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Abstract

This article presents three characterizations of the weak factorization
systems on finitely complete categories that interpret intensional depen-
dent type theory with Σ-, Π-, and Id-types. The first characterization
is that the weak factorization system pL,Rq has the properties that L is
stable under pullback along R and that all maps to a terminal object are
in R. We call such weak factorization systems type-theoretic. The second
is that the weak factorization system has an Id-presentation: roughly,
it is generated by Id-types in the empty context. The third is that the
weak factorization system pL,Rq is generated by a Moore relation system,
a generalization of the notion of Moore paths.
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1 Introduction

This paper is the second in a series (based upon the author’s thesis [Nor17]) in
which we study categorical interpretations of dependent type theory of a certain
species: display map categories. It has long been known that categorical inter-
pretations of dependent type theory induce weak factorization systems [GG08],
and so our goal is to characterize the weak factorization systems which harbor
such interpretations.

In the first paper [Nor19], we considered display map categories modeling Σ-
and Id-types whose underlying category is Cauchy complete. We showed there
that the induced weak factorization system is itself a display map category
modeling Σ- and Id-types. This simplifies our problem: if we want to decide
whether a given weak factorization system is induced by such a display map
category modeling Σ- and Id-types, then we only need to decide whether the
weak factorization system itself is a display map category modeling Σ- and
Id-types.

In the present paper, we turn to this problem: deciding whether a weak
factorization system is a display map category modeling Σ- and Id-types. Our
main theorem is the following characterization:

Theorem 7.2. Consider a category C with finite limits. The following proper-
ties of any weak factorization system pL,Rq on C are equivalent:

1. it has an Id-presentation;

2. it is type-theoretic;

3. it is generated by a Moore relation system;

4. pC,Rq is a display map category modeling Σ- and Id-types.

A weak factorization system pL,Rq is type-theoretic when all morphisms to the
terminal object are in R (a necessary condition for pC,Rq to be a display map
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category) and when L is stable under pullback along R (a necessary condition
for pC,Rq to model Π-types). Thus, the equivalence between (2) and (4) tells
us that a category with a weak factorization system is a display map category
modeling Σ- and Id-types just when these two conditions hold.

To prove this equivalence, we introduce the notions of Id-presentations and,
perhaps more interestingly, of Moore relation systems. Roughly, a weak factor-
ization has an Id-presentation if it is induced by a model of Id-types. A Moore
relation system is an explicit algebraic presentation of the weak factorization
systems under consideration. These are closely related to the path object cate-
gories of [vdBG12] which are used to model identity types. However, a Moore
relation system is a weaker notion than that of path object category, and what
we lose in strictness, we make up for in the equivalence above.

This paper is organized as follows. Throughout, we fix a finitely complete
category C. In Section 2, we introduce the objects of study and the categories
that contain them. In particular, we describe the categories FactpCq of factor-
izations and RelpCq of relations, their full subcategories ttWFSpCq ãÑ FactpCq
of type-theoretic weak factorization systems and IdPrespCq ãÑ RelpCq of Id-
presentations, and functors F : RelpCq Ô FactpCq : R. We then show in the fol-
lowing sections that these functors restrict to an equivalence |F| : |IdPrespCq| »
|ttWFSpCq| : |R| where | - | denotes the proset truncation. We use the proset
truncation because it makes isomorphism in |ttWFSpCq| the usual notion of
sameness between weak factorization systems (that is, having the same left and
right classes of morphisms). In Section 3, we describe Moore relation systems
and show for that every Moore relation system R, the factorization FpRq that
it produces is a type-theoretic weak factorization system. In Section 4, we show
that R restricts to a functor ttWFSpCq Ñ IdPrespCq and that FR restricts to a
functor ttWFSpCq Ñ ttWFSpCq which is isomorpic to the identity functor under
the proset truncation. In Section 5, we show that a relation is a Moore relation
system if and only if it is an Id-presentation and that RF : IdPrespCq Ñ IdPrespCq
is isomorphic to the identity functor under proset truncation. We show in Sec-
tion 6 that having an Id-presentation is equivalent to modeling Id-types. In
Section 7, we put these results together to obtain Theorem 7.1.

2 Preliminaries

This section is devoted to developing the concepts that we will study in the
following sections. Our main theorem, 7.1, is a comparison of a certain kind
of relation (models of Id-types) and a certain kind of factorization (weak fac-
torization systems). We start with a categorical analysis of such relations and
factorizations, and then we define the particular instances in which we are in-
terested.

As mentioned above, we fix a finitely complete category C throughout this
paper.
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2.1 Relations, relational factorizations, and factorizations

In this subsection, we define the fundamental objects: relations on C, factoriza-
tions on C, relational factorizations on C, and functors between them.

Definition 2.1.

a) Let R denote the category generated by the graph

M η // Ψ
ε1
oo

ε0oo

and the equations ε0η “ ε1η “ 1M. A relation on an object X of a category
C is a functor R : RÑ C such that RpMq “ X.

b) Let P denote the category generated by the graph

M
λ
// Φ

κ
xx

ρ
// @

and the equation κλ “ 1M. A relational factorization of a morphism
f : X Ñ Y in a category C is a functor P : PÑ C such that P pρλq “ f .

c) Let F denote the category generated by the following graph and no equa-
tions.

M
λ // Φ

ρ // @

A factorization of a morphism f : X Ñ Y in a category C is a functor
F : FÑ C such that F pρλq “ f .

Remark 2.2. What we have defined above as a relation could more descriptively
be called an internal reflexive pseudo-relation. However, since all relations will
be of this type, we will just call them relations.

Example 2.3. Consider an exponentiable object I and morphisms 0, 1 : ˚ Ñ I
of C where ˚ is a terminal object. Let ! : I Ñ ˚ denote the unique morphism to
the terminal object.

a) On any object X of C, there is a relation whose image is the following
diagram.

X X! // XI

X1
oo
X0
oo

b) Consider a morphism f : X Ñ Y in C. Let X ˆY Y
I denote the pullback

X ˆY Y
I

A

//

��

Y I

Y 0

��
X

f // Y
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of f : X Ñ Y and Y 0 : Y I Ñ Y . Then

X
1XˆY

!f

// X ˆY Y I
πX

tt Y 1πY I // Y

is the image of a relational factorization of f , which we denote by P : RÑ
C.

c) We also obtain a factorization F : F Ñ C of f whose image is depicted
below.

X
1XˆY

!f // X ˆY Y I
Y 1πY I // Y

Notation 2.4. Let M denote the category generated by the graph 0 Ñ 1. Then
CM is the category of morphisms of C. For a commutative square in C as shown
below, let xα, βy : f Ñ g denote the morphism that this produces in CM.

X
α //

f

��

W

g

��
Y

β // Z

Definition 2.5.

a) A functorial relation on C is a section of the functor CM : CR Ñ C. Let
fRelpCq denote the category of such sections.

b) A functorial relational factorization on C is a section of the functor Cρλ :
CP Ñ CM. Let fRelFactpCq denote the category of such sections.

c) A functorial factorization on C is a section of the functor Cρλ : CF Ñ CM.
Let fFactpCq denote the category of such sections.

Example 2.6. Consider Example 2.3. Since the relations, relational factor-
izations, and functorial factorizations given there are assembled from functors,
these generate a functorial relation, a functorial relational factorization, and a
functorial factorization on the category C.

Now we take pains to consider variants of these concepts that are not func-
torial. This is because the Id-types of Martin-Löf type theory are not given
functorially, and we aim to model these.

Definition 2.7. Let C and D be categories. An afunctor U : C 99K D consists
of an object UpXq of D for every object X of C and a morphism Upfq : UpXq Ñ
UpY q for every morphism f : X Ñ Y in C.

Let U, V : C 99K D be afunctors. An (unnatural) transformation τ : U 99K V
consists of a morphism τX : UpXq Ñ V pXq in D for every X in C.

Categories and afunctors comprise a 1-category aCat which contains the 1-
category Cat of categories and functors as a wide subcategory. We will use the
fact that the unnatural transformations give every hom-set in aCat the structure
of a category. Note, however, that this does not make aCat a 2-category.

5



Definition 2.8.

a) A relation on C is a section of the functor CM : CR Ñ C in aCat. Let
RelpCq denote the category of such sections.

b) A relational factorization on C is a section of the functor Cρλ : CP Ñ CM

in aCat. Let RelFactpCq denote the category of such sections.

c) A functorial factorization on C is a section of the functor Cρλ : CF Ñ CM

in aCat. Let FactpCq denote the category of such sections.

Remark 2.9. We are abusing terminology by speaking of relations, relational
factorizations, and factorizations both on an object of a category and on the
whole of a category.

There are the following natural inclusions.

fRelpCq
� _

��

fRelFactpCq
� _

��

fFactpCq
� _

��
RelpCq RelFactpCq FactpCq

We now describe the functors that fit horizontally into this diagram.
There are functors

F
ι // P

σ // R

where ι is the only injection F ãÑ P and σ is the surjection sending κ to ε0, ρ to
ε1, and η to λ.

The functor ι induces a functor ι˚ : RelFactpCq Ñ FactpCq given by post-
composition with Cι : CP Ñ CF. This restricts to a functor ι˚ : fRelFactpCq Ñ
fFactpCq making the right-hand square in the diagram below (2.10) commute.
This functor takes a relational factorization on C to its underlying factorization
on C.

fRelpCq
� _

��

fRelFactpCq
� _

��

ι˚ //σ˚oo fFactpCq
� _

��
RelpCq RelFactpCq

ι˚ //σ˚oo FactpCq

(2.10)

Let ! : M Ñ ˚ denote the unique morphism from the category M to the
terminal category ˚. Since the following is a pullback diagram, pulling back
along C! produces a functor σ˚ : RelFactpCq Ñ RelpCq.

CR

CM

��

A

� � Cσ // CP

Cρλ

��
C �
� C!

// CM

This restricts to a functor σ˚ : fRelFactpCq Ñ fRelpCq making the left-hand
square in diagram (2.10) commute.
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Construction 2.11. Consider an R P RelpCq and an f : X Ñ Y in C. We
construct a relational factorization σ˚pRqpfq P CP of f . If we denote RpY q by
the following diagram,

Y η // ΨY
ε1
oo

ε0oo

then we let σ˚pRqpfq be the following diagram

X
1Xˆηf

// X ˆY ΨY

πX
vv

ε1πΨY

// Y

where X ˆY ΨY is the following pullback.

X ˆY ΨY //

��

A

ΨY

ε0

��
X

f // Y

Lemma 2.12. The construction above (2.11) assembles into a functor σ˚ :
RelpCq Ñ RelFactpCq with functions

i : homRelpCqpσ
˚P,Rq Ô homRelFactpCqpP, σ˚Rq : j

for all P P RelFactpCq and R P RelpCq. The functor σ˚ restricts to a functor
σ˚ : fRelpCq Ñ fRelFactpCq, and the functions i, j restrict to a bijection

i : homfRelpCqpσ
˚P,Rq – homfRelFactpCqpP, σ˚Rq : j

natural in P and R, making σ˚ : fRelpCq Ñ fRelFactpCq right adjoint to σ˚ :
fRelFactpCq Ñ fRelpCq.

Remark 2.13. The universal property of σ˚ can be interpreted as saying that
σ˚R is the right Kan extension of CσR : CÑ CP along C! : CÑ CM in Cat{CM

[Nor17, Thm. 3.1.44].

Proof of Lemma 2.12. The functoriality of σ˚ is straightforward to check. We
construct i and j and check that, when restricted to functorial relations and
relational factorizations, they form a natural bijection.

Consider a P P RelFactpCq which takes an f : X Ñ Y in C to the diagram
on the left below, and a R P RelpCq which takes X P C to the diagram on the
right below.

X
λf

// Φf

κf
xx

ρf
// Y X ηX // ΨX

ε1X
oo

ε0Xoo

First, we construct a function i : homRelpCqpσ
˚P,Rq Ñ homRelFactpCqpP, σ˚Rq.

An element α P homRelpCqpσ
˚P,Rq has at each X P C, a component of the form
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shown on the left below.

X λ1X
// Φ1X

ρ1X

oo

κ1Xoo

aX

��

X
λf

// Φf

κf
vv

ρf
//

κfˆaY Φxf,1Y y

��

Y

X ηX // ΨX
ε1X
oo

ε0Xoo
X

1XˆηY f
// X ˆY ΨY

πX
vv

ε1πΨY

// Y

Let iα P homRelFactpCqpP, σ˚Rq be the transformation with the component at
each f : X Ñ Y in C shown on the right above.

Now, we construct a function j : homRelFactpCqpP, σ˚Rq Ñ homRelpCqpσ
˚P,Rq.

An element β : homRelFactpCqpP, σ˚Rq has at each f : X Ñ Y in C, a component
of the form shown on the left below.

X
λf

// Φf

κf
vv

ρf
//

bf

��

Y X λ1X
// Φ1X

ρ1X

oo

κ1Xoo

πΨXb1X
��

X
1XˆηY f

// X ˆY ΨY

πX
vv

ε1πΨY

// Y X ηX // ΨX
ε1X
oo

ε0Xoo
(˚)

Let jβ P homRelpCqpσ
˚P,Rq be the transformation with the component at each

X P C shown on the right above.
Now suppose that P is in fRelFactpCq. To show that jiα “ α, we show that

the only nontrivial component of αX for each X P C is aX . We calculate:

πΨXpκ1X ˆ aXΦx1X , 1Xyq “ aXΦx1X , 1Xy

“ aX1Φ1X

“ aX .

Now to show that ijβ “ β, we calculate

κf ˆ πΨY b1Y Φxf, 1Y y “ κf ˆ πΨY bf

“ bf .

Thus, j “ i´1.
Now we show that j is natural in P and R. Consider natural transformations

p : P 1 Ñ P and r : R Ñ R1. We want to show that the following diagram
commutes.

homRelpCqpσ
˚P,Rq

r˝´˝σ˚p

��

homRelFactpCqpP, σ˚Rq
joo

σ˚r˝´˝p

��
homRelpCqpσ

˚P 1, R1q homRelFactpCqpP
1, σ˚R

1q
joo
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Denote the component of p : P 1 Ñ P at a morphism f : X Ñ Y in C by the
diagram below on the left, and denote the component of r : R Ñ R1 at X P C
by the diagram below on the right.

X
λ1f

// Φ1f

κ1f
ww

ρ1f

//

pf

��

Y X ηX // ΨX
ε1X
oo

ε0Xoo

rX

��
X

λf

// Φf

κf
ww

ρf
// Y X η1X

// Ψ1X
ε11X

oo

ε10Xoo

For any β P homRelFactpCqpP, σ˚Rq (with components as depicted in left-hand
diagram of (˚) above), r ˝ jβ ˝ σ˚p and jpσ˚r ˝ β ˝ pq both have the following
component at an object X P C.

X λ11X
// Φ11X

ρ11X

oo

κ11Xoo

rXb1X p1x

��
X η1X

// Ψ1X
ε11X

oo

ε10Xoo

Thus, j is natural in P and R.

Example 2.14. Consider Example 2.6, and let R denote the relation discussed
there. Then σ˚R is the relational factorization of that example.

Construction 2.15. Consider an F P FactpCq and an f : X Ñ Y in C. We
construct a factorization ι˚pF qpfq P CF of f . Consider the morphism 1X ˆ f :
X Ñ X ˆ Y . Denote F p1X ˆ fq by the following diagram.

X
λ // Φp1X ˆ fq

ρ // X ˆ Y

Then let ι˚pF qpfq be the following diagram.

X
λ
// Φp1X ˆ fq

πXρ
vv

πY ρ
// Y

Lemma 2.16. The construction above (2.15) assembles into a functor ι˚ :
FactpCq Ñ RelFactpCq which restricts to a functor ι˚ : fFactpCq Ñ fRelFactpCq.

Remark 2.17. Though ι˚ is not adjoint to ι˚, ι˚ι
˚ is a comonad on fFactpCq

[Nor17, Cor. 3.1.35].
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Now we have described functors

fRelpCq
� _

��

σ˚ // fRelFactpCq
� _

��

ι˚ //
σ˚
oo fFactpCq

� _

��

ι˚
oo

RelpCq
σ˚ // RelFactpCq

ι˚ //
σ˚
oo FactpCq

ι˚
oo

(2.18)

We are most interested in the functors between RelpCq and FactpCq (and between
fRelpCq and fFactpCq). We abbreviate these as follows.

Notation 2.19. Let F denote ι˚σ˚, and let R denote σ˚ι˚.

2.2 Weak factorization structures and systems

In this section, we discuss some fundamentals of weak factorization systems and
the perspective on them that we take. Consider a factorization F on C. There
are two functors λ, ρ : MÑ F which take the non-identity morphism of M to λ
and ρ, respectively. Using these, we obtain afunctors λF , ρF : CM Ñ CM from F .
Then λF is copointed and ρF is pointed in the sense that for every f : X Ñ Y
of C, there are the following morphisms in CM.

X

λF f

��

X

f

��

X

f

��

λF f // ΦF f

ρF f

��
ΦF f

ρF f
// Y Y Y

Let F -coalg denote

tf : X Ñ Y in C | Ds : Y Ñ ΦF pfq : sf “ λF pfq, ρF pfqs “ 1Y u,

the class of coalgebras of the copointed endo-afunctor pλF , x1, ρF yq. This is the
class of morphisms f for which there is a lift in the square shown on the right
above. Let F -alg denote

tf : X Ñ Y in C | Ds : ΦF pfq Ñ X : sλF pfq “ 1X , fs “ ρF fu,

the class of algebras of the pointed endo-afunctor pρF , xλF , 1yq. This is, dually,
the class of morphisms f for which there is a lift in the square above on the left.
We will say that a morphism in F -coalg has an F -coalgebra structure, and that
a morphism in F -alg has an F -algebra structure to simplify vocabulary.

Notation 2.20. For any morphisms `, r in C, write `� r if ` has the left lifting
property against r. For two collections L,R of morphisms of C, write L � R
if every morphism of L has the left-lifting property against every morphism of
R. Write L� (and dually, �R) for the class of morphisms with the right lifting
property against L (dually, the left lifting property against R).
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Proposition 2.21. Consider a factorization F on C. Then F -coalg � F -alg.

Proof. This appears in Corollary 2.7 of [GT06]. Though they consider only
functorial factorizations, their argument works here without modification.

Definition 2.22. A weak factorization structure on C is a factorization F on
C such that for every morphism f of C, λF pfq P F -coalg and ρF pfq P F -alg. An
algebraic weak factorization structure on C is a functorial factorization F on C
such that the copointed endofunctor λF underlies a comonad on CM and the
pointed endofunctor ρF underlies a monad on CM.

Let WFSpCq denote the full subcategory of FactpCq spanned by those objects
which are weak factorization structures.

Notation 2.23. For any category D, let |D| denote the preordered truncation:
the preorder (viewed as a category) which has the same objects as D and a
morphism X Ñ Y when there is a morphism X Ñ Y in D.

For any object X of D, we will let rXs denote the isomorphism class of X in
|D|, and we will say that two objects X and Y of D are equivalent if they are
isomorphic in |D|.

Proposition 2.24. The isomorphism classes of |WFSpCq| are the weak factor-
ization systems on C.

Proof. We show that there is a function q from the objects of WFSpCq to the
weak factorization systems on C which is surjective and whose fibers are the
isomorphism classes of |WFSpCq|.

By Theorem 2.4(2) of [RT02], for any F P WFSpCq, pF -coalg, F -algq is a
weak factorization system on C with factorization given by F . Let q denote the
function which maps a weak factorization structure F to the weak factorization
system pF -coalg, F -algq.

By Proposition 5.1 of [RT02], for any F,G PWFSpCq, we have that

pF -coalg, F -algq “ pG-coalg, G-algq

if and only if there are morphisms F Ô G. Therefore, the fibers of q are the
isomorphism classes of |WFSpCq|.

Consider a weak factorization system pL,Rq. There exists a factorization of
each morphism f : X Ñ Y in C which we can denote by the diagram on the left
below.

X
λpfq // Mf

ρpfq // Y

X

λpfq

��

λpgqα // Mg

ρpgq

��
Mf

βρpfq
//

<<

Z

For each morphism g : W Ñ Z and xα, βy : f Ñ g, we can obtain a morphism
Mxα, βy : Mf Ñ Mg by considering the lifting diagram above on the right.
This assembles into a factorization, say F , on C. By Theorem 2.4(1) of [RT02],
L “ F -coalg and R “ F -alg. Thus, q is surjective.

11



(Again, though only functorial factorizations are considered in [RT02], their
proofs of these results work here without modification.)

2.3 Display map categories

Now we define what we consider in this paper to be a categorical interpretation
of dependent type theory.

Definition 2.25. A class D of morphisms of C forms a display map category
pC,Dq when the following hold:

1. D contains every isomorphism;

2. D contains every morphism whose codomain is a terminal object; and

3. D is stable under pullback.

We call the elements of D display maps.

The notion of display map category is closely related to others in the litera-
ture [Tay99, Shu15, Joy17]. There is a careful comparison of this notion and of
the types described below with others in the literature in [Nor19].

Definition 2.26. Let pL,Rq be a weak factorization system on C. We say that
an object X of C is fibrant if every morphism from X to a terminal object is in
R.

Example 2.27. Let pL,Rq be a weak factorization system on C in which all
objects are fibrant. Since right classes of weak factorization systems always
contain all isomorphisms and are stable under pullbacks [MP12, Prop. 14.1.8],
pC,Rq is a display map category.

Definition 2.28. A display map category pC,Dq models Σ-types if D is closed
under composition. We call a composition gf of display maps a Σ-type and
sometimes denote it by Σgf .

Example 2.29. Let pL,Rq be a weak factorization system on C in which all
objects are fibrant. Since right classes of weak factorization systems are always
closed under composition [MP12, Prop. 14.1.8], pC,Rq models Σ-types.

Weak factorization systems are not only examples of display map categories
but are also induced by ones which model Id-types.

Definition 2.30. Consider a display map category (C,D) which models Σ-
types, and consider a display map f : X Ñ Y . An identity type of f is a
relation on f in the slice C{Y

X

f
""

rf // Idpfq

ιf

��

εf // X ˆY X

fˆf
yy

Y

(2.31)

such that
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1. εf is in D and

2. for every morphism α : AÑ X in C, the pullback α˚rf , as shown below,
is in �D for i “ 0, 1.

α˚Idpfq //

��

Idpfq

πiεf

��

A //

α˚rf
;;

X

rf
<<

A
α // X

(2.32)

We will call the morphism ιf : Idpfq Ñ Y in Diagram (2.31) the Id-type of f in
C{Y .

Given a morphism α : f Ñ g in C{Y and identity types of f and g, there
is a natural transformation between these two relations because rf P

�D and
εg P D.

f

rf

��

rgα // ιpgq

εg

��
ιpfq

pαˆαqεf

//

::

g ˆ g

Thus, in what follows, when we assume that every object of C has an Id-type,
we will assume that there is a relation on C which specifies these Id-types.

Definition 2.33. Consider a display map category pC,Dq which models Σ-
types. If there is a relation I on C for which IpXq is an identity type on X
for each object X of C, then we say that I is a model of Id-types of objects in
pC,Dq or just that pC,Dq models Id-types of objects. If there is a relation IY on
each slice C{Y for which IY pfq is an identity type of f for each display map
f : X Ñ Y of C, then we say that the collection tIY uY PC is a model of Id-types
in pC,Dq or just that pC,Dq models Id-types. If these relations are functorial,
then we call the Id-types functorial.

For any display map category pC,Dq which models Σ-types and has a model
I of Id-types of objects, the factorization FpIq (with F as defined in Notation
2.19) is a weak factorization structure, and its underlying weak factorization
system rFpIqs is p�D, p�Dq�q [Emm14, Thm. 2.8]. Our goal in this paper is to
understand which weak factorization systems arise in this way.

Note that p�Dq� is the retract closure of D and so in particular contains
D. Thus, to decide whether a weak factorization system pL,Rq on a category
C does arise from a model of Σ- and Id-types, it seems that we might have to
check whether pC,Dq is a display map category modeling Σ- and Id-types for all
D whose retract closure is R. However, we showed in [Nor19, Thm. 5.12] that
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if pC,Dq is a display map category modeling Σ- and functorial Id-types, then
pC, p�Dq�q is a display map category modeling Σ- and functorial Id-types (and
if pC,Dq modeled Π-types, then so does pC, p�Dq�q). Thus, to decide whether
a weak factorization system pL,Rq does arise from a model of Σ- and functorial
Id-types, we only have to decide if pC,Rq is a display map category modeling
functorial Σ- and Id-types. In this paper, we show how one can decide such a
thing, and we will show that we can also drop the requirement of functoriality
on Id-types.

In particular, suppose that we want to decide whether a weak factorization
system pL,Rq arises as rFpI˚qs from a model I of (functorial) Id-types in a display
map category pC,Dq (where ˚ is a terminal object of C, so that I˚ is a model
of Id-types of objects). If it does, pL,Rq itself has a model J of (functorial)
Id-types. Whenever pL,Rq itself has a model J of Id-types, we have rFpJ˚qs “
p�R, p�Rq�q “ pL,Rq. We will also see in Corollary 6.3 that pL,Rq models Id-
types if and only if it models Id-types of objects. Thus, a weak factorization
system arises from a model of Id-types if and only if it models Id-types of objects;
we call such a model an Id-presentation of the weak factorization system.

Definition 2.34. We say that a relation I on C is an Id-presentation of the
weak factorization system rFpIqs if the factorization FpIq is a weak factorization
structure and R is a model of Id-types of objects in pC,FpRq-algq.

Note that for any relation I which generates a weak factorization structure
FpIq, all objects are fibrant. Consider any object X in C. The solution shown
in the following lifting problem is a ρFpIq-algebra structure for ! : X Ñ ˚.

X

1Xˆη˚!

��

X

��
X ˆΨp˚q //

πX

::

˚

Thus, in the definition (2.34) above, pC,FpRq-algq is in fact a display map cat-
egory, and so it makes sense to talk of models of Id-types of objects in it. We
record this fact here.

Proposition 2.35. Let R be a relation on C which produces a weak factorization
structure FpRq. Then every object is fibrant in rFpRqs.

If a weak factorization system is going to have an Id-presentation, then all
objects must be fibrant in it. The only other condition that we will find we
need to place on a weak factorization system to ensure that it does have an
Id-presentation is often called the Frobenius property [vdBG12] and is closely
related to modeling Π-types.

Definition 2.36. A display map category pC,Dq models pre-Π-types if for every
g : W Ñ X and f : X Ñ Y in D, there is a morphism Πfg with codomain Y
satisfying the universal property

i : C{Xpf˚y, gq – C{Y py,Πfgq
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natural in y. Call the map Πfg a pre-Π-type.
A display map category pC,Dq models Π-types if it models pre-Π-types and

each pre-Π-type is a display map.

Proposition 2.37. Consider a weak factorization system pL,Rq on C in which
all objects of C are fibrant and which models pre-Π-types.

Then pC,Rq models Π-types if and only if L is stable under pullback along R.

This proposition is very similar to the fact that a left adjoint between two
categories with weak factorization systems preserves the left maps [MP12, §16.2]
if and only if the right adjoint preserves the right maps. Our setting, however,
is a bit more convoluted.

Proof of Proposition 2.37. Suppose that pC,Rq models Π-types. Let i denote
the bijection

i : C{Xpf˚y, gq – C{Y py,Πfgq

of Definition 2.36, and consider a morphism ` of L and a morphism f of R such
that cod` “ codf . To show that f˚` is in L, we must show that for any
factorization λpf˚`q, ρpf˚`q of f˚` for which λpf˚`q P L, ρpf˚`q P R, the lifting
problem shown on the left below has a solution.

f˚`

��

λpf˚`q//

ρpf˚`q

��
`

��

ipλpf˚`qq//

Πfρpf
˚`q

��

==
σ
==

Consider the lifting problem shown on the right above. It is the transpose of the
above lifting problem under i. It has a solution σ since ` is in L and Πfρpf

˚`q
is in R. Then i´1pσq gives us a solution to our original lifting problem.

Now suppose that L is stable under pullback along R. We need to show that
Πfg is in R. The morphism Πfg is in R if and only if for any factorization
λpΠfgq, ρpΠfgq of Πfg for which λpΠfgq P L and ρpΠfgq P R, there is a solution
to the lifting problem shown below on the left.

λpΠfgq

��
Πfg

��
f˚λpΠfgq

��

i´1
p1q //

g

��
ρpΠfgq

//

==

f˚ρpΠfgq

//

σ
==

Consider the lifting problem on the right above. It is the transpose of the
original lifting problem under i´1. Since f˚λpΠfgq is in L and g is in R, there
is a solution σ to this lifting problem. Then ipσq is a solution to the original
lifting problem.

Definition 2.38. A weak factorization system pL,Rq on a finitely complete
category C is type-theoretic if it has the following two properties:
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1. all objects are fibrant, and

2. L is stable under pullback along R.

A weak factorization structure F is type-theoretic if rF s is.

2.4 Summary

We have described the following diagram of categories of relations and factor-
izations.

fRelpCq
� _

��

F // fFactpCq
� _

��

R
oo

RelpCq
F // FactpCq
R

oo

We are interested in the relationship between type-theoretic weak factoriza-
tion structures and Id-presentations of weak factorization systems. The former
are a kind of factorization, so they naturally form a full subcategory of FactpCq.
The latter are a kind of relation, so they naturally form a full subcategory of
RelpCq.

Definition 2.39. Let ttWFSpCq be the full subcategory of FactpCq spanned
by the type-theoretic weak factorization structures on C, and similarly, let
fttWFSpCq be the full subcategory of fFactpCq spanned by the type-theoretic
weak factorization structures on C.

Definition 2.40. Let IdPrespCq denote the full subcategory of RelpCq spanned
by those relations which are Id-presentations, and similarly let fIdPrespCq denote
the full subcategory of fRelpCq spanned by the Id-presentations.

Then we are interested in what relationship the subcategories ttWFSpCq and
IdPrespCq have in the following diagram.

fIdPrespCq �
� //

� _

��

fRelpCq
� _

��

F // fFactpCq
� _

��

R
oo fttWFSpCq? _oo

� _

��
IdPrespCq �

� // RelpCq
F // FactpCq
R

oo ttWFSpCq? _oo

In the next sections, we show that F,R restrict to functors between IdPrespCq
and ttWFSpCq and constitute an equivalence between them under the proset
truncation.

3 Type-theoretic weak factorization systems from
Moore relations

In this section, we consider a finitely complete category C and a relation R on
C. In the first subsection, we describe structure on R which will make FpRq
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a type-theoretic, algebraic weak factorization structure. We call this a strict
Moore relation structure. In the second subsection we describe structure on R
which will make FpRq a type-theoretic weak factorization structure. We call
this structure a Moore relation structure.

In Section 5, we will show that any relation is an Id-presentation of a weak
factorization system if and only if it has a Moore relation structure. Then
the full subcategory of RelpCq spanned by Moore relation systems will coincide
with IdPrespCq. We originally defined the subcategory IdPrespCq by referencing
the functor F : RelpCq Ñ FactpCq. The description of Moore relation structures
which follows describes this subcategory more directly, without making reference
to F. We will need this direct description to connect the category IdPrespCq with
the category ttWFSpCq, the goal of this chapter.

We are mostly interested in the (non-strict) Moore relation structures since
these correspond to Id-presentations. However, first we describe strict Moore
relation structures. As mentioned in the introduction, these have already been
investigated in [vdBG12]. We mention these first because they have many nat-
ural examples, and are thus more readily understandable. By contrast, most
examples of non-strict Moore relation structures will come from the equivalence
between them and type-theoretic weak factorization systems.

3.1 Strict Moore relation systems

In this subsection, we consider a functorial relation R which preserves pullbacks.
For any object X in C, denote the image of RX by

X η // ΨX
ε1
oo

ε0oo
.

Note that the requirement that R preserves pullbacks is equivalent to the re-
quirement that Ψ does.

For any morphism f : X Ñ Y of C, denote the factorization FpRqf by the
following diagram.

X
λf // Mf

ρf // Y

Recall that λ is a copointed endofunctor on CM, and ρ is a pointed endofunctor
on CM.

In this section, we discuss the structure on R that will produce a comonad
structure on the copointed endofunctor λ and a monad structure on the pointed
endofunctor ρ.

3.1.1 Strictly transitive functorial relations

Definition 3.1. Say that a functorial relation R on C is strictly transitive if
there exists a natural transformation µ with components

µX : ΨX ˆε1 ε0 ΨX Ñ ΨX
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for each object X in C such that:

1. εiµ “ εiπi for i “ 0, 1 in the diagram below.

Ψ ˆε1 ε0 Ψ

ε1π1

��
ε0π0

��

µ // Ψ

ε1

��
ε0

��
1C 1C

(3.2)

2. p1C,Ψ, ε0, ε1, η, µq is an internal category in rC,Cs; that is, the following
diagrams commute.

Ψ
ηˆ1 // Ψ ˆε1 ε0 Ψ

µ

��

Ψ
1ˆηoo

Ψ

Ψ ˆε1 ε0 Ψ ˆε1 ε0 Ψ

µˆ1

��

1ˆµ // Ψ ˆε1 ε0 Ψ

µ

��
Ψ ˆε1 ε0 Ψ

µ // Ψ

(3.3)

Note that if R is a monic relation, then the existence of µ with the commu-
tativity of the diagram in (3.2) says that the relation RpXq on each object X
of C is transitive, and the commutativity of the diagrams in (3.3) is automatic.
Thus, the notion of transitivity here is a generalization of the usual one.

Example 3.4. Consider the relation which takes any object X in C to the
following diagram

X X! // XI

X1
oo

X0
oo

as in Example 2.3.
Suppose that there a morphism m making the following diagrams commute.

˚

i

��

i // I

ιi

��
I

m // I1`0I

I

I
m // I1`0I

!`1I

<<

1I`!

""
I

I
m //

m

��

I1`0I

m1`0I

��
I1`0I

I1`0m// I1`0I1`0I

Then taking Xm : XI ˆε1 ε0X
I Ñ XI for µX makes this relation strictly transi-

tive.
For example, in the category Cat, there is such an m when I is M (i.e., the

category generated by the graph 0 Ñ 1) or the groupoid generated by the graph
0 Ñ 1.
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Example 3.5. Consider the category T of topological spaces. Let R` denote
the non-negative reals, and let ΓX denote the subspace of XR` ˆR` consisting
of pairs pp, rq such that p is constant on rr,8q. This is called the space of Moore
paths in X, and it is functorial in X. We think of this as the space of paths in
X of finite length.

There is a natural transformation c : X Ñ ΓX which maps x P X to the
constant path of length 0 at x. There are natural transformations ev0, ev8 :
ΓX Ñ X which map a pair pp, rq to pp0q and pprq, respectively. These assemble
into a functorial relation G on T .

There is also a natural transformation µX : ΓX ˆev8 ev0
ΓX Ñ ΓX which

maps two paths to their concatenation. To be precise, it takes a pair ppp, rq, pp1, t1qq
such that pprq “ p1p0q to the pair pq, sq where s “ r ` r1, q|r0,rs “ p|r0,rs, and
qpxq|rr,8q “ p1px´ rq. This makes G a strictly transitive functorial relation.

Proposition 3.6. Let R be a strictly transitive functorial relation on C. Then
the functor ρ : CM Ñ CM underlies a monad on C2 with unit and multiplication
components at an object f : X Ñ Y in C2 given by the following diagrams

X

f

��

λf // Mf

ρf

��
Y Y

Mρf
1ˆµ //

ρ2
f

��

Mf

ρf

��
Y Y

where 1ˆ µ : Mρf ÑMf is the morphism

1X ˆ µY : X ˆf ε0ΨY ˆε1 ε0ΨY ÝÑ X ˆf ε0ΨY .

Proof. We have already seen that the unit square above commutes. The com-
mutativity of the multiplication square above follows from the commutativity
of (3.2).

The following diagram displays the unit axioms for the monad.

X ˆf ε0
ΨY

1ˆ1ˆη// X ˆf ε0
ΨY ˆε1 ε0 ΨY

1ˆµ

��

X ˆf ε0
ΨY

1ˆηfˆ1oo

X ˆf ε0
ΨY

Its commutativity follows from that of the left-hand diagram in (3.3).
This diagram displays the associativity axiom for the monad.

X ˆf ε0
ΨY ˆε1 ε0 ΨY ˆε1 ε0 ΨY

1ˆ1ˆµ//

1ˆµˆ1

��

X ˆf ε0
ΨY ˆε1 ε0 ΨY

1ˆµ

��
X ˆf ε0

ΨY ˆε1 ε0 ΨY
1ˆµ // X ˆf ε0

ΨY

Its commutativity follows from that of the right-hand diagram in (3.3).
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3.1.2 Strictly homotopical functorial relations

Definition 3.7. Say that a functorial relationR : CÑ CR is strictly homotopical
if there exist natural transformations δ and τ with components

δX : ΨX Ñ Ψ2X

τX : X ˆΨp˚q Ñ ΨX

for each object X of C such that:

1. ηη “ δη and ηε0 “ ε0δ in the following diagram.

Ψ

ε0

��

δ // Ψ2

ε0

��
1C

η

OO

η // Ψ

η

OO

(3.8)

2. εiτ “ π for i “ 0, 1 and τp1ˆ ηq “ η in the following diagram.

1C ˆΨp˚q

π

��
π

��

τ // Ψ

ε1

��
ε0

��
1C

1ˆη

OO

1C

η

OO

(3.9)

3. pΨ, ε1, δq is a comonad on C; that is, the following diagrams commute.

Ψ

δ
��

Ψ Ψ2
ε1
oo

Ψε1

// Ψ

Ψ

δ
��

δ // Ψ2

δ
��

Ψ2 Ψδ // Ψ3

(3.10)

4. τ is a strength for this comonad in the sense that the following diagrams
commute.

1C ˆΨ˚

τ

��

πΨ˚

$$
Ψ

Ψ! // Ψ˚

(3.11)

Ψ
δ //

ε0ˆΨ!

��

Ψ2

Ψε0

��
1C ˆΨ˚

τ // Ψ

1C ˆΨ˚

τ

��

τˆδ // Ψp1C ˆΨ˚q

Ψτ
��

Ψ
δ // Ψ2

(3.12)
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The word homotopical is used to describe this functorial relation for the
following reason. Suppose that we extract from the functorial relation R a
notion of homotopy equivalence in the usual way: where two objects X and Y
are homotopic if there are morphisms f : X Ñ Y , g : Y Ñ X, h : X Ñ ΨX,
i : Y Ñ ΨY such that ε0h “ gf , ε1h “ 1X , ε0i “ fg, and ε1i “ 1Y . Then the
data given in the above definition provide a homotopy between every X and
ΨX.

Example 3.13. More generally, consider the relation in Example 3.4.
Suppose that there is a morphism d making the following diagrams commute.

I
1!ˆI // I2

d

��

I
Iˆ1!oo

I

I
0!ˆI //

0! ��

I2

d

��

I
Iˆ0!oo

0!��
I

I3 Iˆd //

dˆI
��

I2

d

��
I2 d // I

Then taking Xd : XI Ñ pXIqI for δX and X ! : X Ñ XI for τX makes this
relation strictly homotopical.

For example, in the category Cat, there is such a d when I is M or the
groupoid generated by the graph I : 0 Ñ 1. Let the following diagram denote
the graph pI : 0 Ñ 1q2.

00
0I //

I0

��

01

I1

��
10

1I // 11

Then in either case, d is generated by sending 0I and I0 to the identity morphism
on 0, and I1 and 1I to I : 0 Ñ 1.

Example 3.14. Consider the functorial relation G on topological spaces de-
scribed in Example 3.5.

There is a natural transformation δX : ΓX Ñ Γ2X which takes a pair pp, rq
to the standard path from cppp0qq to pp, rq. To be precise, it maps pp, rq to pq, rq
where qptq “ ppt, tq P ΓX and pt|r0,ts “ p|r0,ts for each t P R`.

There is a natural transformation τX : X ˆ Γp˚q Ñ ΓX. The space Γp˚q is
isomorphic to R`, so it maps a pair px, rq P X ˆ R` to the constant path at x
of length r.

These natural transformations make G into a strictly homotopical functorial
relation.

In the following lemma, we record a natural transformation τ̃ whose exis-
tence is equivalent to that of τ , but which will make the proof of the following
proposition clearer.

Lemma 3.15. Consider a strictly homotopical functorial relation as above. For
any f : X Ñ Y , let τ̃f : X ˆf ε0

ΨY Ñ ΨX be the composite

X ˆf ε0 ΨY
1ˆΨ!
ÝÝÝÑ X ˆΨ˚

τ
ÝÑ ΨX.
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It makes the following diagrams commute.

X ˆf ε0
ΨY

π
$$

π
zz

τ̃

��
X ΨX

ε0
oo

ε1
// X

X
1ˆηf //

η

$$

X ˆf ε0
ΨY

τ̃

��
ΨX

(3.16)

X ˆf ε0
ΨY

τ̃

��

δπΨY // Ψ2Y

Ψε0

��
ΨX

Ψf // ΨY

X ˆf ε0
ΨY

τ̃

��

τ̃ˆδ // ΨpX ˆf ε0
ΨY q

Ψτ̃

��
ΨX

δ // Ψ2X

(3.17)

Proof. The commutativity of these diagrams is equivalent to that of the corre-
sponding diagrams in (3.9), (3.11), and (3.12).

Proposition 3.18. Let R be a strictly homotopical functorial relation on C.
Then the functor λ : CM Ñ CM underlies a comonad on CM where the compo-
nents of the counit and comultiplication at each object f : X Ñ Y in CM are
given by the following diagrams

X

λf

��

X

f

��
Mf

ρf // Y

X

λf

��

X

λ2
f

��
Mf

1ˆτ̃ˆδ// Mλf

where the morphism 1ˆ τ̃ ˆ δ is the composition

X ˆf ε0ΨY
1Xˆτ̃fˆδY
ÝÝÝÝÝÝÝÑ X ˆλf ε0 pΨX ˆΨf Ψε0Ψ2Y q – X ˆλf ε0ΨpX ˆf ε0ΨY q.

Proof. We have already seen that the counit square commutes. To define 1X ˆ
τ̃f ˆ δY we make use of the commutativity of (3.8) and the left hand sides of
(3.16) and (3.17). The commutativity of the comultiplication square above is
given by the commutativity of (3.8) and the right-hand diagram of (3.16).

The following diagrams display the comonad axioms. The commutativity of

X ˆf ε0
ΨY X ˆλf ε0

ΨpX ˆf ε0
ΨY q

1ˆΨpε1πΨY qoo
ε1πΨpXˆΨY q // X ˆf ε0

ΨY

X ˆf ε0
ΨY

1ˆτ̃ˆδ

OO

follows from the commutativity of the left-hand diagrams in (3.10) and (3.16),
and the commutativity of

X ˆf ε0
ΨY

1ˆτ̃fˆδY

��

1ˆτ̃fˆδY // X ˆλf ε0
ΨpX ˆf ε0

ΨY q

1ˆτ̃λˆδXˆΨY

��
X ˆλf ε0

ΨpX ˆf ε0
ΨY q

1ˆΨp1ˆτ̃fˆδY q// X ˆλ2f ε0
ΨpX ˆλf ε0

ΨpX ˆf ε0
ΨY qq
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follows from the right-hand diagrams in (3.10) and (3.17).

3.1.3 Strictly symmetric functorial relations

Definition 3.19. Say that a functorial relation R on C is strictly symmetric if
there exists a natural isomorphism ι with components

ιX : ΨX Ñ ΨX

for each object X of C such that ιη “ η, ε0ι “ ε1, and ε1ι “ ε0 in the diagram
below.

Ψ

ε1

��
ε0

��

ι // Ψ

ε0

��
ε1

��
1C

η

OO

1C

η

OO

(3.20)

If R is a monic relation, then the definition of strictly symmetric given here
coincides with the usual definition of symmetric.

Example 3.21. More generally, consider the relation in Example 3.4.
Suppose that there an isomorphism i making the following diagrams com-

mute.
˚

n

��

n´1

��
I

i // I

for n P Z{2. Then taking Xi : XI Ñ XI for ιX makes this relation strictly
symmetric.

For example, in the category Cat, there is such an i when I is the groupoid
generated by the graph I : 0 Ñ 1.

Example 3.22. Consider the functorial relation G on topological spaces de-
scribed in Example 3.5.

There is a natural transformation ιX : ΓX Ñ ΓX which takes a pair pp, rq
to the pair pq, rq where qptq “ ppr ´ tq on r0, rs.

This makes G into a strictly symmetric functorial relation.

Lemma 3.23. Consider a strictly symmetric, strictly transitive functorial re-
lation R on C. Then for every object X of C, the morphism

ΨX
ε0ˆε1
ÝÝÝÝÑ X ˆX

has a FpRq-algebra structure.

Proof. We need to show that there is a solution to the following lifting problem.

ΨX

λpε0ˆε1q

��

ΨX

ε0ˆε1

��
ΨX ˆ

pε0ˆε1q ε0
ΨpX ˆXq

ρpε0ˆε1q//

55

X ˆX
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We will do this by finding two lifts a and b as illustrated below.

ΨX

1ˆηpε0ˆε1q

��

ηε0ˆ1ˆηε1 **

ΨX

ε0ˆε1

��

ΨX ˆε0 ε0 ΨX ˆε1 ε0 ΨX

b

66

ε1π0ˆε1π2

((
ΨX ˆ

pε0ˆε1q ε0
ΨpX ˆXq

ε1π1

//

a
44

X ˆX

(˚)

Let u : ΨpX ˆXq Ñ ΨX ˆΨX denote the universal morphism induced by
the universal property of ΨX ˆΨX. It makes the following diagram commute.

ΨX

1ˆηpε0ˆε1q

��

1ˆηε0ˆηε1 // ΨX ˆ
pε0ˆε1q pε0ˆε0q

pΨX ˆΨXq

pε1ˆε1qπpΨXˆΨXq

��
ΨX ˆ

pε0ˆε1q ε0
ΨpX ˆXq

ε1πΨpXˆXq //

1ˆu
44

X ˆX

Note that the outside square of this diagram is isomorphic to the lower-left
portion of diagram (˚). Therefore, 1ˆ u is the lift a that we seek.

Now we let b : ΨX ˆε0 ε0 ΨX ˆε1 ε0 ΨX Ñ ΨX be the following composite.

ΨX ˆε0 ε0 ΨX ˆε1 ε0 ΨX
1ˆµ
ÝÝÝÑ ΨX ˆε0 ε0 ΨX

ιˆ1
ÝÝÑ ΨX ˆε1 ε0 ΨX

µ
ÝÑ ΨX.

This b makes the upper right-hand portion of the above diagram commute.
Therefore, we have found a lift in the original diagram, and shown that

ε0 ˆ ε1 has a FpRq-algebra structure.

Theorem 3.24. Consider a strictly symmetric functorial relation R : C Ñ CR

such that FpRq is a weak factorization structure and such that every morphism

ΨX
ε0ˆε1
ÝÝÝÝÑ X ˆX

is in FpRq-alg. Then the class FpRq-coalg is stable under pullback along FpRq-alg.

Proof. Consider the following pullback

AˆY X

πX

��

//
A

A

`

��
X

r // Y

where r is in FpRq-alg, and ` is in FpRq-coalg.

24



The morphism πX is in FpRq-coalg if and only if there is a solution to the
following lifting problem.

AˆY X

πX

��

λπX // A ˆ` rε0
ΨX

ρπX

��
X

s
88

X

(˚)

We will construct such a lift.
Since ` is in FpRq-coalg, there is a lift a in the following square.

A

`

��

λ` // A ˆ` ε0
ΨY

ρ`

��
Y

a
::

Y

Since r is in FpRq-alg, the morphism rˆ1X : XˆX Ñ Y ˆX is in FpRq-alg
(as it is a pullback of r), and then the morphism rε0 ˆ ε1 : ΨX Ñ Y ˆX is in
FpRq-alg (as it is the composition of ε0 ˆ ε1 P FpRq-alg and r ˆ 1X P FpRq-alg).
Thus, there is a lift in the following square.

X

λr

��

η // ΨX

rε0ˆε1

��
X ˆr ε0 ΨY

ε1ˆ1 //

b

88

Y ˆX

Now let s be the following composition.

X
arˆ1X
ÝÝÝÝÑ A ˆ` ε0 ΨY ˆε1 rX

πXˆιY ˆπA
ÝÝÝÝÝÝÝÝÑ X ˆr ε0 ΨY ˆε1 `A

πAˆb
ÝÝÝÑ A ˆ` rε0 ΨX

This makes the diagram (˚) commute.

Corollary 3.25. Consider a strictly symmetric, strictly transitive relation R on
C such that FpRq is a weak factorization structure. Then FpRq is type-theoretic.

Proof. By the previous two results, we know that FpRq-coalg is stable under
pullback along FpRq-alg. By Proposition 2.35, every object is fibrant. Thus,
FpRq is type-theoretic.

3.1.4 Summary

We now have the following theorem.

Theorem 3.26. Consider a strictly transitive, strictly homotopical functorial
relation R on C. Then the functorial factorization FpRq is an algebraic weak
factorization structure on C.
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Proof. By Proposition 3.18, λFpRq underlies a comonad, and by Proposition 3.6,
ρFpRq underlies a monad.

Definition 3.27. A strict Moore relation structure on C is a functorial relation
R which preserves pullbacks together with the structure described in the def-
initions of strictly transitive, strictly homotopical, and strictly symmetric. A
strict Moore relation system on a category C with finite limits is a functorial
relation R which preserves pullbacks and which is strictly transitive, strictly
homotopical, and strictly symmetric.

Then we have the following theorem.

Theorem 3.28. Consider a strict Moore relation system R on C. Then the
functorial factorization FpRq is a type-theoretic, algebraic weak factorization
structure on C.

Proof. By the previous theorem, FpRq is an algebraic weak factorization struc-
ture on C. By Proposition 3.25, it is type-theoretic.

Example 3.29. Consider the relation G on the category T of topological spaces
from Examples 3.5, 3.14, and 3.22. This generates a type-theoretic, algebraic
weak factorization structure on C whose factorization of a morphism f : X Ñ Y
is

X
1Xˆcf
ÝÝÝÝÑ X ˆY ΓY

πY
ÝÝÑ Y,

whose left class consists of trivial Hurewicz cofibrations, and whose right class
consists of Hurewicz fibrations. (This weak factorization system was first de-
scribed in [Str72] while this particular weak factorization structure was originally
described in [May75].)

3.2 Moore relation systems

In this section, we describe the minimal structure that a relation R on C needs
to have so that FpRq is a type-theoretic weak factorization structure. The
minimality will be justified by Corollary 5.8, and though we do not give any
examples in this section, many can be obtained from that corollary.

In what follows, we define what it means for a relation to be transitive,
homotopical, and symmetric. Note that while the properties required of a tran-
sitive relation can be easily seen to be weaker than the properties required of a
strictly transitive relation, the definitions of homotopical and symmetric given
below differ more significantly from their strict predecessors.

In what follows, we will let λ denote λFpRq, ρ denote ρFpRq, and M denote
codλ “ domρ.

3.2.1 Transitive relations

Definition 3.30. Say that a relation R on C is transitive if there exists a
morphism

µX : ΨX ˆε1 ε0 ΨX Ñ ΨX
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for every object X of C such that the following diagrams commute.

ΨX ˆε1 ε0 ΨX

ε1π1

��
ε0π0

��

µ // ΨX

ε1

��
ε0

��
X X

ΨX
1ˆη // ΨX ˆε1 ε0 ΨX

µ

��
ΨX

(3.31)

Non-example 3.32. Now we can see why the relation G on the category T of
topological spaces is more useful than the relation H on T which sends every
space X to

X X! // XI

X1
oo

X0
oo

as in Example 2.6 where I is the usual interval r0, 1s.
Suppose that this relation is transitive with a µ : XI

X1ˆX0XI Ñ XI of the
form Xm : Xr0,2s Ñ Xr0,1s. Then m would have to make the following diagrams
commute for i “ 0, 1

˚

i

��

i˚2

!!
I

m // r0, 2s

I
m // r0, 2s

s

��
I

where s is the surjection which maps r0, 1s onto r0, 1s identically and r1, 2s onto
the point t1u. These diagrams say that mp0q “ 0, mp1q “ 2, and sm “ 1. But
there is no such continuous function.

Proposition 3.33. Consider a transitive relation R on C as above. Then for
every morphism f of C, the morphism ρf has a FpRq-algebra structure given by

Mρf
1ˆµ //

ρ2
f

��

Mf

ρf

��
Y Y

where 1ˆ µ : Mρf ÑMf is the morphism

1X ˆ µY : X ˆf ε0ΨY ˆε1 ε0ΨY ÝÑ X ˆf ε0ΨY .

Proof. The commutativity of the square in the statement follows from the com-
mutativity of the left-hand diagram of (3.31).

It remains to check that the composition of the point with the algebra struc-
ture, p1ˆ µq ˝ λρpfq, is the identity.

X ˆf ε0
ΨY

1ˆ1ˆηε1 // X ˆf ε0
ΨY ˆε1 ε0 ΨY

1ˆµ

��
X ˆf ε0

ΨY
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The commutativity of this diagram follows from that of the right-hand diagram
in (3.31).

As for the strictly transitive relations of the last section, when a relation R
is monic, our definition of transitivity and the usual definition coincide.

3.2.2 Homotopical relations

The definition of transitive could immediately be seen to be a weaker version
of the definition of strictly transitive. This is not the case for the definition of
homotopical.

Definition 3.34. Say that a relation R on C is homotopical if for each object
X of C, there exists an object Ψ˝X of C with morphisms

X
η // Ψ˝X

ε0 //
ε1 //
ζ
// ΨX

δX : ΨX Ñ Ψ˝X,

and for every morphism f : X Ñ Y , a morphism

τf : X ˆηf ζΨ˝Y Ñ ΨpX ˆf ε0 ΨY q

which make the following diagrams commute.

ΨX Ψ˝X
εioo ζ // ΨX Ψ˝Y

εi //

ζ

��

ΨX

ε0

��
X

η

OO

η

cc

η

;;

ΨX
εi // X

(3.35)

X
η //

η ""

ΨX

δ
��

ΨX
ε0 //

δ
��

X

η

��

ΨX

δ
��

Ψ˝X Ψ˝X
ε0 //
ζ
// ΨX Ψ˝X

ε1 // ΨX

(3.36)

X
1ˆηf //

ηp1ˆηfq %%

X ˆηf ζΨ˝Y

τ

��

X ˆηf ζΨ˝Y

1ˆεi

''
τ

��
ΨpX ˆf ε0

ΨY q ΨpX ˆf ε0
ΨY q

εi // X ˆf ε0
ΨY

(3.37)

where i ranges over 0, 1.
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Example 3.38. The object Ψ˝X will often (as in Proposition 5.6) be the middle
object of the factorization of the morphism η : ΨX Ñ Ψˆ4X where Ψˆ4X is
the limit of the diagram below on the left and η : ΨX Ñ Ψˆ4X is induced by
the cone below on the right

X ΨX
ε0oo ε1 // X

ΨX

ε0

OO

ε1

��

ΨX

ε1

��

ε0

OO

X ΨX
ε0oo ε1 // X

X ΨX
ε0oo ε1 // X

ΨX

ε0

OO

ε1

��

ΨX

ηε0

OO

ηε1

��

ΨX

ε1

��

ε0

OO

X ΨX
ε0oo ε1 // X

In the category of topological spaces, this might look like the following. We
use the relation H here, as described in Non-example 3.32, though we ultimately
are interested in the relation G. This is because the description involving H is
much easier to write down but still provides intuition to think about G.

Let δpI ˆ Iq denote the boundary of the unit square I ˆ I. Let S denote the
mapping cylinder of the function δpI ˆ Iq Ñ I which maps px, yq to x. That is,
S is the quotient of I ˆ δpI ˆ Iq obtained by identifying the point p1, x, yq with
the point p1, x, y1q for any px, yq, px, y1q in δpI ˆ Iq.

Then let I˝X denote the space XS of all continuous functions from S into
X. The morphism η : X Ñ I˝X is the precomposition with the map S Ñ ˚.
The projections εi, ζi : I˝X Ñ XI are the precompositions of the inclusions of
I into each of the bottom edges in the illustration above.

There is a continuous function S Ñ I which takes the bottom edges associ-
ated to ε0 and ζ0 and the top vertex above their intersection to the point 0 P I
and maps the top edge and the edges associated to ε1 and ζ1 each homeomor-
phically onto I. Precomposition with this continuous function is the morphism
δX : XI Ñ I˝X.

There is a homotopy equivalence h : S Ñ I2 which commutes with the
projections to Iˆ4. Then the composition

X ˆηf ζ0I
˝Y

ηˆh
ãÝÝÑ XI ˆfI εI0

Y IˆI – pX ˆf ε0Y
IqI

is the morphism τf .
Now we can provide some intuition as to why we have switched from con-

sidering Ψ2X to Ψ˝X. In a space Γ2X, the lengths of the sides are coupled
(e.g., for any γ P Γ2X, Γε0γ has the same length as Γε1γ) but this is not the
case for Γ˝X. In particular, the middle diagram of 3.36 could not be satisfied
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if Γ˝X “ Γ2X. To explain this from a slightly different perspective, when we
obtain Ψ˝X in this way, the morphism Ψ˝X Ñ Ψˆ4X is in the right class of
the weak factorization system, giving it better behavior than Ψ2X Ñ Ψˆ4X.

This intuition will be given mathematical content when we extract this struc-
ture from any type-theoretic weak factorization structure in Proposition 5.6.

Proposition 3.39. Let R be a homotopical relation on C. Then for every
morphism f : X Ñ Y in C, the morphism λf has a FpRq-coalgebra structure
given by

X

λf

��

X

λ2
f

��
Mf

1ˆτδ // Mλf

where 1ˆ τδ : Mf ÑMλf is

1X ˆ τfδY : X ˆf ε0ΨY Ñ X ˆ1ˆηf ε0ΨpX ˆf ε0ΨY q.

Proof. The morphism 1XˆτfδY in the statement is induced from the morphisms
πX : X ˆf ε0

ΨY Ñ X and τf p1ˆδY q : X ˆf ε0
ΨY Ñ ΨpX ˆf ε0

ΨY q by the universal
property of the pullback X ˆ1ˆηf ε0

ΨpX ˆf ε0
ΨY q because the following diagram

commutes.

X

1ˆηf

((
X ˆf ε0

ΨY
1ˆηε0 //

1X

33

1ˆδ

''

X ˆf ε0
ΨY

X ˆηf ζΨ˝Y

1ˆε0

33

τ
// ΨpX ˆf ε0

ΨY q

ε0

77

The upper triangle commutes by the properties of the pullback in its domain.
The lower left-hand triangle commutes because of the commutativity of the
middle diagram in (3.36). The lower right-hand triangle commutes because of
the commutativity of the right-handle diagram in (3.37)

The coalgebra square in the statement can be written more explicitly as

X

1ˆηf

��

X

1ˆηp1ˆηfq

��
X ˆf ε0

ΨY
1ˆτδ // X ˆ1ˆηf ε0

ΨpX ˆf ε0
ΨY q

The commutativity of this square follows from the commutativity of the outside
of the following diagram by the universal property of the pullback in the lower
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right-hand corner.

X

1ˆηf

��

X

1ˆηf

��

X

1ˆηp1ˆηfq

��
X ˆf ε0

ΨY
1ˆδ // X ˆηf ζΨ˝Y

1ˆτ // X ˆΨpX ˆf ε0
ΨY q

The left-hand square above commutes because the left-hand diagram of (3.36)
commutes. The right-hand square commutes because the left-hand diagram of
(3.37) commutes.

Now it remains to check that the copoint composed with the coalgebra is
the identity.

X

λf

��

X

λ2
f

��

X

λf

��
Mf

1ˆτδ // Mλf
ρλf // Mf

We have already seen that the two squares in this diagram commute. The
composition pρλf qp1ˆ τδq is equal to the composition of the top and right sides
of the diagram below.

X ˆf ε0
ΨY

1ˆδ // X ˆηf ζ0
Ψ˝Y

1ˆτ //

1ˆε1

((

X ˆΨpX ˆf ε0
ΨY q

ε1π1

��
X ˆf ε0

ΨY

The commutativity of the left-hand triangle above follows from the commuta-
tivity of the right-hand diagram in (3.36). The commutativity of the right-hand
triangle above follows from the commutativity of the right-hand diagram in
(3.37).

3.2.3 Symmetric relations

Definition 3.40. Say that a relation R on C is symmetric if there exist mor-
phisms

νX : ΨXε0ˆε0ΨX Ñ ΨX

for every object X of C such that the following diagrams commute.

ΨX ˆε0 ε0 ΨX

ε1π1

��
ε1π0

��

ν // ΨX

ε1

��
ε0

��
X X

ΨX
ηˆ1 // ΨX ˆε0 ε0 ΨX

ν

��
ΨX

(3.41)

This might look very different from the strict symmetry defined previously.
But notice that if one takes ιX : ΨX Ñ ΨX to be the following composite,

ΨX
1ˆηε0
ÝÝÝÝÑ ΨX ˆε0 ε0 ΨX

ν
ÝÑ ΨX
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then ιη “ η, ε0ι “ ε1, and ε1ι “ ε0 in the diagram below.

ΨX

ε1

��
ε0

��

ι // ΨX

ε0

��
ε1

��
X

η

OO

X

η

OO

Thus, ν begets a more familiar symmetry, ι. However, we need the full strength
of the morphism ν to prove the following lemma.

Lemma 3.42. Consider a symmetric, transitive relation R on C. Then for
every object X of C, the morphism

ΨX
ε0ˆε1
ÝÝÝÝÑ X ˆX

has a FpRq-algebra structure.

Remark 3.43. Note that the following proof for this Lemma is identical to that
for the strict version (Lemma 3.42) except that here we define b to be νp1ˆ µq
instead of µpιˆ 1qp1ˆ µq.

Proof. We need to show that there is a solution to the following lifting problem.

ΨX

λpε0ˆε1q

��

ΨX

ε0ˆε1

��
ΨX ˆ

pε0ˆε1q ε0
ΨpX ˆXq

ρpε0ˆε1q//

55

X ˆX

We will do this by finding two lifts a and b as illustrated below.

ΨX

1ˆηpε0ˆε1q

��

ηε0ˆ1ˆηε1 **

ΨX

ε0ˆε1

��

ΨX ˆε0 ε0 ΨX ˆε1 ε0 ΨX

b

66

ε1π0ˆε1π2

((
ΨX ˆ

pε0ˆε1q ε0
ΨpX ˆXq

ε1π
//

a
44

X ˆX

(˚)

Let u : ΨpXˆXq Ñ ΨXˆΨX denote the morphism induced by the universal
property of ΨX ˆΨX. It makes the following diagram commute.

ΨX

1ˆηpε0ˆε1q

��

1ˆηε0ˆηε1 // ΨX ˆ
pε0ˆε1q pε0ˆε0q

pΨX ˆΨXq

pε1ˆε1qπpΨXˆΨXq

��
ΨX ˆ

pε0ˆε1q ε0
ΨpX ˆXq

ε1πΨpXˆXq //

1ˆu
44

X ˆX
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Note that the outside square of this diagram is isomorphic to the lower-left
triangle of diagram (˚). Therefore, 1ˆ u is the lift a that we seek.

Now we let b : ΨX ˆε0 ε0 ΨX ˆε1 ε0 ΨX Ñ ΨX be the following composite.

ΨX ˆε0 ε0 ΨX ˆε1 ε0 ΨX
1ˆµ
ÝÝÝÑ ΨX ˆε0 ε0 ΨX

ν
ÝÑ ΨX.

This b makes the upper right-hand portion of the above diagram commute.
Therefore, we have found a lift in the original diagram and shown that ε0ˆε1

has a FpRq-algebra structure.

Theorem 3.44. Consider a symmetric relation R on C such that FpRq is a
weak factorization structure and such that every morphism

ΨX
ε0ˆε1
ÝÝÝÝÑ X ˆX

is in FpRq-alg. Then the class FpRq-coalg is stable under pullback along FpRq-alg.

Proof. The proof for this is identical to that for Theorem 3.24.

Corollary 3.45. Consider a transitive, symmetric relation R on C such that
the factorization FpRq is a weak factorization structure. Then FpRq is type-
theoretic.

Proof. By the previous two results, we know that FpRq-coalg is stable under
pullback along FpRq-alg. By Proposition 2.35, every object is fibrant. Thus,
FpRq is type-theoretic.

3.2.4 Summary

Now we have the following theorem.

Theorem 3.46. Consider a transitive and homotopical relation R on C. Then
FpRq is a weak factorization structure.

Proof. By Proposition 3.39, every morphism in the image of λFpRq has a FpRq-
coalgebra structure, and by Proposition 3.33, every morphism in the image of
ρFpRq has a FpRq-algebra structure.

Definition 3.47. A Moore relation structure on C is a relation R together with
the structure given in the definitions of transitive, homotopical, and symmet-
ric. A Moore relation system on C is a relation R together which is transitive,
homotopical, and symmetric.

Now we have the following theorem.

Theorem 3.48. Consider a Moore relation system R on C. Then FpRq is a
type-theoretic weak factorization structure.

Proof. By the previous theorem, FpRq is a weak factorization structure. Then
by Corollary 3.45, FpRq is type-theoretic.
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4 Id-presentations from type-theoretic weak fac-
torization systems

In this section, we consider a type-theoretic weak factorization structure W
on a finitely complete category C. In the first section, 4.1, we show that the
factorization FRpW q is again a weak factorization structure equivalent to W .
In the second section, 4.2, we show that the relation RpW q is an Id-presentation
of rFRpW qs “ rW s. Combining these two results, we will have shown that any
type-theoretic weak factorization system has an Id-presentation.

4.1 The main tool

Consider any type-theoretic weak factorization structure W on C. Our aim in
this section is to show that FRpW q is equivalent to W . However, we prove
a slightly more general result which will become useful later (in Lemma 4.9,
Proposition 5.6, and Proposition 6.2).

To that end, consider any relation R with the following components at each
object X of C

X ηX // RX
ε1X
oo

ε0Xoo

such that each ηX : X Ñ RX is in W -coalg and each εX “ ε0X ˆ ε1X : RX Ñ

X ˆX is in W -alg. (We have in mind the relation RpW q for our main result.)
Now we show that FpRq is a weak factorization structure equivalent to W .

For readability, we will let λ denote λFpRq and ρ denote ρFpRq. We need to
show that (1) FpRq-coalg “ W -coalg, (2) FpRq-alg “ W -alg, (3) λf P W -coalg,
and (4) ρf P W -alg for every morphism f of C. These facts are all relatively
straightforward to show except (3) which appears as Proposition 4.4.

The hypothesis that W is type-theoretic is integral to the proof below. In
Lemma 4.1, where we show fact (4), we need every object in W to be fibrant. In
Lemma 4.2, which is used to show fact (3) in Proposition 4.4, we need W -coalg
to be stable under pullback along W -alg.

Lemma 4.1. For any morphism f of C, the morphism ρf is in W -alg.

Proof. Note first that πY : X ˆ Y Ñ Y and 1X ˆ ε1 : X ˆf ε0
RY Ñ X ˆ Y are

in W -alg because they are pullbacks of morphisms hypothesized to be in W -alg.

X ˆ Y
A

//

πY

��

X

!

��
Y

! // ˚

X ˆf ε0
RY

1Xˆε1

��

//

A

RY

ε0ˆε1

��
X ˆ Y

fˆ1Y // Y ˆ Y

Since ρf is the composition of these two maps, it is also in W -alg.

Lemma 4.2. For any morphism f in W -alg, the morphism λf is in W -coalg,
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Proof. The morphism λf is a pullback of η PW -coalg along f PW -alg,

X ˆf ε0
RY

��

//

A

RY

ε0

��

X

λf
::

//
A

Y

η

>>

X
f // Y

and since W is type-theoretic, W -coalg is stable under pullback along W -alg.

Proposition 4.3. We have that W -coalg “ FpRq-coalg and W -alg “ FpRq-alg.

Proof. Consider a morphism f in FpRq-alg. It is a retract of ρf . By Lemma
4.1, ρf is in W -alg. Since W -alg is closed under retracts [MP12, Prop. 14.1.8],
f is in W -alg.

Now consider a morphism f in W -alg. Since λf is in W -coalg by Lemma
4.2, λf has the left lifting property against f . Therefore, f is in FpRq-alg.

Thus, W -alg “ FpRq-alg.
Now consider ` PW -coalg. Since ` has the left lifting property against W -alg,

it has the left lifting property against ρ` in particular (Lemma 4.1). Thus it is
in FpRq-coalg.

Now suppose that ` P FpRq-coalg. Then for any r PW -alg “ FpRq-alg, ` has
the left-lifting property against r (Proposition 2.21). Thus, ` is in �pW -algq “
W -coalg.

Therefore, W -coalg “ FpRq-coalg.

Proposition 4.4. For any morphism f of C, the morphism λpfq is in W -coalg.

Proof. We need to show that λf has a λ-coalgebra structure, or that, equiva-
lently, there is a solution to the following lifting problem.

X

λf

��

λλf // X ˆλf ε0
RpX ˆf ε0

RY q

ρλf

��
X ˆf ε0

RY

66

X ˆf ε0
RY

First we define a new morphism µ : RY ˆε1 ε0RY Ñ RY . Note that ηε0ˆ 1 :
RY Ñ RY ˆε1 ε0RY is in W -coalg since it is a pullback of a morphism in W -coalg
along a morphism in W -alg, as shown below.
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RY ˆε1 ε0RY

��

//

A

RY

ε1

��

RY

ηε0ˆ1
88

//
A

Y

η

>>

RY
ε0 // Y

Then, we define µ to be a solution to the following lifting problem.

RY

ηε0ˆ1

��

RY

ε0ˆε1

��
RY ˆε1 ε0RY

µ

55

ε0π0ˆε1π1 // Y ˆ Y

Now we refer to figure Figure 1 on page 37. Since ρf is in W -alg, we know
that λρf is in W -coalg. Therefore, there is a lift σ as illustrated in the figure.

Let σ1 : X ˆf ε0
RY Ñ RpX ˆf ε0

RY q be the composite Rp1Xˆµqσp1Xˆηfˆ
1RY q – that is, the composite from the bottom left to top right of the diagram in
Figure 1. Then a rearrangement of Figure 1 produces the commutative diagram
below, and 1X ˆ σ

1 is our desired lift.

X
λλf“

1Xˆηp1Xˆηfq
//

λf“1ˆηf

��

X ˆλf ε0
RpX ˆf ε0

RY q

ρλf“ε1πRpXˆRY q

��
X ˆf ε0

RY

1Xˆσ
1

88

X ˆf ε0
RY

Therefore, λf is in W -coalg.

We put the preceding results together into the following theorems.

Theorem 4.5. Consider a type-theoretic weak factorization structure W on C.
Consider a relation R on C which has components

X ηX // RX,
ε1X
oo

ε0Xoo

such that ηX is W -coalg and ε0X ˆ ε1X : RpXq Ñ X ˆX is in W -alg at each
object X of C. Then the factorization FpRq is a weak factorization structure
equivalent to W .
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X

λ
f
“

1
ˆ
η
f

��

1
ˆ
η
f

//

η
λ
f
“
η
p
1
X
ˆ
η
f
q

--
X
ˆ
f

ε 0
R
Y

λ
ρ
f
“

1
X
ˆ
R
Y
ˆ
η
ε 1

��

η
p
1
X
ˆ
R
Y
ˆ
η
ε 1
q

// R
pX

ˆ
f

ε 0
R
Y

ˆ
ε 1

ε 0
R
Y
q

ε 0
ˆ
ε 1

��

R
p
1
X
ˆ
µ
q

// R
pX

ˆ
f

ε 0
R
Y
q

ε 0
ˆ
ε 1

��
X
ˆ
f

ε 0
R
Y

1
X
ˆ
η
f
ˆ

1
R
Y
//

p
1
X
ˆ
η
f
q
ˆ
p
1
X
ˆ
R
Y
q

11
X
ˆ
f

ε 0
R
Y

ˆ
ε 1

ε 0
R
Y

p
1
X
ˆ
R
Y
ˆ
η
ε 1
q
ˆ
p
1
X
ˆ
R
Y
ˆ
R
Y
q
//

σ

77

pX
ˆ
f

ε 0
R
Y

ˆ
ε 1

ε 0
R
Y
q2

p
1
X
ˆ
µ
q
2

// p
X
ˆ
f

ε 0
R
Y
q2

F
ig

u
re

1
:

L
if

ti
n

g
d

ia
g
ra

m
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Proof. By Lemma 4.1 and Proposition 4.3, every morphism in the image of ρFpRq
is in FpRq-alg. By Proposition 4.4 and Proposition 4.3, every morphism in the
image of λFpRq is in FpRq-coalg. Thus, FpRq is a weak factorization structure.
By Propositions 2.24 and 4.3, it is equivalent to W .

The following corollary is the main result of this section.

Corollary 4.6. Consider a type-theoretic weak factorization structure W on C.
The factorization FRpW q is a weak factorization structure equivalent to W .

Proof. We need to show that the relation RpW q can be substituted for R in the
statement of the previous theorem, 4.5. In the notation of the previous theorem,
4.5, ηX is λW p∆Xq and εX is ρW p∆Xq, and these are in the left and right class,
respectively, as required.

The following corollary will become a useful technical device (in Proposition
5.6) and is the reason that we proved Theorem 4.5 in more generality than
needed for Corollary 4.6.

Corollary 4.7. Consider a type-theoretic weak factorization structure W on C.
Consider a relation on just one object Y of C with the following components

Y ηY // RY,
ε1Y
oo

ε0Yoo

such that ηY is in the left class and ε0Y ˆε1Y : RY Ñ Y ˆY is in the right class
of W . Then for any morphism f : X Ñ Y of C, in the following factorization

X
1ˆηf // X ˆε0 RY

ε1πRY // Y

the morphism 1ˆ ηf is in the left class, and ε1πRY is in the right class of W .

Proof. Consider the relation RpW q. We construct a new relation S which coin-
cides with RpW q everywhere except at Y . So set SpXq “ RpW qpXq for every
object X ‰ Y and set SpY q “ R. Then a lift of any morphism with domain or
codomain Y can be extracted from the weak factorization structure W . That is,
a lift of any morphism f : X Ñ Y can be obtained as a solution to the following
lifting problem.

X
ηf //

η

��

IdpY q

ε0ˆε1

��
IdpXq

fε0ˆfε1//

::

Y ˆ Y

A lift of any morphism g : Y Ñ Z can be obtained analogously.
The relation S satisfies the hypotheses of Theorem 4.5 so FpSq is a weak

factorization structure equivalent to W . But FpSq sends a morphism f : X Ñ Y
to the factorization in the statement. Thus 1ˆ ηf is in the left class and ε1πRY
is in the right class of W .
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Remark 4.8. Some might be opposed to the reference of equality of objects.
However, it is not strictly necessary. One can emulate the proof of Theorem
4.5, replacing λf with the 1ˆηf of the statement of Corollary 4.7 and replacing
the other occurences of λ and ρ with λFRpW q and ρFRpW q (essentially, making
the replacement of RpW qpY q by RpY q, as is done in the proof of Corollary
4.7, just where necessary in the proof of Theorem 4.5). Then we will obtain
Corollary 4.7.

4.2 Id-presentations

Now we can show that every type-theoretic weak factorization system has an
Id-presentation.

Lemma 4.9. Consider a relation R on C such that FpRq is a type-theoretic
weak factorization structure. Denote the components of RpXq for any object X
of C by the following diagram.

X ηX // RX
ε1X
oo

ε0Xoo

Then R is an Id-presentation of the weak factorization system rFpRqs if and
only if ε0X ˆ ε1X : RX Ñ X ˆX is in the right class for each object X.

Proof. Suppose that R is an Id-presentation. Then by definition, we must have
that each ε0X ˆ ε1X : RX Ñ X ˆX is in FpRq-alg.

Conversely, suppose that each ε0X ˆ ε1X : RX Ñ X ˆ X is in FpRq-alg.
Then it remains to show that each f˚ηY , as displayed in the diagram (˚) below,
is in FpRq-coalg.

f˚RY //

��

RY

εiY

��

X //

f˚ηY
<<

Y

ηY

>>

X
f // Y

(˚)

Note that when i “ 0 in the diagram p˚q above, the morphism f˚ηY is
isomorphic to λFpRqpfq (i.e., it has the same universal property as 1X ˆ ηY f :
X Ñ X ˆY RY ). Thus, it must be in FpRq-coalg.

There is an involution I on RelpCq which sends SpXqεi to SpXqεi`1 for any
S P RelpCq, X P C, and i P Z{2 and keeps all else constant. Then IR satisfies the
hypotheses of Theorem 4.5, so FpIRq is a weak factorization structure equivalent
to FpRq. Now when i “ 1, the morphism f˚ηY in the diagram p˚q is isomorphic
to λFpIRqf , so it is in FpRq-coalg.

Therefore, every f˚ηY in the diagram p˚q is in FpRq-coalg, so R is an Id-
presentation of this weak factorization system.

39



Now combining Corollary 4.6 with this lemma, 4.9, we see the following.

Theorem 4.10. Consider a type-theoretic weak factorization structure W on C.
The relation RpW q is an Id-presentation of the weak factorization system rW s.
Thus, every type-theoretic weak factorization system has an Id-presentation.

Proof. By Corollary 4.6, RpW q generates a type-theoretic weak factorization
structure FRpW q equivalent to W . For any object X of C, the morphism

RpW qXε0 ˆRpW qXε1 : RpW qXΦ Ñ X ˆX

is the right factor of the morphism ∆pXq in the factorization W . Thus, it is in
the right class of the weak factorization system. Then this is an Id-presentation
of rW s by Lemma 4.9.

Corollary 4.11. The functor R : FactpCq Ñ RelpCq restricts to a functor R :
ttWFSpCq Ñ IdPrespCq, and the composition |FR| : |ttWFSpCq| Ñ |ttWFSpCq| is
isomorphic to the identity functor.

Proof. By the previous theorem, 4.10, all objects in the image of R : ttWFSpCq Ñ
RelpCq are Id-presentations. Thus, this functor restricts to R : ttWFSpCq Ñ
IdPrespCq.

By the previous theorem again, for any object W P ttWFSpCq, we have that
W is equivalent to FRpW q. Thus, they are isomorphic as objects of |ttWFSpCq|.
Since |ttWFSpCq| is a proset, these isomorphisms assemble into a natural trans-
formation 1 – |FR|.

Example 4.12. Given any Cisinski model structure pC,W,Fq on a topos M
[Cis06], we claim that the weak factorization system pC X W X MF,F X MFq

restricted to the full subcategory MF of fibrant objects is type-theoretic.
For this weak factorization system to be type-theoretic, all its objects must

be fibrant, which we have satisfied by construction, and C XW XMF must be
stable under pullback along FXMF. In a Cisinski model structure, C is precisely
the class of monomorphisms, so it is stable under pullback (along all morphisms)
in M. Then, in particular, it is stable under pullback along F XMF in MF. A
standard result of model category theory says that W X MF is stable under
pullback in MF [Bro73, §1 Ex. 1,§4 Lem. 1]. Thus C XW XMF is stable under
pullback along FXMF, and the weak factorization system pCXWXMF,FXMFq

is type-theoretic.
Then we find many examples of type-theoretic weak factorization systems,

including those in the categories of Kan complexes [Qui67], quasicategories
[Joy08], and fibrant cubical sets [Cis06]. These all have Id-presentations.
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5 Moore relations from type-theoretic weak fac-
torization systems

In this section, we tie up the preceding sections by showing that a relation R
on a finitely complete category C is a Moore relation system if and only if it is
an Id-presentation.

We can immediately see from our previous results that any relation R which
underlies a Moore relation system is an Id-presentation of the weak factorization
system it generates.

Proposition 5.1. Consider a Moore relation system R on C. Then R is an
Id-presentation.

Proof. By Theorem 3.48, R generates a type-theoretic weak factorization struc-
ture FpRq. By Lemma 3.42, every RXε0 ˆRXε1 is in the right class. Then by
Lemma 4.9, this is a Id-presentation of rFpRqs.

Now we prove the converse: that any Id-presentation is a Moore relation
system. We consider a relation R on C which at an object X gives the following
diagram.

X ηX // ΨX,
ε1X
oo

ε0Xoo

We let λ denote λFpRq and ρ denote ρFpRq.

Proposition 5.2. Suppose that R is an Id-presentation of a weak factorization
system. Then R is transitive.

Proof. For any object X of C, we let µX be a solution to the following lifting
problem.

ΨX

λε1
��

ΨX

ε0ˆε1

��
ΨX ˆε1 ε0 ΨX

ε0π0ˆε1π1

//

µX

55

X ˆX

This makes R into a transitive relation.

Proposition 5.3. Suppose that R is an Id-presentation of a weak factorization
system. Then R is symmetric.

Proof. For any object X of C, we let νX be a solution to the following lift-
ing problem (where τ : ΨX ˆε0 ε0 ΨX Ñ ΨX ˆε0 ε0 ΨX is the standard twist
involution).

ΨX

τλε0
��

ΨX

ε0ˆε1

��
ΨX ˆε0 ε0 ΨX

ε1π0ˆε1π1

//

νX

55

X ˆX

This makes R into a symmetric relation.
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Theorem 5.4. Consider an Id-presentation R on C. The factorization FpRq is
a type-theoretic weak factorization structure.

Proof. By Proposition 5.3, R is symmetric. Then by Proposition 2.35 and The-
orem 3.44, FpRq is type-theoretic.

Corollary 5.5. The functor F : RelpCq Ñ FactpCq restricts to a functor F :
IdPrespCq Ñ ttWFSpCq.

Proof. The previous theorem, 5.4, tells us that every object in the image of
F : RelpCq Ñ FactpCq is in the full subcategory ttWFSpCq. Thus, this functor
restricts to F : IdPrespCq Ñ ttWFSpCq.

Proposition 5.6. Suppose that R is an Id-presentation of a weak factorization
system. Then R is homotopical.

Proof. Let Ψˆ4X denote the limit of the following diagram in C.

X ΨX
ε0oo ε1 // X

ΨX

ε0

OO

ε1

��

ΨX

ε1

��

ε0

OO

X ΨX
ε0oo ε1 // X

There is a morphism u : ΨX Ñ Ψˆ4X which is induced by the following cone.

X ΨX
ε0oo ε1 // X

ΨX

ε0

OO

ε1

��

ΨX

ηε0

OO

ηε1

��

ΨX

ε1

��

ε0

OO

X ΨX
ε0oo ε1 // X

Now we factor u : ΨX Ñ Ψˆ4X.

ΨX
λu
ÝÝÑMu

ρu
ÝÑ Ψˆ4X

Let Ψ˝X denote Mu, and let the following diagram denote the cone correspond-
ing to ρu.

X ΨX
ε0oo ε1 // X

ΨX

ε0

OO

ε1

��

Ψ˝X

ε0

OO

ε1

��

ζ0oo ζ1 // ΨX

ε1

��

ε0

OO

X ΨX
ε0oo ε1 // X

42



Note that the object Ψ˝X is defined to be the pullback ΨX ˆu ε0 ΨpΨˆ4Xq.
Now we let δX : ΨX Ñ Ψ˝X be a solution to the following lifting problem.

X

η

��

λuη // Ψ˝X

ρu“ε0ˆε1ˆζ0ˆζ1
��

ΨX
ηε0ˆ1ˆηε0ˆ1

//

δX

66

Ψˆ4X

For any f : X Ñ Y , we need to find a solution to the following lifting
problem in order to define τf : X ˆηf ζΨ˝Y Ñ ΨpX ˆf ε0

ΨY q.

X

1ˆλuηf

��

ηp1ˆηfq // ΨpX ˆf ε0
ΨY q

ε0ˆε1

��
X ˆηf ζ0

Ψ˝Y
p1Xˆε0qˆp1Xˆε1q

//

τf
44

pX ˆf ε0
ΨY q ˆ pX ˆf ε0

ΨY q

Since R is an Id-presentation of pFpRq-coalg,FpRq-algq, we know that the
right hand map above, ε0 ˆ ε1, is in FpRq-alg. Thus, we need to show that
1ˆ λuηf is in FpRq-coalg.

To see this, first observe that ζ0 ˆ ζ1 : Ψˆ4Y Ñ ΨY ˆ ΨY is in FpRq-alg,
since it is given by the following pullback.

Ψˆ4Y

ζ0ˆζ1

��

ε0ˆε1 //
A

ΨY ˆΨY

ε0ˆε1ˆε0ˆε1

��
ΨY ˆΨY

ε0ˆε0ˆε1ˆε1 // Y ˆ Y ˆ Y ˆ Y

The right-hand map in the above diagram is in FpRq-alg since it is the product
of two maps in FpRq-alg, and thus its pullback, ζ0ˆζ1, is also in FpRq-alg. Then
the composition pζ0ˆζ1qρu : Ψ˝Y Ñ ΨY ˆΨY , which we also denote by ζ0ˆζ1,
is in FpRq-alg.

Thus, the following is a factorization of the diagonal ∆ΨY into FpRq-coalg
and FpRq-algq.

ΨY
λu // Ψ˝Y

ζ0ˆζ1 // ΨY ˆΨY

By Corollary 4.7, in the following factorization of ηf : X Ñ ΨY ,

X
1ˆλuηf
ÝÝÝÝÝÑ X ˆηf ζ0 Ψ˝Y

ζ1
ÝÑ ΨY

the morphism 1ˆ λuηf is in FpRq-coalg.
Thus, we obtain a lift τf as above.
Then τ and δ make R into a homotopical relation where the diagram

X
η // Ψ˝X

ε0 //
ε1 //
ζ
// ΨX
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of Definition 3.34 is given by the diagram

X
λuη // Ψ˝X

ε0 //
ε1 //
ζ0

// ΨX

that we have defined here.

Thus, we have the following theorem.

Theorem 5.7. Consider a relation R on C. It is an Id-presentation of a weak
factorization system if and only if it is a Moore relation system.

Proof. By Proposition 5.1, a Moore relation system is an Id-presentation of the
weak factorization system it generates.

By Propositions 5.2, 5.3, and 5.6, an Id-presentation of a weak factorization
system is a Moore relation system.

Now we can restate Theorem 4.10 in the following way.

Corollary 5.8. Consider a type-theoretic weak factorization structure W . Then
the relation RpW q is a Moore relation system which generates the weak factor-
ization system represented by W . Thus, every type-theoretic weak factorization
system can be generated by a Moore relation system.

Proof. This is Theorem 4.10 with ‘Moore relation system’ substituted for ‘Id-
presentation’ as justified by Theorem 5.7.

Example 5.9. Consider Example 4.12. Then given a Cisinski model structure
pC,F,Wq on a topos M, the weak factorization system pC XW X MF,F X MFq

is generated by a Moore relation system. In particular, the weak factorization
systems in the category of Kan complexes, the category of quasicategories, and
that of cubical sets are generated by Moore relation systems.

To conclude this section, we show that |RF| : |IdPrespCq| Ñ |IdPrespCq| is
isomorphic to the identity functor. We have shown that |FR| : |ttWFSpCq| Ñ
|ttWFSpCq| is also isomorphic to the identity functor (Corollary 4.11). Thus,
this will show that |R| and |F| form an equivalence |IdPrespCq| » |ttWFSpCq|.

Proposition 5.10. The functor |RF| : |IdPrespCq| Ñ |IdPrespCq| is isomorphic
to the identity functor.

Proof. We need to provide an equivalence between any R in IdPrespCq and
RFpRq. Since |IdPrespCq| is a proset, this will automatically assemble into a
natural isomorphism 1 – |RF|.

Let RX be denoted by the following diagram for any X in C.

X ηX // ΨX
ε1X
oo

ε0Xoo
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Then RFpRXq gives the following diagram

X λp∆Xq // X ˆ∆ ε0
ΨpX ˆXq

π1ρp∆Xq

oo

π0ρp∆Xqoo

where λ denotes λFpRq and ρ denotes ρFpRq.
Now a morphism RÑ RFpRq consists of a natural transformation RpXq Ñ

RFpRqpXq at each X, as displayed below, which, in turn, consists of the identity
on X and a morphism τX : ΨX Ñ X ˆ∆ ε0

ΨpX ˆXq.

X ηX // ΨX
ε1X

oo

ε0Xoo

τX

��
X λp∆Xq // X ˆ∆ ε0

ΨpX ˆXq
π1ρp∆Xq

oo

π0ρp∆Xqoo

But we can obtain the morphism τX as a lift in the diagram below.

X
λp∆Xq //

η

��

X ˆ∆ ε0
ΨpX ˆXq

ρp∆Xq

��
ΨX

ε0ˆε1
//

τX
77

X ˆX

since η is in FpRq-coalg and ρp∆Xq is in FpRq-alg.
Similarly, we can get a morphism RFpRq Ñ R by solving the following lifting

problem for each object X.

X

λp∆Xq

��

η // ΨX

ε0ˆε1

��
X ˆ∆ ε0

ΨpX ˆXq
ρp∆Xq

//

66

X ˆX

These lifts exist since λp∆Xq is in FpRq-coalg and ε0 ˆ ε1 is in FpRq-alg.

6 Models of Id-types

In this section, we show that a weak factorization system on a finitely complete
category C models Id-types if and only if it models Id-types on objects. We use
this result to also show that if a display map category pC,Dq models Id-types,
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then pC, p�Dq�q also models Id-types regardless if they are functorial (this is
not used in our main result, but was mentioned in Section 2.3 to motivate our
work).

Consider Id-presentation R which at each object X of C has components
denoted as follows.

X ηX // ΨX,
ε1X
oo

ε0Xoo

For any object Y of C, let A{Y denote the full subcategory of C{Y spanned by
FpRq-alg. Let domY : A{Y Ñ C denote the domain functor. The weak fac-
torization structure FpRq induces a weak factorization structure FpRqY [MP12,
Thm. 15.3.6] which takes a morphism α : f Ñ g of A{Y to the following.

W

f
((

1WˆηdomY pαq // W ˆX IdpXq

gε1πIdpXq

��

ε1πIdpXq // X

g

vv
Y

The classes of coalgebras and algebras of this weak factorization structure in
A{Y are exactly the preimages of those in C: FpRqY -coalg = dom´1

Y pFpRq-coalgq
and FpRqY -alg “ dom´1

Y pFpRq-algq.

Lemma 6.1. The weak factorization structure FpRqY on A{Y is type-theoretic.

Proof. First, note that 1Y P FpRq-alg, so 1Y is a terminal object of A{Y . For
any f P A{Y , the morphism to this terminal object is f : f Ñ 1Y , whose image
under domY is f P FpRq-alg. Thus, f is fibrant.

Now consider any ` P FpRqY -coalg and r P FpRqY -alg who share a codomain.
We have that domY pr

˚`q “ domY prq
˚domY p`q P FpRq-coalg since FpRq is type-

theoretic (Theorem 5.4). Therefore, r˚` P FpRqY -coalg.

Proposition 6.2. Consider a weak factorization system with an Id-presentation
R. Then pC,FpRq-algq models Id-types.

Proof. Since the weak factorization structure FpRqY on C{Y is type-theoretic, it
has an Id-presentation RpFpRqY q which at each f : X Ñ Y gives the following
relation (depicted as a diagram in C).

X 1Xˆη∆ //

f ''

X∆ˆε0IdpX ˆY Xq
π1ε1π1

oo

π0ε1π1oo

ssY

(˚)

Now we show that the collection of these Id-presentations is a model of Id-
types in the display map category pC,FpRq-algq. We just need to check that
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any pullback α˚p1X ˆ η∆q as shown below of 1X ˆ η∆ along any morphism
α : AÑ X for i “ 0, 1 is in FpRq-coalg.

X∆ˆε0IdpX ˆY Xqπiε1ˆαA //

��

X∆ˆε0IdpX ˆY Xq

πiε1π1

��

A //

α˚p1Xˆη∆q

55

X

1Xˆη∆

77

A
α // X

Note that the image of diagram p˚q above is a relation of X in C where
1Xˆη∆ P FpRq-coalg and ε1π1 “ π0ε1π1ˆπ1ε1π1 P FpRq-alg. Then by Corollary
4.7, the pullbacks shown above are in FpRq-coalg when i “ 0. Similarly, by
considering the involution I which swaps ε0 and ε1 (described in the proof of
4.9) applied to this relation, the pullbacks shown above are in FpRq-coalg when
i “ 1 by Corollary 4.7.

Corollary 6.3. Consider a display map category pC,Dq which models Σ- and
Id-types. Then pC, p�Dq�q also models Id-types.

Proof. Let tIY uY PC be the model of Id-types in pC,Dq. We obtain a model
I˚ of Id-types on objects in pC,Dq (for a terminal object ˚ in C). But I˚ is
trivially also a model of Id-types on objects in pC, p�Dq�q. By Proposition 6.2,
pC, p�Dq�q also models Id-types.

7 The main result

In Section 2, we defined the following diagram of categories.

fIdPrespCq �
� //

� _

��

fRelpCq
� _

��

F // fFactpCq
� _

��

R
oo fttWFSpCq? _oo

� _

��
IdPrespCq �

� // RelpCq
F // FactpCq
R

oo ttWFSpCq? _oo

In Section 3, we defined (strict) Moore relation systems. We showed that
strict Moore relation systems generate type-theoretic, algebraic weak factor-
ization systems, and that Moore relation systems generate type-theoretic weak
factorization systems.

In Sections 4 and 5, we showed the following theorem.
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Theorem 7.1. Consider a category C with finite limits. The functors R and F
described above restrict to functors shown below.

fIdPrespCq
� _

��

F // fttWFSpCq
� _

��

R
oo

IdPrespCq
F // ttWFSpCq
R

oo

Furthermore, after application of the proset truncation, these are equivalences.

|fIdPrespCq|
� _

��

|F| //
„ |fttWFSpCq|

� _

��

|R|
oo

|IdPrespCq|
|F| //
„ |ttWFSpCq|
|R|
oo

(˚)

Proof. The fact that R and F restrict to functors ttWFSpCq Ô IdPrespCq is
proven in Corollary 4.11 and Corollary 5.4. Then consider an object or mor-
phism X of fttWFSpCq. We know that RpXq P IdPrespCq X fRelpCq “ fIdPrespCq
so R restricts to a functor fttWFSpCq Ñ fIdPrespCq. Similarly, F restricts to a
functor fIdPrespCq Ñ fttWFSpCq.

The fact that |R| and |F| constitute an equivalence |IdPrespCq| » |ttWFSpCq|
is proven in Corollary 4.11 and Proposition 5.10. Since both squares in the
diagram p˚q above commute, this restricts to an equivalence |fIdPrespCq| »
|fttWFSpCq|.

We then interpret this in the following theorem.

Theorem 7.2. Consider a category C with finite limits. The following proper-
ties of any weak factorization system pL,Rq on C are equivalent:

1. it has an Id-presentation;

2. it is type-theoretic;

3. it is generated by a Moore relation system;

4. pC,Rq is a display map category modeling Σ- and Id-types.

Proof. The equivalence between (1) and (3) appears as Theorem 5.7.
That (2) implies (1) is Theorem 4.10.
That (3) implies (2) is Theorem 3.48.
Clearly, (4) implies (1).
By Theorem 2.35, (1) implies that all objects are fibrant in pL,Rq, and thus

pC,Rq is a display map category modeling Σ-types (Example 2.29). By Propo-
sition 6.2, (1) implies that pC,Rq models Id-types. Thus, (1) implies (4).
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Theorem 7.3. Consider a category C with finite limits and a weak factorization
system pL,Rq satisfying the equivalent statements of the preceding theorem, 7.2.

If pC,Rq models pre-Π-types, then it models Π types. In particular, if C is
locally cartesian closed, then pC,Rq models Π-types.

Proof. By the previous theorem, 7.2, pL,Rq is type-theoretic. Therefore, by
Proposition 2.37, pC,Rq models Π-types.
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