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Abstract

This article presents three characterizations of the weak factorization
systems on finitely complete categories that interpret intensional depen-
dent type theory with -, II-, and Id-types. The first characterization
is that the weak factorization system (L, R) has the properties that L is
stable under pullback along R and that all maps to a terminal object are
in R. We call such weak factorization systems type-theoretic. The second
is that the weak factorization system has an Id-presentation: roughly,
it is generated by Id-types in the empty context. The third is that the
weak factorization system (L, R) is generated by a Moore relation system,
a generalization of the notion of Moore paths.
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1 Introduction

This paper is the second in a series (based upon the author’s thesis [Norl7]) in
which we study categorical interpretations of dependent type theory of a certain
species: display map categories. It has long been known that categorical inter-
pretations of dependent type theory induce weak factorization systems [GGOS],
and so our goal is to characterize the weak factorization systems which harbor
such interpretations.

In the first paper [Nor19)], we considered display map categories modeling 3-
and Id-types whose underlying category is Cauchy complete. We showed there
that the induced weak factorization system is itself a display map category
modeling ¥- and Id-types. This simplifies our problem: if we want to decide
whether a given weak factorization system is induced by such a display map
category modeling - and Id-types, then we only need to decide whether the
weak factorization system itself is a display map category modeling Y- and
Id-types.

In the present paper, we turn to this problem: deciding whether a weak
factorization system is a display map category modeling 3- and Id-types. Our
main theorem is the following characterization:

Theorem Consider a category C with finite limits. The following proper-
ties of any weak factorization system (L,R) on C are equivalent:

1. it has an Id-presentation;

2. it is type-theoretic;

3. it is generated by a Moore relation system;

4. (C,R) is a display map category modeling ¥- and Id-types.

A weak factorization system (L, R) is type-theoretic when all morphisms to the
terminal object are in R (a necessary condition for (C,R) to be a display map



category) and when L is stable under pullback along R (a necessary condition
for (C,R) to model II-types). Thus, the equivalence between (2) and (4) tells
us that a category with a weak factorization system is a display map category
modeling Y- and Id-types just when these two conditions hold.

To prove this equivalence, we introduce the notions of Id-presentations and,
perhaps more interestingly, of Moore relation systems. Roughly, a weak factor-
ization has an Id-presentation if it is induced by a model of Id-types. A Moore
relation system is an explicit algebraic presentation of the weak factorization
systems under consideration. These are closely related to the path object cate-
gories of [vdBG12] which are used to model identity types. However, a Moore
relation system is a weaker notion than that of path object category, and what
we lose in strictness, we make up for in the equivalence above.

This paper is organized as follows. Throughout, we fix a finitely complete
category C. In Section [2] we introduce the objects of study and the categories
that contain them. In particular, we describe the categories Fact(C) of factor-
izations and Rel(C) of relations, their full subcategories ttWFS(C) — Fact(C)
of type-theoretic weak factorization systems and IdPres(C) — Rel(C) of Id-
presentations, and functors § : Rel(C) < Fact(C) : R. We then show in the fol-
lowing sections that these functors restrict to an equivalence |§| : [ldPres(C)| ~
[ttWFS(C)| : |93| where | - | denotes the proset truncation. We use the proset
truncation because it makes isomorphism in [ttWFS(C)| the usual notion of
sameness between weak factorization systems (that is, having the same left and
right classes of morphisms). In Section |3 we describe Moore relation systems
and show for that every Moore relation system R, the factorization §(R) that
it produces is a type-theoretic weak factorization system. In Section [ we show
that 2R restricts to a functor ttWFS(C) — IdPres(C) and that R restricts to a
functor ttWFS(C) — ttWFS(C) which is isomorpic to the identity functor under
the proset truncation. In Section [5] we show that a relation is a Moore relation
system if and only if it is an Id-presentation and that RF : IdPres(C) — IdPres(C)
is isomorphic to the identity functor under proset truncation. We show in Sec-
tion [6] that having an Id-presentation is equivalent to modeling Id-types. In
Section [7] we put these results together to obtain Theorem

2 Preliminaries

This section is devoted to developing the concepts that we will study in the
following sections. Our main theorem, [7.1] is a comparison of a certain kind
of relation (models of Id-types) and a certain kind of factorization (weak fac-
torization systems). We start with a categorical analysis of such relations and
factorizations, and then we define the particular instances in which we are in-
terested.

As mentioned above, we fix a finitely complete category C throughout this

paper.



2.1 Relations, relational factorizations, and factorizations

In this subsection, we define the fundamental objects: relations on C, factoriza-
tions on C, relational factorizations on C, and functors between them.

Definition 2.1.
a) Let R denote the category generated by the graph

<0
O —n—=Vv
-
€1
and the equations egn = €117 = 1. A relation on an object X of a category
Cis a functor R : R — C such that R(O) = X.

b) Let P denote the category generated by the graph

K

L

and the equation kA = 1o. A relational factorization of a morphism
f: X —> Y in a category C is a functor P : P — C such that P(pA) = f.

¢) Let F denote the category generated by the following graph and no equa-
tions.

o2 ".0

A factorization of a morphism f : X — Y in a category C is a functor
F : F — Csuch that F(pA) = f.

Remark 2.2. What we have defined above as a relation could more descriptively
be called an internal reflexive pseudo-relation. However, since all relations will
be of this type, we will just call them relations.

Example 2.3. Consider an exponentiable object I and morphisms 0,1: % =3 [
of C where # is a terminal object. Let ! : I — * denote the unique morphism to
the terminal object.

a) On any object X of C, there is a relation whose image is the following
diagram.

X =x= X!
Xl

b) Consider a morphism f: X — Y in C. Let X xy Y denote the pullback
X Xy YI —_— YI

iJf |

X———=Y



of f: X ->Yand Y°:Y! - Y. Then

— v!
X s Xxy VI — " sy
lx XY'f

is the image of a relational factorization of f, which we denote by P : R —

C.

¢) We also obtain a factorization F' : F — C of f whose image is depicted
below.

Yl'n'YI

1x xY!
VT x kvl Ly

X
Notation 2.4. Let M denote the category generated by the graph 0 — 1. Then
CM is the category of morphisms of C. For a commutative square in C as shown
below, let («, ) : f — g denote the morphism that this produces in CM.

X —2>W

flﬁlg

Y ——7
Definition 2.5.

a) A functorial relation on C is a section of the functor C© : CR — C. Let
fRel(C) denote the category of such sections.

b) A functorial relational factorization on C is a section of the functor C** :
CP — CM. Let fRelFact(C) denote the category of such sections.

¢) A functorial factorization on C is a section of the functor C** : CF — CM.
Let fFact(C) denote the category of such sections.

Example 2.6. Consider Example Since the relations, relational factor-
izations, and functorial factorizations given there are assembled from functors,
these generate a functorial relation, a functorial relational factorization, and a
functorial factorization on the category C.

Now we take pains to consider variants of these concepts that are not func-
torial. This is because the Id-types of Martin-Lof type theory are not given
functorially, and we aim to model these.

Definition 2.7. Let C and D be categories. An afunctor U : C --+» D consists
of an object U(X) of D for every object X of C and a morphism U(f) : U(X) —
U(Y) for every morphism f: X — Y in C.

Let U,V : C --» D be afunctors. An (unnatural) transformation 7 : U --» V
consists of a morphism 7x : U(X) — V(X) in D for every X in C.

Categories and afunctors comprise a 1-category aCat which contains the 1-
category Cat of categories and functors as a wide subcategory. We will use the
fact that the unnatural transformations give every hom-set in aCat the structure
of a category. Note, however, that this does not make aCat a 2-category.



Definition 2.8.

a) A relation on C is a section of the functor C© : CR — C in aCat. Let
Rel(C) denote the category of such sections.

b) A relational factorization on C is a section of the functor C** : CP — CM
in aCat. Let RelFact(C) denote the category of such sections.

¢) A functorial factorization on C is a section of the functor C** : CF — CM
in aCat. Let Fact(C) denote the category of such sections.

Remark 2.9. We are abusing terminology by speaking of relations, relational
factorizations, and factorizations both on an object of a category and on the
whole of a category.

There are the following natural inclusions.

fRel(C) fRelFact(C) fFact(C)
Rel(C) RelFact(C) Fact(C)

We now describe the functors that fit horizontally into this diagram.
There are functors
F—-=P—2-R
where ¢ is the only injection F < P and ¢ is the surjection sending « to ¢, p to
€1, and 1 to A.

The functor ¢ induces a functor ¢y : RelFact(C) — Fact(C) given by post-
composition with C* : C° — CF. This restricts to a functor ¢4 : fRelFact(C) —
fFact(C) making the right-hand square in the diagram below commute.
This functor takes a relational factorization on C to its underlying factorization
on C.

fRel(C) <2 fRelFact(C) —*> fFact(C)
£ J J (2.10)
Rel(C) <2 RelFact(C) —* > Fact(C)

Let ! : M — = denote the unique morphism from the category M to the
terminal category *. Since the following is a pullback diagram, pulling back
along C' produces a functor o* : RelFact(C) — Rel(C).

CRC P
_
col lcp*
CCC_!>CM

This restricts to a functor o* : fRelFact(C) — fRel(C) making the left-hand
square in diagram (2.10) commute.



Construction 2.11. Consider an R € Rel(C) and an f : X — Y in C. We
construct a relational factorization o4 (R)(f) € C” of f. If we denote R(Y) by
the following diagram,
€0
Y —n— Y
-

€1

then we let o (R)(f) be the following diagram

TX
©~= =

X——= X xy VY —=Y
Lx xnf Ty

where X xy UY is the following pullback.

X xy Y — > UY

L0,k

X Y

Lemma 2.12. The construction above (2.11)) assembles into a functor oy :
Rel(C) — RelFact(C) with functions

i : homgeyc) (0% P, R) S homgefact(c) (P 0 R) : j

for all P € RelFact(C) and R € Rel(C). The functor oy restricts to a functor
oy : TRel(C) — fRelFact(C), and the functions i, j restrict to a bijection

i : homgei(c) (0 P, R) = homgeiact(c) (P 0« R) © j

natural in P and R, making o4 : fRel(C) — fRelFact(C) right adjoint to o* :
fRelFact(C) — fRel(C).

Remark 2.13. The universal property of o, can be interpreted as saying that
o+ R is the right Kan extension of C°R : C — C” along C' : C — CM in Cat/CM
[Norl7, Thm. 3.1.44].

Proof of Lemma[2.13 The functoriality of o* is straightforward to check. We
construct ¢ and j and check that, when restricted to functorial relations and
relational factorizations, they form a natural bijection.

Consider a P € RelFact(C) which takes an f : X — Y in C to the diagram
on the left below, and a R € Rel(C) which takes X € C to the diagram on the
right below.

Hf €0X
PZ N <
X —nx>=UX
X Af (I)f Pf Y €1x

First, we construct a function 4 : homge(c)(¢* P, R) — homgeipact(c) (P, 0+ R).
An element o € homgec)(0* P, R) has at each X € C, a component of the form



shown on the left below.

le Kf
X >\1X><I>1X X o Y

kf pPf
'ifan$<f’1Y>

|

—nx»lllX X*>X Xy VY ——=Y
1xxny f vy
61)(

Let i € homgeract(c) (P, 0« R) be the transformation with the component at
each f: X — Y in C shown on the right above.

Now, we construct a function j : homgeirace(c) (P, 04 R) — homge(c)(c* P, R).
An element 8 : homgelract(c) (P, 0+ R) has at each f: X — Y in C, a component
of the form shown on the left below.

Kf 51
X o Y X A1X> D1y
)\f Pf
lb,f i‘n'q/xblx (*)
TXx
X o X xy UY — >V —nx» UX
U<y f amey

le

Let jB € homge(cy(c* P, R) be the transformation with the component at each
X € C shown on the right above.

Now suppose that P is in fRelFact(C). To show that jia = a, we show that
the only nontrivial component of ax for each X € Cis ax. We calculate:

ﬂqfx(lilx X CLX(I)<1x,lx>) = CLX(I)<1)(, lx>
=axlely

=ax.
Now to show that ij58 = 3, we calculate

Ky X ﬂqzybly(b<f, 1y> =Kf X 7T\1/ybf
= by.

Thus, j =i~ 1.

Now we show that j is natural in P and R. Consider natural transformations
p: P — Pandr: R — R. We want to show that the following diagram
commutes.

homge(c)(0* P, R) -~ homgeipact(c) (P, 05 R)

)
lTO—Oo’*p \LU*TO—OZ)
)(

homgec)(0*P', R') ~ homgelfact(c) (P, 0+ i)



Denote the component of p : P/ — P at a morphism f : X — Y in C by the
diagram below on the left, and denote the component of r : R — R at X € C
by the diagram below on the right.

m/f _eox
X *> <I>’ —WX> UX
X *> <I>f —r Y —nx> ' X
61X

For any 8 € homgelrace(c)(P, 0« R) (with components as depicted in left-hand
diagram of (x) above), r o j8 o o*p and j(oxr o 5 o p) both have the following
component at an object X € C.

:‘QlX

X A1X> (D 1X
plX 7“Xb1xplm
on

Xﬂxa\I'X

E1x
Thus, j is natural in P and R. O

Example 2.14. Consider Example and let R denote the relation discussed
there. Then o, R is the relational factorization of that example.

Construction 2.15. Consider an F' € Fact(C) and an f : X — Y in C. We
construct a factorization +*(F)(f) € CF of f. Consider the morphism 1x x f :
X — X xY. Denote F(lx x f) by the following diagram.

X250y x f)—2=XxY

Then let *(F)(f) be the following diagram.

X P

Pkl
X 0(lx x f) ¥

Lemma 2.16. The construction above (2.15) assembles into a functor ¢*

Fact(C) — RelFact(C) which restricts to a functor ¢* : fFact(C) — fRelFact(C).

Remark 2.17. Though ¢* is not adjoint to ty, txt™ is a comonad on fFact(C)
[Nor17, Cor. 3.1.35].



Now we have described functors

fRel(C) & fRelFact(C) é fFact(C)

S

Rel(C) == RelFact(C) =—= Fact(C)

o* ¥

We are most interested in the functors between Rel(C) and Fact(C) (and between
fRel(C) and fFact(C)). We abbreviate these as follows.

Notation 2.19. Let § denote 1404, and let R denote o*i*.

2.2 Weak factorization structures and systems

In this section, we discuss some fundamentals of weak factorization systems and
the perspective on them that we take. Consider a factorization F' on C. There
are two functors A, p : M — F which take the non-identity morphism of M to A
and p, respectively. Using these, we obtain afunctors Ag, pp : CM — CM from F.
Then Ag is copointed and pg is pointed in the sense that for every f: X — Y
of C, there are the following morphisms in CM.

Arf

X—X X —=Opf
Apfl f f lpr
Cpf——>Y Y Y

prf

Let F-coalg denote

{f: X->YinC|3s:Y > Or(f):sf =Ar(f),pr(f)s =1y},

the class of coalgebras of the copointed endo-afunctor (A, {1, pr)). This is the
class of morphisms f for which there is a lift in the square shown on the right
above. Let F-alg denote

{f: X>YinC|3s:Pp(f) > X :sA\p(f) =1x, fs=prf},

the class of algebras of the pointed endo-afunctor (pr,{Ar,1)). This is, dually,
the class of morphisms f for which there is a lift in the square above on the left.
We will say that a morphism in F-coalg has an F-coalgebra structure, and that
a morphism in F-alg has an F-algebra structure to simplify vocabulary.

Notation 2.20. For any morphisms ¢, r in C, write £[Ar if £ has the left lifting
property against r. For two collections L,R of morphisms of C, write L @ R
if every morphism of L has the left-lifting property against every morphism of
R. Write L? (and dually, “R) for the class of morphisms with the right lifting
property against L (dually, the left lifting property against R).

10



Proposition 2.21. Consider a factorization F on C. Then F-coalgd F-alg.

Proof. This appears in Corollary 2.7 of [GT06]. Though they consider only
functorial factorizations, their argument works here without modification. [

Definition 2.22. A weak factorization structure on C is a factorization F' on
C such that for every morphism f of C, Ar(f) € F-coalg and pr(f) € F-alg. An
algebraic weak factorization structure on C is a functorial factorization F' on C
such that the copointed endofunctor Az underlies a comonad on CM and the
pointed endofunctor pr underlies a monad on CM.

Let WFS(C) denote the full subcategory of Fact(C) spanned by those objects
which are weak factorization structures.

Notation 2.23. For any category D, let |D| denote the preordered truncation:
the preorder (viewed as a category) which has the same objects as D and a
morphism X — Y when there is a morphism X — Y in D.

For any object X of D, we will let [X] denote the isomorphism class of X in
ID|, and we will say that two objects X and Y of D are equivalent if they are
isomorphic in |D].

Proposition 2.24. The isomorphism classes of [WFS(C)| are the weak factor-
ization systems on C.

Proof. We show that there is a function ¢ from the objects of WFS(C) to the
weak factorization systems on C which is surjective and whose fibers are the
isomorphism classes of |[WFS(C)|.

By Theorem 2.4(2) of [RT02], for any F' € WFS(C), (F-coalg, F-alg) is a
weak factorization system on C with factorization given by F. Let ¢ denote the
function which maps a weak factorization structure F' to the weak factorization
system (F-coalg, F-alg).

By Proposition 5.1 of [RT02], for any F,G € WFS(C), we have that

(F-coalg, F-alg) = (G-coalg, G-alg)

if and only if there are morphisms F' 5 G. Therefore, the fibers of ¢ are the
isomorphism classes of |[WFS(C)|.

Consider a weak factorization system (L, R). There exists a factorization of
each morphism f: X — Y in C which we can denote by the diagram on the left
below.

Ag)a
X &Mg
7
x ) M Py /\(f)J/ e ip(g)
e
Mf4>Z
Bp(f)

For each morphism g : W — Z and (o, 8) : f — g, we can obtain a morphism
Mla,B) : Mf — Mg by considering the lifting diagram above on the right.
This assembles into a factorization, say F', on C. By Theorem 2.4(1) of [RT02],
L = F-coalg and R = F-alg. Thus, q is surjective.

11



(Again, though only functorial factorizations are considered in [RT02], their
proofs of these results work here without modification.) O

2.3 Display map categories

Now we define what we consider in this paper to be a categorical interpretation
of dependent type theory.

Definition 2.25. A class D of morphisms of C forms a display map category
(C,D) when the following hold:

1. D contains every isomorphism;
2. D contains every morphism whose codomain is a terminal object; and
3. D is stable under pullback.

We call the elements of D display maps.

The notion of display map category is closely related to others in the litera-
ture [Tay99, [Shuldl [Joy17]. There is a careful comparison of this notion and of
the types described below with others in the literature in [Norl9).

Definition 2.26. Let (L,R) be a weak factorization system on C. We say that
an object X of Cis fibrant if every morphism from X to a terminal object is in
R.

Example 2.27. Let (L,R) be a weak factorization system on C in which all
objects are fibrant. Since right classes of weak factorization systems always
contain all isomorphisms and are stable under pullbacks [MP12], Prop. 14.1.8],
(C,R) is a display map category.

Definition 2.28. A display map category (C,D) models X-types if D is closed
under composition. We call a composition gf of display maps a X-type and
sometimes denote it by 3, f.

Example 2.29. Let (L,R) be a weak factorization system on C in which all
objects are fibrant. Since right classes of weak factorization systems are always
closed under composition [MP12, Prop. 14.1.8], (C,R) models -types.

Weak factorization systems are not only examples of display map categories
but are also induced by ones which model Id-types.

Definition 2.30. Consider a display map category (C,D) which models X-
types, and consider a display map f : X — Y. An identity type of f is a
relation on f in the slice C/Y

Tf €

1d(f) —L> X xy X

\ J/Lf . (2.31)

such that

12



1. €7 isin D and

2. for every morphism a : A — X in C, the pullback a*r¢, as shown below,
is in @D for ¢ = 0, 1.

o*1d(f) Id(f)
A < i X < mies (2.32)
\ | ) \ !

We will call the morphism ¢f : Id(f) — Y in Diagram (2.31) the Id-type of f in
c/Y.

Given a morphism « : f — g in C/Y and identity types of f and g, there
is a natural transformation between these two relations because ry € YD and
€€ D.

f——=1u9)

/‘/
Tf - €g
7
Ve

L<f) (axa)es g9x9
Thus, in what follows, when we assume that every object of C has an Id-type,
we will assume that there is a relation on C which specifies these Id-types.

Definition 2.33. Consider a display map category (C,D) which models X-
types. If there is a relation I on C for which I(X) is an identity type on X
for each object X of C, then we say that I is a model of Id-types of objects in
(C,D) or just that (C,D) models Id-types of objects. If there is a relation Iy on
each slice C/Y for which Iy (f) is an identity type of f for each display map
f:X =Y of C, then we say that the collection {Iy }yec is a model of Id-types
in (C,D) or just that (C,D) models Id-types. If these relations are functorial,
then we call the Id-types functorial.

For any display map category (C, D) which models 3-types and has a model
I of Id-types of objects, the factorization §F(I) (with § as defined in Notation
is a weak factorization structure, and its underlying weak factorization
system [§(I)] is (YD, (YD)?) [EmmI4, Thm. 2.8]. Our goal in this paper is to
understand which weak factorization systems arise in this way.

Note that (¥D)% is the retract closure of D and so in particular contains
D. Thus, to decide whether a weak factorization system (L,R) on a category
C does arise from a model of ¥- and Id-types, it seems that we might have to
check whether (C, D) is a display map category modeling Y- and Id-types for all
D whose retract closure is R. However, we showed in [Norl9, Thm. 5.12] that

13



if (C,D) is a display map category modeling 3- and functorial Id-types, then
(C,(¥D)9) is a display map category modeling ¥- and functorial Id-types (and
if (C,D) modeled II-types, then so does (C, (?D)?)). Thus, to decide whether
a weak factorization system (L, R) does arise from a model of ¥- and functorial
Id-types, we only have to decide if (C,R) is a display map category modeling
functorial X- and Id-types. In this paper, we show how one can decide such a
thing, and we will show that we can also drop the requirement of functoriality
on Id-types.

In particular, suppose that we want to decide whether a weak factorization
system (L, R) arises as [§(I4)] from a model I of (functorial) Id-types in a display
map category (C,D) (where * is a terminal object of C, so that I, is a model
of Id-types of objects). If it does, (L,R) itself has a model J of (functorial)
Id-types. Whenever (L,R) itself has a model J of Id-types, we have [§F(Jy)] =
(“R, (PR)?) = (L,R). We will also see in Corollary that (L, R) models Id-
types if and only if it models Id-types of objects. Thus, a weak factorization
system arises from a model of Id-types if and only if it models Id-types of objects;
we call such a model an Id-presentation of the weak factorization system.

Definition 2.34. We say that a relation I on C is an Id-presentation of the
weak factorization system [§F(I)] if the factorization F(I) is a weak factorization
structure and R is a model of Id-types of objects in (C, F(R)-alg).

Note that for any relation I which generates a weak factorization structure
F(I), all objects are fibrant. Consider any object X in C. The solution shown
in the following lifting problem is a pg(r)-algebra structure for ! : X — =.

X:X

] 7]

X X U() —— =

Thus, in the definition (2.34) above, (C,F(R)-alg) is in fact a display map cat-
egory, and so it makes sense to talk of models of Id-types of objects in it. We
record this fact here.

Proposition 2.35. Let R be a relation on C which produces a weak factorization
structure F(R). Then every object is fibrant in [§(R)].

If a weak factorization system is going to have an Id-presentation, then all
objects must be fibrant in it. The only other condition that we will find we
need to place on a weak factorization system to ensure that it does have an
Id-presentation is often called the Frobenius property [vdBG12] and is closely
related to modeling II-types.

Definition 2.36. A display map category (C, D) models pre-Il-types if for every
g:W — Xand f: X — Y in D, there is a morphism II;g with codomain Y’
satisfying the universal property

i: C/X(f*y,9) = C/Y(y,1zg)
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natural in y. Call the map Ilyg a pre-II-type.
A display map category (C, D) models TI-types if it models pre-II-types and
each pre-Il-type is a display map.

Proposition 2.37. Consider a weak factorization system (L,R) on C in which
all objects of C are fibrant and which models pre-11-types.
Then (C,R) models II-types if and only if L is stable under pullback along R.

This proposition is very similar to the fact that a left adjoint between two
categories with weak factorization systems preserves the left maps [MP12] §16.2]
if and only if the right adjoint preserves the right maps. Our setting, however,
is a bit more convoluted.

Proof of Proposition[2.37 Suppose that (C,R) models II-types. Let i denote
the bijection

i C/X(f*y,g9) = C/Y (y,11sg)

of Definition [2.36] and consider a morphism ¢ of L and a morphism f of R such
that copf = copf. To show that f*¢ is in L, we must show that for any
factorization A(f*€), p(f*€) of f*¢ for which A(f*¢) € L, p(f*¢) € R, the lifting
problem shown on the left below has a solution.

A(F*0) iAS*0)
_— _—
7 o 7
f*él 7 J{p(f*é) él e infmf*e)
/L /.

Consider the lifting problem shown on the right above. It is the transpose of the
above lifting problem under ¢. It has a solution o since £ is in L and II;p(f*¢)
is in R. Then i~!(o) gives us a solution to our original lifting problem.

Now suppose that L is stable under pullback along R. We need to show that
IIfg is in R. The morphism Ilfg is in R if and only if for any factorization
A(IItg), p(I1¢g) of g for which A(Ilyg) € L and p(Ilg) € R, there is a solution
to the lifting problem shown below on the left.

i~1(1)
—_—

7 o .7
A(Hfg)l 7 iﬂfg f*/\(ny)l 7 J{g
s s
p(Ilzg) *p(Myg)

Consider the lifting problem on the right above. It is the transpose of the
original lifting problem under i~!. Since f*A(Il;g) is in L and g is in R, there
is a solution ¢ to this lifting problem. Then i(c) is a solution to the original
lifting problem. O

Definition 2.38. A weak factorization system (L,R) on a finitely complete
category C is type-theoretic if it has the following two properties:

15



1. all objects are fibrant, and
2. L is stable under pullback along R.

A weak factorization structure F is type-theoretic if [F] is.

2.4 Summary

We have described the following diagram of categories of relations and factor-
izations.

fRel(C) % fFact(C)
Rel(C) % Fact(C)

We are interested in the relationship between type-theoretic weak factoriza-

tion structures and Id-presentations of weak factorization systems. The former
are a kind of factorization, so they naturally form a full subcategory of Fact(C).
The latter are a kind of relation, so they naturally form a full subcategory of
Rel(C).
Definition 2.39. Let ttWFS(C) be the full subcategory of Fact(C) spanned
by the type-theoretic weak factorization structures on C, and similarly, let
fttWFS(C) be the full subcategory of fFact(C) spanned by the type-theoretic
weak factorization structures on C.

Definition 2.40. Let |dPres(C) denote the full subcategory of Rel(C) spanned
by those relations which are Id-presentations, and similarly let fldPres(C) denote
the full subcategory of fRel(C) spanned by the Id-presentations.

Then we are interested in what relationship the subcategories ttWFS(C) and
IdPres(C) have in the following diagram.

53
fldPres(C) & fRel(C) ——= fFact(C) <— fttWFS(C)

N S

IdPres(C) & Rel(C) == Fact(C) <— ttWFS(C)
R
In the next sections, we show that §, R restrict to functors between IdPres(C)

and ttWFS(C) and constitute an equivalence between them under the proset
truncation.

3 Type-theoretic weak factorization systems from
Moore relations

In this section, we consider a finitely complete category C and a relation R on
C. In the first subsection, we describe structure on R which will make F(R)

16



a type-theoretic, algebraic weak factorization structure. We call this a strict
Moore relation structure. In the second subsection we describe structure on R
which will make F(R) a type-theoretic weak factorization structure. We call
this structure a Moore relation structure.

In Section [p] we will show that any relation is an Id-presentation of a weak
factorization system if and only if it has a Moore relation structure. Then
the full subcategory of Rel(C) spanned by Moore relation systems will coincide
with IdPres(C). We originally defined the subcategory IdPres(C) by referencing
the functor § : Rel(C) — Fact(C). The description of Moore relation structures
which follows describes this subcategory more directly, without making reference
to §. We will need this direct description to connect the category IdPres(C) with
the category ttWFS(C), the goal of this chapter.

We are mostly interested in the (non-strict) Moore relation structures since
these correspond to Id-presentations. However, first we describe strict Moore
relation structures. As mentioned in the introduction, these have already been
investigated in [vdBG12]. We mention these first because they have many nat-
ural examples, and are thus more readily understandable. By contrast, most
examples of non-strict Moore relation structures will come from the equivalence
between them and type-theoretic weak factorization systems.

3.1 Strict Moore relation systems

In this subsection, we consider a functorial relation R which preserves pullbacks.
For any object X in C, denote the image of RX by

€o
X —n—=TX.
-

€1

Note that the requirement that R preserves pullbacks is equivalent to the re-
quirement that ¥ does.

For any morphism f : X — Y of C, denote the factorization §F(R)f by the
following diagram.

Af

b M Py

Y

Recall that X is a copointed endofunctor on CM, and p is a pointed endofunctor
on CM.

In this section, we discuss the structure on R that will produce a comonad
structure on the copointed endofunctor A and a monad structure on the pointed
endofunctor p.

3.1.1 Strictly transitive functorial relations

Definition 3.1. Say that a functorial relation R on C is strictly transitive if
there exists a natural transformation p with components

px X % UX - X

17



for each object X in C such that:
1. €p = ¢m; for i = 0,1 in the diagram below.

U, X VT

ﬂuﬂ u (3.2)

lc =———=1¢

2. (1c, ¥, €9, €1,m, 1) is an internal category in [C, C]; that is, the following
diagrams commute.

Ixp
nx1 1xn
\I/H‘I’G ><6 Y<—VU \Ilelxeolpelxeo\ll \I/€1><EO\IJ

Elxéo

(3.3)

Note that if R is a monic relation, then the existence of p with the commu-
tativity of the diagram in says that the relation R(X) on each object X
of C is transitive, and the commutativity of the diagrams in is automatic.
Thus, the notion of transitivity here is a generalization of the usual one.

Example 3.4. Consider the relation which takes any object X in C to the
following diagram
XO
RS
X —x'= X!
——
Xl
as in Example
Suppose that there a morphism m making the following diagrams commute.

*41')] I—m>11+of
I+1;
ii lw I*m>.[1+().[ lm \Lmﬁ_OI
! m
I "1+l x Il+0[ﬂ>[1+ol1+of
I

Then taking X™ : XI61 ><€0XI — X7 for ux makes this relation strictly transi-
tive.

For example, in the category Cat, there is such an m when I is M (i.e., the
category generated by the graph 0 — 1) or the groupoid generated by the graph
0—1.

18



Example 3.5. Consider the category 7 of topological spaces. Let RT denote
the non-negative reals, and let I'X denote the subspace of X RT xR+ consisting
of pairs (p,r) such that p is constant on [r, 00). This is called the space of Moore
paths in X, and it is functorial in X. We think of this as the space of paths in
X of finite length.

There is a natural transformation ¢ : X — I'X which maps x € X to the
constant path of length 0 at x. There are natural transformations evg, evy, :
I'X — X which map a pair (p,r) to p(0) and p(r), respectively. These assemble
into a functorial relation G on 7.

There is also a natural transformation px : I'X ., x., ['X — I'X which
maps two paths to their concatenation. To be precise, it takes a pair ((p, ), (p’,t'))
such that p(r) = p’(0) to the pair (q,s) where s = r + 7/, qlj0.,] = pljo,-], and
q()|[r,c0) = p'(x — ). This makes G a strictly transitive functorial relation.

Proposition 3.6. Let R be a strictly transitive functorial relation on C. Then
the functor p : CM — CM wunderlies a monad on C? with unit and multiplication
components at an object f : X —Y in C? given by the following diagrams

X Mo mp Mpp—2 My
if ipf lpfc ipf
Y —=Y Y—Y
where 1 x u: Mpy — M f is the morphism
Ix X py : X yx VY x WY — X x  UY.

Proof. We have already seen that the unit square above commutes. The com-
mutativity of the multiplication square above follows from the commutativity

of .

The following diagram displays the unit axioms for the monad.

X, WY X WY x oy <2 v o gy
=) €0 €17 €0 f " eo

X ;% VY

Its commutativity follows from that of the left-hand diagram in (3.3]).
This diagram displays the associativity axiom for the monad.

Ix1xp

X UY % UY  x UY —L X x VY, x, VY

llxuxl llxu
Ixp

X % WY WY s X 0y

Its commutativity follows from that of the right-hand diagram in ((3.3)). O
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3.1.2 Strictly homotopical functorial relations

Definition 3.7. Say that a functorial relation R : C — CRis strictly homotopical
if there exist natural transformations § and 7 with components

dx : UX — U2X
Tx : X x U(x) > 0X

for each object X of C such that:
1. mm = dn and ney = €yd in the following diagram.

N B /2

L

le—21 -

2. ¢ =7 for i =0,1 and 7(1 x ) = 7 in the following diagram.

1c X \Il(*) —T>

S

3. (¥,€1,0) is a comonad on C; that is, the following diagrams commute.

v g0 2
/ ié\ l‘* l‘* (3.10)
2
Ve 5> ¥ 2 LR It

4. 7 is a strength for this comonad in the sense that the following diagrams

commute.
lc x U
lf U (3.11)
L LI
v g2 le x s % W(le x Ws)
leow! l% lT l% (3.12)
le x U ——> T R,
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The word homotopical is used to describe this functorial relation for the
following reason. Suppose that we extract from the functorial relation R a
notion of homotopy equivalence in the usual way: where two objects X and Y
are homotopic if there are morphisms f: X - Y, g:Y - X, h: X - VX,
1:Y — WY such that egh = gf, e1h = 1x, €9i = fg, and €172 = 1y. Then the
data given in the above definition provide a homotopy between every X and
vX.

Example 3.13. More generally, consider the relation in Example
Suppose that there is a morphism d making the following diagrams commute.

1xTI 12 Ix1! olxI 12 Ix0! 13 Ixd 12
\ / \ / \de[ id
4.

Then taking X?¢ : X! — (X)! for 6x and X' : X — X! for 7x makes this
relation strictly homotopical.

For example, in the category Cat, there is such a d when I is M or the
groupoid generated by the graph I : 0 — 1. Let the following diagram denote
the graph (I : 0 — 1)2.

00—~ 01

ol

10— 11

Then in either case, d is generated by sending 0 and 10 to the identity morphism
on(,and I1and 1/ to I:0— 1.

Example 3.14. Consider the functorial relation G on topological spaces de-
scribed in Example

There is a natural transformation 6x : I'X — I'>X which takes a pair (p,r)
to the standard path from ¢(p(0)) to (p,r). To be precise, it maps (p,r) to (g,r)
where q(t) = (p¢,t) € TX and pyljo, = plo,¢ for each t € RT.

There is a natural transformation 7x : X x I'(x) — I'X. The space I'(x) is
isomorphic to R, so it maps a pair (z,r) € X x RT to the constant path at x
of length 7.

These natural transformations make G into a strictly homotopical functorial
relation.

In the following lemma, we record a natural transformation 7 whose exis-
tence is equivalent to that of 7, but which will make the proof of the following
proposition clearer.

Lemma 3.15. Consider a strictly homotopical functorial relation as above. For
any f: X =Y, let 7/ : X px VY — VX be the composite

1xWw!

X px WY 2 X x U D DX,
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It makes the following diagrams commute.

Xpxe, VY X 2L X x, WY
/ \ \ (3.16)
X
X px 0y 20 g2y X px, OV L (X x, UY)
i% l\lfm l% i\w (3.17)
vx — Y wy v 0w

Proof. The commutativity of these diagrams is equivalent to that of the corre-
sponding diagrams in (3.9)), (3.11), and (3.12). O

Proposition 3.18. Let R be a strictly homotopical functorial relation on C.
Then the functor A : CM — CM wunderlies a comonad on CM where the compo-
nents of the counit and comultiplication at each object f : X — Y in CM are
given by the following diagrams

Ll b

2
Pf IXTX6

Mf——Y Mf——= M\

where the morphism 1 X T x § is the composition
XfXEO\IIY 1x XTfxdy
Proof. We have already seen that the counit square commutes. To define 1x x
77 x 0y we make use of the commutativity of and the left hand sides of
and . The commutativity of the comultiplication square above is
given by the commutativity of and the right-hand diagram of (3.16]).

The following diagrams display the comonad axioms. The commutativity of

Xy X oo (WX g X g W2Y) = X\ % W(X px, UY).

1x( 6171'\1;1/) EITW (X XTY)

XX UY <——— X, % V(X x VY) ————— X ;x VY

\/

X %, WY

follows from the commutativity of the left-hand diagrams in and (| -,
and the commutativity of

1x7pxdy

X ;x, WY X% WX px, UY)
llx%fxﬁy llX%AX(;Xx\I/Y
1xW(1xTyrxdy)
X% WX px, Y) X o o WX WXy, TY)
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follows from the right-hand diagrams in (3.10)) and (3.17)). O

3.1.3 Strictly symmetric functorial relations

Definition 3.19. Say that a functorial relation R on C is strictly symmetric if
there exists a natural isomorphism ¢ with components

tx VX - UX
for each object X of C such that 1 =7, gt = €1, and €11 = ¢y in the diagram

below.

L
_—

v v
f e e
lc =——1¢

If R is a monic relation, then the definition of strictly symmetric given here
coincides with the usual definition of symmetric.

Example 3.21. More generally, consider the relation in Example
Suppose that there an isomorphism ¢ making the following diagrams com-

mute.
i lel
n

I——>17
for n € Z/2. Then taking X* : X! — X' for 1x makes this relation strictly
symmetric.

For example, in the category Cat, there is such an ¢ when I is the groupoid
generated by the graph I :0 — 1.

Example 3.22. Consider the functorial relation G on topological spaces de-
scribed in Example

There is a natural transformation tx : TX — I'X which takes a pair (p, )
to the pair (q,r) where ¢(t) = p(r — t) on [0, r].

This makes G into a strictly symmetric functorial relation.

Lemma 3.23. Consider a strictly symmetric, strictly transitive functorial re-
lation R on C. Then for every object X of C, the morphism

X O X x X

has a §(R)-algebra structure.

Proof. We need to show that there is a solution to the following lifting problem.
vX UX

/7
—
>
A(eoxer) - €0 X €1
>
>

p(eoxer)

U(X x X)—="X x X

vX

X
(eoxe€1) " €o
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We will do this by finding two lifts @ and b as illustrated below.

vX vX
_7
b~
neg X 1Xner _ - -
1xn(eoxe€r) \I/Xeoxeoquelxeo\I/X €0 X €1 (*)
a ///7 m
\I/X(eoxq)xm\ll(X x X) — X xX

Let u: ¥(X x X) > UX x UX denote the universal morphism induced by
the universal property of ¥X x WX. It makes the following diagram commute.

1XxXmeg xXney

X \PX(onel)X(EOXGO)(\I/X x UX)
1xu
1xn(eo XEl)L \L(€1X51)7T(\IIX><\IIX)
E1TY (X x X)
\I’X(onel)xEO\D(XxX) X xX

Note that the outside square of this diagram is isomorphic to the lower-left
portion of diagram (#). Therefore, 1 x u is the lift a that we seek.
Now welet b: VX x VX x WX — VX be the following composite.

UX x UX x UX 250X x X 2Lox x 0X 40X,
€0 €0 €1 €0 €0 €0 €1 €0

This b makes the upper right-hand portion of the above diagram commute.
Therefore, we have found a lift in the original diagram, and shown that
€o x €1 has a F(R)-algebra structure. O

Theorem 3.24. Consider a strictly symmetric functorial relation R : C — CR
such that F(R) is a weak factorization structure and such that every morphism

UX X9 v X

is in F(R)-alg. Then the class F(R)-coalg is stable under pullback along F(R)-alg.

Proof. Consider the following pullback

AXyXHA

X— sv

where 7 is in §(R)-alg, and ¢ is in F(R)-coalg.
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The morphism 7x is in F(R)-coalg if and only if there is a solution to the
following lifting problem.

)\"X
Axy X 225 Ax WX

TE€Q

ﬂxi s -7 lpwx (+)
Xt—on——X

We will construct such a lift.
Since /¢ is in §(R)-coalg, there is a lift a in the following square.

A2 Apx WY
a 7

él pad ipz

yi——vy

Since r is in §(R)-alg, the morphism r x 1x : X x X - Y x X is in F(R)-alg
(as it is a pullback of r), and then the morphism reg x €1 : ¥X —» Y x X is in
F(R)-alg (as it is the composition of €y x €1 € F(R)-alg and r x 1x € F(R)-alg).
Thus, there is a lift in the following square.

X— " S ux

-
b~
A - Te€Q X €]
e
~

61><1

X X, VY —=Y x X
Now let s be the following composition.

x1 XLy X xb
X 2555 Apx WY x X XEEEA X 5 WY X A A Ak, WX

TEQ
This makes the diagram (*) commute. O

Corollary 3.25. Consider a strictly symmetric, strictly transitive relation R on
C such that F(R) is a weak factorization structure. Then F(R) is type-theoretic.

Proof. By the previous two results, we know that §F(R)-coalg is stable under
pullback along §(R)-alg. By Proposition every object is fibrant. Thus,
F(R) is type-theoretic. O
3.1.4 Summary

We now have the following theorem.

Theorem 3.26. Consider a strictly transitive, strictly homotopical functorial
relation R on C. Then the functorial factorization F(R) is an algebraic weak
factorization structure on C.
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Proof. By Proposition Ag(r) underlies a comonad, and by Proposition
pg(r) underlies a monad. O

Definition 3.27. A strict Moore relation structure on C is a functorial relation
R which preserves pullbacks together with the structure described in the def-
initions of strictly transitive, strictly homotopical, and strictly symmetric. A
strict Moore relation system on a category C with finite limits is a functorial
relation R which preserves pullbacks and which is strictly transitive, strictly
homotopical, and strictly symmetric.

Then we have the following theorem.

Theorem 3.28. Consider a strict Moore relation system R on C. Then the
functorial factorization F(R) is a type-theoretic, algebraic weak factorization
structure on C.

Proof. By the previous theorem, §(R) is an algebraic weak factorization struc-
ture on C. By Proposition [3.25] it is type-theoretic. O

Example 3.29. Consider the relation G on the category T of topological spaces
from Examples and This generates a type-theoretic, algebraic
weak factorization structure on C whose factorization of a morphism f: X — Y
is

X 22 Xy, TY 25,

)

whose left class consists of trivial Hurewicz cofibrations, and whose right class
consists of Hurewicz fibrations. (This weak factorization system was first de-
scribed in [Str72] while this particular weak factorization structure was originally
described in [May75].)

3.2 Moore relation systems

In this section, we describe the minimal structure that a relation R on C needs
to have so that F(R) is a type-theoretic weak factorization structure. The
minimality will be justified by Corollary and though we do not give any
examples in this section, many can be obtained from that corollary.

In what follows, we define what it means for a relation to be transitive,
homotopical, and symmetric. Note that while the properties required of a tran-
sitive relation can be easily seen to be weaker than the properties required of a
strictly transitive relation, the definitions of homotopical and symmetric given
below differ more significantly from their strict predecessors.

In what follows, we will let A denote Az(g), p denote pz(g), and M denote
CODA = DOMp.

3.2.1 Transitive relations

Definition 3.30. Say that a relation R on C is transitive if there exists a
morphism
px tUX % VX - UX
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for every object X of C such that the following diagrams commute.

VX x WX — X UX WX, x, WX
Emuem ou \ J{# (3.31)
X b vX

Non-example 3.32. Now we can see why the relation G on the category T of
topological spaces is more useful than the relation H on T which sends every
space X to
XO
S
X —x'= X!
DR
Xl
as in Example [2.6] where I is the usual interval [0, 1].
Suppose that this relation is transitive with a 1 : X! x1 x xo X! — X7 of the
form X : X[021 X[ Then m would have to make the following diagrams
commute for ¢ = 0,1

I—"+10,2]

NN
I—"510,2] I

where s is the surjection which maps [0, 1] onto [0, 1] identically and [1, 2] onto
the point {1}. These diagrams say that m(0) = 0, m(1) = 2, and sm = 1. But
there is no such continuous function.

Proposition 3.33. Consider a transitive relation R on C as above. Then for
every morphism f of C, the morphism py has a §(R)-algebra structure given by

Mpy " M f
lp? \Lp.f
Y—Y

where 1 x p: Mpy — M [ is the morphism

Ix X py : X px VY x WY — X x Y.
Proof. The commutativity of the square in the statement follows from the com-
mutativity of the left-hand diagram of (3.31]).

It remains to check that the composition of the point with the algebra struc-
ture, (1 x u) o Ap(f), is the identity.

1x1xmney

X % WY ——— s X x Y x, VY
€0 €0 €17 €o
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The commutativity of this diagram follows from that of the right-hand diagram

in (3.31). 0

As for the strictly transitive relations of the last section, when a relation R
is monic, our definition of transitivity and the usual definition coincide.

3.2.2 Homotopical relations

The definition of transitive could immediately be seen to be a weaker version
of the definition of strictly transitive. This is not the case for the definition of
homotopical.

Definition 3.34. Say that a relation R on C is homotopical if for each object
X of C, there exists an object ¥°X of C with morphisms

€

X 10X ZaZuXx
¢
0x 1 VX — U X,
and for every morphism f: X — Y, a morphism
Tr o XX VY - U(X px VYY)

which make the following diagrams commute.

VX <2 oy UX Uy o UX
an/ J/C Jf‘)
X X 4o X
(3.35)
X "o ux X 2 o x UX
N b N
n
€0 €
VED'e VX —= X VX s UX
¢
(3.36)
Ixnf o o
X*>an><<\I/Y anXC\IJY
1xe;
n(1xnf)
U(X ;x, TY) (X px, VYY) —> X ;x  UY
(3.37)

where 7 ranges over 0, 1.
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Example 3.38. The object ¥° X will often (as in Proposition be the middle
object of the factorization of the morphism 7 : ¥X — ¥*4X where U**X is
the limit of the diagram below on the left and n : VX — U*4X is induced by
the cone below on the right

X< x> Xx X< ovx 2 sXx
UX UX UX —— X ——UX
X< ox 2 X X< uvx 21X

In the category of topological spaces, this might look like the following. We
use the relation H here, as described in Non-example[3.32] though we ultimately
are interested in the relation G. This is because the description involving H is
much easier to write down but still provides intuition to think about G.

Let §(I x I) denote the boundary of the unit square I x I. Let S denote the
mapping cylinder of the function §(I x I) — I which maps (z,y) to . That is,
S is the quotient of I x §(I x I) obtained by identifying the point (1,z,y) with
the point (1,z,y’) for any (z,y), (z,y') in 6(I x I).

Then let I°X denote the space X of all continuous functions from S into
X. The morphism n : X — I°X is the precomposition with the map S — .
The projections €;,(; : I°X — X! are the precompositions of the inclusions of
I into each of the bottom edges in the illustration above.

There is a continuous function S — I which takes the bottom edges associ-
ated to €9 and (p and the top vertex above their intersection to the point 0 € 1
and maps the top edge and the edges associated to ¢; and (; each homeomor-
phically onto I. Precomposition with this continuous function is the morphism
Ox : X - I°X.

There is a homotopy equivalence h : S — I? which commutes with the
projections to I*%. Then the composition

X px o IV 5 X s v DT = (X, Y
is the morphism 7.

Now we can provide some intuition as to why we have switched from con-
sidering ¥2X to ¥°X. In a space I'2X, the lengths of the sides are coupled
(e.g., for any v € I'2X, T'epy has the same length as T'e;y) but this is not the
case for I'X. In particular, the middle diagram of [3.36] could not be satisfied
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if T°X = I'2X. To explain this from a slightly different perspective, when we
obtain ¥°X in this way, the morphism ¥°X — ¥*4X is in the right class of
the weak factorization system, giving it better behavior than U2X — U*4X,
This intuition will be given mathematical content when we extract this struc-
ture from any type-theoretic weak factorization structure in Proposition

Proposition 3.39. Let R be a homotopical relation on C. Then for every
morphism f : X — Y in C, the morphism Ay has a F(R)-coalgebra structure
given by

X:X
Af by
1x7d
Mf—— M\

where 1 x 76 : M f — My is
Ix x 7y 0 X px (WY — Xy px WU(X px  VY).
Proof. The morphism 1x x 7,0y in the statement is induced from the morphisms

mx  Xpx WY — X and 7¢(1xdy) : Xpx VY — W(X,x PY) by the universal
property of the pullback X, x  W(X ;x  ¥Y) because the following diagram

commutes.
/ M\
1xneo

X px, WY X px, OY

N

X, WY = U(X px, DY)

The upper triangle commutes by the properties of the pullback in its domain.
The lower left-hand triangle commutes because of the commutativity of the
middle diagram in . The lower right-hand triangle commutes because of
the commutativity of the right-handle diagram in

The coalgebra square in the statement can be written more explicitly as

X X
llxnf ilxn(lxnf)
X px WY PTLX ok WX x, TY)

The commutativity of this square follows from the commutativity of the outside
of the following diagram by the universal property of the pullback in the lower
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right-hand corner.

X X X
llmf J/Mnf llxri(lmf)
1x6 o 1x7
Xfxeo\I/Y—>an><<\I/ Y — X x \I/(Xfxeo\llY)

The left-hand square above commutes because the left-hand diagram of
commutes. The right-hand square commutes because the left-hand diagram of
commutes.
Now it remains to check that the copoint composed with the coalgebra is
the identity.
X X X

Lk

- A
MfiiM)\f%Mf
\V/

We have already seen that the two squares in this diagram commute. The
composition (pAf)(1 x 70) is equal to the composition of the top and right sides
of the diagram below.

1x0 o 1xT
X %OV — X ox UY —> X x U(X ;x UY)

X % WY

The commutativity of the left-hand triangle above follows from the commuta-
tivity of the right-hand diagram in (3.36)). The commutativity of the right-hand
triangle above follows from the commutativity of the right-hand diagram in
(13.37)). O

3.2.3 Symmetric relations

Definition 3.40. Say that a relation R on C is symmetric if there exist mor-
phisms
vx 1 X X, WX - UX

for every object X of C such that the following diagrams commute.

VX, % UX v vX vX S UX, x, UX
€10 J{\Leun €0 iiq \ \LV (341)
X X UX

This might look very different from the strict symmetry defined previously.
But notice that if one takes tx : ¥X — ¥X to be the following composite,

UX 20 g x, WX L WX
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then tn =7, egt = €1, and €11 = ¢y in the diagram below.

Thus, v begets a more familiar symmetry, . However, we need the full strength
of the morphism v to prove the following lemma.

Lemma 3.42. Consider a symmetric, transitive relation R on C. Then for
every object X of C, the morphism

UX X9, ¥« X

has a §(R)-algebra structure.

Remark 3.43. Note that the following proof for this Lemma is identical to that
for the strict version (Lemma [3.42)) except that here we define b to be v(1 x p)
instead of p(e x 1)(1 x ).

Proof. We need to show that there is a solution to the following lifting problem.

wX vX

7

—

—
—

A(eoxer) _ - €0 X €1
—
~

p(eoxer)

UX (X x X)X x X

(eoxel)xe

We will do this by finding two lifts ¢ and b as illustrated below.

D¢ D¢
_7
b~
neo X 1Xner ///
Lxn(eoxer) VX, X UX, % UX wxer  (x)
. ///7 W
\I/X(onq)er\I!(XxX) — X x X

Let u : U(X xX) —» X xUX denote the morphism induced by the universal
property of X x UX. It makes the following diagram commute.

1Xmeg xney

vX vX

Ixu

UX x UX)

(Eo><€1)><(€0><€0)(

1xn(eo Xel)t \L(élxel)ﬂ'(\w{xwx)

UX X WX x X) — 0 X« X

(eoxe1) e
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Note that the outside square of this diagram is isomorphic to the lower-left
triangle of diagram (x). Therefore, 1 x u is the lift a that we seek.
Now welet b: VX x VX x WX — VX be the following composite.

X, %, UX, x UX 25 X, x, UX 50X,

This b makes the upper right-hand portion of the above diagram commute.
Therefore, we have found a lift in the original diagram and shown that €y x €;
has a §F(R)-algebra structure. O

Theorem 3.44. Consider a symmetric relation R on C such that §(R) is a
weak factorization structure and such that every morphism

WX X9 X x X

is in §(R)-alg. Then the class F(R)-coalg is stable under pullback along F(R)-alg.
Proof. The proof for this is identical to that for Theorem O

Corollary 3.45. Consider a transitive, symmetric relation R on C such that
the factorization §(R) is a weak factorization structure. Then F(R) is type-
theoretic.

Proof. By the previous two results, we know that §F(R)-coalg is stable under
pullback along §(R)-alg. By Proposition every object is fibrant. Thus,
F(R) is type-theoretic. O

3.2.4 Summary

Now we have the following theorem.

Theorem 3.46. Consider a transitive and homotopical relation R on C. Then
F(R) is a weak factorization structure.

Proof. By Proposition every morphism in the image of Azg) has a §(R)-
coalgebra structure, and by Proposition [3.33] every morphism in the image of
p3(r) has a §(R)-algebra structure. O

Definition 3.47. A Moore relation structure on C is a relation R together with
the structure given in the definitions of transitive, homotopical, and symmet-
ric. A Moore relation system on C is a relation R together which is transitive,
homotopical, and symmetric.

Now we have the following theorem.

Theorem 3.48. Consider a Moore relation system R on C. Then F(R) is a
type-theoretic weak factorization structure.

Proof. By the previous theorem, F(R) is a weak factorization structure. Then
by Corollary F(R) is type-theoretic. O
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4 Id-presentations from type-theoretic weak fac-
torization systems

In this section, we consider a type-theoretic weak factorization structure W
on a finitely complete category C. In the first section, [I.I] we show that the
factorization FR(W) is again a weak factorization structure equivalent to W.
In the second section, we show that the relation 93(W) is an Id-presentation
of [FR(W)] = [W]. Combining these two results, we will have shown that any
type-theoretic weak factorization system has an Id-presentation.

4.1 The main tool

Consider any type-theoretic weak factorization structure W on C. Our aim in
this section is to show that FR(W) is equivalent to W. However, we prove
a slightly more general result which will become useful later (in Lemma
Proposition and Proposition .

To that end, consider any relation R with the following components at each
object X of C

€0X

-~
X x> RX
€1x

such that each nx : X — RX is in W-coalg and each ex = ¢px X €1x : RX —
X x X is in W-alg. (We have in mind the relation SR(W) for our main result.)

Now we show that §(R) is a weak factorization structure equivalent to .
For readability, we will let A denote Agzr) and p denote pgr). We need to
show that (1) F(R)-coalg = W-coalg, (2) §F(R)-alg = W-alg, (3) Ay € W-coalg,
and (4) py € W-alg for every morphism f of C. These facts are all relatively
straightforward to show except (3) which appears as Proposition

The hypothesis that W is type-theoretic is integral to the proof below. In
Lemma where we show fact (4), we need every object in W to be fibrant. In
Lemma which is used to show fact (3) in Proposition we need W-coalg
to be stable under pullback along W-alg.

Lemma 4.1. For any morphism f of C, the morphism py is in W-alg.

Proof. Note first that 7y : X xY - Y and 1x X €7 : XfxeoRY — X xY are
in W-alg because they are pullbacks of morphisms hypothesized to be in W-alg.

XxY —X X px  RY RY
- _|
\Lﬂ'y l! \lexsl €0 X €1
Y — Xxy I vy
Since py is the composition of these two maps, it is also in W-alg. O

Lemma 4.2. For any morphism f in W-alg, the morphism Ay is in W-coalg,
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Proof. The morphism Ay is a pullback of 7 € W-coalg along f € W-alg,

~NGUN

X Y

and since W is type-theoretic, W-coalg is stable under pullback along W-alg. [
Proposition 4.3. We have that W-coalg = §(R)-coalg and W-alg = F(R)-alg.

Proof. Consider a morphism f in §(R)-alg. It is a retract of ps. By Lemma
py is in W-alg. Since W-alg is closed under retracts [MP12, Prop. 14.1.8],
fis in W-alg.

Now consider a morphism f in W-alg. Since Af is in W-coalg by Lemma
As has the left lifting property against f. Therefore, f is in F(R)-alg.

Thus, W-alg = F(R)-alg.

Now consider £ € W-coalg. Since ¢ has the left lifting property against W-alg,
it has the left lifting property against p, in particular (Lemma . Thus it is
in §(R)-coalg.

Now suppose that ¢ € §(R)-coalg. Then for any r € W-alg = F(R)-alg, ¢ has
the left-lifting property against r (Proposition . Thus, £ is in ?(W-alg) =
W-coalg.

Therefore, W-coalg = §(R)-coalg. O

Proposition 4.4. For any morphism [ of C, the morphism A(f) is in W-coalg.

Proof. We need to show that A\; has a A-coalgebra structure, or that, equiva-
lently, there is a solution to the following lifting problem.

A)‘f
X ———— X ;x R(X ;x  RY)
_7
>\f _ ipAf
X px (RY =——= XX RY
€0 €0

First we define a new morphism p: RY _ x  RY — RY. Note that nep x 1 :
RY — RY_ x . RY isin W-coalg since it is a pullback of a morphism in W-coalg
along a morphism in W-alg, as shown below.
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RY _ x. RY

i
Y

RY

RY

Then, we define p to be a solution to the following lifting problem.

RY RY
_ 7
lneoxl /li/ leUXel

Y xY

RY€1XEO R/ €0TQ X €11
Now we refer to figure Figure |1| on page Since py is in W-alg, we know
that A,, is in W-coalg. Therefore, there is a lift o as illustrated in the figure.
Let o' : X ;x RY — R(X ;x RY) be the composite R(1x x u)o(1x xnf x
1gy) — that is, the composite from the bottom left to top right of the diagram in
Figure[I] Then a rearrangement of Figure [[| produces the commutative diagram
below, and 1x x ¢’ is our desired lift.

A=
1X><77(1X><77f) X}\fXEOR(XfXEORY)
lx XO”
)\fllxnf Py =€1TR(X xRY)
X px  RY X px  RY
Therefore, Ay is in W-coalg. O

We put the preceding results together into the following theorems.

Theorem 4.5. Consider a type-theoretic weak factorization structure W on C.
Consider a relation R on C which has components

€0X
-~
X x> RX,
-

€1Xx

such that nx is W-coalg and egx x e1x : R(X) - X x X is in W-alg at each
object X of C. Then the factorization F(R) is a weak factorization structure
equivalent to W.
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ENURE) 0> f
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weISerp Suryry T oInsrg

(RTXXT) X (flux XT)

o

Ay X xg =t x

AU flux X7

Tolix AT XX = xf«

Jluxt

(fux XT) =4Iyl

A= x

Jlux1=

At x

X
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Proof. By Lemmal4.1|and Proposition every morphism in the image of pg(g)
is in §(R)-alg. By Proposition and Proposition every morphism in the
image of A\z(p) is in F(R)-coalg. Thus, F(R) is a weak factorization structure.
By Propositions 2.24] and [£.3] it is equivalent to W. O

The following corollary is the main result of this section.

Corollary 4.6. Consider a type-theoretic weak factorization structure W on C.
The factorization FR(W) is a weak factorization structure equivalent to W.

Proof. We need to show that the relation S3(W') can be substituted for R in the
statement of the previous theorem, In the notation of the previous theorem,
Nx is A\w(Ax) and ex is pw(Ax), and these are in the left and right class,
respectively, as required. O

The following corollary will become a useful technical device (in Proposition
and is the reason that we proved Theorem in more generality than
needed for Corollary

Corollary 4.7. Consider a type-theoretic weak factorization structure W on C.
Consider a relation on just one object Y of C with the following components

€0y
Y —nv> RY,
'~
€1y
such that ny is in the left class and egy X €1y : RY — Y XY is in the right class
of W. Then for any morphism f: X — Y of C, in the following factorization

1xnf

X 2" X x. Ry 2y

€0
the morphism 1 x nf is in the left class, and eywRry is in the right class of W.

Proof. Consider the relation SR(W). We construct a new relation S which coin-
cides with SR(W) everywhere except at Y. So set S(X) = R(W)(X) for every
object X # Y and set S(Y) = R. Then a lift of any morphism with domain or
codomain Y can be extracted from the weak factorization structure W. That is,
a lift of any morphism f : X — Y can be obtained as a solution to the following
lifting problem.

X — " 1w
7
re
n - €0 X €1
e
“feox fer

(X)) 2y« y

A lift of any morphism ¢g : Y — Z can be obtained analogously.

The relation S satisfies the hypotheses of Theorem so §(S) is a weak
factorization structure equivalent to W. But §(S) sends a morphism f : X —» Y
to the factorization in the statement. Thus 1 x nf is in the left class and e; 7Ry
is in the right class of W. O
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Remark 4.8. Some might be opposed to the reference of equality of objects.
However, it is not strictly necessary. One can emulate the proof of Theorem
replacing Ay with the 1xnf of the statement of Corollary [.7)and replacing
the other occurences of A and p with Azoyw) and pzo(wy (essentially, making
the replacement of R(W)(Y) by R(Y), as is done in the proof of Corollary
4.7) just where necessary in the proof of Theorem [4.5). Then we will obtain

Corollary [£.7}

4.2 Id-presentations

Now we can show that every type-theoretic weak factorization system has an
Id-presentation.

Lemma 4.9. Consider a relation R on C such that §F(R) is a type-theoretic
weak factorization structure. Denote the components of R(X) for any object X
of C by the following diagram.

€ox
X —x> RX
-

€1X

Then R is an Id-presentation of the weak factorization system [§F(R)] if and
only if egx X €1x : RX — X x X is in the right class for each object X.

Proof. Suppose that R is an Id-presentation. Then by definition, we must have
that each egx x €1x : RX — X x X is in F(R)-alg.

Conversely, suppose that each egx X e1x : RX — X x X is in §(R)-alg.
Then it remains to show that each f*ny, as displayed in the diagram (*) below,
is in §(R)-coalg.

F*RY RY

Xfy YV civ (%)
SN

Note that when ¢ = 0 in the diagram (x) above, the morphism f*ny is
isomorphic to Az(r)(f) (i.e., it has the same universal property as 1x x ny f :
X — X xy RY). Thus, it must be in F(R)-coalg.

There is an involution I on Rel(C) which sends S(X)e; to S(X)e;4q for any
S e Rel(C), X € C, and i € Z/2 and keeps all else constant. Then IR satisfies the
hypotheses of T heorem so F(IR) is a weak factorization structure equivalent
to F(R). Now when ¢ = 1, the morphism f*7y in the diagram () is isomorphic
to Ag(rr)f, so it is in F(R)-coalg.

Therefore, every f*ny in the diagram (x) is in §(R)-coalg, so R is an Id-
presentation of this weak factorization system. O
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Now combining Corollary 1.6 with this lemma, we see the following.

Theorem 4.10. Consider a type-theoretic weak factorization structure W on C.
The relation R(W) is an Id-presentation of the weak factorization system [W].
Thus, every type-theoretic weak factorization system has an Id-presentation.

Proof. By Corollary R(W) generates a type-theoretic weak factorization
structure FR(W) equivalent to W. For any object X of C, the morphism

R(W)Xep x RW)Xer - RW)XP - X x X

is the right factor of the morphism A(X) in the factorization W. Thus, it is in
the right class of the weak factorization system. Then this is an Id-presentation
of [W] by Lemma [4.9] O

Corollary 4.11. The functor R : Fact(C) — Rel(C) restricts to a functor R :
ttWFS(C) — IdPres(C), and the composition |FR| : [ttWFS(C)| — [ttWFS(C)| is

isomorphic to the identity functor.

Proof. By the previous theorem, all objects in the image of R : ttWFS(C) —
Rel(C) are Id-presentations. Thus, this functor restricts to & : ttWFS(C) —
IdPres(C).

By the previous theorem again, for any object W € ttWFS(C), we have that
W is equivalent to FR(W). Thus, they are isomorphic as objects of [ttWFS(C)|.
Since [ttWFS(C)| is a proset, these isomorphisms assemble into a natural trans-
formation 1 = |FR|. O

Example 4.12. Given any Cisinski model structure (C,W,F) on a topos M
[Cis06], we claim that the weak factorization system (C n W n Mg, F n Mg)
restricted to the full subcategory Mg of fibrant objects is type-theoretic.

For this weak factorization system to be type-theoretic, all its objects must
be fibrant, which we have satisfied by construction, and C n W n Mg must be
stable under pullback along F n Mg. In a Cisinski model structure, C is precisely
the class of monomorphisms, so it is stable under pullback (along all morphisms)
in M. Then, in particular, it is stable under pullback along F n Mg in Mg. A
standard result of model category theory says that W n Mg is stable under
pullback in Mg [Bro73|, §1 Ex. 1,§4 Lem. 1]. Thus C n W n Mg is stable under
pullback along F n Mg, and the weak factorization system (C "W n Mg, F n Mg)
is type-theoretic.

Then we find many examples of type-theoretic weak factorization systems,
including those in the categories of Kan complexes [Qui67], quasicategories
[Joy08], and fibrant cubical sets [Cis06]. These all have Id-presentations.
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5 Moore relations from type-theoretic weak fac-
torization systems

In this section, we tie up the preceding sections by showing that a relation R
on a finitely complete category C is a Moore relation system if and only if it is
an Id-presentation.

We can immediately see from our previous results that any relation R which
underlies a Moore relation system is an Id-presentation of the weak factorization
system it generates.

Proposition 5.1. Consider a Moore relation system R on C. Then R is an
Id-presentation.

Proof. By Theorem R generates a type-theoretic weak factorization struc-
ture F(R). By Lemma every RXep x RXe is in the right class. Then by
Lemma this is a Id-presentation of [F(R)]. O

Now we prove the converse: that any Id-presentation is a Moore relation
system. We consider a relation R on C which at an object X gives the following
diagram.

€0X
ox
X —nx>UX,
-

€1X

We let A denote Ag(gr) and p denote pg(g)-

Proposition 5.2. Suppose that R is an Id-presentation of a weak factorization
system. Then R is transitive.

Proof. For any object X of C, we let ux be a solution to the following lifting
problem.

vX vX

_7
ux _ -
Aeq - €0 X €1
—

WX, X, UX —— > X x X

€0 X €171

This makes R into a transitive relation. O

Proposition 5.3. Suppose that R is an Id-presentation of a weak factorization
system. Then R is symmetric.

Proof. For any object X of C, we let vx be a solution to the following lift-
ing problem (where 7 : VX x WX — VX x WX is the standard twist
involution).

vX vX

=
_
A vx -7
T X
co = €0 Xe€l

—

X, x UX —— > X x X

€E1TTOXELTL

This makes R into a symmetric relation. O
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Theorem 5.4. Consider an Id-presentation R on C. The factorization F(R) is
a type-theoretic weak factorization structure.

Proof. By Proposition R is symmetric. Then by Proposition and The-
orem [3.44] §(R) is type-theoretic. O

Corollary 5.5. The functor § : Rel(C) — Fact(C) restricts to a functor § :
IdPres(C) — ttWFS(C).

Proof. The previous theorem, tells us that every object in the image of
F : Rel(C) — Fact(C) is in the full subcategory ttWFS(C). Thus, this functor
restricts to § : ldPres(C) — ttWFS(C). O

Proposition 5.6. Suppose that R is an Id-presentation of a weak factorization
system. Then R is homotopical.

Proof. Let ¥X*X denote the limit of the following diagram in C.

X< wx X
UX UX

Lo

X< uvx 2 sXx

There is a morphism v : X — ¥*4X which is induced by the following cone.

X< 9yx -2 x
-
X —— VX —— UX
ek
X< ox 25X

Now we factor u : UX — U*4X.
UX 2 Mu 25wty
Let ¥° X denote Mwu, and let the following diagram denote the cone correspond-

ing to py.

€1

X< vx X
N
UX < grx X
N
X< gyx 2 o x
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Note that the object ¥°X is defined to be the pullback X, x  W(¥*4X).
Now we let dx : YX — ¥°X be a solution to the following lifting problem.

>\u
X—=" S gex

5 -7
nl /X/ - PuveOXelxgoxg‘l
X S Pxix

nep X1 xXnegx1

For any f : X — Y, we need to find a solution to the following lifting
problem in order to define 74 : X, ;x V7Y — W(X ;x  VY).

X nxnf) WX jx,, VY)

Tf -7
IxAynf _ - J/eoxel

X, %, Y ————— (X ;x  UY) x (X ;x  VY)

(1X Xso)x(lxxel)

Since R is an Id-presentation of (F(R)-coalg, F(R)-alg), we know that the
right hand map above, € x €1, is in §(R)-alg. Thus, we need to show that
1 x Aynf is in F(R)-coalg.

To see this, first observe that {y x ¢ : ¥**Y — VY x WY is in F(R)-alg,
since it is given by the following pullback.

€0 X €1

iy Y x Y
|
lCOXCl \LeOXElerXEl
€9 X €9 X€ELXEY
UY x vY YxYxYxY

The right-hand map in the above diagram is in §F(R)-alg since it is the product
of two maps in §(R)-alg, and thus its pullback, {y x (1, is also in F(R)-alg. Then
the composition ({o % (1)py : ¥7Y — UY x UY, which we also denote by (o % (1,
is in §(R)-alg.

Thus, the following is a factorization of the diagonal Agy into F(R)-coalg
and §(R)-alg).
vy 2 goy XL gy x gy

By Corollary [£.7] in the following factorization of nf : X — UY,

1xAunf o C1
X DA, ¥ WY Sy

the morphism 1 x A,nf is in §(R)-coalg.

Thus, we obtain a lift 7; as above.
Then 7 and 6 make R into a homotopical relation where the diagram

)
X 19X X UX

¢
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of Definition is given by the diagram
Aun 5 L
X—V'X —a>UX
o

that we have defined here. O
Thus, we have the following theorem.

Theorem 5.7. Consider a relation R on C. It is an Id-presentation of a weak
factorization system if and only if it is a Moore relation system.

Proof. By Proposition 5.1} a Moore relation system is an Id-presentation of the
weak factorization system it generates.

By Propositions and an Id-presentation of a weak factorization
system is a Moore relation system. U

Now we can restate Theorem in the following way.

Corollary 5.8. Consider a type-theoretic weak factorization structure W. Then
the relation R(W) is a Moore relation system which generates the weak factor-
ization system represented by W. Thus, every type-theoretic weak factorization
system can be generated by a Moore relation system.

Proof. This is Theorem with ‘Moore relation system’ substituted for ‘Id-
presentation’ as justified by Theorem O
Example 5.9. Consider Example Then given a Cisinski model structure
(C,F,W) on a topos M, the weak factorization system (C n W n Mg, F n M)
is generated by a Moore relation system. In particular, the weak factorization
systems in the category of Kan complexes, the category of quasicategories, and
that of cubical sets are generated by Moore relation systems.

To conclude this section, we show that |RF| : |IdPres(C)| — |ldPres(C)| is
isomorphic to the identity functor. We have shown that |FR]| : [ttWFS(C)| —
|ttWFS(C)] is also isomorphic to the identity functor (Corollary [£.11)). Thus,
this will show that || and |F| form an equivalence |IdPres(C)| ~ [ttWFS(C)].

Proposition 5.10. The functor |R§| : ||[dPres(C)| — |IdPres(C)| is isomorphic
to the identity functor.

Proof. We need to provide an equivalence between any R in ldPres(C) and
RF(R). Since |IdPres(C)| is a proset, this will automatically assemble into a
natural isomorphism 1 >~ |RF|.

Let RX be denoted by the following diagram for any X in C.

€0X

-~
X —nx> VX
€1X
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Then RF(RX) gives the following diagram

mop(Ax)
-~
X —AAax)— X A%, ¥(X x X)
< €0
m1p(Ax)

where A denotes Az(g) and p denotes pz(g)-

Now a morphism R — RF(R) consists of a natural transformation R(X) —
RF(R)(X) at each X, as displayed below, which, in turn, consists of the identity
on X and a morphism 7x : VX — X \x_ (X x X).

€0X

X nx D¢
€1x !
|
|
|
|
mop(Ax) %
L e
X —aax)— X\ x_ U(X x X)
- €0
WlP(AX)

But we can obtain the morphism 7x as a lift in the diagram below.

A(A
X M2 X WX x X)

TX -~ 7
n Pk p(Ax)
-

X x X

€g X €71

since 7 is in F(R)-coalg and p(Ax) is in F(R)-alg.
Similarly, we can get a morphism RF(R) — R by solving the following lifting
problem for each object X.

X i X

/7
X(Ax)l /// leoxel
—~

Xax V(X xX)—=Xx X
€0 p(Ax)

These lifts exist since A(Ax) is in §(R)-coalg and ¢y x €; is in F(R)-alg. O

6 Models of Id-types

In this section, we show that a weak factorization system on a finitely complete
category C models Id-types if and only if it models Id-types on objects. We use
this result to also show that if a display map category (C,D) models Id-types,
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then (C, (D)%) also models Id-types regardless if they are functorial (this is
not used in our main result, but was mentioned in Section to motivate our
work).

Consider Id-presentation R which at each object X of C has components

denoted as follows.
€0X

ox
X —nx> \IIX,
-
€1Xx
For any object Y of C, let A/Y denote the full subcategory of C/Y spanned by
§(R)-alg. Let poMy : A/Y — C denote the domain functor. The weak fac-
torization structure §(R) induces a weak factorization structure §(R)y [MP12]
Thm. 15.3.6] which takes a morphism « : f — g of A/Y to the following.

1w XnDOMy (ev) €1TId(X)

WP E W xx (X)) ———— s X

95177‘111()()
Y

The classes of coalgebras and algebras of this weak factorization structure in
A/Y are exactly the preimages of those in C: F(R)y-coalg = DoMy* (F(R)-coalg)
and §(R)y-alg = pomy ' (F(R)-alg).

Lemma 6.1. The weak factorization structure F(R)y on A/Y is type-theoretic.

Proof. First, note that 1y € F(R)-alg, so 1y is a terminal object of A/Y. For
any f € A/Y, the morphism to this terminal object is f : f — 1y, whose image
under DOMy is f € §(R)-alg. Thus, f is fibrant.

Now consider any ¢ € F(R)y-coalg and r € §(R)y-alg who share a codomain.
We have that DOMy (r E) = DOMy (r)*DOMy (£) € F(R)-coalg since F(R) is type-
theoretic (Theorem [5.4). Therefore, r*/ € §(R)y-coalg. O

Proposition 6.2. Consider a weak factorization system with an 1d-presentation
R. Then (C,F(R)-alg) models Id-types.

Proof. Since the weak factorization structure §(R)y on C/Y is type-theoretic, it
has an Id-presentation R(F(R)y) which at each f: X — Y gives the following
relation (depicted as a diagram in C).

71'0617'('1

Xilxan‘)XAX Id X XyX)

xleﬂll/ (%)

Now we show that the collection of these Id-presentations is a model of Id-
types in the display map category (C,§(R)-alg). We just need to check that
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any pullback a*(1x x nA) as shown below of 1x x nA along any morphism
a:A— X fori=0,11is in F(R)-coalg.

Xaxe,Id(X Xy X)pe; Xg A ——————— XA X Id(X xy X)

Note that the image of diagram (x) above is a relation of X in C where
1x xnA € F(R)-coalg and €11 = mpe1m x €17 € F(R)-alg. Then by Corollary
the pullbacks shown above are in F(R)-coalg when ¢ = 0. Similarly, by
considering the involution I which swaps ¢y and €; (described in the proof of
applied to this relation, the pullbacks shown above are in §(R)-coalg when
i = 1 by Corollary [£.7] O

T,€1T1

X

Corollary 6.3. Consider a display map category (C,D) which models X- and
Id-types. Then (C,(¥D)?) also models 1d-types.

Proof. Let {Iy}yec be the model of Id-types in (C,D). We obtain a model
I, of Id-types on objects in (C,D) (for a terminal object = in C). But I, is
trivially also a model of Id-types on objects in (C, (¥D)¥). By Proposition
(C,(¥D)¥) also models Id-types. O

7 The main result

In Section [2] we defined the following diagram of categories.

§
fldPres(C) & fRel(C) —— fFact(C) <— fttWFS(C)

[ L]

IdPres(C) & Rel(C) ——= Fact(C) =<—— ttWFS(C)
”n

In Section [3| we defined (strict) Moore relation systems. We showed that
strict Moore relation systems generate type-theoretic, algebraic weak factor-
ization systems, and that Moore relation systems generate type-theoretic weak
factorization systems.

In Sections [ and [5] we showed the following theorem.
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Theorem 7.1. Consider a category C with finite limits. The functors R and §
described above restrict to functors shown below.

5

fldPres(C) ——= fttWFS(C)
=%

IdPres(C) ——= ttWFS(C)
R

Furthermore, after application of the proset truncation, these are equivalences.

31
IfldPres(C)| == |fetWFS(C)|

By
| 2
lIdPres(C)| === [ttWFS(C)|
By

Proof. The fact that S8 and § restrict to functors ttWFS(C) < IdPres(C) is
proven in Corollary and Corollary Then consider an object or mor-
phism X of fttWFS(C). We know that (X)) € IdPres(C) n fRel(C) = fldPres(C)
so fR restricts to a functor fttWFS(C) — fldPres(C). Similarly, § restricts to a
functor fldPres(C) — fttWFS(C).

The fact that |98 and |§| constitute an equivalence |IdPres(C)| ~ [ttWFS(C)|
is proven in Corollary and Proposition [5.10} Since both squares in the
diagram (*) above commute, this restricts to an equivalence |fldPres(C)| ~
|fetWFS(C)|. O

We then interpret this in the following theorem.

Theorem 7.2. Consider a category C with finite limits. The following proper-
ties of any weak factorization system (L,R) on C are equivalent:

1. it has an Id-presentation;

2. it is type-theoretic;

3. it 1s generated by a Moore relation system;

4. (C,R) is a display map category modeling ¥- and Id-types.

Proof. The equivalence between (1) and (3) appears as Theorem [5.7]
That (2) implies (1) is Theorem [4.10
That (3) implies (2) is Theorem [3.48
Clearly, (4) implies (1).

By Theorem [2.35] (1) implies that all objects are fibrant in (L, R), and thus

(C,R) is a display map category modeling X-types (Example . By Propo-

sition [6.2] (1) implies that (C,R) models Id-types. Thus, (1) implies (4). O
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Theorem 7.3. Consider a category C with finite limits and a weak factorization
system (L, R) satisfying the equivalent statements of the preceding theorem, .

If (C,R) models pre-Il-types, then it models 11 types. In particular, if C is
locally cartesian closed, then (C,R) models II-types.

Proof. By the previous theorem, (L,R) is type-theoretic. Therefore, by

Proposition (C,R) models TI-types. O
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