is preparing a new solution consisting of a combination of artifi-
cial intelligence (AI) methods with new communication technologies, potentially
extending to OWC and THz to perform resource allocation over and beyond mas-
sive machine-type communications and to enhance performance with regard to
capacity, reliability, latency, and localization accuracy. Examples of localization in
industry are its use with video guides for facilitating maintenance of equipment
and graphics superimposed on AR field of view of a factory or warehouse scene for
the accurate location of electric, gas, and pneumatic facilities; mobile service robots
in airports for physically guiding passengers through airport; and for AGV robots
for carrying passenger luggage between baggage handling conveyor belt locations
in airports [3].

6G and its visionary scenarios continue this trend and look at localization that
is even more accurate and has even stricter latency requirements [4]. 6G SLAM
will require multiple access technologies, such as sub-6 GHz, mmWave, sub-THz
for RSS, Time Difference of Arrival (TDoA), and AoA localization, combined with
sub-6 GHz sensing to produce a point cloud for producing a digital twin for updat-
ing the digital twin for obtaining location from environmental landmarks. Com-
putational offloading such as on a multi-access edge computing (MEC) cloud is
required for producing location from all these technologies using AI, for example,
to recognize location from landmarks and artificial intelligence/machine learning
(AI/ML), for example, to Kalman filtering to predict position and trajectory from
measurements. This will provide novel and enhanced sensing and localization ser-
vices leveraging on the positioning information of the users and their surroundings,
for instance for merged reality or digital twins. For this, 6G will primarily act as a
connector between the sensors and the users, e.g., with sensor fusion, where sensor
data from different modalities are combined. However, 6G may also play a role in
storing, aggregating, and analysing the sensor data before providing the mapping
information to the user.

Another aspect of positioning and sensing in 6G is the possibility to incorpo-
rate the sensing data into the network operations. With an accurate map of the
surroundings, the locations of the users and various stationary and moving obsta-
cles, the user mobility, and optimal beam pattern can be predicted, improving the
performance and resource utilization.

Finally, the research into 6G engenders a paradigm shift in the radio inter-
face. For the past century, radio waves have been used for either communication
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or sensing, i.e., radar. However, as the radio communication begins using higher
radio frequencies (>100 GHz), the potential sensing accuracies become viable. By
repurposing the radio interface of the mobile network from only communication
to joint communication and sensing, the ubiquity of the mobile devices and net-
works can provide a cost-efficient and widely spread sensing resource that can be
used to enhance user services or network operations.

Section 4.1 presents the plurality of multiple sensing techniques to produce
extremely accurate sensing information to a user to enhance services using, e.g.,
sensor fusion, i.e., 6G primarily acts to connect the sensors with user. Section 4.2
presents the plurality of multiple sensing nodes to enhance connectivity. Section 4.3
presents the repurposing of the radio interface to also act as a radar (i.e., Joint Com-
munication and Sensing (JCAS)). All these technologies will ensure the continued
localization of UE despite the occurrence of any obstructions.

4.1 Providing Extremely Accurate Sensing

4.1.1 Sub-1 cm Location Accuracy Using Sensor Fusion

Localization of UEs using ToA from sub-6 GHz wireless and RSS from optical wire-
less infrared techniques can be used to obtain an accuracy of less than 1 cm; however,
it is highly dependent on the continuous direct line of sight access between the gNB
access points (APs) and the UE. If there is no direct line of sight access to four or
more gNB APs, then location ambiguity is introduced, and so other techniques can
be used to maintain localization such as dead reckoning from inertial measurement
unit (IMU), AoA from received radio signatures, iterative multi-lateration, or posi-
tion from landmarks. The received radio signatures estimate AoA from more than
two APs or AoA and distance from one AP, so that some forms of interim measures
for obtaining location can continue to be made. Distance and speed of UE can be
estimated using OTFS modulation from one AP due to its operation in the delay
and Doppler domain as opposed to using OFDM, which operates in the time and
frequency domains. If there is no direct line of sight access to any 6gNB APs, then
position from landmarks calculates position from at least four landmarks identified
from within point cloud data of a sensed environment obtained, for example, from
a 6G sensing/LIDAR system and/or 360-degree image.

4.1.1.1 Distance measurement and localization using AI

3D localization using RSS or TDoA requires line-of-sight (LoS) time of flight (ToF)
measurements to picosecond accuracy for estimating distance to mm accuracy from
at least four accurately located 6gNB APs; otherwise, inaccuracies and ambiguities
are obtained where more than one solution is produced. LoS propagation paths to
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each of these APs may not always be available as a result of incidental occlusion
from moving objects, so a strategy of providing more, cheaper APs for providing
alternative means for obtaining location and alternative methods using fewer APs
are required such as AoA, which only requires two APs, since two lines intersect at
or close to a point, or one AP and a distance, since a line and a distance define a
point on the line.

In order to design such a system, a digital twin was obtained from 3D laser
measurements in a real factory, and a ray tracing (RT) model was used to gener-
ate a rich data set of point cloud data, which was converted into a Siteviewer or
Winprop CAD “digital twin” model, which uses a deterministic methodology to
predict radio propagation of THz and mmWave frequencies based on the geomet-
rical theory of propagation (GTP) that takes into account geometrical properties
of the environment and propagation parameters such as ToF, direction of arrival
(DoA), and direction of departure (DoD) [5].

The beam scheduler implements intelligent beam steering that, using an antenna
array, can steer beams from 6gNB RUs to UE locations efficiently based on inter-
preted channel impulse response (CIR) knowledge of uplink isotropic transmissions
from uplink UE. Then, it optimizes the beam direction using reinforcement lean-
ing (RL) to maximize the SINR, and when the path between the transmitter and
receiver is broken through an obstruction, it immediately finds and uses alternative
secondary paths to steer the beam between the transmitter and receiver by avoiding
the obstruction. The optimized beam direction from two BSs can also be used to
obtain the location of UE locations.

The beamforming vector is obtained through a deep neural network (DNN)
by using predicted digital twin isotropic transmissions from UE in a grid over the
coverage area, and the predicted digital twin measured impulse response at each
6gNB RU receiver of four polarized transmissions and received power that acts
as input information to train a DNN. Four polarizations were used to have more
flexibility in terms of data generation for the training of AI, implying that the more
polarizations the better for the AI training.

The beamform codebook index is the set of beamform vectors comprising of
steering angles at the receiver of different alternative secondary paths to steer
the beam between the transmitter and receiver by avoiding any obstruction.
In the absence of a real environment, the beamforming power control and interfer-
ence coordination are jointly carried out on a digital twin to enhance the perfor-
mance of the 5G network. The network comprises of serving gNBs and one inter-
fering gNB as shown in Figure 4.2. The deep reinforcement learning-neural net-
work (DRL-NN) is modelled for the downlink scenario in which a gNB is serving
a UE. The gNBs are a fixed, known distance apart, and different UEs are uniformly
distributed in a particular service area. Also, the users are moving at a fixed speed.
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Figure 4.2. Radio beam control.

An UE is served by a maximum of one gNB. Hybrid beamforming for the down-
link data transmission is employed to overcome the problem of high propagation
loss.

RL is then to optimize the beam direction, whose state space, action space,
reward, and learning algorithm are defined in [5]. Initial simulation is performed
on MATLAB 2021a siteviewer for radio transmission (RT) using site viewer and
simultaneous channel generation [6], but it could equally well have used Winprop,
which models more accurate geometries and accommodates more surface prop-
erties [5]. The output of RT is fed for channel generation, which in turn pro-
duces input for the DNN for training. For RT and channel generation, differ-
ent users’ locations for fixed 6gNB RU positions are considered. Channel param-
eters vary with respect to varying user locations. Therefore, DNN is trained to
different channel parameters, which in turn are dependent on user location. The
DNN is trained on python AI module and is trained for efficient beamforming
of the data towards the user. Post-training and during the working phase, the
system performs beam scanning to obtain the channel parameters based on user
locations. Beamforming weights are adjusted from channel parameters to form
the beam pointing towards the current user location. In this way, based on the
obtained channel parameters, the user locations could be estimated [5]. If a beam-
former steers the main beam in a particular direction (θ , ϕ), then the directional
accuracy is defined as ±δθ , ±δϕ from the maximum signal-to-noise ratio (SNR)
of the main lobe. The proposed deep learning integrated reinforcement learning
(DLIRL) beamforming has an angle-of-departure (AoD) accuracy towards the UE
location with a deviation of ±2◦, whereas RL has a deviation of ±3◦ and DNN’s
deviation is ±5◦ [6].

4.1.1.2 Distance measurement using TDoA on mmWave Networks

The accurate 3D location of the 5G UE is calculated by the use of ToA mea-
surements from at least four different locations and then exercising triangulation
techniques as shown in Figure 4.3. In order to reach the required 1 cm accuracy, it



Providing Extremely Accurate Sensing 127

O-DU

Channel
Es�ma�on

and ToA
Rel to 

common
Ref

synchronizat
ion

AI
Localiza�on
Algorithm

O-RU

Test
UE

Calibra�on
UE

Rx

Tx

Rx1

Rx2

Rx3

Rx4

UE
Tx

Ref
Tx

5 meter
coax

5 meter
coax

5G

5G

Figure 4.3. Setup for ultra-accurate UE distance measurement.

is required to measure the ToA at accuracy levels of ∼33 picoseconds (calculated
from 1 cm/speed of light).

The setup that is used to measure the test UE location consists of the O-RU
and O-DU and the localization measurement algorithm application installed on
an X86-based server. The O-RU is configured in a loop-back mode, which enables
it to transmit 5G OFDM pseudo-random noise (PN) signals (Tx) at 3.5 GHz
similar to the UE transmissions. These Tx signals are connected via coax to two
patch antennas that simulate the test UE and the reference UE. The reference UE
is a UE with a known location that is used to calibrate the accurate test UE loca-
tion measurement. The test antenna is located on a scanner that can accurately
move its position to new locations in space. The 5G signals transmitted over the
air at 3.5 GHz by the test UE and the reference UE patch antennas are received by
the O-RU receiver (Rx) via four different Rx antennas located in the four corners
of the ceiling of the measurement room. The O-RU will continuously measure
the ToA of the 5G signals coming from the test UE and the reference UE with
a resolution of 0.3 ps (corresponding to 0.1 mm) and transfer the results to the
O-DU that stores them on agreed memory sharing register. A localization algo-
rithm reads the ToA registers and calculates the test UE location. Following the
successful test UE location described herein, the test UE might be replaced by a
commercial UE [7].

Some initial results, which are illustrated in Figure 4.4, show that although
the measurement samples have been measured with a resolution of a timetic of
0.33 ps or 0.1 mm, the samples are approximately normally distributed about the
mean of 69516 timetics or 6.9516 m. The 95% confidence interval falls within
±2 times the stdev = 833 × 2 = 1666 timetics = 16.66 cm about the mean,
which can be considered as a measure of accuracy. It is assumed that the mean
of the measurements represents the true distance that is being measured, which
was not provided in these initial results. A Kalman filter is an effective method for
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Figure 4.4. Frequency distribution of measurements for RNTI = 220, SECT = 24.

Figure 4.5. Time series of measurement and Kalman-filtered data for RNTI = 220,

SECT = 24.

reducing normally distributed noise from measurement results, which when applied
reduces the 95% confidence interval to ±2 times the stdev = 13.74 × 2 = 27.48
timetics= 2.748 mm about the mean, as shown in Figure 4.6, which is considered
as a measure of accuracy of the filtered measurement data. The time series of the
overall measurement results and Kalman-filtered measurement results are shown in
Figure 4.5. Note that RNTI = 220 refers to the calibration UE, and Sect = 24
refers to the portion of spectrum being used for the measurements, as shown in
Figure 4.5. These initial results seem to be sufficient to meet <1 cm accuracy but
need further improvement to meet <1 mm accuracy.

4.1.1.3 Distance measurement using RSS on OWC networks

If obtaining location from 5G sub-6 GHz or mmWave communications is made
difficult, for example, as a result of highly reflective metallic scatterers in the
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Figure 4.6. Frequency distribution of Kalman-filtered measurement for RNTI = 220,

SECT = 24.

Figure 4.7. OWC position testbed.

coverage area, then RSS of an OWC communications system can be used as an
alternate method for estimating position.

The OWC position testbed contains three main components for visible
light positioning (VLP) LED or IR LED measurement campaign, as shown in
Figure 4.7.

1. Location server: Including three parts: (1) LED control unit, (2) received
signal collection unit, and (3) positioning unit. In an LED control unit,
it is connected with an Arduino board, which has been set up to control
LEDs in advance, including the LED switch settings and LED frequency set-
tings. These settings can be used to control on/off of LEDs and change the
frequencies of LEDs. When the VLP server receives setting change requests
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from API, it will change settings of the LEDs according to the user’s requests.
In the received signal collection unit, it collects received signal data from APD
receiver connected by a USB port, which can be downloaded by user through
API. In the positioning unit, user can upload the received signal data file to
execute positioning algorithm. Users can use the files obtained in the previ-
ous unit or upload them themselves. The positioning algorithm used in this
server is traditional trilateration received signal strength indication (RSSI)
algorithm. The output of the algorithm is the estimated coordinate of the
receiver.

2. LED transmitter module: Including LED and its corresponding drivers.
Every LED has to be driven by an LED driver in order to convert the power
supply from 220 V into a suitable value and switch the frequency of LED.

3. Avalanche photodiode (APD) receiver: A highly sensitive semiconductor
photodiode detector used to measure and collect received light signals. The
received data are transmitted to the VLP server through the USB cable.

Some results in comparing with traditional RSSI-based VLP algorithm are
shown in Figure 4.8. Two figures represent the values of ε when the orientation
of the receiver was randomly in the range of [−3◦, 3◦] and [−5◦, 5◦], respectively.
The results are very similar, which reflects that the algorithm has good immunity
to changes in receiver angle.

Firstly, in Figure 4.8(a), when the traditional algorithm was employed and the
orientation of the receiver θ was in [−3◦, 3◦], values of ε were plotted using
blue crosses for each measurement. They were mostly scattered between 0.25 and
0.35 m, and the average deviation is 0.31 m. It could be observed that even though
the angle of the receiver θ was the same value, the value of ε is different for different
measurements. In other words, not only did the estimate of the distance between
the transmitter and the receiver always have a large deviation, but the deviation was
also difficult to determine.

Figure 4.8. Deviation of the proposed algorithm and traditional RSS-based VLP algo-

rithm with a variation of receiver angle (a) θ ∈ [−3◦, 3◦] and (b) receiver angle θ ∈ [−5◦, 5◦].
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Afterwards, when the proposed algorithm was employed, the values of ε were
scattered using red crosses. Compared with blue crosses, red crosses were much
closer to the x-axis: this means that the value of ε was closer to 0. Indeed, the
average of ε decreased to 3.5× 10−3 m, and the maximum and minimum values of
ε declined from 0.36 to 0.01 m, and from 0.2133 m to 1.33×10−5 m, respectively.
Moreover, the distribution of red crosses was more compact: on the one hand, when
the value of θ became the same, the values of ε calculated by different measurements
were not very far from each other; on the other hand, the value of ε did not change
greatly according to the change of θ .

Therefore, it could be inferred from the distribution of blue and red crosses that,
in general, our proposal led to less deviation and a more concentrated distribution
than traditional methods. As a result, estimated distances between transmitters and
receivers would be closer to their real distances by using our proposal. Furthermore,
it could be boldly predicted that it could lead to lower positioning errors (PEs).

This trend is also evident in Figure 4.8(b). When the traditional algorithm was
employed and the orientation of the receiver θ was in [−5◦, 5◦], blue crosses were
mostly scattered between 0.25 and 0.4 m, and the average deviation was 0.3103 m.
Compared to the situation of θ in [−3◦, 3◦] in Figure 4.8(a), the average deviation
has barely changed, but the distribution of their values was more spread out in Fig-
ure 4.8(b). It can be inferred that the deviation of the distance between the trans-
mitter and the receiver caused by the random orientation of the receiver became
larger and less predictable as the range of values of θ expands.

The CDF of positioning results is shown in Figure 4.9. 98.81% of the total
results had the PE less than 10 cm, which means almost all of the receiver’s positions
could be accurately estimated.

Figure 4.9. CDF of positioning results of the proposed algorithm and traditional RSS VLP

algorithm in different receiver’s orientation: using the proposal when θ ∈ [−5◦, 5◦].
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4.1.1.4 Distance measurement using OTFS modulation

The 5G air interface and associated modulation have to support a number of diverse
requirements and use cases (e.g., eMBB, high-speed use cases, mMTC, etc.), as
detailed in many publications. The associated modulation waveform would then
have to exhibit high performance in many diverse scenarios of high or low Doppler,
delay spread, carrier frequency, etc. This is possible if the modulation scheme takes
full advantage of the fading multipath nature of the channel and extracts the full
diversity present in the channel in all dimensions of time, frequency, and space.
Such a flexible waveform can serve as an integral part of a flexible air interface and
associated core network. Therefore, researchers have recently introduced a novel
modulation technique called OTFS [8], which may be useful for obtaining position
of fast-moving UEs with high Doppler. It has been shown recently that OTFS arises
as a well-suited modulation for the time and frequency selective fading channel.
OTFS characterizes the Doppler-induced time-varying nature of the wireless chan-
nel and parameterizes it as a 2D impulse response in the delay-Doppler domain.

OTFS works in the delay Doppler domain rather than the time-frequency
domain as shown in Figure 4.10. The delay Doppler domain representation of the
channel converts the time-variant channel to the time-invariant channel, as shown
in Figure 4.11. In addition to the OTFS diversity gains mentioned above, we have
additional benefits of low reference signal overhead, enhanced channel state infor-
mation (CSI) quality, and MIMO bit error rate (BER) performance of fast-moving
UEs, as shown in Figure 4.13.

Because of the added advantages of OTFS over OFDM, the OTFS is an efficient
way of estimating the localization via computation of ToA.

The above Figure 4.12 shows how a UAV can be efficient in locating the user in
need via employing the OTFS for estimating an accurate ToA.

From the BER analysis for the OTFS and OFDM modulated signals shown in
Figure 4.13, the comparative analysis of the OTFS and OFDM modulated signals

Figure 4.10. Transmitted OTFS QAM symbols and corresponding received symbols via

delay Doppler channel.
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Figure 4.12. UAV with OTFS employed for the user localization.

for fast-moving UE (where the UE is moving at a constant speed of 28 km/h) can be
visualized. The BER for OTFS-modulated signal is lower because its performance
is not degraded even with the fast motion of the UE, and the bit error and bit loss
are less as compared to the conventional OFDM. Thus, OTFS may be able to more
reliably estimate the distance of UEs moving at a fast speed.

Figure 4.13. BER comparison of OTFS and OFDM when UE is moving at a constant speed

of 28 km/h.
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4.1.1.5 Distance and angle measurements using physically large arrays

To give an outlook towards the capabilities of large aperture arrays, a measurement-
based analysis of beamforming and channel estimation is performed, targeted
at positioning applications. The initial results are obtained using spherical-wave
beamforming applied to data recorded using a (synthetic) large uniform rectan-
gular array (URA), representing a large base station (BS) that is positioned along
a wall in an indoor environment. The results are visually compared with super-
resolution channel estimation results obtained when splitting the large URA into
small sub-arrays. The channel measurements were recorded with a vector network
analyser (VNA), with the synthetic arrays formed using mechanical positioners with
a positioning accuracy below 1 mm.

Exploiting the full array aperture requires spherical-wave beamforming and per-
fect calibration of the full array, which can be difficult to achieve for thousands
of array elements. The advantage of using the full available data is the superior
resolution that can be achieved, allowing focusing power towards small spatial
regions [9, 10], e.g., λ = 2.16 cm, for a carrier frequency of fc = 6.95 GHz,
is shown in Figure 4.14. The marginal spectra include modelled components that
are computed from a geometric floorplan in combination with an image source
model up to second order. In combination with the large aperture, a large signal
bandwidth of BW= 3 GHz is used to show the optimum case regarding the achiev-
able resolution. From the sub-figures, while direct paths and first-order reflections
are well represented by the model, second-order reflections, which might no longer
be visible over the full array, are not well associated with modelled components.

Figure 4.14. Spherical wave beamformer spectra for an exemplary LOS position in a

medium-sized indoor environment. In the analysis, we use the full measurement band-

width and all (synthetic) array elements. In the azimuth-elevation power spectrum shown

in (b), 0 deg azimuth points towards a window in the environment and 0 deg elevation

towards the ceiling.
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Parametric approaches such as super-resolution channel estimation algorithms
can achieve a high level of performance under the assumption that the channel is
composed of discrete components that are parameterized in terms of, e.g., arrival
times or angles. The separation into sub-arrays allows to make use of classic array
processing assumptions, which are not feasible for application to the full array
data, drastically improving the requirements for computational resources. Results
obtained when applying a sparse Bayesian learning (SBL)-based channel estima-
tion algorithm (described in [11]) to (4× 4)-subarrays and B= 500 MHz of signal
bandwidth are shown in Figure 4.15, as angle spectra (a), residual angle spectra after
subtracting component estimates (b), and time-domain residual signals after sub-
tracting the obtained component estimates (c). In Figure 4.15(a) and (d), the size of
the markers represents the estimated amplitude, and the colour indicates whether
a component was associated with a modelled component (cyan) or not (magenta).
This association is performed by using an optimal sub-pattern assignment-based
data association algorithm, which allows to associate estimated components to
modelled components and thereby accounts for the varying visibility of multipath
components (MPCs). While using only a fraction of the array elements and band-
width, the obtained estimates still correspond well with the modelled MPCs. At the
same time, the varying visibility can be accounted for, which will be an important

Figure 4.15. Channel estimation results using an SBL-based algorithm, showing esti-

mated components over the angle-spectrum, residual angle-spectrum, and residual time-

domain signals. Results are shown for (4 × 4) sub-arrays with 500 MHz bandwidth and

for a subarray closest to the window (a, b, c) and farthest from the window (d, e, f).

Component estimates are shown as magenta and cyan circles with the latter indicating

association to a modelled environment feature (numbered 1–8), with 1 representing the

direct path and 2 a window reflection.
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aspect for multipath-based positioning and environment learning. Note the con-
sistent changes that are visible in the modelled as well as estimated components,
comparing the two subarray positions that are closest to the window (top row in
Figure 4.15) and farthest from the window.

While analysis of the measurements performed has shown the effects of visi-
bility as well as the spatial consistency of MPCs, without efficient fusion of sub-
arrays, it will be difficult to achieve a similar performance compared to a large
and fully coherent array. The next step will be the derivation of theoretical per-
formance limits, e.g., in terms of the Cramer-Rao lower bound or similar, giving
insight into system parameters such as signal bandwidth and the geometric dis-
tribution of sub-arrays. Of special interest will be the effect of imperfect phase or
clock-synchronization between the subarrays, which is expected to be the main
limiting factor to achieve the same performance as a fully coherent array.

4.1.1.6 Precise localization with the aid of synchronization signals and

CIR

4.1.1.6.1 Introduction

Instead of adding an extra overload to the communication systems, one can rely
on the mechanisms already in place to perform precise localization. In particular,
approaches based on TDoA and ToA require the nodes not only to be synchro-
nized with each other, but also to exchange localization-specific signals. However,
the synchronization signals exchanged among the nodes for the purpose of synchro-
nization as well as other sources of information such as CIR and AoA estimation,
which are not primarily foreseen for localization purposes, can be utilized to pre-
cisely estimate the position of a UE.

In [12], the principles of network synchronization have been presented, which
paves the way for an accurate mobile UE localization with the aid of synchro-
nization signals, i.e., time stamps. In particular, a Bayesian recursive filtering
(BRF)-based mobile unit (MU) joint synchronization and localization (sync&loc)
approach is developed where Taylor expansion is utilized to linearize the non-
linear relation between the measurements, i.e., time-stamp exchange and AoA,
and the position parameters. While linearized BRF (L-BRF) can partially mitigate
the destructive impact of non-linearities in the measurements, in addition to the
covariance matrix underestimation, they are likely to diverge if a reliable estimate
of the initial state is not available [13]. A promising approach, on the one hand, to
avoid such shortcomings of L-BRF and, on the other hand, to boost the accuracy
of position estimation, is estimating the prediction, measurement likelihood, and
posterior distributions using particle Gaussian mixture (PGM) filters introduced
in [14]. Specifically, in this approach, instead of a single Gaussian function, each
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distribution is approximated with a sum weighted of Gaussian functions or Gaus-
sian mixtures [15]. Nevertheless, the problem that immediately arises when using
PGM filters is dimensionality, rendering the approach computationally expensive
for multi-variable estimations. To overcome this drawback, a hybrid parametric and
particle-based approach was employed, which capitalizes on the linear relations in
the measurements to reduce the dimensionality.

Here, based on [16], a DNN-assisted particle filter (PF)-based (DePF) joint
sync&loc algorithm is proposed that draws on the CIR to estimate the AoA (using
multiple signal classification (MUSIC) algorithm [17]) and to determine the link
condition, i.e., LoS or NLoS, using a pre-trained DNN, thereby excluding the
erroneous measurements to enable a more precise parameter estimation. It then
estimates the joint probability distribution of MU’s clock and position parameters
using the PGM filter. The dimension of the PGM filter is then reduced by reveal-
ing and exploiting the existing linear sub-structures in the measurements, thereby
tackling the dimensionality problem.

There are, however, several preliminaries for the PGM filter to return an accurate
estimation of the MU’s clock and position parameters. In addition to the time-
stamp exchange mechanism explained in [12], as mentioned above, AoA using the
MUSIC algorithm and DNN-based NLoS identification are the prerequisites for
the DePF algorithm. The former increases position estimation accuracy, while the
latter prevents the PGM from diverging.

4.1.1.6.2 NLoS identification, AoA, and CIR

The capability to estimate CIR is highly ubiquitous among APs. Therefore, relying
on the CIR to develop a localization algorithm appears to be a realistic approach.
The AP-UE CIR is a rich source of information about the condition of the com-
munication link, e.g., whether the channel is LoS or NLoS, and the location of the
UE. More precisely, the former is crucial to know when estimating the latter, as is
the accuracy of the distance or time, and AoA measurements significantly decline
if conducted under NLoS conditions.

Figure 4.16 shows the architecture of the DNN deployed for NLoS identifi-
cation. We have utilized such a network in [18] to identify the link condition in
indoor environments. The input layer has one channel fed with N samples, i.e.,
the magnitude of the CIR. The number of hidden layers and neurons in each hid-
den layer is set to lH and nH , respectively. The rationale to rely on when selecting
these numbers is that, according to [19], any classifier function can be realized by
two hidden layers, i.e., currently there is no theoretical reason to use more than
two. However, the lack of evidence does not imply that the DNNs with more hid-
den layers do not improve the classification accuracy. It rather suggests that the
number of required hidden layers does not follow a well-established logic and is
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Figure 4.16. The DNN employed for NLoS identification. It has lH = 2 hidden layers with

nH neurons and two output neurons [16].

mainly determined by a trial-and-error process. Therefore, for the algorithm pro-
posed in this work, we empirically determine the number of hidden layers that
delivers the best performance. Furthermore, as a rule of thumb, the number of
neurons is suggested to be between the number of inputs and that of the out-
puts to prevent under/overfitting. Let the output probability vector of the DNN
be [1 − p̂nlos, p̂nlos], where p̂nlos denotes the probability of the CIR being corre-
sponded to an NLoS link. For the NLoS identifier, we seek to train the DNN
such that the output probability vector is as close as possible to the [1,0]/[0,1]
for the LoS/NLoS CIRs. In other words, from the optimization point of view, we
aim to design a loss function whose output is small when the DNN returns the
correct vector and is large otherwise. It turns out that the function that possesses
the above-mentioned property is the logarithmic function [20]. The loss function
is known in the literature as the binary cross-entropy loss function. The goal of
training is then to adjust the weights of the neurons such that the binary cross-
entropy loss function is minimized. Finally, when the trained DNN is employed
in the context of joint synchronization and localization algorithm, the decision
on the link condition is fed into the algorithm using a binary parameter, which
is set to one when p̂i

nlos > 0.5 and zero otherwise. The CIR fed into the DNN
to identify the link condition can be treated as an input signal to the state-of-
the-art AoA algorithms such as MUSIC or Estimation of Signal Parameters via
Rational Invariance Techniques (ESPRIT) to obtain the AoA. We do not men-
tion the details of these algorithms here, as rich literature on these algorithms is
available online. In what follows, we elaborate on how PGM filters fuse the above-
mentioned pieces of information to reach an estimation of clock and position
parameters.

4.1.1.6.3 Particle Gaussian mixture filter

The data obtained from the synchronization signals, i.e., time-stamps, the channel
condition obtained by means of DNN, and the AoA estimated using the CIR can
be fused using PGM filters to estimate the location and clock parameters of an UE.
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The idea underpinning PGM filters is to approximate the posterior PDF by the
sum of weighted Gaussian density functions (GDFs) [15] as shown in Figure 4.17.

Figure 4.17. An example distribution of the clock and position parameters. θi denotes the

clock parameters and dij represents the position parameters [16].

Considering the time-stamp mechanism introduced in [12], we can conclude
that the clock parameters, on the one hand, are linearly dependent on the time-
stamps and, on the other hand, do not depend on the position parameters. This
suggests that, although the likelihood of the measurements is not Gaussian dis-
tributed in general, it is indeed Gaussian across the clock parameters. By capital-
izing on the linear Gaussian substructures in the model, the state dimensions are
kept low.

Consequently, the GDFs can be employed only across the position parameters,
transforming the structure of the posterior distribution into the multiplication of
a single GDF across the clock parameters and the sum of multiple weighted GDF
across the position parameters (visualized in Figure 4.17). Such a structure not only
lays the ground for the hybrid parametric and particle-based implementation of
BRF-based joint sync&loc estimation but also dramatically reduces the computa-
tional burden.

4.1.1.6.4 Takeaways

As mentioned in the previous subsections, synchronization signals, i.e., time stamps
and CIRs can be utilized to perform precise localization. In particular, we can
employ PGM filters in a hybrid parametric and particle manner to track the clock
parameters of a UE and estimate its position. Such a technique does not require
an exchange of any localization-specific signal and relies only on the pre-existing
signal exchange mechanisms.
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4.1.1.7 MEC cloud database and server for localization and mapping

data fusion

SLAM achieves the purpose of simultaneous positioning and map construction
based on combination of self-perception LIDAR-like sensing data combined with
localization data. These data are necessarily captured by sensors and collated in a
database on which processing can be performed for the purposes of different appli-
cations, and in particular location estimation applications, an example of which
is now presented below. RSS OWC distance measurements from UEs, TDoA
mmWave distance measurements from 6G access nodes, and AoA direction mea-
surements from 6G access are recorded on MEC location database VNF and pro-
cessed by a location server VNF to produce a data fusion estimate of the location of
UEs that is stored on the Location Database VNF for access by network and user
applications. Data fusion combines estimates of position from mmWave OWC
RSS, TdoA, and AoA position measurements using the Kalman filter machine
learning algorithm to obtain a more accurate position estimate that compensates for
the different sampling times of the different distance and direction measurements.

The initial structure of the location database (LD) consists of:

1. The antenna table, shown by Figure 4.18 (Table 1 within the figure), stores all
antenna/LED emitter coordinates and, in this instance, the relevant calibra-
tion parameters required, for example, the VLC Halo-Lens Compensation
approach [21, 22]. Currently, VLP relies strongly on the assumed Lamber-
tian properties of light sources. In practise, not all lights are Lambertian. To
facilitate and benefit from the widespread deployment of VLC technology
in numerous environments, measurements from non-Lambertian sources are
analysed, and a novel calibration VLC halo-lens compensation technique was
developed that enables high-accuracy positioning in a wider setting [21, 22].

Laser sight and range 
measurement

3D axis flatbed
plo�er

OWC
Transceiver

Patch antenna

Reference UE

Fixed mount
with known
posi�on

Test UE mount Simultaneous 
Loca�on and

Mapping
Server

SLAM Database

Table 1:
OWC, Sub 6G, 

mmW, THz (LIDAR), 
Camera Sensor 

Posi�ons

Table 2: OWC,
Sub 6G, mmW,

THz (LIDAR),
Camera Sensor 
Measurements

Table 3:
Posi�on Es�mates

Controller

Figure 4.18. SLAM database and server system.
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2. The measurement table, shown in Figure 4.18 (Table 2), stores all the latest
measured location parameters obtained by the RAN. Here, we illustrate the
OWC-RSS, sub-6GHz-TdoA, mmWave AoA, and eventual THz (LIDAR)
and camera components. Each dataset (row) pertains to a singular UE with
an appointed ID and timestamp of the measurement acquisition instant.

3. The estimates table, shown in Figure 4.18 (Table 3), is where the processed
position estimates are stored. For data fusion applied later in the location
server (LS), the states to be stored in the estimates table must be consistent
with the states of the target applied to the location server. This enables the
previous UE state estimates to be used within the Kalman filter as priory data.
Asynchronous sampling of range-based measurements is known to have neg-
ative impacts on localization performance. Various asynchronous sampling
localization techniques (ASLT) exist to mitigate these effects. The exact suit-
ability of such solutions is not evident, due to their additional processes,
subsequent complexity, and increased costs. Extensive simulations were con-
ducted to demonstrate the effectiveness of ASLT under variable sampling
latencies, sensor measurement noise, and target trajectories. These draw
attention to the computational trade-off and lead to the development of a
novel solution achieving optimal localization performance with a significant
energy reduction of over 50% [22].

4.2 Enhancing Connectivity

4.2.1 Positioning and Position-aided Communication in
Distributed Access Architectures

Envisioned interactive applications foresee that physical and virtual worlds will
get blended, as introduced in Chapter 2. This requires for wireless connectiv-
ity support providing “real-time” and “real-space” functionality; the differences
should be unnoticeable to the human and the potential machines and applications.
Distributed access architectures are key candidates to provide this. For example,
RadioWeaves technology is being developed to that end, presenting a platform of
interconnected communication and computation resources [9].

Position information in these networks can play a double role:

1. It is directly required to enable novel applications in professional and care
environments, entertainment, including gaming, and personal and home
spaces. Clear examples include tracking and location-based services, as well
as robotic applications in industrial environments and extended reality (XR)
applications. The analysis of diverse use cases indicates that an accuracy of
1–0.1 m is required for many applications [23].
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2. Position information can support wireless communication and power trans-
fer functionality. For the latter, location information enables beamforming
solutions, which can greatly benefit the efficiency of the transfer [24]. Fur-
thermore, in the pursuit of ultra-reliable communication, position informa-
tion can be exploited to anticipate bad connections and support “break before
make” decisions.

Different device classes [23] have been categorized for nodes that will need to
be positioned in the same environment. The selection of position-related measure-
ments will strongly depend on the capabilities of these devices. In particular, the
positioning of low-power devices without any battery or with only limited energy
storage relies on wireless charging, which poses stringent limits.

Distributed architectures hosting a very large number of antennas offer hyper-
diversity that can be exploited well to extract both accurate and precise posi-
tion information. Accuracy is most often related when specifying requirements
and algorithmic progress are reported. However, precision, which is a measure
for variations on the accuracy and also quantifies bad outliers, is also an essen-
tial performance measure, in particular when reliability is important. A dis-
tributed deployment is of particular interest in this regard, as it can support the
“zero-outage.”

The distributed architectures also enable location-aware proactive redundancy
for guaranteed ultrafast exchange of critical data. Cell-free access is being deployed
to simultaneously sustain links to multiple arrays [25]. It is expected that distributed
compute-connectivity infrastructures will be an essential part of the anticipated
heterogeneous 6G networks, e.g., in the context of Industry 4.0 and in smart home
and care environments [23]. A sudden bad connection to one array will always
be covered in advance by another array without a latency penalty. The locations
of devices were tracked, and information was used to provide ultra-robustness on
critical links. Learning of the environment will support an optimal allocation of
array resources to prevent retransmissions and link outages.

Adequate positioning techniques that can offer both good accuracy and good
precision in distributed architecture open an opportunity to address the require-
ments of many novel applications mentioned as drivers for 6G [23]. Techniques
leveraging on distributed resources will extract information from both LoS links
and multipath reflections. Therefore, it is essential to characterize and model the
propagation environment in distributed architectures hosting a very large num-
ber of antennas. Novel experimental campaign-based channel modelling work is
being conducted. Algorithmic development exploits the ultra-wide aperture and
near-field properties (in the sense of being within the Rayleigh distance) of the
signals. Furthermore, the hypothesis that location and environmental awareness
allow for a large-scale predictability of the channel state information and thus an
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optimization of the efficient exploitation of the available hyper-diversity is con-
firmed in the first instance in the context of initial access [24].

4.2.2 Sub-6GHz, mmWave, and sub-THz RT Model and its
Verification from Measurements and Applications Within
Digital Twin of Factory for 6G

4.2.2.1 Construction of digital network twins in factory environments

for access optimizations

6G envisions the integration of novel spectrum bands to support the development
of ubiquitous smart wireless communications in industrial scenarios. Future indus-
trial tasks and services rely on the simultaneous utilization of sub-6 GHz, mm-
waves, sub-THz, and OWC [26]. The free blocks of spectrum available at THz and
OWC enable the implementation of high-data-rate wireless links with enhanced
capacity, latency, and with an unprecedented level of accuracy and resolution in
sensing applications. Therefore, reliable channel models are of exceptional impor-
tance for the design, performance evaluation, standardization, and deployment of
future 6G networks.

However, the development and parametrization of a single model covering such
a wide spectrum of frequency bands and applications is challenging in multiple
aspects. Localization and imaging applications require a precise correspondence
between the geometrical properties of the propagated paths and the locations of
users and scatterers. Moreover, testing heterogeneous localization methods, based
on the combination of methods in different bands, requires models with consis-
tency not only in the spatial domain, but also in the frequency domain: the scat-
terers must be in the same position for the different simulated bands [27, 28].
Therefore, models with deterministic components, such as RT, are more appropri-
ate for these applications, since they allow simultaneous simulations at different
frequencies with a precise geometrical representation of the environment in the
propagation parameters of the paths. Nonetheless, the comparability of the results
with reality depends on the complexity of the RT map/model. Thus, obtaining an
accurate RT model with a high level of detail and a large number of objects is of
crucial importance.

Therefore, a precise RT model was obtained from point cloud data from
extensive 3D laser scans in an arbitrary industrial scenario, in which multi-
band RF measurements were also conducted simultaneously for propagation
characterization [29] and calibration and verification of the model at sub-6 GHz
and mmWave [30]. In addition, simultaneous sub-6 GHz, mmWave, sub-THz, and
OWC measurements will be conducted for verification purposes in the future. The
ultimate goal of this model is to perform realistic analysis on different algorithms
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for sensing, localization, multi-band, and sensor-aided beamforming based on the
different properties of this digital twin of the environment [31].

4.2.2.2 Channel modelling for heterogeneous networks and joint

communications and sensing applications

From point cloud to RT simulations

The methodology to generate the RT model is summarized in Figure 4.19.
Two different scanners were used according to the size of the object/environ-

ment: the Leica BLK 360 for the macro scenario and the hand-held scanner Artec
Leo for the machines and other details. The macro scenario was scanned in multiple
positions, as shown in Figure 4.20, and the data were later combined using special
tags that were placed in the environment.

The CAD model was obtained by reconstructing the surfaces out of the points.
Once all the points from the different scans are merged, the surfaces are recon-
structed with basic shapes out of polygons that can be interpreted by the RT
tool. Figure 4.21 shows the level of detail on the CAD model. Finally, material-
dependent electromagnetic properties are assigned to each surface to have an accu-
rate calculation of the RF components at different frequencies with the RT tool.

Model validation with RF measurements

Simultaneously with the point-cloud scans, ultrawideband multiband RF measure-
ments at sub-6 GHz, 30 GHz, and 60 GHz were conducted in the same area. These
measurements have been used, as shown in Figure 4.22(a)–(c), to validate the RT
model in the time-delay and angular domains. In the latter case, (c) shows the
measured power at the different scanning angles (with 30◦ half power bandwidth
(HPBW) horn antennas) at the TX side and the direction of the simulated paths,

Figure 4.19. Processing methodology from point-cloud scans to RT models and simula-

tions.
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Figure 4.20. Point-cloud scanning positions.

Figure 4.21. Picture of one of the corridors in the scenario and CAD model after surface

reconstruction.

showing a high correlation between the density of the simulated path and the mea-
sured power.

After the RT model was validated, the simulations can be used to assist the
interpretation of the measurement results by identifying scatterers and propagation
mechanisms, as shown Figure 4.22(d).

A digital twin is a digital representation of a real object or process. In this case,
the digital twin corresponds to the physical environment of a particular industrial
scenario of interest. This model is used with RT to obtain different CIRs or RF
parameters such as received power, delay spread, etc. that can be used in dif-
ferent tasks such as facilitating localization or the beam-steering process at high
frequencies.

4.2.2.3 Applications of digital twins

However, one of the key requirements for digital twin components is their real-time
representation or an acceptable update rate capability in order to tackle changes in
high-dynamic environments in a factory.
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(a) (b)

(c) (d)

Figure 4.22. Power delay profiles of different RX positions over a line from (a) RF mea-

surements at 6.75 GHz and (b) RT simulations. (c) Measured power azimuth/elevation

profile and direction of the simulated paths in the RT model. (d) Identification of scatter-

ers and propagation mechanisms.

An example of the latter case is that, given the location of the UE, RT can be used
to determine the visibility condition or to estimate the pointing direction from the
BS of a beam-former at mmWave or sub-THz, minimizing the training overhead.

4.2.3 Enhanced Connectivity with Channel Knowledge Map

Sensing to enhance communication services

A channel knowledge map (CKM) is a site-specific database containing transceiver
locations and channel-related information that can be utilized to improve envi-
ronmental awareness and improve CSI acquisitions. CKM is, therefore, critical
to achieving high capacity, ultra-low latency, and ultra-massive connectivity in
6G networks. CKM can provide vital parameters of the wireless channels with-
out requiring channel training. It is also possible to reduce training overhead in
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large MIMO systems by advancing localization and environmental awareness. The
authors in [32] examined environment-aware beamforming for RIS-aided com-
munication enabled by the CKM, which does not require online training. In the
simulation, CKM in active/passive beamforming led to significant rate improve-
ments over training-based beamforming, and it also proved to be robust against
UE location errors.

Together with CSI, dynamic blockage information from sensing services can also
be useful for enhancing the communication performance, especially at high fre-
quencies where the signal could be affected by the poor propagation environment
with high path loss. To realize context information-assisted communications, the
BS could potentially predict the position of UE and blockers with advanced sen-
sors and localization techniques, and this information could be useful for dynamic
blockage avoidance. Moreover, channel variance issues could be mitigated by using
the recently proposed concept of predictor antenna (PA) [33]. PA system refers to
a setup with two groups of antennas deploying on the top of a vehicle, where the
front antennas (called PAs) sense and report back the CSI to the BS. Then, the
receive antenna(s) (RA(s)) following behind the PAs could use the CSI from PAs
when they reached the same positions as the PAs. In this way, the quality of CSI is
improved, leading to better system performance. In [34], focusing on highway sce-
nario, the PA concept was incorporated into a large-scale cooperative PA (LSCPA)
setup with cooperative communications among BSs and utilize the information
provided by different vehicles to avoid not only temporal blockages but also the
CSI outdating. Results summarized in [32] indicate that the E2E throughput for a
given time slot of the network can be improved by 32% using context information
in the form of coarse localization and trajectory information, whereas with highly
accurate localization and trajectory information, reliable CSI can be obtained with
the PA concept, resulting in a 335% gain.

4.3 Joint Communication and Sensing

4.3.1 Introduction

JCAS is are already one of the main differentiators of the 6G vision with respect to
5G communication systems. While sensing includes positioning, it will also encom-
pass novel functionalities that are not present in 5G, which in turn may lead to
new services. Supporting these services will have architectural implications. This
section will discuss these novel types of sensing, the services they may enable, and
the implications for the 6G architecture. In addition, recent developments towards
the practical implementation of joint communication and sensing will be detailed.



148 Towards Joint Communication and Sensing

4.3.2 Sensing as a Service

The term sensing is often reduced from its broader definition (detection of events,
measuring changes in the environment of physical properties) to mean radar-like
sensing. However, sensing can also cover channel estimation, radio frequency sens-
ing, spectroscopy, weather monitoring, and any downstream processes that rely on
sensing data.

4.3.2.1 Technical concept

Radar-type sensing

Radar-type sensing can be classified into three categories: monostatic sensing,
bistatic sensing, and positioning as sensing, with illustrations shown in Figure 4.23.

Monostatic sensing is an extensively studied topic in JCAS, where the trans-
mitter and the receiver are co-located (e.g., radar, as shown in Figure 4.23(a)) and
where the transmitted signal is reflected by surrounding objects or targets and then
processed at the receiver. If the transmitter and the receiver are located at different
places, it is called bistatic sensing, as shown in Figure 4.23(b). In these two sce-
narios, the receiver can estimate the position of the incidence point that reflects
the signal (e.g., buildings, cars, bicycles, and pedestrians) and map the surround-
ing environment (mainly passive objects). In contrast, the concept of positioning
as sensing refers to estimating the position of a connected device directly (i.e., UE)
using signals from multiple anchors (shown in Figure 4.23(c)), with examples such
as the global positioning system (GPS), ultra-wideband (UWB) positioning, and
5G positioning. The mentioned scenarios can also be combined. For example, when
a UE with an unknown position is involved in bistatic sensing (e.g., one BS and
one UE instead of two BSs), this becomes a SLAM.

Sensing involves several processing steps, some of which can be optimized in a
closed-loop tracking scenario to progressively improve the sensing performance over
time: (i) signal design, (ii) signal detection and acquisition, (iii) channel parame-
ter estimation, and (iv) position estimation. The task of signal design could be

(a)Monostatic sensing (b) Bistatic sensing (c) Positioning as sensing

Figure 4.23. Illustration of three categories of sensing. (a) Sensing the environment with

a vehicular radar. (b) Sensing the environment with two BSs. (c) Positioning of a vehicle

with three BSs.
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performed in time, frequency, and space to enhance sensing performance based on
a priori knowledge of the environment obtained through position estimates in pre-
vious measurement epochs [35]. The designed signal is transmitted over the radio
channel and acquired at the receiver, which then performs synchronization, phase
noise tracking, and filtering. The sampled signal is applied to a parametric chan-
nel estimation routine, which returns estimates of ToA, AoD, AoA, and Doppler
of the LoS path and possibly MPCs [36]. The channel parameters are provided
for the localization, mapping, or tracking routine. This routine aims to solve the
inverse problem of inferring the state of the UE (i.e., location and orientation) or
the environment from the estimated channel parameters. In monostatic sensing,
the transmitted data could be known at the receiver due to being co-located on the
same hardware, which enables sensing using communication payload data. How-
ever, in bistatic sensing and positioning, pilot (reference) signals are needed, and
there is a trade-off between communication and sensing resources.

In general, the sensing estimation accuracy depends on a variety of factors, which
can be summarized as follows: (i) resolution, (ii) SNR, (iii) sensing scenario, and
(iv) model mismatch. To estimate the parameters of a signal path during the chan-
nel estimation, the path should be resolvable (separable) in at least one domain
among delay, AoD, AoA, or Doppler. However, even under sufficient resolution,
the received signal may be weak and limit the performance, which can be deter-
mined by the transmit power, path loss, the reflection coefficient of the object, etc.
In addition, the sensing scenario (deployment of transmitters and receivers, operat-
ing frequency, etc., which have implications on blocking, scattering, or molecular
absorption characteristics) and the mobility of objects and users (the coherent pro-
cessing duration of the waveforms will be limited) play a vital role. Finally, unmod-
elled effects due to radio hardware impairments or propagation effects will lead to
reduced localization and sensing performance, which can have severe impacts in
applications with stringent accuracy requirements.

Consequently, offline sensing system design (e.g., hardware selection and deploy-
ment), online optimization (e.g., signal design), and signal processing algorithms
(taking into account the model mismatch or not) constitute essential ingredients
to guarantee an acceptable level of performance for a sensing system.

Non-radar type sensing

Typical sensing methods for using communication infrastructure try to mirror
a radar. In these methods, focus is on detecting the target and estimating its
parameters such as velocity, range, etc. However, there are sensing use cases where
the focus is not on range and Doppler but on other aspects, such as sensing weather,
human activity, local environment, etc. Figure 4.24 illustrates the communication
infrastructure for non-radar type of sensing.
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Sense the local environment

Figure 4.24. Radar and non-radar type of sensing using mobile networks.
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algorithm discussed in [37].

4.3.2.2 Use of sensing information in services

Landscape sensing and contextual sensing (incl. weather monitoring)

Landscape sensing methods identify the macro-environment around the UE, such
as forests, streets, buildings, water body, etc. It can aid in several scenarios in RAN
automation such as tailoring the signal to the UE from the BS. The landscape
sensing methods proposed in [37] detect the UE landscape using measurements
from the central London metropolitan area (refer to Figure 4.25(a)). Figure 4.25(b)
shows the classification accuracy achieved using the methods proposed in [37];
here, landscape categories such as those that denote “street,” “building,” “barren
landscapes,” and “other” categories can be applied.

Contextual sensing is another type of non-radar type of sensing that deals with
identifying the target context and aiding in the higher-level tasks. For example,
a fall detection in an assisted living scenario can trigger an emergency call to the
hospital. In [32], the authors proposed active sensing where target-UE uses its com-
munication capability to share its inertial sensor values with the edge-server in the



Joint Communication and Sensing 151

BS. Using these inertial sensor values, an AI agent on the edge server will identify
the human activity.

Sensing to optimize factory environments

The digitalization within factories is progressing, but the integration of the digital
and physical worlds still faces many challenges. Localization, sensing, and inte-
grated communication will play an important role, and next-generation mobile
communication systems can support the Industry 4.0 vision in a great manner.
Sensing the environment and creating a digital twin of objects and layouts of the
building help digitalize the factory environment. Localization of mobile units such
as AGVs or assets (respectively products) within and outside of the factory allows
for seamless tracking and analytics of business flows. Errors in production processes
can be detected early, and inefficient flows can be optimized. The evaluation of the
current location and communication requirements of mobile units is examined and
optimized bidirectionally. Mobile units can take routes that may be a little longer
but more efficient in regard to communication requirements (throughput, latency,
etc.). Next-generation mobile networks with integrated sensing capabilities will be
even more valuable if sensor fusion with existing localization and sensing technolo-
gies (e.g., camera, LIDAR, or UWB-based) is able by offering open interfaces.

4.3.2.3 Architectural implications of sensing as a service

Signal resource allocation

To implement sensing on the OFDM transceivers, the sensing resources need to
be periodically allocated, as shown in Figure 4.26. Typical sensing (radar-type) use
cases can be mapped to the requirements on the range resolution, maximum unam-
biguous range, velocity resolution, and unambiguous velocity. These requirements
put constraints on the OFDM waveform, specifically on periodicity, symbol dura-
tion, and frame time, as illustrated in Figure 4.26. In [38], the sensing overhead for
a traffic sensing use case was computed, considering a range resolution of 0.5 m,
a maximum unambiguous range of 100 m, a velocity resolution of 0.5 m/s, and
unambiguous velocity in the range of [−20 to 20] m/s, for realizing traffic sensing
use case, and showing that this will result in an overhead of 2.7% for a mmWave
deployment with numerology, centre frequency, subcarrier spacing, and bandwidth
of 28 GHz, 120 kHz, and 300 MHz, respectively.

Network, spectrum, and hardware requirements

To sense target in mono-static way, the transceiver must simultaneously transmit
and receive signals; this creates a full duplex requirement on the communication
infrastructure. Such a full-duplex-capable transceiver requires a high level of self-
interference cancellation, which is very challenging. This can be overcome by using
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Figure 4.26. Sensing overhead in OFDM frame.

bi-static or multi-static sensing; however, these methods require a high level of syn-
chronization between the co-operating BSs, which is very challenging to achieve.

Though large bandwidth and high frequency of operation are beneficial from a
sensing perspective as they can enable very high range and angle resolutions, they
come with a cost of very limited coverage and expensive hardware. In contrast,
the lower-frequency spectrum provides much wider coverage. Depending on the
accuracy and coverage requirements for the use case spectrum, these need to be
carefully chosen.

Services in the 6G ecosystem

Sensing the environment will be a completely new feature, and the capabilities are
gaining more relevance as localization becomes more accurate and reliable. Espe-
cially indoors, where no GPS is available, the next-generation mobile networks can
add high impact on certain applications. But with these developments, the service
offering from pure communication service is broadened, and the stakeholders and
users’ groups might grow. The complexity of offering multiple services will be chal-
lenging. The configuration and even the usage of these services should be flexible.
In some scenarios, all capabilities will be needed at the same time, which might even
require an integrated approach. The next-generation mobile networks should be as
flexible as possible in each phase of the lifecycle (planning, analysis, design, devel-
opment, testing, implementation, and maintenance). Especially in indoor environ-
ments, the requirements can change over time, and it might be necessary to include
new hardware, even from third-party vendors to enhance the service quality. Also,
accessing sensing data in a standardized manner at various processing stages (from
raw to finalized contextual data) is beneficial to allow an ecosystem to flourish and
enable, for example, a truly seamless sensor fusion between different sensing and
localization technologies. Privacy might become more sensitive for two reasons.
First, as localization information becomes more accurate, misusage can damage or
harm people and institutions much more severely, and secondly, sensing people
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Figure 4.27. Location-based services ecosystem from sensing perspective.

(radar-like) and detecting the presence of humans pose a new category of privacy
concerns, especially if, with pattern analysis, the identification of this detected per-
son can be deduced. If critical use cases are built on top of sensing and localization
data, the sensing data itself must be secured and verified by next-generation mobile
network mechanisms.

New services may emerge based on sensing and localization capabilities, or exist-
ing services may integrate into the next generation of mobile network capabilities. A
very straight-forward synergy between services is to enhance communication based
on the current location. The farther away a service resides in Figure 4.27 from pure
and raw sensing data, the more context information and classification of data are
required by the service.

4.3.3 Joint Communication and Sensing in Practice

When developing new technologies, there is always a big step to go from a theoret-
ical idea to showing that it works in practise. In Figure 4.28, the results from some
initial JCAS tests are shown. In this example, a bi-static setup operating at 69 GHz
is used. The signal transmitted is a 400 MHz-wide OFDM signal with 960 kHz
subcarrier spacing. In the setup, there is a reflective wall and a person (wearing a tin
foil hat to enhance reflections) that should be detected. Both the transmitter and
receiver consist of a 1× 16-element phase array, where the transmitter uses 50 dif-
ferent beams and the receiver uses 56 different beams, both in the range ±45◦. In
the bottom left plot, the RSS is plotted as a function of the beam indices of the
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Figure 4.28. Initial demonstrations of JCAS using a bistatic setup at 69 GHz.

transmitter and receiver. At indices 0,0, the strongest response is found, and that
corresponds to the LoS channel. In addition, there are two more blobs indicated by
the red arrows, one originating from reflections at the wall and the other from the
person in the picture. In the right plot, the distance to the targets is calculated based
on the channel estimation. The distance indicated is relative to the LoS distance,
meaning that the 0 m peak is due to the LoS channel, the peak at 5 m is caused
by the wall, and the small peak at 2 m is caused by the person. For a more detailed
description of the demonstration and more pictures, see [32].

4.4 Conclusions

The global impact of the existing global positioning system (GPS) has trans-
formed the lives of many people with many new applications that use outdoor
location information, which has impacted people’s lives in many different ways,
such as: (1) find your path, (2) avoiding traffic, (3) tracking your phone or child’s
phone, (4) finding the nearest place such as restaurant, (5) finding places such as
schools & colleges, (6) track stolen phone, (7) preventing car theft, (8) tracking for
law enforcement, (9) discover unknown places, and (10) find nearby places. It is
expected that indoor and outdoor location systems with an accuracy of millimetres,
which cannot be performed by GPS due to the building obscuring the direct line of
site to GPS satellites, will similarly transform the lives of many people by inspiring
many new indoor and outdoor applications, which will have a global impact on
people’s lives in many different new ways in many different verticals. Furthermore
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the introduction 6G JCAS capabilities will allow the spatial sensing of the envi-
ronment since by measuring the delay of the return echo in the line-of-sight path
between the transmitter and object, the distance to the object can be calculated
and therefore its position and velocity. This is very useful information for not only
appraising the LoS/NLoS radio transmission in which mMIMO dart-like beams
propagate but also sensing object for collision avoidance, proximity sensing and
location from landmark sensing.
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