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a b s t r a c t 

Perception of sub-second auditory event timing supports multisensory integration, and speech and music percep- 

tion and production. Neural populations tuned for the timing (duration and rate) of visual events were recently 

described in several human extrastriate visual areas. Here we ask whether the brain also contains neural pop- 

ulations tuned for auditory event timing, and whether these are shared with visual timing. Using 7T fMRI, we 

measured responses to white noise bursts of changing duration and rate. We analyzed these responses using 

neural response models describing different parametric relationships between event timing and neural response 

amplitude. This revealed auditory timing-tuned responses in the primary auditory cortex, and auditory associa- 

tion areas of the belt, parabelt and premotor cortex. While these areas also showed tonotopic tuning for auditory 

pitch, pitch and timing preferences were not consistently correlated. Auditory timing-tuned response functions 

differed between these areas, though without clear hierarchical integration of responses. The similarity of au- 

ditory and visual timing tuned responses, together with the lack of overlap between the areas showing these 

responses for each modality, suggests modality-specific responses to event timing are computed similarly but 

from different sensory inputs, and then transformed differently to suit the needs of each modality. 
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. Introduction 

Neural processing of auditory event timing is important to support

everal behaviors that rely on fine-scale perception of the auditory tim-

ng, for example speech perception and production ( Assmann and Sum-

erfield, 1990 ; Ding et al., 2014 ; Ding and Simon, 2014 ), music percep-

ion and production ( Bridwell et al., 2017 ; Manning and Schutz, 2013 ),

nd perception of relationships between the timing of events in different

ensory modalities. All of these processes rely on perception and action

lanning following timing in the sub-second range. 

Previous research has demonstrated that neurons respond when

ounds occur. Neural oscillatory signals follow (entrain to) the rates

t which repetitive sounds occur in music ( Bridwell et al., 2017 ;

ozaradan et al., 2016 ), speech ( Ding et al., 2014 ; Ding and Si-

on, 2014 ; Henry and Obleser, 2012 ) and many artificial sounds

 Elhilali et al., 2009 ; Lalor et al., 2009 ; Will and Berg, 2007 ). Mul-

isensory integration also relies on synchronization of oscillatory sig-

als in different sensory cortices ( Kayser et al., 2008 ; Kayser and Lo-

othetis, 2009 ; Romei et al., 2012 ; van Atteveldt et al., 2014 ). Motor

ctions can also be accurately synchronized to auditory temporal struc-

ure ( Madison and Merker, 2004 ), which is consistent with a synchro-
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ization in the responses of auditory and motor cortices ( Tierney and

raus, 2013 ). 

Oscillatory activity following the timing of sounds suggests that av-

rage neural response amplitudes would monotonically increase with

he rate of sounds. Similarly, if sounds with longer durations produce

arger responses, average neural response amplitudes would increase

onotonically with sound duration. In the visual ( Hendrikx et al., 2022 ;

tigliani et al., 2017 ; Zhou et al., 2018 ) , motor ( Merchant et al., 2011 )

nd somatosensory ( Saal et al., 2015 ) systems, neural responses increase

ith both the duration and frequency of events. However, these mono-

onic responses are accompanied by timing-tuned responses that peak

t different event durations and/or frequencies in different neural pop-

lations ( Harvey et al., 2020 ; Hendrikx et al., 2022 ; Merchant et al.,

013 ; Protopapa et al., 2019 ; Saal et al., 2015 ). These timing-tuned re-

ponses abstract the representations of an event’s temporal properties

rom neural responses at the moments the events occurred, and this ab-

traction from low-level sensory activity may allow higher-level analy-

is of sensory event timing. In the visual system, the preferred durations

nd frequencies (producing the maximal response) of each neural popu-

ation gradually change across the cortical surface, forming topographic

aps of event timing ( Harvey et al., 2020 ; Protopapa et al., 2019 ).
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S  
hese timing-tuned responses appear to be straightforwardly derived

rom separate responses to specific events, particularly when sensory re-

eptors with different temporal dynamics are available ( Buonomano and

erzenich, 1995 ; Hendrikx et al., 2022 ; Saal et al., 2015 ), and these

rocesses seem likely to be applicable to inputs from different sensory

odalities. 

Our sense of time is often considered to be an abstract, supra-modal

rocess. A supra-modal sense of timing would predict closely related

esponses to the timing of auditory events in these same multisensory

egions. Supporting this viewpoint, EEG studies have shown that visual

egions entrain to rhythmic auditory stimuli ( Escoffier et al., 2015 ), and

isual rhythm perception can be improved through auditory but not

isual training ( Barakat et al., 2015 ). Furthermore, the basal ganglia

espond to beat perception in combined audiovisual tasks but not uni-

odal audio or visual tasks ( Grahn et al., 2011 ). 

Alternatively, modality-specific responses to event timing would pre-

ict distinct networks responding to different modalities. This modality-

pecific viewpoint is supported by recent results. Analysis of re-

ponses to event timing in early visual areas ( Hendrikx et al., 2022 ;

oseboom et al., 2018 ; Stigliani et al., 2017 ; Zhou et al., 2018 ) sug-

est that the neural representation of event timing may be derived from

he activity of early visual areas in a distinct pathway for analyzing

nd perceiving visual timing. Furthermore, neuropsychological lesion

tudies show a clear dissociation between timing in the visual and au-

itory domain, where a lesion in the auditory cortex led to a specific

ack of entrainment to auditory rhythm (without deafness), but left vi-

ual rhythm perception intact ( Fries and Swihart, 1990 ). This suggests

 distinct pathway for analyzing and perceiving auditory timing. 

Perceptual adaptation studies also support modality-specific neural

esponses to event timing. Both auditory and visual duration perception

re affected by the durations of preceding auditory stimuli, showing

 repulsive duration aftereffect that the perceived duration of the cur-

ent stimulus is repelled away from the duration of preceding stimuli

 Heron et al., 2012 ; Huppert and Singer, 1967 ; Walker et al., 1981 ).

uch repulsive duration aftereffects are often seen as effects of duration

uned responses ( Heron et al., 2012 ; Tsouli et al., 2022 ). Adaptation

o auditory stimulus duration does not affect perceived visual duration,

r vice versa ( Heron et al., 2012 ; Walker et al., 1981 ), consistent with

odality-specific neural responses to timing. These perceptual findings

uggest that auditory duration-tuned neural populations may exist in

umans, and that these are distinct from visual duration-tuned neural

opulations ( Heron et al., 2013 ). 

Even if the timing of events in different sensory modalities is initially

nalyzed in modality-specific networks, responses from different modal-

ties may converge into supra-modal representations at later stages to al-

ow grouping or comparisons of the timing of events in different modal-

ties, or action planning that can follow timing from any modalities. No-

ably, higher-level responses to event visual timing are largely found in

arietal and frontal areas implicated in multisensory integration and ac-

ion planning ( Harvey et al., 2020 ). Furthermore, auditory stimuli can

ffect the perceived timing of visual stimuli, and vice versa, but only

hen they are perceptually grouped ( Klink et al., 2011 ). Therefore, sep-

rate derivation of distinct auditory and visual timing tuned responses

oes not exclude the possibility of interactions between them. 

If auditory timing is derived in a distinct pathway, it is likely this

athway consists of, or overlaps with, the classical auditory processing

reas from the primary auditory cortices of Heschl’s gyri to the belt and

arabelt regions of the temporal cortex. Indeed, multiple studies show

hat auditory stimuli with different temporal structures can be classified

rom activity patterns in the auditory cortices. This classification can

istinguish between a range of natural stimuli ( Norman-Haignere et al.,

015 ) and musical genres ( Nakai et al., 2021 ). Similarly, decoding pat-

ern classification approaches can distinguish responses to stimuli with

ifferent broadband distributions of auditory frequency (pitch) and tem-

oral amplitude modulation (changes in periodicity of the envelope)

 Sohoglu et al., 2020 ). Sohoglu and colleagues further show distinct au-
2 
itory cortical regions that carry information about changes in pitch,

mplitude modulation, and both. Another decoding study reveals re-

ions of the auditory cortex that change their response patterns with

itch, timbre, or both ( Allen et al., 2017 ). Therefore, the auditory cor-

ices are a strong candidate to exhibit timing-tuned responses. 

Here we ask whether and where auditory timing tuned responses

ccur within the human brain and how their properties change within

nd between brain areas, and how these responses relate to auditory

requency (pitch) selective responses. FMRI studies demonstrate that

eural populations around the auditory cortex respond selectively to

he periodicity (frequency) of auditory stimuli that sinusoidally vary

heir amplitude over time ( Barton et al., 2012 ). Here we use discrete

ounds with rapid onsets and offsets, and constant amplitude for a vari-

ble duration. We present these sounds repetitively at variable rates,

hich we describe in terms of the event’s period (1/frequency) so that

t is (like event duration) given in seconds. Previous studies have some-

imes described this period in terms of the sound’s envelope or described

t in terms of the fundamental frequency (1/period of the envelope) of

 repetitive sound. While this period is a measure of event frequency,

t should not be confused with the auditory frequency (pitch) of the

ound: auditory frequency describes the rate of the compression and

ecompression of air, in frequencies of at least 20 Hz; event frequency

escribes the rate of onset of specific auditory events, in frequencies be-

ow 10 Hz in the current study. Our auditory events were white noise

ursts, so have the same power at every audible frequency and were

mplitude-modulated to produce events with variable timings. 

. Methods 

.1. Ethics statement 

Experimental participants gave written informed consent for all ex-

erimental procedures and use of the data collected from them. All ex-

erimental procedures were approved by the ethics committee of Uni-

ersity Medical Center Utrecht. 

.2. Participants 

Six participants (aged 26-37, three female, all right-handed) with

revious MRI experience were recruited to participate. As in previous

imilar studies using pRF modelling of 7T fMRI data ( Harvey et al., 2013 ,

020 ; Harvey and Dumoulin, 2017a ; Klein et al., 2014 ), we aim for a

etailed assessment of functional neural response properties in each par-

icipant ( Gordon et al., 2017 ) and therefore focus on internal replication

sing a large amount of data from each participant rather than large

umbers of participants ( Baker et al., 2021 ). 

All participants had normal or corrected to normal vision and normal

earing. None were musicians. 

.3. Auditory stimuli 

All auditory stimuli were generated using MATLAB along with func-

ions from the Binaural Sound Creation Toolbox ( Akeroyd, 2001 ) and

unctions built in house. Auditory stimuli were presented binaurally us-

ng state of the art MRI-compatible piezoelectric headphones (MR Con-

on, Model: HP PI US, Cambridge research systems, Rochester, UK),

orn over foam earplugs to reduce the sound pressure from the scanner.

ll stimuli were presented with a sample rate of 44.1 KHz. Participants

ere first asked to listen to a practice stimulus and to set the volume to

 level so they could hear the sound over the scanner noise without it

eing uncomfortably loud. This was at approximately 110 dB, and the

arplugs were rated at -32 dB. 

.4. Duration mapping stimuli 

A range of stimuli changing in duration and period was presented.

timulus duration was defined as the length of time between the onset
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Fig. 1. Timing of presented auditory events. 

(A) Stimulus space with grid of configura- 

tions sampled during the experiment. Cyan and 

magenta dots denote stimulus configurations 

present in the first and second half of the scan 

run, respectively. Black dots denote the con- 

trol conditions with high periods. Green, blue 

and red dots denote the duration-period pairs 

shown in panel C. (B) Sequence of stimulus 

event timings presented to the participant. Red 

and blue dots denote the duration and period 

(respectively) presented at a given time in the 

scan run, and duration-period pairs are cou- 

pled by black lines indicating their presence in 

the same trial. Both durations and periods are 

shown on the left axis. The number of times a 

given event was repeated during a three second 

window (the stimulus window) before the tim- 

ing changed is shown on the right axis for the 

period (blue) dots. (C) Representative sound 

waveform envelopes for repetitive events of ex- 

ample event timings, repeated for 3 seconds be- 

fore changing. Detailed sound waveforms are 

not visible at this scale, but consisted of white 

noise. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.). 

a  

t  

s  

m  

s  

r  

p  

s  

t

 

b  

i  

t  

r  

t  

w  

t  

d  

a

 

a  

q  

t

 

u  

s  

o  

e  

a  

o  

p  

o  

p  

s  

a  

o  

r

2

 

s  

s  

7  

t

𝑓

 

o  

f  

d  

d  

t  

t  

s  

r  

s  

t  

1  

t  

b  

i  

T  

f  

l  

i  

f  

t

2

 

a  

w  

e  

m  

t  

h  

s  

m  

W  

m  

q  
nd offset of a white noise burst (an event). The period was defined as

he duration plus the interstimulus interval (i.e., onset to onset). The

timulus sequence systematically traversed the space ranging from 100

illiseconds to 1000 milliseconds in both duration and period dimen-

ions (See Fig. 1 a). As the duration can never exceed the period, the

esulting space consists only of the upper left half of the square duration-

eriod space. The sequence was constructed in such a way that it was not

traightforward for participants to track where in the stimulus sequence

hey currently were and which timing was being presented. 

Each unique stimulus configuration (duration-period pair, denoted

y black lines in Fig. 1 B) was presented multiple times in a three second

nterval, depending on the amount of repetitions of the current period

hat would fit. As three seconds was not an integer multiple of all pe-

iod values used, the timing of events drifted slightly from synchroniza-

ion with the 3-second stimulus window around which timing changes

ere designed. However, this drift never went beyond ± 250 ms, and

he changes in timing of consecutive events were only 100 ms, so this

rift was not perceptible. The presented event timings were used for

nalysis. 

All events were white noise bursts with uniform frequency spectra

t auditory frequencies and randomly generated phases of different fre-

uencies. As such, there were no spectral cues and no relationship be-

ween auditory frequency and event timing. 

No timing judgements were required. To keep participants alert, we

sed an orthogonal auditory frequency oddball detection task and in-

tructed participants in this task before scanning. To keep the frequency

f oddballs and key presses the same for all event timings, only the first

vent of any three seconds could be an oddball. In these oddballs, the

uditory frequency was either high- or low-pass filtered. Ten percent

f 3-second stimulus windows began with oddballs, and participants

ressed different buttons as quickly as possible to indicate whether an

ddball they detected was high or low. These oddballs’ positions were

seudo-random, counterbalanced across scan runs by creating twenty

can runs with mutually exclusive oddball positions. As such, summed

cross all scan runs, each 3-second stimulus window contained exactly

ne high-pass oddball, one low-pass oddball, and required two different

esponses. 

.5. Tonotopy stimuli 

Tonotopic mapping stimuli were presented binaurally using the same

etup as for the auditory duration stimuli. Each sequence consisted of a
3 
ystematic progression of 27 pure frequency tones ranging from 88 to

965 Hertz. All 27 frequencies were logarithmically spaced following

he sequence generating equation: 

 𝑛 = 𝑓 0 ⋅ 2 
300 ⋅( 𝑛 −1 ) 

1200 = 𝑓 0 ⋅ 2 
( 𝑛 −1 ) 
4 , with 𝑓 0 = 88, and 𝑛 ∈ { 1 , 2 , ..., 26 , 27 } 

(1) 

During the sequence, tones were presented sequentially for 1.5 sec-

nds each. After all 27 tones were presented there was a period of silence

or 3 seconds after which the sequence was repeated in a reversed or-

er (from 7965Hz down to 88Hz). This cycle of increasing followed by

ecreasing frequency progressions was repeated six times in each run,

otaling 522 s. To avoid habituation and temporal expectation of these

ones, each 1.5 s presentation contained eight separate tones with the

ame frequency and intermixed durations of 50 or 200 ms (4 of each,

andomly ordered) ( Da Costa et al., 2011 ). The interval between con-

ecutive tones was always 50 milliseconds. The perceived loudness of

he same sound pressure varies with auditory frequency ( Neuhoff et al.,

999 ), and it was important for participants to hear all tones over

he scanner noise. We corrected for differences in perceived loudness

y attenuating sound intensity levels of individual frequencies follow-

ng the standard equal-loudness curves (ISO 226:2003, see Suzuki and

akeshima, 2004 ). These equal loudness curves vary sound pressure as a

unction of frequency such that all frequencies are perceptually equally

oud to a 1000Hz tone. This led to a range of sound intensity levels vary-

ng from 56dB to 83dB depending on auditory frequency. The resulting

requency response function is for a fixed perceptual loudness rather

han a fixed sound pressure. 

.6. MRI data acquisition 

We acquired MRI data on a 7T Philips Achieve scanner. Briefly, we

cquired T1-weighted anatomical scans, automatically segmented these

ith Freesurfer, then manually edited labels to minimize segmentation

rrors using ITK-SNAP. This provided a highly accurate cortical surface

odel at the grey-white matter border to characterize cortical organiza-

ion. We acquired T2 ∗ -weighted functional images using a 32-channel

ead coil at a resolution of 1.688 ×1.688 ×1.7 mm, with 57 interleaved

lices of 128 ×128 voxels. The resulting field of view was 216 ×216 ×96.9

m. TR was 1500 ms, TE was 22.49 ms, and flip angle was 70 degrees.

e used a gradient echo sequence with SENSE acceleration factor 2.4,

ultiband factor three and anterior-posterior encoding. This fMRI se-

uence acquired (three simultaneous) slices 19 times per 1500 ms TR,
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Table 1 

Supplement to Fig. 3 , table of all models tested describing different elements of their construction and their average variance explained. 

Bar nr. in 

Fig. 3 Model Name 

Number of 

Free Params Free params Predictors Equation Shape of RF 

Average variance 

explained 

1 Constant (Linear Frequency 

Only) 

0 N/A N/A 𝑧 ( 𝑡 ) ∝ 𝑐 Flat line 16 % 

2 Linear Duration + Linear 

Frequency 

1 𝑥 - Amplitude Ratio on duration 𝑧 ( 𝑡 ) ∝ 𝑥 ( 𝑡 ) Linear response 12.5 % 

3 Linear Duration + Compressive 

Frequency 

2 𝑎 

𝑝 

- Amplitude ratio on duration 

- compressive exponent 

𝑧 ( 𝑡 ) ∝ 𝑎 ⋅ 𝑥 ( 𝑡 ) + 𝐹 ( 𝑠 ) 
𝑝 

𝐹 ( 𝑠 ) 
Subadditive response 16.2 % 

4 Compressive 

Duration + Compressive 

Frequency 

3 𝑎 

𝑝 𝑥 

𝑝 𝑓 

- Amplitude ratio on duration 

- compressive exponent on duration 

- compressive exponent on frequency 

𝑧 ( 𝑡 ) ∝ 𝑎 ⋅ 𝑥 ( 𝑡 ) 𝑝 𝑥 
𝑥 ( 𝑡 ) 

+ 𝐹 ( 𝑠 ) 
𝑝 𝑓 

𝐹 ( 𝑠 ) 
Subadditive response 16.2 % 

5 Duration Tuned + Compressive 

Frequency 

3 𝑥 𝑝𝑟𝑒𝑓 

𝜎

𝑝 

- preferred duration 

- tuning width 

- compressive exponent on frequency 

𝑧 ( 𝑡 ) ∝ 𝐹 ( 𝑠 ) 𝑝 

𝐹 ( 𝑠 ) 
⋅ 𝑒 − 

1 
2 ( 

𝑥 ( 𝑡 )− 𝑥 𝑝𝑟𝑒𝑓 
𝜎

) 
2 

1D tuned response 

with compression 

20.2 % 

6 Circular Duration and Period 3 𝑥 𝑝𝑟𝑒𝑓 

𝑦 𝑝𝑟𝑒𝑓 

𝜎

- preferred duration 

- preferred period 

- tuning width 

𝑧 ( 𝑡 ) ∝ 𝑒 
− 1 2 ( ( 

𝑥 ( 𝑡 )− 𝑥 𝑝𝑟𝑒𝑓 
𝜎

) 
2 
+ ( 

𝑦 ( 𝑡 )− 𝑦 𝑝𝑟𝑒𝑓 
𝜎

) 
2 
) 2D circular tuned 

response 

20.2 % 

7 Circular (log) Occupancy and 

(log) Period 

3 𝑥 𝑝𝑟𝑒𝑓 𝑦 𝑝𝑟𝑒𝑓 

𝜎

- preferred occupancy 

- preferred period 

- tuning width 

𝑧 ( 𝑡 ) ∝ 𝑒 
− 1 2 ( ( 

ln ( 𝑥 ( 𝑡 ) )− ln ( 𝑥 𝑝𝑟𝑒𝑓 ) 
𝜎

) 
2 
+ ( 

ln ( 𝑦 ( 𝑡 ) )− ln ( 𝑦 𝑝𝑟𝑒𝑓 ) 
𝜎

) 
2 
) 2D circular tuned 

response 

20.8 % 

8 Circular Duration and Period 

tuned + compressive exponent 

on frequency 

4 𝑥 𝑝𝑟𝑒𝑓 𝑦 𝑝𝑟𝑒𝑓 

𝜎

𝑝 

- preferred duration 

- preferred period 

- tuning width 

- compressive exponent on frequency 

𝑧 ( 𝑡 ) ∝ 𝐹 ( 𝑠 ) 𝑝 

𝐹 ( 𝑠 ) 
⋅ 𝑒 − 

1 
2 ( ( 

𝑥 ( 𝑡 )− 𝑥 𝑝𝑟𝑒𝑓 
𝜎

) 
2 
+ ( 

𝑦 ( 𝑡 )− 𝑦 𝑝𝑟𝑒𝑓 
𝜎

) 
2 
) 2D circular tuned 

response with 

compression 

21.1 % 

9 Anisotropic occupancy and 

period tuned 

5 𝑥 𝑝𝑟𝑒𝑓 𝑦 𝑝𝑟𝑒𝑓 𝜎𝑚𝑎𝑗𝑜𝑟 

𝜎𝑚𝑖𝑛𝑜𝑟 

𝜃

- preferred occupancy 

- preferred period 

- major tuning width 

- minor tuning width 

- angulation of RF 

𝑧 ( 𝑡 ) ∝ 𝑒 
− 1 2 ( ( 

𝑌 

𝜎𝑚𝑎𝑗𝑜𝑟 
) 
2 
+ ( 𝑋 

𝜎𝑚𝑖𝑛𝑜𝑟 
) 
2 
) 

𝑋 = 
cos ( 𝜃) ⋅ ( 𝑥 ( 𝑡 ) − 𝑥 𝑝𝑟𝑒𝑓 ) − sin ( 𝜃) ⋅ ( 𝑦 ( 𝑡 ) − 𝑦 𝑝𝑟𝑒𝑓 ) 
𝑌 = 
𝑐𝑜𝑠 ( 𝜃) ⋅ ( 𝑦 ( 𝑡 ) − 𝑦 𝑝𝑟𝑒𝑓 ) + 𝑠𝑖𝑛 ( 𝜃) ⋅ ( 𝑥 ( 𝑡 ) − 𝑥 𝑝𝑟𝑒𝑓 ) 

2D anisotropic tuned 

response 

20.4 % 

10 Anisotropic (log) occupancy 

and (log) period tuned 

5 𝑥 𝑝𝑟𝑒𝑓 𝑦 𝑝𝑟𝑒𝑓 𝜎𝑚𝑎𝑗𝑜𝑟 

𝜎𝑚𝑖𝑛𝑜𝑟 

𝜃

- preferred log of occupancy 

- preferred log of period 

- major tuning width 

- minor tuning width 

- angulation of RF 

𝑧 ( 𝑡 ) ∝ 𝑒 
− 1 2 ( ( 

𝑌 

𝜎𝑚𝑎𝑗𝑜𝑟 
) 
2 
+ ( 𝑋 

𝜎𝑚𝑖𝑛𝑜𝑟 
) 
2 
) 

𝑋 = cos ( 𝜃) ⋅ ( ln ( 𝑥 ( 𝑡 ) ) − ln ( 𝑥 𝑝𝑟𝑒𝑓 ) ) − sin ( 𝜃) ⋅
( ln ( 𝑦 ( 𝑡 ) ) − ln ( 𝑦 𝑝𝑟𝑒𝑓 ) ) 
𝑌 = 𝑐𝑜𝑠 ( 𝜃) ⋅ ( ln ( 𝑦 ( 𝑡 ) ) − ln ( 𝑦 𝑝𝑟𝑒𝑓 ) ) + 𝑠𝑖𝑛 ( 𝜃) ⋅
( ln ( 𝑥 ( 𝑡 ) ) − ln ( 𝑥 𝑝𝑟𝑒𝑓 ) ) 

2D anisotropic tuned 

response 

20.6 % 

11 Anisotropic occupancy and 

period tuned + compressive 

exponent 

6 𝑥 𝑝𝑟𝑒𝑓 𝑦 𝑝𝑟𝑒𝑓 𝜎𝑚𝑎𝑗𝑜𝑟 

𝜎𝑚𝑖𝑛𝑜𝑟 

𝜃

𝑝 

- preferred occupancy 

- preferred period 

- major tuning width 

- minor tuning width 

- angulation of RF 

- compressive exponent on frequency 

𝑧 ( 𝑡 ) ∝ 𝐹 ( 𝑠 ) 𝑝 

𝐹 ( 𝑠 ) 
⋅ 𝑒 

− 1 2 ( ( 
𝑌 

𝜎𝑚𝑎𝑗𝑜𝑟 
) 
2 
+ ( 𝑋 

𝜎𝑚𝑖𝑛𝑜𝑟 
) 
2 
) 

𝑋 = 
cos ( 𝜃) ⋅ ( 𝑥 ( 𝑡 ) − 𝑥 𝑝𝑟𝑒𝑓 ) − sin ( 𝜃) ⋅ ( 𝑦 ( 𝑡 ) − 𝑦 𝑝𝑟𝑒𝑓 ) 
𝑌 = 
𝑐𝑜𝑠 ( 𝜃) ⋅ ( 𝑦 ( 𝑡 ) − 𝑦 𝑝𝑟𝑒𝑓 ) + 𝑠𝑖𝑛 ( 𝜃) ⋅ ( 𝑥 ( 𝑡 ) − 𝑥 𝑝𝑟𝑒𝑓 ) 

2D anisotropic tuned 

response with 

compression 

20.4 % 

12 Anisotropic (log) duration and 

(log) period 

tuned + compressive exponent 

6 𝑥 𝑝𝑟𝑒𝑓 𝑦 𝑝𝑟𝑒𝑓 𝜎𝑚𝑎𝑗𝑜𝑟 

𝜎𝑚𝑖𝑛𝑜𝑟 

𝜃

𝑝 

- preferred log of duration 

- preferred log of period 

- major tuning width 

- minor tuning width 

- angulation of RF 

- compressive exponent on frequency 

𝑧 ( 𝑡 ) ∝ 𝐹 ( 𝑠 ) 𝑝 

𝐹 ( 𝑠 ) 
⋅ 𝑒 

− 1 2 ( ( 
𝑌 

𝜎𝑚𝑎𝑗𝑜𝑟 
) 
2 
+ ( 𝑋 

𝜎𝑚𝑖𝑛𝑜𝑟 
) 
2 
) 

𝑋 = cos ( 𝜃) ⋅ ( ln ( 𝑥 ( 𝑡 ) ) − ln ( 𝑥 𝑝𝑟𝑒𝑓 ) ) − sin ( 𝜃) ⋅
( ln ( 𝑦 ( 𝑡 ) ) − ln ( 𝑦 𝑝𝑟𝑒𝑓 ) ) 
𝑌 = 𝑐𝑜𝑠 ( 𝜃) ⋅ ( ln ( 𝑦 ( 𝑡 ) ) − ln ( 𝑦 𝑝𝑟𝑒𝑓 ) ) + 𝑠𝑖𝑛 ( 𝜃) ⋅
( ln ( 𝑥 ( 𝑡 ) ) − ln ( 𝑥 𝑝𝑟𝑒𝑓 ) ) 

2D anisotropic tuned 

response with 

compression 

21.6 % 

13 Anisotropic duration and 

period tuned + compressive 

exponent 

6 𝑥 𝑝𝑟𝑒𝑓 𝑦 𝑝𝑟𝑒𝑓 𝜎𝑚𝑎𝑗𝑜𝑟 

𝜎𝑚𝑖𝑛𝑜𝑟 

𝜃

𝑝 

- preferred duration 

- preferred period 

- major tuning width 

- minor tuning width 

- angulation of RF 

- compressive exponent on frequency 

𝑧 ( 𝑡 ) ∝ 𝐹 ( 𝑠 ) 𝑝 

𝐹 ( 𝑠 ) 
⋅ 𝑒 

− 1 2 ( ( 
𝑌 

𝜎𝑚𝑎𝑗𝑜𝑟 
) 
2 
+ ( 𝑋 

𝜎𝑚𝑖𝑛𝑜𝑟 
) 
2 
) 

𝑋 = 
cos ( 𝜃) ⋅ ( 𝑥 ( 𝑡 ) − 𝑥 𝑝𝑟𝑒𝑓 ) − 𝑠𝑖𝑛 ( 𝜃) ⋅ ( 𝑦 ( 𝑡 ) − 𝑦 𝑝𝑟𝑒𝑓 ) 
𝑌 = 
𝑐𝑜𝑠 () ⋅ ( 𝑦 ( 𝑡 ) − 𝑦 𝑝𝑟𝑒𝑓 ) + 𝑠𝑖𝑛 ( 𝜃) ⋅ ( 𝑥 ( 𝑡 ) − 𝑥 𝑝𝑟𝑒𝑓 ) 

2D anisotropic tuned 

response with 

compression 

26.4 % 

4
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nd so produced audible gradients every 79 ms. We used a 2nd-order

mage-based B0 shim of the functional scan’s field of view (MRCodeTool,

RCode, Zaltbommel, Netherlands). This covered most of the brain but

mitted the posterior lobe of the cerebellum and the anterior tempo-

al lobes, where 7T fMRI has low response amplitudes and large spatial

istortions. 

Each scan lasted for 663 seconds and began with 6 dummy scans

o ensure steady state of the signal (which were discarded), followed by

36 functional volumes. Six to eight repeated runs were acquired within

he same session. In each session, we acquired a top-up scan recorded

ith the opposite phase-encoding direction from the main functional

uns to correct for image distortion in the gradient encoding direction,

 Andersson et al., 2003 ), and consists of 10 TRs. 

.7. Preprocessing 

Co-registration of functional data to the high-resolution anatomi-

al space was performed using a custom pipeline ( Paul et al., 2022 )

n AFNI (afni.nimh.nih.gov)( Cox, 1996 ). A single transformation matrix

as constructed, incorporating all the steps from the raw data to the

ortical surface model to reduce the number of interpolation steps to

ne. No other spatial or temporal smoothing procedures were applied. A

1 image with the same resolution, position and orientation as the func-

ional data was first used to determine the transformation to a higher res-

lution (1mm isotropic) whole-brain T1 image (3dUnifize, 3dAllineate).

or the fMRI data, we first applied motion correction to two series of

mages that were acquired using opposing gradient encoding directions

3dvolreg). Subsequently, we determined the distortion transformation

etween the average images of these two series (3dQwarp). We then

etermined the transformation in brain position between and within

unctional scans (3dNwarpApply). Then we determined the transforma-

ion that co-registers this functional data to the T1 acquired in the same

pace (3dvolreg). We applied the product of all these transformations to

very functional volume to transform our functional data to the whole-

rain T1 anatomy. We repeated this for each fMRI session to transform

ll their data to the same anatomical space. 

We then imported these data into Vistasoft’s mrVista framework

github.com/vistalab/vistasoft) for analysis and model fitting. We av-

raged the resulting data together separately for duration mapping and

onotopy. For both conditions, we also made further averages of the

ata from odd and even scans for cross-validation. For tonotopy only,

e then averaged repeated stimulus cycles within the same scan, leaving

8 fMRI responses measurements to which we fit response models. 

.8. fMRI analyses 

.8.1. Timing-selective neural response models 

To characterize the aggregate response of the neural populations in

ach fMRI voxel, we use forward models to predict the observed fMRI

ime courses that would result from neural response functions with var-

ous parametric relationships between event duration and event fre-

uency. This approach lets us first determine the form of the parametric

esponse function that best predicts responses from all responsive vox-

ls, and then determine the parameters of this response function that

est predict the responses in each voxel. Following our previous work

n responses to visual event timing ( Harvey et al., 2020 ; Hendrikx et al.,

022 ) we tested the hypothesis that the brain shows responses that vary

ith event duration and period following an anisotropic Gaussian func-

ion. However, neural response functions with various levels of com-

lexity have been described for many stimulus features. These vary

rom constant (the same response amplitude per event, regardless of the

vent’s properties) to multivariate nonlinear functions (e.g., the classi-

al circular-symmetric Gaussian tuned response function of visual field

osition, Hubel and Wiesel, 1959 ). The timing changes in our repeti-

ive stimuli can also be parameterized in terms of event duration, event

requency (the number of events per second in each 3 second stimulus
5 
indow), event period (1/frequency), occupancy (event period divided

y event duration), and interstimulus interval (event period minus event

uration). We therefore tested candidate models that predict neural re-

ponses amplitudes to each event as either a monotonic function of event

uration and/or frequency, or a Gaussian function of various combina-

ions of these parameters. 

The simplest model we tested predicts a constant response to every

vent, regardless of its duration and period. In essence, this response

odel is no more than a detector of event offsets. We denote this as: 

 ( 𝑡 ) ∝ 𝑐 (2)

here 𝑧 ( 𝑡 ) denotes the amplitude of the observed signal at event time

 . We predict response amplitudes on a per-event basis, but these re-

ponses accumulate over a few seconds due to fMRI’s measurement of

low changes in blood flow and oxygenation. The fMRI response ampli-

ude will then increase linearly with event frequency. 

A more complex response to each event would linearly follow the

uration of the event. We denote this as: 

 ( 𝑡 ) ∝ 𝑥 ( 𝑡 ) (3)

ere, 𝑥 ( 𝑡 ) refers to the magnitude of the physical quantity presented at

ime point 𝑡 and 𝑡 − 1 . 
The monotonic model is easily extended to a sub-additive function

hat allows for a sub-additive accumulation of responses with increasing

vent frequency, giving us 

 ( 𝑡 ) ∝ 𝑎 ⋅ 𝑥 ( 𝑡 ) + 

𝐹 ( 𝑠 ) 𝑝 

𝐹 ( 𝑠 ) 
(4)

𝐹 ( 𝑠 ) is the frequency with which a fixed stimulus state appears dur-

ng a period of time 𝑠 . Notice that the response amplitude is computed

er event , but the sub-additive effect of a number of occurrences of a

ingle stimulus state is computed as a constant over the entire stimulus

indow 𝑠 , of three seconds (2 TR’s of the acquisition sequence). 𝑝 ≤ 1 is
he exponent with which the compression occurs and is one of the pa-

ameters estimated by the model. The ratio 
𝐹 ( 𝑠 ) 𝑝 
𝐹 ( 𝑠 ) replaces the constant

esponse per event with a component that increases sub-additively with

vent frequency. 

More complicated candidate neural response functions could include

 Gaussian tuned response to one timing parameter, duration or occu-

ancy, supplanting the monotonic response to duration: 

 ( 𝑡 ) ∝
𝐹 ( 𝑠 ) 𝑝 

𝐹 ( 𝑠 ) 
⋅ 𝑒 

− 1 2 

( 
𝑥 ( 𝑡 ) − 𝑥 𝑝𝑟𝑒𝑓 

𝜎

) 2 
(5)

With additional parameters 𝑥 𝑝𝑟𝑒𝑓 referring to preferred duration or

eriod and 𝜎being the extent of the tuning function. 

Lastly, we hypothesized that responses to events of variable du-

ation and period would be predicted most closely by using a multi-

ariate tuned representation, similar to the two-dimensional receptive

elds seen in visual field position encoding and two-dimensional re-

ponse functions seen in visual timing encoding ( Harvey et al., 2020 ).

 tuned Gaussian response function can be extended to two dimensions

y adding a preference and a range in the second dimension. This can

e computed through the following equation: 

 ( 𝑡 ) ∝ 𝐹 ( 𝑠 ) 𝑝 

𝐹 ( 𝑠 ) 
⋅ 𝑒 

− 1 2 ( 
( 

𝑥 ( 𝑡 ) − 𝑥 𝑝𝑟𝑒𝑓 
𝜎𝑥 

) 2 
+ 
( 

𝑦 ( 𝑡 ) − 𝑦 𝑝𝑟𝑒𝑓 
𝜎𝑦 

) 2 
) 

(6)

However, this limits the response function’s orientation to the dura-

ion or period axis exclusively, while for visual timing-tuned responses

e have demonstrated an interaction between the two terms in the form

f an angulated Gaussian. Angulation can be introduced by expressing

he gaussian in terms of the major and minor axes such that 

 ( 𝑡 ) ∝
𝐹 ( 𝑠 ) 𝑝 

𝐹 ( 𝑠 ) 
⋅ 𝑒 

− 1 2 ( 
( 

𝑌 

𝜎𝑚𝑎𝑗𝑜𝑟 

) 2 
+ 
(

𝑋 

𝜎𝑚𝑖𝑛𝑜𝑟 

)2 
) 

(7)

here X and Y are expressed in terms of the angulation parameter 𝜃

 = 𝑐𝑜𝑠 ( 𝜃) ⋅
(
𝑥 ( 𝑡 ) − 𝑥 𝑝𝑟𝑒𝑓 

)
− 𝑠𝑖𝑛 ( 𝜃) ⋅

(
𝑦 ( 𝑡 ) − 𝑦 𝑝𝑟𝑒𝑓 

)
(8)
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Fig. 2. Inflated cortical surface rendering of one participant showing anatomical landmarks and the ROIs used to analyze the data. The magenta lines surround the 

Heschl’s gyri ROI, ATA is in red, ATM in green, ATP in blue, and ATPM in cyan. Fine and coarse dashed lines represent the ends of each ROI used for analysis of 

changes in response properties with cortical distance across the ROI. The crest of the Superior Temporal Gyrus (STG) is marked by the black line. 
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 = 𝑐𝑜𝑠 ( 𝜃) ⋅
(
𝑦 ( 𝑡 ) − 𝑦 𝑝𝑟𝑒𝑓 

)
+ 𝑠𝑖𝑛 ( 𝜃) ⋅

(
𝑥 ( 𝑡 ) − 𝑥 𝑝𝑟𝑒𝑓 

)
(9)

In Eqs. (5 ), (6) , (8) and (9) , x and y can be duration and period re-

pectively, occupancy and period respectively, duration and inter-event

nterval respectively, or logarithms of these parameters. 

.9. Auditory frequency selective neural response models 

This tuning in a logarithmic domain has been shown in the primary

uditory cortex and the surrounding regions ( Da Costa et al., 2011 ), as

ell as in other modalities ( Harvey and Dumoulin, 2017a , 2017b ). We

se the logarithmic case in testing candidate response functions using

he auditory frequency data. This is done in a one-dimensional case as

ollows 

 ( 𝑡 ) ∝ 𝑒 
− 1 2 

( 
𝑙𝑛 ( 𝑥 ( 𝑡 ) ) − 𝑙𝑛 ( 𝑥 𝑝𝑟𝑒𝑓 ) 

𝜎

) 2 
(10)

here 𝑙𝑛 is the natural logarithm, x is auditory frequency, and all other

omponents are as specified in the section on duration selective response

unctions. 

.10. Testing candidate models 

All of the aforementioned candidate models are tested using the

opulation receptive field modelling paradigm ( Dumoulin and Wan-

ell, 2008 ). This modeling approach can evaluate the predictions

ny candidate parametric response function ( Harvey et al., 2020 ;

arvey and Dumoulin, 2017a , 2017b ) for a large set of candidate combi-

ations of response function parameters. For every stimulus time point,

e computed the response function’s amplitude at the presented stim-

lus state, giving a candidate prediction of the neural response time

ourse expected if this candidate response function was responding

o this stimulus sequence. This candidate neural response time course

as then convolved with the canonical hemodynamic response func-

ion ( Glover, 1999 ) to generate a predicted fMRI time course expected

f this response function was responding to this stimulus sequence. We

etermined the correlation between this prediction and the measured

MRI response time course at each recording site. We then fit the free

arameters of the model to find the response function parameters that

aximize the correlation between the fMRI time course prediction and

he measured fMRI response time course. 

We used cross-validation to compare the prediction of different can-

idate response models despite the different numbers of free parameters.

e took the best-fitting parameter set from the odd numbered scans
6 
nd quantified the correlation between its prediction and the measured

MRI time course from the even numbered scans, and vice versa, giving

he cross-validated variance explained by each candidate model. All re-

ulting cross-validated model fits for each tested neural response model

ere averaged within each region of interest in each hemisphere for

ach cross validation split. These fits were compared between models

ith pairwise two-sided comparisons to give t-statistics and p-values of

ifferences between model fits. 

.11. Region of interest identification 

Using the best fitting model, we then defined regions of interest

ROIs) for further analysis. These were contiguous responsive areas

hich were consistently located relative to anatomical landmarks in dif-

erent hemispheres. While these ROIs were anatomically defined regions

f the cortical surface, we exclude responses with below 10% cross-

alidated variance explained in the best performing response model

rom all further analyses as these do not show clear response modula-

ion by auditory event timing, so not all voxels within each anatomical

OI are analyzed. The first ROI was Heschl’s gyri (transverse tempo-

al gyri), the anatomical location of the primary auditory cortices. We

ubsequently defined three regions surrounding the auditory cortex that

nclude the classical belt and parabelt regions. We named these by their

natomical locations, preceded by “AT ” for “auditory timing ”, follow-

ng conventions for naming visual field maps ( Wandell et al., 2005 ), nu-

erosity maps ( Harvey and Dumoulin, 2017a ; Hofstetter et al., 2021 )

nd visual timing maps ( Harvey et al., 2020 ). Auditory timing anterior

ATA) extended from the anterior edge of Heschl’s gyri along the lateral

ank of the lateral sulcus into the fundus of the lateral sulcus, follow-

ng the planum polare (medial surface of the superior temporal gyrus

STG), Fig. 2 ). This resembles the locations of the medial belt areas of

he macaque auditory cortex ( Kaas and Hackett, 2000 ). Auditory tim-

ng medial (ATM) extended from the posterior edge of Heschl’s gyri to

he upper bank of the STG including the planum temporale and the in-

erior part of the supramarginal gyrus. This resembles the locations of

he lateral belt areas of the macaque auditory cortex ( Kaas and Hack-

tt, 2000 ). Auditory timing posterior (ATP) ran alongside ATM, extend-

ng from the top of the STG along its lateral bank, consistent with the

natomical location of Wernicke’s area or the macaque auditory para-

elt region ( Kaas and Hackett, 2000 ). A fourth region, auditory timing

remotor (ATPM), was located on the precentral gyrus at its junction

ith the middle frontal gyrus, consistent with the part of the premotor

ortex. 
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.12. Transformations of ROI locations to standard templates 

We transformed each individual participant’s brain to the N27 (Ta-

airach) standard template using AFNI’s surface-based co-registration

ools (3dQwarp, 3dAllineate). We then identified the centre of each ROI

n the surface and passed this through the same transformation to deter-

ine centre coordinates in Talairach space. Finally, we used the tal2mni

ool to transform these centre coordinates into MNI space. After each

ransformation of the individual participant’s ROI centres, we calculated

he mean and standard deviation in each template space (Provided in

upplementary Table 1). 

.13. Analysis of parameter distribution within ROIs 

.13.1. Changes in preferred duration and period 

To characterize the cortical organization of timing selectivity within

hese ROIs, we analyzed the observed progression of preferred dura-

ions and periods over cortical surface between anatomically defined

andmarks. Previous work has focused on linear and u-shaped progres-

ion of response preferences binned by cortical distance ( Arcaro et al.,

011 ; Harvey et al., 2013 , 2020 ; Harvey and Dumoulin, 2017a ), in-

erpreted as one or two bordering topographic maps respectively (e.g.,

ne descending and one ascending progression for a u-shaped profile).

ur anatomically-defined ROIs do not necessarily consist of precisely

ne topographic progression, particularly because the auditory belt and

arabelt each include several contiguous areas with distinct functional

roperties ( Moerel et al., 2014 ), cytoarchitectonic properties ( Kaas and

ackett, 2000 ; Moerel et al., 2014 ) and connectivity. To allow the pos-

ibility of several topographic map progressions within a single ROI,

e introduced a cyclical sinusoidal fit (with frequency and phase as

ree parameters) to the mean preferred durations or frequencies of 2

m cortical distance bins between the ends of each ROI. If ROIs con-

istently showed the same number of cycles in a similar phase in differ-

nt hemispheres this would provide evidence of multiple topographic

rogressions within the ROI. We used a general linear model to quan-

ify the contributions of both the best fitting cyclical and linear func-

ions to the observed changes in preferred duration and period between

he anatomically-defined ends of each ROI. Subsequently, we compute

he corresponding t-statistics and probabilities in each ROI and hemi-

pheres, correcting probabilities for the number of ROIs tested by using

alse discovery rate correction ( Benjamini and Hochberg, 1995 ). 

We further tested whether estimates of duration and period pref-

rence showed a repeatable spatial structure across measurements (re-

ardless of topographic organization) by testing for a positive correla-

ion between the duration or period preferences estimated from odd and

ven scan runs. In converting the correlation coefficient to a probability

f the observed correlation, we divided the number of surface vertices

n the ROI by the upsampling factor between the acquired functional

ata and the cortical surface model in which response models were fit

o account for the transformation from the scanned EPI resolution (1.7

m 

3 ) to the higher resolution (1.0 mm 

3 ) cortical surface model space.

his upsampling factor was 2.89 (i.e. 1.7 2 ) because our ROIs were re-

tricted to a (folded) 2-dimensional cortical surface. 

We also asked how the preferred duration and preferred period pa-

ameters of timing models were related. We used the same procedure

o test for correlations between preferred event duration and preferred

vent period estimates, here using the data from all scan runs combined.

inally, we asked whether timing preferences were related to auditory

requency (tonotopic) preferences. We again used the same procedure

o test for correlations between preferred event duration and preferred

uditory frequency. 

.13.2. Relationships between preferred duration and response function 

xtent 

For each ROI we also looked for changes in the response functions’

ajor and the minor extents with preferred duration, in data from the
7 
ame ROI grouped across participants. To visualize these changes, we

inned the recording sites within every 50 ms increase in preferred du-

ation, calculating the mean and standard error of the response func-

ion extent. Our previous study on responses to visual event timing

 Harvey et al., 2020 ) revealed that response function extent first in-

reased with preferred duration, and second increased as the preferred

uration moved away from the middle of the presented range. To test

oth progressions independently, it was necessary to include the same

umber of recording sites with preferred durations on either side of the

iddle of the presented range. Therefore, we first split the recording

ites into those with preferred durations above and below the middle of

he presented range. From the larger group, we repeatedly discarded a

andom selection so both groups had the same count, following a boot-

trapping procedure. We then fit a general linear model to this combined

ata, with three predictors: preferred duration; the absolute difference

etween the preferred duration and the middle of the presented range;

nd a constant to capture the intercept of the progressions. We repeated

his procedure in 1000 bootstrap permutations, each permutation dis-

arding a different random selection. We took the mean t-statistic for

ach predictor across permutations, and converted this to a probability

aking into account the (fixed) number of recording sites, corrected for

psampling as already described to give a probability for each relation-

hip. We repeated this procedure for the bin means in Supplementary

ig. 4 to give the best fitting lines. We determined 95% confidence in-

ervals by plotting fit lines from all permutations and finding the 2.5%

nd 97.5% percentiles of their values. 

.13.3. Analysis of differences between ROIs 

In previous studies of visual timing-tuned ( Harvey et al., 2020 ;

aul et al., 2022 ), numerosity-tuned ( Harvey and Dumoulin, 2017a ) and

isual field position tuned responses ( Amano et al., 2009 ; Dumoulin and

andell, 2008 ; Harvey and Dumoulin, 2011 ), the parameters of the re-

ponse functions change between ROIs, reflecting hierarchical transfor-

ations of quantity and spatial representations between brain areas. To

est for similar hierarchical transformations between auditory timing

OIs, we compared several properties of the ROIs and their responses

etween ROIs. For each ROI in each hemisphere of each participant,

e quantified the ROI’s cortical surface area ( Fig. 6 A). We then quanti-

ed the mean of several properties across the recording sites within the

OI: model variance explained ( Fig. 6 B), preferred duration and period

 Fig. 6 C), the extent of the response function along its major and minor

xes ( Fig. 6 F), and the aspect ratio of the response function (i.e. major

xis extent / minor axis extent) ( Fig. 6 G), the orientation of the response

unction’s major axis ( Fig. 6 F), and the compressive exponent on event

requency ( Fig. 6 I). Finally, we quantified the interquartile range of pre-

erred durations ( Fig. 6 D) and preferred periods ( Fig. 6 E) of recording

ites within each ROI. 

We used linear mixed effects models to determine how the mean

esponse model parameters differed between ROIs. These models in-

luded ROI as a fixed factor and participant as a random factor, be-

ause the quality of fMRI data varies between sessions and participants.

arginal tests for the fixed effects were adjusted using Satterthwaite de-

rees of freedom approximation ( Satterthwaite, 1941 , 1946 ). To deter-

ine which ROIs differed in response model parameters, we determined

orrected post-hoc multiple comparisons using Tukey’s honestly signifi-

ant difference test ( Tukey, 1949 ), which gives the marginal means and

onfidence intervals shown in Fig. 6 . 

. Results 

.1. Regions of interest 

We used 7T fMRI to record neural responses to auditory events with

ariable timing ( Fig. 1 ). These were repetitive white noise bursts that

radually varied in the two timing properties: event duration and event

eriod. Event duration describes the time from the onset to the offset of
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Fig. 3. Candidate timing response models and their fits. (A) We compared the ability of different response models to predict the responses observed in our ROIs. 

We fit the parameters of each model in one half of our scans and determined the proportion of the variance in the complementary half that the resulting model 

explained. This revealed that models tuned to event duration and period, with a nonlinear compressive accumulation of response amplitude with event frequency 

(furthest right) best captured the observed responses. Numbers in the bars can be used to refer to Table 1 , which provides full details on each model. (B) T-statistics 

of paired comparisons between the variance explained in cross-validated data by the best fitting models. 
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n auditory event, while event period describes the time from the onset

f one event to the onset of the next. In each participant, we use timing-

ependent neural response models to capture responses in five regions

f interest (ROIs) in areas of each hemisphere (see Methods, Fig. 2 ) that

hanged their responses with auditory event timing. 

.2. Model comparison 

To determine how the neural populations in our ROIs encoded event

iming, we fit neural response models of varying complexity and evalu-

ted model fits in cross-validated data. We exclude responses with below

0% cross-validated variance explained in the best performing response

odel from all further analyses as these do not show clear response

odulation by auditory event timing. The simplest monotonic neural

esponse model, where response amplitude increases linearly with event

requency only, explained some response variance (mean over all par-

icipants, hemispheres, ROIs and data split halves: 16.0%) suggesting

hat the neural populations within our voxels give a distinct response

o each event ( Fig. 3 A). The same model’s performance on visual tim-

ng responses ( Harvey et al., 2020 ) was very similar (17%). Adding a

onotonic component where response amplitude also increase linearly

ith event duration counterintuitively decreases model fits (12.5%, t = -

.4, p = 3.7 × 10 − 9 , n = 120) in a two-sided t-test paired across region

f interest measurements), showing that including a response compo-

ent describing a linear response to duration leads to overfitting. How-
8 
ver, we would not necessarily expect response amplitude to increase

inearly with either event duration or frequency, as previous studies

f monotonic responses to visual event timing in early visual cortex

 Hendrikx et al., 2022 ; Zhou et al., 2018 ) show that these responses

ccumulate sub-additively with duration and frequency. Adding a com-

ressive nonlinearity to the responses to duration and frequency pro-

uces a response model that predicts responses more closely than any

ther monotonic response model (16.2%, t = 3.1, p = 0.002). 

Beyond these monotonic increases with event duration and fre-

uency, we tested how tuned, timing selective components affected

odel fits. Adding a Gaussian tuned response to duration and keeping a

ompressively increasing response to event frequency predicts responses

etter than the best monotonic model (20.2%, t = 10.0, p < 10 − 10 ).

owever, adding a tuned response to two timing dimensions, following

 circular-symmetric Gaussian function, predicts responses more closely

han this one-dimensional Gaussian response model. Allowing duration

nd period tuning to have different extents and to interact with each

ther (i.e., an anisotropic Gaussian function) gives the best model we

ested (26.4%, t = 5.74, p = 8.2 × 10 − 8 against the next best model).

he same model’s performance on visual timing responses ( Harvey et al.,

020 ) was again similar (31.7%). However, it would also be possible to

ave a similar function tuned for different timing parameters (period oc-

upancy or inter-stimulus interval) or logarithmic spacing of these tim-

ng parameters. These models have the same complexity as the best per-

orming model but predict the observed responses significantly less well
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all t > = 5.74, p < 8.2 × 10 − 8 ). Overall, neural response model perfor-

ance here seems to depend on how closely the modelled response func-

ion can approximate this anisotropic function of duration and period. 

The best performing neural response model captured timing selectiv-

ty with an anisotropic Gaussian neural response function (Supplemen-

ary Fig. 1). This predicts observed responses significantly more closely

han all other models when treating all hemispheres, ROIs, and data

plits as independent measures (n = 120). However, this difference com-

ared to the next best model (a similar anisotropic Gaussian function of

og(duration) and log(period)) does not reach significance with statisti-

al inference at the individual participant level (i.e. biological replica-

ion across individual humans), when all measures from one participant

re grouped and participants are treated as the independent measure

n = 6, p = 0.129, t = 1.815), but does so on the hemisphere level where

ach hemisphere of each participant is taken as an individual measure

n = 12, p = 0.022, t = 2.671). We also repeated this analysis for each

f our five ROIs separately and found the same neural response model

est predicted the responses in every ROI. The best performing model’s

esponse function has several parameters: preferred duration, preferred

eriod, tuning widths along major and minor axes, angulation of the

ajor axis, and the compressive exponent on the increase in response

mplitude with event frequency. In the following sections we therefore

sk how these parameters change within and between ROIs. 

.3. Distribution of timing preferences within ROIs 

Within each of our ROIs, we observed a range of timing preferences

 Fig. 4 for an example participant, Supplementary Figs. 2 and 3 for all

articipants). These timing preferences were significantly positively cor-

elated between repeated measures (split halves of odd and even scan

uns) in 36 of 60 individual ROI examples for duration preferences, and

n 34 of 60 ROI examples for period preferences ( Fig. 5 A for an example

emisphere, Supplementary Figs. 4 and 5 for all hemispheres). In both

ases, the set of correlation coefficients was significantly greater than

ero in a one-sample t-test (preferred duration: t = 11.71, p < 10 − 10 ,

 = 60; preferred period: t = 9.63, p < 10 − 10 ). However, despite this re-

eatable variation of timing tuning properties between voxels, the spa-

ial organization of timing preferences across the cortical surface did

ot show a clear structure, at least at the spatial resolution of our data

Supplementary Fig. 6). First, we tested for a linear progression of tim-

ng preferences across each ROI. We found no consistent correlation be-

ween preferred duration and distance across the ROIs. In some ROIs,

here appeared to be changes back and forth from long to short preferred

urations, so we also tested whether a sinusoidal function of cortical

urface distance, or a combination of linear and sinusoidal functions,

as consistently correlated with the ROIs duration preferences. Again,

o such correlation was consistently found. As such, while there is a

epeatable variation of timing preferences between voxels, the spatial

tructure of these tuning preferences could not be determined in our

ata. 

We also tested whether preferred duration and preferred period es-

imates within each ROI were correlated with each other, here using

odels fit to all data rather than split halves. These response prefer-

nces were significantly positively correlated in 37 of 60 individual ROI

xamples ( Fig. 5 B for an example hemisphere, Supplementary Fig. 7 for

ll hemispheres). Again, the set of correlation coefficients was signifi-

antly greater than zero in a one-sample t-test (t = 10.56, p < 10 − 10 ,

 = 60). 

We also tested for relationships between the extent of the response

unction and its preferred duration in each ROI, either following a lin-

ar function (consistent with the scalar property of duration perception

 Gibbon et al., 1997 ; Harvey et al., 2020 ) or a v-shaped function with the

mallest functions in the middle of the presented range (consistent with

he regression towards the mean in duration perception ( Harvey et al.,

020 ; Jazayeri and Shadlen, 2010 )). Neither of these relationships con-

istently reached significance in any ROI (Supplementary Fig. 8). 
9 
Finally, we tested whether timing preferences were related to tono-

opic auditory frequency preferences ( Figs. 4 and 5 C for an example

articipant, Supplementary Figs. 8 and 9 for all participants), and only

ound significant positive correlations in 12 of 60 individual ROI ex-

mples, with significant negative correlations in 1 of 60 individual ROI

xamples. Here, the set of correlation coefficients was marginally but

ignificantly different from zero in a one-sample t-test (t = 2.11, p = 0.04,

 = 60), perhaps suggesting some relationship between timing and audi-

ory frequency preferences, although certainly a far weaker relationship

han between repeated measures of timing preferences or between du-

ation and period parameters. 

.4. Parameter changes between ROIs 

We tested for differences in response model parameters between

OIs using linear mixed effects modeling (fixed factor: ROI, ran-

om factor: participant). The cortical surface areas of responsive

oxel groups differed significantly between ROIs (p = 4.38 × 10 − 10 , 

(4, 50) = 14.90)( Fig. 6 A). Specifically, post-hoc multiple comparisons

emonstrated that Heschl’s gyri (the location of the primary auditory

ortices), and ATA and ATM (immediately neighboring the primary au-

itory cortices) were significantly larger than the other ROIs, and ATPM

as significantly smaller than ATP. ATPM covered less than 50 mm 

2 of

he cortical surface on average, whereas all other ROI’s on average cov-

red 130 mm 

2 or more. 

The response variance explained by the best-fitting timing-tuned re-

ponse model differed significantly between ROIs (p = 3.92 × 10 − 5 ,

(4, 50) = 8.13)( Fig. 6 B). Specifically, post-hoc multiple comparisons

emonstrated that model fits were significantly better in Heschl’s gyri,

TA and ATM than in ATP and ATPM. A similar pattern was observed

or the response variance explained by auditory frequency-tuned (tono-

opic mapping) response models (p < 10 − 10 , F(4, 50) = 45.63 in a similar

ixed effects model), though auditory frequency-tuned response models

t significantly better in Heschl’s gyri than ATA and ATM ( Fig. 6 J). As

uch, auditory frequency responses are clearest in Heschl’s gyri, while

iming-tuned responses are clearest in the auditory cortex belt (ATA and

TM). 

Mean preferred duration did not change significantly between ROIs

p = 0.269, F(4, 50) = 1.34) ( Fig. 6 C). The interquartile range of preferred

urations present in each ROI also did not differ significantly between

OIs (p = 0.117, F(4, 50) = 1.95) ( Fig. 6 D). 

Mean preferred period did not differ significantly between ROIs

 Fig. 6 C). However, the interquartile range of preferred periods in

ach ROI did differ significantly between ROIs (p < 2.77 × 10 − 6 ,

(4, 50) = 10.57) ( Fig. 6 E). Specifically, ATP’s interquartile range was

ignificantly higher than in other ROIs. 

Quite unlike previous findings for visual event timing-tuned re-

ponses ( Harvey et al., 2020 ) the response function’s extent along both

ts major and minor axes did not change significantly between ROIs

 Fig. 6 F) and as a result the aspect ratio of this response function did not

hange significantly ( Fig. 6 G). The angulation of the response function

arameter did not change significantly between ROIs either ( Fig. 6 H).

urthermore, the response model’s compressive exponent parameter,

hich captures the subadditive accumulation of responses to repeated

vents, did not change significantly between ROIs ( Fig. 6 I). Therefore,

nlike in the hierarchical processing of visual event timing, there is no

vidence of a progressive sharpening of response functions or integra-

ion of responses to repeated events in the auditory modality. 

. Discussion 

The current study aimed to identify regions where neural response

how tuned responses to the timing of auditory events and how the pa-

ameters of this response function change within and between these re-

ions. We used a combination of ultra-high field fMRI of responses to
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Fig. 4. Best fitting response function parameters projected onto the inflated cortical surface of one representative participant. (A). Preferred auditory event duration 

from the best fitting two-dimensional anisotropic gaussian response model. (B). Preferred auditory event period. (C). Preferred auditory frequency from the tonotopic 

mapping stimulus response. 
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uditory events that changed in timing, and neural model-based anal-

ses of the resulting responses. We found regions showing tuned re-

ponses to auditory timing in and around Heschl’s gyri (consistent with

he locations of the primary auditory cortices and macaque lateral and

edial auditory cortex belt) and extending into the superior tempo-

al gyrus (consistent with Wernicke’s area and the macaque parabelt),

s well as a small responsive region in the premotor cortex. Compar-

son between candidate tuned and monotonic neural response models

emonstrated that the responses of these regions were best captured

y a two-dimensional anisotropic gaussian response function, tuned to
10 
vent duration and period, with response amplitudes accumulating sub-

dditively with increasing event frequency. We found a repeatable vari-

tion of timing preferences within each region, indicating a spatial sepa-

ation on the cortical surface of neural populations with preferences for

ifferent event timings. However, there was no clear structure to the cor-

ical organization of the timing preferences within these regions, and no

elationship between tuning function extents and preferred durations.

e also found a consistent relationship between response preferences

or event duration and period, but at most a very weak relationship be-

ween timing preferences and tonotopic auditory frequency preferences.
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Fig. 5. Correlations between response model parameters in an example right hemisphere. (A) Correlations between estimates of preferred duration or preferred 

period from independent sets of scan runs, for the set of voxels within each ROI of an example hemisphere. Response model parameters were consistently positively 

correlated between repeated measures. (B) Correlations between preferred duration and preferred period estimates (from all scan runs), which were also consistently 

positively correlated. (C) Correlations between preferred duration and preferred auditory frequency estimates (from all scan runs), which were not consistently 

correlated. 
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esponses differed between these regions: those immediately adjacent

o the primary auditory cortices were larger and gave clearer responses,

hile tonotopic responses to auditory frequency were clearest in the

rimary auditory cortices themselves. 

Perhaps the most striking feature in the current dataset is that the

eural response function whose predictions best fit the observed data

s the same neural response function reported in our previous study of

esponses to visual event duration ( Harvey et al., 2020 ). This is notable
11 
iven that the encoding of visual information in early visual brain areas

nd auditory information in the auditory cortex differ in several ways:

esponding to positions on the retina and the cochlea respectively; en-

oding position and auditory frequency respectively; and being located

n very different brain areas. Despite these differences, it appears that

he encoding temporal information is very similar between modalities,

uggesting closely related computational mechanisms. As in the visual

ortex ( Hendrikx et al., 2022 ), this encoding may be derived from ear-
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Fig. 6. Differences in response model parameters between ROIs. Points represent the population marginal mean of values across hemipsheres. Many of these 

parameters show significant differences between ROIs, typically between the ROIs immediately surrounding Heschl’s gyri (ATA and ATM) and those further away 

(ATP and ATPM). Error bars are 95% confidence intervals: separable error bars show significant differences at p < 0.05. (A) Surface area of ROI. (B) Cross-validated 

variance explained of the 2D anisotropic gaussian model tuned to duration and period, expressed in R 2 . (C) Mean preferred duration (lower bars in grey) and period 

(upper bars in black). (D) Interquartile range of preferred durations. (E) Interquartile range of preferred periods. (F) Extent of response function. Extent along the 

minor axis are the lower bars shown in grey, extent along the major axis are the upper bars shown in black. (G) Aspect ratio of the tuning function, measured in 

extent across major axis over extent across minor axis. Circles on the right of G show the change in aspect ratio going from a round, isotropic response function on 

the bottom, to a response function that is more sensitive along the minor compared to the major axis on the top. (H) Angulation of response function relative to 

the x-axis in the duration-period domain. The circles on the right of figure H show differing ranges of response function angulation, going from a nearly horizontal 

angulation on the bottom to a near vertical angulation at the top. (I) Compressive exponent on frequency. (J) Variance explained of the tonotopy models in the same 

ROIs as all other figures. 
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ier responses that monotonically increase with event duration and fre-

uency. In both cases, the earlier monotonic response amplitudes are

lso likely to increase with stimulus strength (visual contrast or auditory

oudness) which must be normalized in the computation of true timing-

uned responses. Visual contrast normalization between primary and ex-

rastriate visual areas is well established ( Aqil et al., 2021 ; Carandini and

eeger, 2011 ; Kastner and Pinsk, 2004 ) as is loudness normalization in

rimary auditory cortices ( Behler and Uppenkamp, 2016 ; Neuner et al.,

014 ), suggesting that event timing can be straightforwardly separated

rom other stimulus features that affect global response amplitudes. 

How might this timing tuned representation affect how the brain

nalyses event timing? First, a timing-tuned representation makes ex-

licit in neural responses the timing information that is implicitly

resent in the response dynamics of early sensory areas ( Hendrikx et al.,

022 ). We speculate that this might first allow timing information to be

urther analyzed in a hierarchy of timing-driven responses and allow
12 
he timing of responses in different sensory modalities to be compared

nd grouped. An explicit representation of timing may allow the same

esponses to event timing regardless of auditory frequency, while im-

licit encoding of timing in neural response dynamics separates timing

nformation into different auditory frequencies. A timing-tuned repre-

entation also means different neural populations respond to different

vent timings. Auditory events with different timings often have differ-

nt roles in human behavior, such as speech and music, and processing

hese different event timings with distinct neural populations may al-

ow neural populations to specialize in one type of auditory information

 Norman-Haignere et al., 2015 ). Even within these types of auditory in-

ormation, timing differs between musical genres and speech emphasis

for example), potentially producing distinct neural responses in each

ase ( Nakai et al., 2021 ). 

Despite the similarities between visual and auditory timing-tuned re-

ponses, we found a highly modality-specific representation of temporal
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nformation. We found no region that was part of both visual and audi-

ory networks of timing-tuned responses. Unlike early visual areas which

how monotonic increases in response amplitude with event duration

nd rate ( Hendrikx et al., 2022 ; Stigliani et al., 2017 ; Zhou et al., 2018 ),

rimary auditory cortices already showed evidence of timing-tuned re-

ponses. We therefore speculate that the earlier monotonic responses to

uditory event duration and frequency may be present in subcortical

uditory nuclei such as the cochlea nuclei, superior olivary complex, in-

erior colliculus and medial geniculate nucleus of the thalamus. These

egions process incoming auditory information prior to Heschl’s gyrus

nd might therefore be the analogue to the primary visual cortex in

erms of monotonic versus tuned processing of incoming event timing

nformation. However, the current field of view and scanning sequence

ype ( Moeller et al., 2010 ; Moerel et al., 2015 ) did not allow for us to

tudy the subcortical nuclei in detail and we know of no previous stud-

es of how subcortical responses are affected by event timing. We found

uditory timing-tuned responses in the primary auditory cortices and in

urrounding areas, which appear to correspond to the auditory cortex

elt (ATA and ATM) and parabelt of the macaque, apparently extending

nto Wernicke’s area in the superior temporal gyrus (ATP). Therefore, as

or visual event timing, the auditory timing network consisted of several

reas that are well established to be involved in auditory processing. The

resence of timing-tuned responses throughout the early auditory cor-

ices may reflect the vital role of timing in interpreting auditory inputs.

his may underlie co-localized (but independent) responses to both tim-

ng and auditory frequency. However, we find the strongest responses

o auditory frequency in the primary auditory cortices (Heschl’s gyrus)

nd the strongest responses to timing also extend into the immediately

urrounding areas, ATA and ATM. This implies that responses to timing

ay be more preserved into later auditory processing stages than re-

ponses to auditory frequency, though it is too soon to draw strong con-

lusions on this point. We also found similar responses in a small area

f the premotor cortex (ATPM), which also shows auditory frequency-

uned (tonotopic) responses in our data, though we can find no previous

eports of auditory-driven responses here. 

ATPM is close to a right-hemisphere premotor area that has previ-

usly been shown to hold information about visual event duration in

roup data ( Hayashi et al., 2018 ), though where we have used the same

ndividual participants to map visual timing preferences ( Harvey et al.,

020 ), the nearby visual timing map TFS is consistently anterior to

TPM. Similarly, the visual timing map TLS is consistently posterior to

TP, though again they are nearby. As such, while we find no evidence

f generalized responses to timing of events in different modalities, there

re tuned responses to visual and auditory event timing in nearby areas.

his may allow these distinct responses to interact ( Tsouli et al., 2022 )

articularly in processing multimodal stimuli where the timing of events

n different senses is perceptually grouped ( Klink et al., 2011 ). So while

he computational mechanisms of timing processing appear similar be-

ween modalities, these are implemented in different brain areas with

ifferent inputs. This speaks against a single, abstracted, modality inde-

endent neural representation of event timing, which is consistent with

he modality-specific nature of duration adaptation effects ( Heron et al.,

012 ), for example. But the similar encoding mechanisms within these

istinct representations is consistent with the many similarities between

uditory and visual timing perception ( Barne et al., 2018 ; Zélanti and

roit-Volet, 2011 ). 

Despite the similarities between vision and audition in the compu-

ation and representation of timing, there are also differences between

he changes in response function parameters both within and between

rain areas. While there is a repeatable spatial structure to both audi-

ory and visual timing preferences within each region we examine, we

nd no clear evidence of topographic organization of auditory timing

references. This contrasts with the clear topographic organization of

isual event timing preferences, which we showed using very similar

ata quality and analyses. This may be because the brain areas show-

ng auditory timing-tuned responses are considerably smaller than those
13 
howing visual timing-tuned responses: for example, the tonotopic maps

f the auditory cortices are far smaller than the visual field maps. If the

reas we observe surrounding the primary auditory cortices do indeed

orrespond to the histologically-defined auditory cortex belt and para-

elt, these regions would be very small, around 3 ×5 mm each ( Kaas and

ackett, 2000 ; Moerel et al., 2014 ). Our fMRI protocols are not designed

o reveal the spatial structure of response preferences at such fine scales:

ur voxels are 1.6 mm across, allowing only two or three voxels across

ach subdivision of the belt. Therefore, if topographic organization of

iming preferences across a belt subdivision is present, we may be un-

ble to resolve it. 

In visual timing maps, we have also found clear relationships be-

ween timing preferences and response function extents (i.e. tuning

idths), specifically that response functions are smallest near the mid-

le of the presented timing range ( Harvey et al., 2020 ). We interpret

his as a potential neural basis of Vierordt’s law ( von Vierordt, 1866 ),

he attraction of perceived event timing towards the middle of the pre-

ented range ( Jazayeri and Shadlen, 2010 ), which is also found (though

eaker) in auditory timing perception ( Murai and Yotsumoto, 2016 ).

onversely, we find no relationship between auditory timing prefer-

nces and response function extents. This could be because each voxel

amples a neural population with a wider range of timing preferences.

owever, this would predict broader tuning functions for auditory than

isual timing-selective populations, while in fact we observe smaller

uning functions for auditory than visual timing. Therefore, we propose

hat auditory timing-tuned populations may represent all event timings

s finely as possible, to give the most accurate possible representation

f the fine-scale temporal structure of sounds. This is consistent with

 smaller Weber fraction for distinguishing auditory event timing than

isual event timing, and also with the weaker attraction of perceived

uditory timing towards the middle of the presented range ( Murai and

otsumoto, 2016 ). 

We also found changes in the parameters of timing selective response

etween visual timing-tuned areas, suggesting a hierarchical processing

f visual event timing. The most striking of these changes is a progres-

ive integration of responses to multiple visual events, shown by a de-

rease in our response model’s compressive exponent parameter from

bout 0.8 (almost independent responses to each event) to about 0.2

little effect of event frequency). We do not see this at all in auditory

vent timing-tuned areas: the compressive exponent is around 0.85 in

ll areas, dropping slightly but not significantly in ATMP. This suggests

istinct neural responses to different auditory events, with very little

nteraction of these responses even at high event frequencies. Again, we

ropose that this may maintain the most accurate and complete repre-

entation possible of the fine-scale temporal structure of sounds, with

he possible exception of premotor areas. Therefore, many of these dif-

erences between auditory and visual timing-tuned responses are con-

istent with differences in auditory and visual perception, although our

nterpretation of the potential roles of these neural response differences

n perception remains speculative. 

The main spatial structure of auditory responses in the cortex is tono-

opic, following auditory frequency and so mapping the spatial structure

f the cochlea. Auditory frequency describes the sinusoidal vibration of

 sound wave in the range of around 20 Hz to 20,000 Hz, which humans

erceive as pitch or tone. Our event timing mapping stimuli change over

ime, but at a much lower rate from 0.5 to 10 Hz, i.e., with a period from

 to 0.1 seconds. Furthermore, these stimuli are not sinusoidally mod-

lated tones, but are white noise bursts changing between silence and

ull intensity (and back to silence) using a raised-cosine gate over 10%

f each event’s duration. As white noise bursts, these stimuli contain

ll auditory frequencies at the same intensity. As such, there is no re-

ationship between event timing and auditory frequency in our timing

apping stimuli. 

We also used a tonotopic mapping procedure ( Da Costa et al., 2011 )

o examine relationships between neural responses to auditory fre-

uency and event timing in our ROIs. We found at most a very weak
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elationship between auditory frequency and auditory event timing pref-

rences. Given that repeated measures of auditory event timing prefer-

nces are well correlated, there are two potential interpretations of this

ack of relationship between these preferences, which are not mutually

xclusive. First, the spatial scale of changes in auditory event timing

references is finer than the spatial scale of auditory frequency prefer-

nces. Therefore, for a given auditory frequency there would be vox-

ls with a broad range of timing preferences. Second, the spatial pro-

ressions of auditory event frequency and auditory event timing may

e in orthogonal directions. The idea of a cortical progression of tem-

oral structure preferences as an orthogonal dimension to tonotopy in

he auditory cortex has been proposed before ( Barton et al., 2012 ). The

emporal structure in that study differed from ours in that their stimu-

us amplitude was sinusoidally modulated, rather than changing rapidly

etween silence and full intensity. Such a sinusoidally modulated stimu-

us does not have events of meaningful durations, but rather an ongoing

timulus described by its temporal frequency. 

These independent responses to auditory frequency and event timing

re also in the large neural populations of fMRI voxels. It is possible that

ifferent sub-populations of neurons respond to auditory frequency and

vent timing, or that single neurons are tuned to both features with no

elationship between the response preferences in these two dimensions

 Hofstetter et al., 2021 ; Tsouli et al., 2022 ) 

Although perception of sound’s durations and rates are often stud-

ed separately, our results show correlated and interacting selectivity for

vent duration and period (a measure of event rate). This suggests that

vent duration- and rate-selective neural responses may be estimated

y a single mechanism ( Hartcher-O’Brien et al., 2016 ). Any mechanism

hat captures the time between transient neural responses (which oc-

ur at both stimulus onset and offset) could give identical responses to

uration and period in our stimuli fMRI scanning is very loud, which

ay affect the interpretation of any auditory fMRI study. Our fMRI se-

uence produced audible gradients every 79 ms. To dampen this noise

nd keep the stimulus clearly audible, participants’ ears were plugged

nd covered with the headphones that produced our stimuli. Although

he scanner noise remained audible, it should not directly affect our es-

imates of auditory timing preferences because the scanner noise never

hanged during a scanning run and the resulting hemodynamic response

o the scanner noise was at steady state (ongoing for 22.5 seconds) be-

ore acquiring the data we modelled. As such, responses to the scanner

oise added a constant, unchanging component to the resulting signal.

evertheless, neural response adaptation to the timing of the scanner

oise may indirectly affect responses to our stimuli. Repeated presenta-

ion of sounds with fixed timing repels the perceived timing of subse-

uent auditory events ( Huppert and Singer, 1967 ; Walker et al., 1981 ).

or other quantities like visual event timing ( Hayashi et al., 2015 ) and

umerosity ( Piazza et al., 2004 ), such repetition suppresses responses to

imilar stimuli and affects neural response functions ( Tsouli et al., 2021 ),

ikely underlying perceptual adaptation effects ( Tsouli et al., 2022 ). We

ould therefore expect scanner noise with a period of 79 ms to sup-

ress responses to stimuli with high event frequencies (our shortest

vent period was 100 ms), and thereby potentially increase the preferred

vent period that produced the largest responses. Assuming these adap-

ation effects are limited to the adapted sensory modality ( Heron et al.,

012 ; Walker et al., 1981 ), adaptation to auditory event period may

xplain why the mean preferred auditory event periods we observed

874 ms) were far longer than the mean preferred visual event peri-

ds previously described (556 ms), while the mean preferred auditory

nd visual event durations were very similar (auditory: 437 ms; visual

52 ms). 

While our experimental design uses a relatively small number of par-

icipants, the large amount of data collected in each participant allows

 detailed analysis of functional neural response properties with high

tatistical confidence ( Baker et al., 2021 ; Gordon et al., 2017 ). Given

hat each participant shows a five spatially separate responsive regions

n each hemisphere, and we use multiple measures of these responses
14 
or cross validation, this allows high statistical confidence in the best re-

ponse model and its parameters. However, our analyses of differences

n response model properties between responsive regions include partic-

pant as a random factor, which consistently reaches significance. This

elatively small sample of young, healthy adults does not allow us to

eaningfully characterize these differences between participants. These

ifferences may result from trivial factors that can lead to large individ-

al differences in fMRI data (participant motion, hemodynamic response

ariations, brain size, position in the coil), but might instead be related

o differences in perception ( Tsouli et al., 2022 ), task performance and

ttention that we have not yet investigated. 

Our results suggest interesting directions for future work. First, par-

icipant groups including aging participants ( Silva et al., 2021 ), children

 Gomez et al., 2018 ) still learning language or music, or a range of per-

eptual abilities ( Song et al., 2015 ) may clarify the importance of these

esponses for perception, development and aging. However, given the

ocation of timing tuned responses in and around the auditory cortex,

howing causal involvement in auditory timing perception by disrupt-

ng these areas with TMS may be unfeasible: this would likely disrupt

uditory processing globally, rather than timing representations specif-

cally. 

Furthermore, we measure responses to event timing with broadband

uditory frequency (white noise) stimuli, and responses to auditory fre-

uency with a range of event timings, in different experiments. Although

he two responses were found together in the large neural populations

f fMRI voxels, it therefore remains unclear whether timing-tuned re-

ponses depend on specific frequencies and vice-versa. Future exper-

ments could vary timing and frequency in one experiment to deter-

ine the spectro-temporal receptive field of each voxel. This would de-

ermine whether responses to timing are abstracted across all frequen-

ies or depend on the voxel’s preferred frequency being present in the

timuli. 

Even using ultra-high field (7T) fMRI and fairly high scan resolution

1.7 mm 

2 ) we find no clear spatial structure of timing preferences. How-

ver, the subdivisions of the auditory cortex belt and parabelt (where

e see the clearest responses) are very small, around 3 ×5 mm each

 Kaas and Hackett, 2000 ; Moerel et al., 2014 ), so their internal spa-

ial structure would not be detectable at these resolutions. Even higher

eld strengths and scan resolutions, or dense invasive recordings, may

eveal such structure. 

We also omit subcortical structures for early auditory processing

cochlea nuclei, superior olivary complex, inferior colliculus and me-

ial geniculate nucleus of the thalamus) and temporal processing (basal

anglia and cerebellum). The responses of these structures may provide

 more complete picture of how auditory timing-tuned responses are

erived ( Hendrikx et al., 2022 ) and whether these are eventually inte-

rated with visual timing-timed responses. 

Overall, auditory timing selectivity resembles responses to visual

iming and other quantities, but is focused in the auditory cortices. This

uggests that the human brain performs similar analyses of the tempo-

al structure of its inputs from different sensory modalities. We propose

hat this similar processing underlies similarities between timing per-

eption in different modalities, without the need for responses to differ-

nt modalities to converge onto shared neural populations. In contrast

o the hierarchical and integrative processing of visual event timing,

uditory timing responses have very similar parameters between brain

reas, suggesting it may be beneficial for the brain to keep a specific

esponse to each auditory event. Most of the brain areas involved are

ightly grouped in and around Heschl’s gyri and may correspond to the

rimary auditory cortex and its belt and parabelt regions described in

acaques. While there is a repeatable spatial structure to timing pref-

rences, we did not find evidence of topographic organization of timing

references at the spatial resolution of our data. As the observed spatial

tructure was not strongly related to tonotopic auditory frequency pref-

rences, the fine spatial structure of auditory timing preferences may

llow functional subdivisions of these auditory association cortices to
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e determined. The unexpected finding of both auditory frequency and

vent timing-selective responses in a small area of the ventral caudal

remotor cortex may reflect a route by which responses to auditory

vents could guide motor responses to auditory stimuli ( Graziano et al.,

999 ). 
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