
Hedonic Seat Arrangement Problems∗

Hans L. Bodlaender1, Tesshu Hanaka2, Lars Jaffke3, Hirotaka Ono4, Yota Otachi5,
and Tom C. van der Zanden6

1Utrecht University, Utrecht, The Netherlands, h.l.bodlaender@uu.nl
2Chuo University, Tokyo, Japan, hanaka.91t@g.chuo-u.ac.jp
3University of Bergen, Bergen, Norway, lars.jaffke@uib.no
4Nagoya University, Nagoya, Japan, ono@i.nagoya-u.ac.jp

5Kumamoto University, Kumamoto, Japan, otachi@cs.kumamoto-u.ac.jp
5Maastricht University, Maastricht, The Netherlands,

T.vanderZanden@maastrichtuniversity.nl

Abstract

In this paper, we study a variant of hedonic games, called Seat Arrangement. The
model is defined by a bijection from agents with preferences to vertices in a graph. The utility
of an agent depends on the neighbors assigned in the graph. More precisely, it is the sum over
all neighbors of the preferences that the agent has towards the agent assigned to the neighbor.
We first consider the price of stability and fairness for different classes of preferences. In par-
ticular, we show that there is an instance such that the price of fairness (PoF) is unbounded in
general. Moreover, we show an upper bound d̃(G) and an almost tight lower bound d̃(G)−1/4
of PoF, where d̃(G) is the average degree of an input graph. Then we investigate the com-
putational complexity of problems to find certain “good” seat arrangements, say Maximum
Welfare Arrangement, Maximin Utility Arrangement, Stable Arrangement, and
Envy-free Arrangement. We give dichotomies of computational complexity of four Seat
Arrangement problems from the perspective of the maximum order of connected components
in an input graph. For the parameterized complexity, Maximum Welfare Arrangement
can be solved in time nO(γ), while it cannot be solved in time f(γ)o(γ) under ETH, where γ is
the vertex cover number of an input graph. Moreover, we show that Maximin Utility Ar-
rangement and Envy-free Arrangement are weakly NP-hard even on graphs of bounded
vertex cover number. Finally, we prove that determining whether a stable arrangement can
be obtained from a given arrangement by k swaps is W[1]-hard when parameterized by k+ γ,
whereas it can be solved in time nO(k).

1 Introduction

Given a set of n agents with preferences for each other and an n-vertex graph, called the seat graph,
we consider to assign each agent to a vertex in the graph. Each agent has a utility that depends
on the agents assigned to neighbors vertices in the graph. Intuitively, if a neighbor is preferable
for the agent, his/her utility is high. This models several situations such as seat arrangements in
classrooms, offices, restaurants, or vehicles. Here, a vertex corresponds to a seat and an assignment
corresponds to a seat arrangement. If we arrange seats in a classroom, the seat graph is a grid. As

∗This work was partially supported by JSPS KAKENHI Grant Numbers JP18H04091, JP18K11168, JP18K11169,
JP19K21537.

1

ar
X

iv
:2

00
2.

10
89

8v
1 

 [
cs

.G
T

] 
 2

5 
Fe

b 
20

20



another example, if we consider a round table in a restaurant, the seat graph is a cycle. We name
the model Seat Arrangement.

Seat Arrangement is related to hedonic games [7]. If the seat graph in a Seat Arrange-
ment instance is a disjoint union of cliques, then each clique may be viewed as a potential coalition.
Hence an arrangement on that graph naturally corresponds to a coalition forming. In that sense,
this model is considered a hedonic game of arrangement on topological structures.

In this paper, we consider the following problems to find four types of desirable seat arrange-
ments: Maximum Welfare Arrangement (MWA), Maximin Utility Arrangement (MUA),
Stable Arrangement (STA), and Envy-free Arrangement (EFA). MWA is the problem to
find a seat arrangement that maximizes the sum of utilities of agents, which is called the social
welfare.

The concept of MWA is a macroscopic optimality, and hence it may ignore individual utilities.
Complementarily, MUA is the problem to find a seat arrangement that maximizes the least utility
of an agent. From the viewpoint of economics, the maximin utility of an arrangement can be
interpreted as a measure of fairness [3, 10, 33].

Stability is one of the central topics in the field of hedonic games including Stable Match-
ing [24, 34, 2, 7]. Motivated by this, we define a stable arrangement as an arrangement with no
pair of agents that has an incentive of swapping their seats (i.e., vertices), called a blocking pair.
This corresponds to the definition of exchange-stability proposed by Alcalde in the context of stable
matchings [1]. In Seat Arrangement, STA is the problem of deciding whether there is a stable
arrangement in a graph.

Finally, we consider the envy-freeness of Seat Arrangement. The envy-freeness is also a
natural and well-considered concept in hedonic games. In Seat Arrangement, an agent p envies
another agent q if p has an incentive of swapping its seat with q. Note that q may not have an
incentive of swapping its seat with p. By definition, any envy-free arrangement is stable.

1.1 Our contribution

In this paper, we first investigate the price of stability (PoS) and the price of fairness (PoF) of
Seat Arrangement, which are defined as the ratio of the maximum social welfare over the
social welfare of a maximum stable solution and a maximin solution, respectively. For the price of
stability, we can say the PoS is 1 under symmetric preferences by a result in [32]. For the price of
fairness, we show that there is a family of instances such that PoF is unbounded. For the binary
case, we show an upper bound of d̃(G) of PoF, where d̃(G) is the average degree of the seat graph
G. On the other hand, we present an almost tight lower bound d̃(G)− 1/4 of PoF. Furthermore,
we give a lower bound d̃(G)/2 + 1/12 for the cases with symmetric preferences.

Next, we give dichotomies of computational complexity of four Seat Arrangement problems
from the perspective of the maximum order of connected components in the seat graph. For MWA,
MUA, and symmetric EFA, we show that they are solvable in polynomial time if the order of each
connected component in the seat graph is at most 2 whereas they are NP-hard even if the order of
each connected component of the seat graph is 3. Since a maximum arrangement is always stable
under symmetric preferences, symmetric STA can also be solved in polynomial time if the order
of each connected component is at most 2. On the other hand, STA is NP-complete even if the
order of each connected component in the seat graph is at most 2. Note that if each connected
component in the seat graph is of order at most 1, it consists of only isolated vertices, and hence
STA is trivially solvable.

For the parameterized complexity, we show that MWA can be solved in time nO(γ) whereas it
is W[1]-hard with respect to vertex cover number γ of the seat graph and cannot be solved in time
no(n) and f(γ)no(γ) under ETH. Moreover, we prove that MUA and symmetric EFA are weakly
NP-hard even on seat graphs with γ = 2.

Finally, we study the parameterized complexity of local search of finding a stable arrangement.
We show that determining whether a stable arrangement can be obtained from a given arrangement
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by k swaps is W[1]-hard when parameterized by k + γ, whereas it can be solved in time nO(k).

1.2 Related work

A hedonic game is a non-transferable utility game regarding coalition forming, where each agent’s
utility depends on the identity of the other agents in the same coalition [18, 6]. It includes the
Stable Matching problem [7]. Seat Arrangement can be considered a hedonic game of
arrangement on a graph.

Several graph-based variants of hedonic games have been proposed in the literature, see e.g. [8,
9, 22, 2, 27]. However, they typically utilize graphs to define the preferences of agents, and
both the preferences and coalitions define the utilities of agents. On the other hand, in Seat
Arrangement, the preferences are defined independently of a graph and the utility of an agent
is determined by an arrangement in a graph (more precisely, the preferences for the assigned
neighbors in the graph).

A major direction of research about hedonic games is the computational complexity of the
problems to find desirable solutions such as a solution with maximum social welfare and a stable
solution [6, 2]. [35] and [26] investigate the parameterized complexity of hedonic games for several
graph parameters (e.g., treewidth). For the local search complexity, Gairing and Savani study
the PLS-completeness of finding a stable solution [22, 23]. In terms of mechanism design and
algorithmic game theory, many researchers study the price of anarchy, the price of stability, and
the price of fairness [34, 3, 7, 4].

Possibly the closest relative of Seat Arrangement among hedonic games is Stable Match-
ing. It is the model where agents are partitioned into pairs under preferences [24, 34, 7]. Stable
Matching is a well studied problem, and polynomial-time solvability as well as several structural
properties are known, for example, [24, 29, 28, 30, 7]. One might think that Stable Matching
could be modeled as Seat Arrangement on a graph in which each of connected components is
an edge. However, these two models are slightly different due to the difference of the definitions
of blocking pairs. A blocking pair in Stable Matching can deviate from their partners and then
they match each other, whereas they can only swap their seats in Seat Arrangement. Alcalde
proposes the exchange-stability [1]. Under the exchange-stability, a blocking pair does not deviate
from their partner, but they swap each other. Cechlárová and Manlove proved that Stable Mar-
riage and Stable Roommates are NP-complete under exchange stability even if the preference
list is complete and strict [11, 12].

Very recently, in the context of one-sided markets, Massand and Simon consider the problem
of allocating indivisible objects to a set of rational agents where each agents final utility depends
on the intrinsic valuation of the allocated item as well as the allocation within the agents local
neighbourhood [32]. Although the problem is motivated from different contexts, it has a quite
similar nature to Seat Arrangement, and they also considered stable and envy-free allocation
on the problem. In fact, the following results about Seat Arrangement are immediately obtained
from [32]: (1) The PoS of Seat Arrangement is 1. (2) There is an instance of binary Seat
Arrangement with no stable arrangement. (3) The local search problem to find a stable solution
under symmetric preferences by swapping two agents iteratively is PLS-complete. (4) EFA is NP-
complete. In this paper, we give further and deeper analyses of Seat Arrangement.

2 The Model

We use standard terminologies on graph theory. Let G = (V,E) be a graph where n = |V | and
m = |E|. For a directed graph G, we denote the set of in-neighbors (resp., out-neighbors) of v
by N in

G (v) (resp., Nout
G (v)) and the in-degree (resp., out-degree) of v by din

G(v) := |N in(v)| (resp.,
dout
G (v) := |Nout(v)|). For an undirected graph G, we denote the set of neighbors of v by NG(v)

and the degree of v by dG(v) = |NG(v)|. We also define ∆(G) = maxv∈V dG(v) and d̃(G) = 2m/n
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as the maximum degree and the average degree of G, respectively. A vertex cover X is the set of
vertices such that for every edge, at least one endpoint is in X. The vertex cover number of G,
denoted by γ(G), is the size of a minimum vertex cover in G. For simplicity, we sometimes drop
the subscript of G if it is clear. For the basic definition of parameterized complexity such as the
classes FPT, XP and W[1], we refer the reader to the book [15].

We denote by P the set of agents, and define an arrangement as follows.

Definition 1 (Arrangement). For a set of agents P and an undirected graph G, a bijection π :
P→ V (G) is called an arrangement in G.

We denote by Π the set of all arrangements in G. Note that |Π| = n!. We call graph G
the seat graph. The definition means that an arrangement assigns each agent to a vertex in G.
When we specify that the seat graph G is in some graph class G, we sometimes use term Seat
Arrangement on G. Moreover, we define the (p, q)-swap arrangement for π.

Definition 2 ((p, q)-swap arrangement). Let P be a set of agents, G be a graph and π be an
arrangement. For a pair of agents p, q ∈ P, we say that π′ is the (p, q)-swap arrangement if π′ can
obtained from π by swapping the arrangement of p and q, that is, π′ satisfies that π′(p) = π(q),
π′(q) = π(p), and π′(r) = π(r) for every r ∈ P \ {p, q}.

Next, we define the preference of an agent.

Definition 3 (Preference). The preference of p ∈ P is defined by fp : P \ {p} → R.

We denote by FP the set of preferences of all agents in P. Here, we say the preferences are
binary if fp : P \ {p} → {0, 1} for every agent p, are nonnegative if fp : P \ {p} → R+

0 , and are
positive if fp : P \ {p} → R+. Furthermore, we say they are symmetric if fp(q) = fq(p) holds for
any pair of agents p, q ∈ P and strict if for any p ∈ P there is no pair of distinct q, r ∈ P such that
fp(q) = fp(r). The directed and weighted graph GFP

= (P, EFP
) associated with the preferences

FP is called the preference graph, where EFP
= {(p, q) | fp(q) 6= 0} and the weight of (p, q) is fp(q).

If the preferences are symmetric, we define the corresponding preference graph as an undirected
graph.

Finally, we define the utility of an agent and the social welfare of an arrangement π.

Definition 4 (Utility and social welfare). Given an arrangement π and the preference of p, the
utility of p is defined by Up(π) =

∑
v∈N(π(p)) fp(π

−1(v)). Moreover, the social welfare of π for P

is defined by the sum of all utilities of agents and denoted by sw(π) =
∑
p∈P Up(π).

The function Up(π) =
∑
v∈N(π(p)) fp(π

−1(v)) represents the sum over all neighbors of the
preferences that the agent has towards the agent assigned to the neighbor. This function is often
used in coalition formation games [8, 22, 2]. By the definition, if the seat graph is a complete
graph, all the arrangements have the same social welfare.

In the following, we define four types of Seat Arrangement problems. First, we define
Maximum Welfare Arrangement. An arrangement π∗ is maximum if it satisfies sw(π∗) ≥
sw(π) for any arrangement π. Then, Maximum Welfare Arrangement (MWA) is defined as
follows.

Input: A graph G = (V,E), a set of agents P, and the preferences of agents FP.

Task: Find a maximum arrangement in G.

An arrangement π∗ is a maximin arrangement if π∗ satisfies minp∈P Up(π
∗) ≥ minp∈P Up(π)

for any arrangement π. Then, Maximin Utility Arrangement (MUA) is defined as follows.

Input: A graph G = (V,E), a set of agents P, and the preferences of agents FP.

Task: Find a maximin arrangement in G.
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Finally, we define the stability of Seat Arrangement.

Definition 5 (Stablility). Given an arrangement π, a pair of agents p and q is called a blocking
pair for π if it satisfies that Up(π

′) > Up(π) and Uq(π
′) > Uq(π) where π′ is the (p, q)-swap

arrangement for π. If there is no blocking pair in an arrangement, it is said to be stable.

Then, the Stable Arrangement (STA) problem is as follows.

Input: A graph G = (V,E), a set of agents P, and the preferences of agents FP.

Task: Decide whether there is a stable arrangement in G.

Finally, we define the envy-freeness of Seat Arrangement.

Definition 6 (Envy-free). An arrangement π is envy-free if there is no agent p such that there
exists q ∈ P \ {p} that satisfies Up(π

′) > Up(π) where π′ is the (p, q)-swap arrangement for π.

By the definition of envy-freeness, we have:

Proposition 1. If an arrangement is envy-free, it is also stable.

Then, Envy-free Arrangement (EFA) is defined as follows.

Input: A graph G = (V,E), a set of agents P, and the preferences of agents FP.

Task: Decide whether there is an envy-free arrangement in G.

3 Stability and Fairness

In this section, we study the stability and the fairness of Seat Arrangement. Let Πs be the
set of stable solutions and π∗ be a maximum arrangement. Then, the price of stability (PoS) is
defined as minπs∈Πs sw(π∗)/sw(πs) [34]. In other words, the price of stability is defined as the gap
between the maximum social welfare and the social welfare of a maximum stable solution. From
[32], we immediately obtain the following proposition.

Proposition 2 ([32]). In symmetric Seat Arrangement , a maximum arrangement is stable,
and thus, the PoS of symmetric Seat Arrangement is 1. On the other hand, there is an instance
of binary Seat Arrangement with no stable arrangement.

Proposition 2 is easily shown by the potential function argument. On the other hand, there is
an instance with no envy-free arrangement even if the preferences are symmetric. Consider three
agents x, y, z such that fp(q) = fq(p) = 1 for p, q ∈ {x, y, z}. If we assign them to a path P3, two
agents assigned to endpoints of P3 envy the agent assigned to the center in P3.

Proposition 3. There is an instance of binary and symmetric Seat Arrangement with no
envy-free arrangement.

Next, we consider the price of fairness [3, 10, 7]. Let Πf be the set of maximin solutions. Then,
the price of fairness is defined as minπf∈Πf sw(π∗)/sw(πf ), that is, the ratio between the maximum
social welfare and the social welfare of a maximin arrangement.

Proposition 4. There is an instance such that the PoF of Seat Arrangement is unbounded.

Proof. Let x ≥ y ≥ 1 be two integers and the seat graph G be a graph consisting of two edges.
Finally, we set the preferences of four agents p1, p2, p3, p4 as follows: fp1(p3) = fp2(p4) = fp3(p2) =
fp4(p1) = x, fp1(p2) = fp2(p1) = fp3(p4) = fp4(p3) = y, and fp1(p4) = fp2(p3) = fp3(p1) =
fp4(p2) = 0.
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Figure 1: The preference graph (left) and the seat graph (right) in the proof of Proposition 6.

Since the seat graph consists of two edges, the instance has only three arrangements by sym-
metry. If p1, p2 (resp., p3, p4) are assigned to the same edge, the social welfare is 4y and each agent
has the utility y. On the other hand, if p1, p3 (resp., p2, p4) or p1, p4 (resp., p2, p3) are assigned to
the same edge, the social welfare is 2x and the least utility is 0. If x is arbitrary large integer and
y = 1, the social welfare of a maximum arrangement is 2x. Then, we have PoF = 2x/4y = x/2y,
and hence PoF is unbounded.

For the binary case, the PoF is bounded by the average degree d̃(G) of the seat graph G. If
the least utility is 0 for every arrangement, we can choose an arrangement with maximum social
welfare. In this case, PoF is 1. Otherwise, the least utility is 1 and the social welfare of such an
arrangement is at least n. Since the social welfare is at most 2m, PoF is bounded by 2m/n = d̃(G).

Proposition 5. For any instance, the PoF of binary Seat Arrangement is at most d̃(G).

Finally, we give almost tight lower bounds of the price of fairness for binary Seat Arrange-
ment.

Proposition 6. There is an instance such that the PoF of binary Seat Arrangement is at least
d̃(G) − 1/4. Furthermore, there is an instance such that the PoF of binary and symmetric Seat
Arrangement is at least d̃(G)/2 + 1/12.

Proof. We construct such an instance. Let PK and PC be sets of agents each having n members.
The preference graph consists of an undirected clique and a directed cycle. The seat graph G
consists of a clique of size n and n/2 disjoint edges. The number of edges in G is n(n−1)/2+n/2 =
n2/2 and the average degree of G is d̃(G) = n/2. See Figure 1.

In a maximum arrangement on G, every agent in PK is assigned to a clique and every agent
in PC is assigned to disjoint edges. The social welfare is n(n− 1) + n/2 = n(n− 1/2) and at least
one agent on an edge has the utility 0.

On the other hand, in a maximin arrangement, every agent in PC is assigned to a clique and
every agent in PK is assigned to disjoint edges. Then the utility of any agent is 1 and the social
welfare is n+ n = 2n. Therefore, the price of fairness is n(n− 1/2)/2n = n/2− 1/4 ≥ d̃(G)− 1/4.

For the symmetric case, we modify the preference graph and the seat graph. For the preference
graph, we change a directed cycle in the preference graph to an undirected cycle. For the seat
graph, we replace n/2 disjoint edges by n/3 disjoint triangles K3. When every agent in PK is
assigned to a clique, the social welfare is n(n − 1) + 4n/3 = n(n + 1/3) and it is maximum. The
least utility of an agent is 1. On the other hand, when every agent in PC is assigned to a clique,
the utility of any agent is 2. The social welfare is 2n+ 6n/3 = 4n. Therefore, the price of fairness
is n(n+ 1/3)/4n = n/4 + 1/12 ≥ d̃(G)/2 + 1/12.

4 Computational Complexity

In this section, we give the dichotomy of computational complexity of three Seat Arrangement
problems in terms of the order of components in the seat graph.
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4.1 Tractable case

In this subsection, we show that MWA, MUA, and symmetric EFA are solvable in polynomial time
if each component of the seat graph is of order at most 2.

Theorem 1. MWA is solvable in polynomial time if each connected component of the seat graph
has at most two vertices.

Proof. Let Kn = (P, EP) be the weighted and undirected complete graph such that the weight of
edge (p, q) ∈ EP is defined by fp(q) + fq(p). Also, let n′ be the number of endpoints of edges in
the seat graph. Notice that n′ is always even. Then, we find a maximum weight matching Mn′/2

of size n′/2 in Kn. This can be done by using Edmonds’s algorithm [19]. Next, we assign each
pair of agents in Mn′/2 to an edge in G and the rest of agents in isolated vertices. Let π∗ be such
an arrangement.

In the following, we show that π∗ is maximum. Suppose that there exists π′ such that sw(π′) >
sw(π∗). Let VE be the set of endpoints of E and VI be the set of isolated vertices. Since the size of
each connected component in G is bounded by 2, for any π, we have sw(π) =

∑
v∈VE Uπ−1(v)(π) +∑

v∈VI Uπ−1(v)(π) =
∑
v∈VE Uπ−1(v)(π) =

∑
(u,v)∈E(fπ−1(u)(π

−1(v)) + fπ−1(v)(π
−1(u))). Now, the

number of endpoints of edges is n′, |E| = n′/2. Moreover, for any π, M = {(π−1(u), π−1(v)) |
(u, v) ∈ E} is a matching of size n′/2 with weight sw(π) =

∑
(u,v)∈E(fπ−1(u)(π

−1(v))+fπ−1(v)(π
−1(u)) =∑

(p,q)∈M (fp(q) + fq(p)) in Kn. Thus, if there exists π′ such that sw(π′) > sw(π∗), there exists

a heavier matching of size n′/2 than Mn′/2. This contradicts that Mn′/2 is a maximum weight
matching of size n′/2.

By using a maximin matching algorithm proposed in [21] instead of Edmonds’s algorithm, we
can solve MUA in polynomial time. We apply that to the weighted and undirected complete graph
such that the weight of edge {p, q} ∈ EP is defined by min{fp(q), fq(p)}.

Theorem 2. MUA is solvable in polynomial time if each connected component of the seat graph
has at most two vertices.

Proof. Let Kn = (P, EP) be the weighted and undirected complete graph such that the weight of
edge (p, q) ∈ EP is defined by min{fp(q), fq(p)}. Also, let n′ be the number of endpoints of edges
in the seat graph. Next, we find a maximin matching M of size n′ in Kn, which is a matching of
size n′ such that the minimum weight of edges in M is maximum. It can be computed in time
O(m

√
n log n) [21]. Then we assign n′/2 pairs of agents in M to endpoints of an edge in G and

the rest of agents to isolated vertices.
In the following, we confirm that such an arrangement, denoted by π, is a maximin arrangement.

If the least utility on π is 0 and there is at least one isolate vertex, it is clearly a maximin
arrangement because an agent with the least utility is on an isolate vertex. Otherwise, an agent
with the least utility is on an edge. Here, we denote an agent with the least utility in π by pπl and
its utility by Upπl (π).

Suppose that π is not a maximin arrangement. Then there exists an assignment π′ and an
agent pπ

′

l with the least utility in π′ such that Upπ′l
(π′) > Upπl (π). We also denote an agent pπ

′

le

with the least utility among agents on edges in π′. Note that Upπ′le
(π′) ≥ Upπ′l

(π′). Let q′ be a

partner of pπ
′

le
on an edge. Since the seat graph consists of n′/2 edges, we have Upπ′le

(π′) = fpπ′le
(q′).

Here, we define M ′ = {(π′−1(u), π′−1(v)) | (u, v) ∈ E}. Then M ′ is a matching of size n′/2 in Kn.
Because the weight of an edge in Kn is defined as min{fp(q), fq(p)}, the least weight of an edge in
M ′ is Upπ′le

(π′) = fpπ′l
(q′). Since we have Upπ′le

(π′) > Upπl (π), this contradicts that M is a maximin

matching of size n′/2.

For EFA, we show several cases that it can be solved in polynomial time. The following theorem
can be shown by taking a perfect matching on the best-preference graph Gbest

FP
= (P, E′FP

), where

7



E′FP
= {{p, q} ∈ EFP

| fp(q) ≥ fp(q
′) for all q′ ∈ P \ {p} and fq(p) ≥ fq(p

′) for all p′ ∈ P \ {q}}.
Note that Gbest

FP
is a bidirectional graph and hence it can be regarded as an undirected graph.

Theorem 3. EFA can be solved in polynomial time if each connected component of the seat graph
is an edge.

Proof. We first observe that each agent must match to the most preferable agent on an edge. If
not so, an agent that does not match to the most preferable agent envies the agent that matches to
it. Thus, we consider the best preference graph Gbest

FP
= (P, E′FP

) where E′FP
= {(p, q) ∈ EFP

| q =
argmaxq′∈P\{p}fp(q)}. Note that there may exist a vertex (i.e., an agent) with dG′FP

(p) ≥ 2. Here,

we observe that p and q such that fp(q) ∈ E′FP
but fq(p) /∈ E′FP

are matched, q envies the agent
matched to the most preferable agent. Thus, any pair of agents p and q satisfiesfp(q), fq(p) ∈ E′FP

in any envy-free arrangement. Therefore, we consider the undirected graph H ′′ such that each
edge (p, q) corresponds to a bidirectional edge(p, q) ∈ E′FP

. It is easily seen that there is a perfect
matching in H ′′ if and only if there is an envy-free arrangement in G.

Theorem 4. Symmetric EFA can be solved in polynomial time if each connected component of the
seat graph has at most two vertices.

Proof. Let (G,P,FP) be an instance of symmetric EFA. We denote by E and I the sets of edges
and isolated vertices of G, respectively. By Theorem 3, we may assume that I 6= ∅. Now, if there
is an agent p such that fp(q) < 0 for all q ∈ P \ {p}, it has to be assigned to an isolated vertex
v ∈ I. If not so, p envies the agents assigned to isolated vertices. Thus, we can reduce the instance
(G,P,FP) to (G− v,P \ {p},FP\{p},). In the following, we assume that there is no such agent.

Let P0 = {p ∈ P | maxq∈P\{p} fp(q) = 0} and P+ = {p ∈ P | maxq∈P\{p} fp(q) > 0}. The
assumption above implies that P = P0 ∪ P+. Let H0 = (P0, E0) be the undirected graph with
E0 = {{p, q} | fp(q) = fq(p) = 0}. Similarly, let H+ = (P+, E+) be the undirected graph with
E+ = {{p, q} | fp(q) = fq(p) > 0}.

Let C be a connected component of H+. Observe that if C contains an edge {u, v} such that
u is assigned to an endpoint of e ∈ E and v is assigned to a vertex in I, then v envies the agent
assigned to the other endpoint of e. Since C is connected, this implies that in every envy-free
arrangement either all agents in C are assigned to E or all agents in C are assigned to I.

Observe also that if two agents with a negative mutual preference are assigned to an edge in
E, then they envy the agents assigned to I. Therefore, for each e ∈ E, the agents assigned to e
are adjacent in H0 or H+. Furthermore, if an agent p ∈ P+ is assigned to an endpoint of e ∈ E,
then all neighbors of p in H+ are assigned to endpoints of some edges in E, and thus the agent
assigned to the other endpoint of e has to be one of the most preferable ones to make p envy-free.

The discussion so far implies that there is an envy-free arrangement if and only E can be
completely packed with some connected components of H+ and some edges of H0 so that the
agents assigned to each e ∈ E are best-preference pairs.

For each component C of H+, we check whether C has a perfect matching that uses only the
best-preference edges. If C has no such matching, then it has to be packed into I. Let C1, . . . , Ch
be the connected components of H+ with such perfect matchings.

We now compute the maximum value k of the Maximum 0-1 Knapsack instance with h items
such that the weight and the value of the ith item are |Ci|/2 and the budget is m = |E|. This can
be done in time polynomial in n [25]. We can see that there is an envy-free arrangement if and only
if k+k′ ≥ m, where k′ is the size of a maximum matching of H0. An envy-free arrangement can be
constructed by first packing the best-preference perfect matchings in the components corresponding
to the chosen items into E, and then packing a matching of size m− k ≤ k′ in H0 into the unused
part of E.

Theorem 5. EFA can be solved in polynomial time if each connected component has at most two
vertices and the preferences are strict or positive.
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Proof. If the preferences are strict, each agent must be matched with the agent that it prefers
most. Thus, it is sufficient to check whether the most preferable agent of p likes p the most. Also,
if the preferences are positive, whenever there is an isolated vertex in the seat graph, then an agent
assigned to it envies other agents assigned to an edge. Thus, we can suppose that there is no
isolated vertex and apply Theorem 2.

4.2 Intractable case

First, we show that Stable Roommates with the complete preference list under exchange stability
can be transformed into STA. Let n be the number of agents in Stable Roommates. According
to the complete preference order of agent p in Exchange Stable Roommates, one can assign
values from 1 to n− 1 to the preferences of p to other agents in STA. Moreover, let G be the seat
graph consisting of n/2 disjoint edges. Then it is easily seen that there is a stable matching if and
only if there is a stable arrangement in G. Since Stable Roommates with complete preference
list under exchange stability is NP-complete [11, 12], STA is also NP-complete.

Theorem 6. STA is NP-complete even if the preferences are positive and each component of the
seat graph is of order two.

Then we prove that symmetric EFA is NP-complete even if each connected component has at
most three vertices.

Theorem 7. Symmetric EFA is NP-complete even if each connected component of the seat graph
has at most three vertices.

Proof. We give a reduction from Partition into Triangles: given a graph G = (V,E), deter-
mine whether V can be partitioned into 3-element sets S1, . . . , S|V |/3 such that each Si forms a
triangle K3 in G. The problem is NP-complete [25].

Given a graph G = (V,E), we construct the instance of EFA. First, we set P = V ∪ {x, y, z}.
Three agents x, y, z are called super agents. Then we define the preferences as follows. For p, q ∈
{x, y, z}, we set fp(q) = fq(p) = 2. For p ∈ {x, y, z}, q ∈ V , we set fp(q) = fq(p) = 1. Finally, for
p, q ∈ V , we set fp(q) = fq(p) = 1 if (p, q) ∈ E, and otherwise, fp(q) = fq(p) = 0. Clearly, the
preferences are symmetric. The seat graph H consists of |V |/3 + 1 disjoint triangles.

Given a partition S1, . . . , S|V |/3 of V , we assign them to triangles in the seat graph. Moreover,
we assign {x, y, z} to a triangle. Then the utilities of agents in V are 2 and the utilities of x, y, z
are 4, respectively. Since these utilities are maximum for all agents, this arrangement is envy-free.

Conversely, we are given an envy-free arrangement π.

Claim 7.1. In any envy-free arrangement π, {x, y, z} is assigned to the same triangle in H.

Proof. Suppose that x is assigned to a triangle Tx and y is assigned to another triangle Ty. If z
is assigned to Tx, y envies an the agent p in V assigned to Tx because the utility of y is increased
from 2 to 4 by swapping y and p. Similarly, if z is assigned to another triangle Tz, y envies the
agent in V assigned to Tx because the utility of y is increased from 2 to 3 by swapping y and p.
Thus, {x, y, z} must be assigned to the same triangle. y

Then, if three agents p, q, w ∈ V such that (p, q) /∈ E are assigned to the same triangle in H, p
envies x because the utility of p is increased from 1 to 2 by swapping p and x. Since π is envy-free,
for each triangle assigned to p, q, r ∈ V , they satisfy (p, q), (q, r), (r, p) ∈ E. This implies that there
is a partition S1, . . . , S|V |/3 of V in G.

By the definition, if the seat graph is a complete graph, the arrangement is all arrangements
are equivalent. However, if the seat graph consists of a clique and an independent set, EFA is
NP-complete. The reduction is from k-Clique [25].
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Theorem 8. EFA is NP-complete even if the seat graph consists of a clique and an independent
set.

Proof. We give a reduction from k-clique. We are given a graph G = (V,E). For each e ∈ E,

we use the corresponding agent pe. Also, for each v ∈ V , we make K agents p
(1)
v , . . . , p

(M)
v . The

number of agents is |E| + M |V |. Then we define the preferences of agents. For pe, we define

fpe(p
(1)
u ) = fpe(p

(1)
v ) = 1 if e = (u, v), and otherwise fpe(p

(1)
u ) = fpe(p

(1)
v ) = 0. For each v ∈ V

and i, j, we set f
p
(i)
v

(p
(j)
v ) = f

p
(j)
v

(p
(i)
v ) = 1. Finally, we define the seat graph G′ = (I ∪ C,E′)

as a graph consisting of an independent set I of size Mk + k(k − 1)/2 and a clique C of size
|E|+ (|V | − k)M − k(k − 1)/2.

In the following, we show that there is a clique of size k in G if and only if there is an envy-free

arrangement in G′. Given a clique of size k, we assign all agents p
(i)
v and pe corresponding to a

clique to vertices in I. Since the number of such agents is Mk + k(k − 1)/2, the set of vertices
not having a agent in G′ is C. Thus, we assign other agents to vertices in C. Because the utility
of an agent on I does not increase even if he is swapped for any agent on C, every agent on I is
envy-free. Moreover, an agent on C is envy-free because the utility is at least 1 and C is a clique.
Therefore, such an arrangement is envy-free.

Conversely, we are given an envy-free arrangement π. First, we observe the following fact.

Fact 1. If some p
(i)
v is on I, all the p

(j)
v for j 6= i must be on I.

Otherwise, p(i) envy some agent on C because the utility increases by moving to C. Also, we
have the following fact.

Fact 2. If pe where e = (u, v) is on I, all the p
(i)
u and p

(i)
v must be on I.

If not so, p
(1)
u is on C because every p

(i)
u must be on C by Fact 1. However, this implies that

pe envies some agent on C. This is a contradiction.

Now, since |I| = Mk + k(k − 1)/2, at most Mk p
(i)
v ’s are on I from Fact 1. In other words,

there are at most k vertices in V such that p
(i)
v is on I for all i. The remaining vertices in I have pe.

From Facts 1 and 2, for every e = (u, v) ∈ E such that pe ∈ I, all p
(i)
u and p

(i)
v for all i must be on

I. Because the number of pe’s on I is at least k(k− 1)/2, I must have exactly k(k− 1)/2 pe’s and

Mk p
(i)
v ’s such that v is an endpoint of e, so that π is envy-free. This implies that {v | p(1)

v ∈ I} is
a clique of size k in G.

Finally, we show that EFA is NP-complete even if both the preference graph and the seat graph
are restricted. The reduction is from 3-Partition [25].

Theorem 9. EFA is NP-complete even if the preference graph is a directed acyclic graph (DAG)
and the seat graph is a tree.

Proof. We give a reduction from 3-Partition. The problem is strongly NP-complete [25] and
defined as follows: Given a set of integers A = {a1, . . . , a3n}, find a partition (A1, . . . , An) such
that |Ai| = 3 and

∑
a∈Ai a = B for each i where B =

∑
a∈A a/n. We call such a partition a

3-partition. First, we prepare n agents PT = {pt1 , . . . , ptn} corresponding to the resulting triples
and 3n agents PA{pa1 , . . . , pa3n} corresponding to elements. Moreover, we use an agent pr, called
a root agent. Then we define the preferences and the seat graph as in Figure 2. For each ptj , we set
fptj (pr) = B and fpt(pa) = a. The remaining preference from p to q is 0. Note that the preference

graph is a DAG. Then we define the seat graph G = (V,E), which is a tree with the root vertex
vr. The root vertex has n children and its children have exactly three children. The number of
vertices is 4n+ 1.

Given a 3-partition (A1, . . . , An), we assign root agent pr to vr. Moreover, for three elements
in Ai, we assign the three corresponding agents to leaves with the same parent in G. Finally, we
assign pt to an inner vertex in G arbitrarily.
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Figure 2: The preference graph (left) and the seat graph in the proof of Theorem 9

We show that this arrangement, denoted by π, is envy-free. By the definitions of preferences,
the utilities of pr and pa ∈ PA are 0 for any arrangement. Thus, they are envy-free. Each pt ∈ PT
is also envy-free because every utility of pt is B2 +B and the preferences of pt to agents in PA∪{pr}
are identical.

Conversely, we are given an envy-free arrangement π. Suppose that pr is not assigned to the
root vertex vr. Then the degree of π(r) is at most 4. Since there is pt ∈ PT \ N(π(r)) and
Upt(π) < B, pt envies a neighbor of pr. Therefore, pr must be assigned to vr.

If an agent pt in PT is assigned to a leaf in G, pt does not have pr as a neighbor. Thus, the
utility of pt is less than B and pt envies a neighbor of pr. Since the number of inner vertices is n,
every agent in PA must be assigned to a leaf. If there is pt ∈ PT with utility more than 2B, there is
p′t ∈ PT with utility less than 2B since

∑
a∈A a = nB and fptj (pr) = B for every ptj . In this case,

p′t envies pt. Therefore, the utility of each agent in PT is exactly 2B. Because fptj (pr) = B for

every ptj , if we partition A according to neighbors of pt, the resulting partition is a 3-partition.

Next, we show that MWA and MUA are NP-complete for several graph classes by reductions
from Spanning Subgraph Isomorphism. Here, we give the definition of Spanning Subgraph
Isomorphism as follows: given two graphs G = (V (G), E(G)) and H = (V (H), E(H)) where
|V (G)| = |V (H)|, determine whether there is a bijection g : V (G)→ V (H) such that (g(u), g(v)) ∈
E(H) for any (u, v) ∈ E(G).

Spanning Subgraph Isomorphism is NP-complete even if G is a path and a cycle by a
reduction from Hamiltonian Path and Hamiltonian Cycle [25]. Moreover, it is NP-complete if
G is proper interval, trivially perfect, split, and bipartite permutation [31]. WhenG is disconnected,
it is also NP-complete even if G is a forest and a cluster graph whose components are of size
three [25, 5]. Here, if G is in some graph class G in Spanning Subgraph Isomorphism, we call
the problem Spanning Subgraph Isomorphism of G. Then we give the following theorems.

Theorem 10. If Spanning Subgraph Isomorphism of G is NP-complete, then MWA on G is
NP-hard even if the preferences are binary and symmetric.

Proof. Given an instance of Spanning Subgraph Isomorphism (G,H), we construct an instance
of MWA as follows. Let P = V (H) be the set of agents and G be the seat graph. Then we set the
preferences of agents as follows:{

fp(q) = fq(p) = 1 if (p, q) ∈ E(H)

fp(q) = fq(p) = 0 otherwise.

That is, the preference graph is H. By the definition, the preferences of agents are symmetric. We
complete the proof by showing that there is a bijection g such that (g(u), g(v)) ∈ E(H) for any
(u, v) ∈ E(G) if and only if there exists an arrangement π with social welfare 2|E(G)| in G.
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Let π = g−1. Since bijection g satisfies that (g(u), g(v)) ∈ E(H) for any (u, v) ∈ E(G)
and fg(u)(g(v)) = fg(v)(g(u)) = 1 for (g(u), g(v)) ∈ E(H), there exists (u, v) in E(G) for any
p, q ∈ P(= V (H)) such that π(p) = u, π(q) = v, and fp(q) = fq(p) = 1. Thus, Up(π) =∑
v∈N(π(p)) fp(π

−1(v)) = dG(π(p)) for any p ∈ P(= V (H)). Finally, we have the social welfare

sw(π) =
∑
p∈P Up(π) =

∑
p∈P dG(π(p)) =

∑
v∈V (G) dG(v) = 2|E(G)|.

Conversely, we are given π with social welfare 2|E(G)| in G. Let g = π−1. Suppose that there is
an edge (u, v) ∈ E(G) such that (π−1(u), π−1(v)) /∈ E(H). Then, it holds that fπ−1(u)(π

−1(v)) =
fπ−1(v)(π

−1(u)) = 0 by the definition of the preferences. Thus, there exists an agent p = π−1(u) ∈
P such that Up(π) < dG(π(p)) since it holds that Up(π) ≤ dG(π(p)) for any p ∈ P. This implies
that sw(G) <

∑
p∈P dG(π(p)) = 2|E(G)|. This is a contradiction. Thus, there exists a bijection

g = π−1 such that (π−1(u), π−1(v)) ∈ E(H) for any (u, v) ∈ E(G). This completes the proof.

By assuming that the seat graph G is a regular graph, we obtain the following theorem.

Theorem 11. If Spanning Subgraph Isomorphism of regular graphs is NP-complete, then
MUA on regular graphs is NP-hard even if the preferences are binary and symmetric.

Proof. We give a reduction from Spanning Subgraph Isomorphism to MUA. The setting is
the same as MWA. Let G be an r-regular graph. Then we show that there is a bijection g such
that (g(u), g(v)) ∈ E(H) for any (u, v) ∈ E(G) if and only if there exists an arrangement π such
that the least utility of an agent is r in G. Given a bijection g such that (g(u), g(v)) ∈ E(H)
for any (u, v) ∈ E(G), we set π = g−1. Since bijection g satisfies that (g(u), g(v)) ∈ E(H) for
any (u, v) ∈ E(G) and fg(u)(g(v)) = fg(v)(g(u)) = 1 for (g(u), g(v)) ∈ E(H), there exists (u, v)
in E(G) for any p, q ∈ P(= V (H)) such that π(p) = u, π(q) = v, and fp(q) = fq(p) = 1. Thus,
Up(π) =

∑
v∈N(π(p)) fp(π

−1(v)) = r for any p ∈ P(= V (H)) since G is r-regular.
Conversely, we are given an arrangement π such that the least utility of an agent is r in G. Let

g = π−1. Suppose that there is an edge (u, v) ∈ E(G) such that (π−1(u), π−1(v)) /∈ E(H). Then, it
holds that fπ−1(u)(π

−1(v)) = fπ−1(v)(π
−1(u)) = 0 by the definition of the preferences. Thus, there

exists an agent p = π−1(u) ∈ P such that Up(π) < r since it holds that Up(π) ≤ dG(π(p)) for any
p ∈ P. This is contradiction. Thus, there exists a bijection g = π−1 such that (π−1(u), π−1(v)) ∈
E(H) for any (u, v) ∈ E(G).

Corollary 1. MWA and MUA are NP-hard on cycles and cluster graphs whose components are
of order three. Furthermore, MWA is NP-hard on paths and linear forests whose components are
paths of length three. These hold even if the preferences are binary and symmetric.

Moreover, Spanning Subgraph Isomorphism cannot be solved in time no(n) unless ETH is
false [16]. Thus, we also have the following result.

Corollary 2. MWA cannot be solved in time no(n) unless ETH is false.

5 Parameterized Complexity

MWA is NP-hard even on trees (i.e., treewidth 1), which implies that it admits no parameterized
algorithm by treewidth if P 6=NP. Thus we consider to design an algorithm parameterized by a
larger parameter: vertex cover number.

Theorem 12. MWA can be solved in time O(nγγ!(n− γ)3) where γ is the vertex cover number of
the seat graph.

Proof. Given an instance (G,P,FP) of MWA, we first compute a minimum vertex cover S of size
γ in time O(1.2738γ + γn) [14]. Then we guess γ agents that are assigned to vertices in S. Let
P′ be the set of agents assigned to S. Next, we guess all arrangements that assigns P′ to S. The
number of candidates of arrangements is O(nγγ!).
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For each candidate, we consider how to assign the rest of the agents in P\P′ to V \S. Since V \S
is an independent set, we can compute the utility of an agent p ∈ P \P′ when p is assigned to v ∈
V \S. Note that p does not affect the utility of other agents in P\P′. Moreover, we can also compute
the increase of the utilities of neighbors of p when p is assigned to v ∈ V \S. Then we observe that
the increase of the social welfare when p is assigned to v ∈ V \S is the sum of the utility of an agent
p and the sum of the utilities of neighbors of p, that is,

∑
u∈NG(v)(fp(π

−1(u)) + fπ−1(u)(p)). Thus,

by computing a maximum weight perfect matching on a complete bipartite graph (P\P′, V \S;E′)
with edge weight wpv =

∑
u∈NG(v)(fp(π

−1(u)) + fπ−1(u)(p)) for every candidate, we can obtain a
maximum arrangement in G.

Since we can compute a maximum weight perfect matching in time O((n− γ)3) [20], the total
running time is O(nγγ!(n− γ)3).

By Proposition 2, we obtain the following corollary.

Corollary 3. Symmetric STA can be solved in time O(nγγ!(n − γ)3) where γ is the vertex cover
number of the seat graph.

Then we give the tight lower bound for MWA parameterized by the vertex cover number.

Theorem 13. MWA is W[1]-hard parameterized by the vertex cover number γ of the seat graph
even if the preferences are binary. Furthermore, there is no f(γ)no(γ)-time algorithm unless ETH
fails where f is some computational function.

Proof. We give a parameterized reduction from k-Clique: given a graph G = (V,E) and an
integer k, determine whether there exists a clique of size k in G. The problem is W[1]-complete
parameterized by k and admits no f(k)no(k)-time algorithm unless ETH fails [17, 13].

Given an instance (G = (V,E), k) of k-Clique, we construct the seat graph G′ that consists
of a clique {w1, w2, . . . , wk} of size k and n − k isolated vertices wk+1, . . . , wn. Clearly, the size
of minimum vertex cover is k − 1. Let P = V . Then we set the preferences of any pair of agents
u, v ∈ P by fu(v) = fv(u) = 1 if (u, v) ∈ E, and otherwise fu(v) = fv(u) = 0. Note that the
preferences are binary.

Finally, we show that k-Clique is a yes-instance if and only if there exists an arrangement π
with social welfare k(k − 1) in G′. Given an instance (G, k) of k-Clique, we give indices to each
vertex v1, v2, . . . , vn arbitrarily. Given a k-clique, we denote it by C = {v1, v2, . . . , vk} without
loss of generality. Then we set π(vi) = wi for any i ∈ {1, . . . , n}. Since (u, v) ∈ E for any pair of
u, v ∈ C, we have Uvi(π) = k − 1 for i ∈ {1, . . . , k}. For each i ∈ {k + 1, . . . , n}, wi is an isolated
vertex, and hence Uvi(π) = 0. Therefore, sw(π) = k(k − 1) + 0 = k(k − 1).

For the reverse direction, we are given an arrangement π with social welfare k(k − 1). Since
wk+1, . . . , wn are isolated vertices, Uπ−1(wi)(π) = 0 for i ∈ {k + 1, . . . , n}. Moreover, because the
preferences are binary, Uπ−1(wi)(π) ≤ k − 1 for i ∈ {1, . . . , k}. Thus, any agent p = π−1(wi)
for i ∈ {1, . . . , k} satisfies that Uπ−1(wi)(π) = k − 1 in order to achieve sw(π) = k(k − 1). This
implies that (π−1(wi), π

−1(wj)) ∈ E for any pair of wi, wj where i, j ∈ {1, . . . , k}. Therefore,
{π(w1), . . . , π(wk)} is a clique of size k.

For MUA, we show that it is weakly NP-hard even on a graph of vertex cover number 2, which
again implies that it does not admit any parameterized algorithms by vertex cover number unless
P=NP. We give a reduction from Partition: given a finite set of integers A = {a1, a2, . . . , an}
and W =

∑n
i=1 ai, determine whether there is partition (A1, A2) of A where A1 ∪ A2 = A and∑

a∈A1
a =

∑
a∈A2

a = W/2. The problem is weakly NP-complete [25].

Theorem 14. MUA is weakly NP-hard even on a graph with γ = 2.

Proof. We are given a set of integers A = {a1, a2, . . . , an}. We define two set of agents A =
{pa1 , . . . , pan} and C = {c1, c2}. Each agent in A corresponds to an element in A. For pai ∈ A,
we define fpai (q) = W/2 if q ∈ C, and otherwise fpai (q) = 0. Moreover, for c ∈ C, we define

13



fc(q) = ai if q ∈ A, and otherwise fc(q) = 0. Finally, we define the seat graph G as a graph
consisting of S1 and S2, where Si is a star of size n/2 + 1. Note that the vertex cover number of
G is 2.

In the following, we show that there is a partition (A1, A2) where
∑
a∈A1

a =
∑
a∈A2

a = W/2
if and only if there is an arrangement such that the least utility is at least W/2 in G. Given a
partition (A1, A2), let A1 and A2 be the corresponding sets of agents in A. We assign agents in
Ai to leaves of Si and ci to the center of Si for i ∈ {1, 2}. In the arrangement, each utility is W/2.

Conversely, we are given an arrangement π such that the least utility is at least W/2. If p ∈ A
is assigned to the center of a star, at least one agent in A is adjacent to only p. Then its utility is 0.
Thus, ci ∈ C must be assigned to the center of Si. By the definition of the preferences, the utilities
of c1 and c2 are exactly W/2. Thus, two sets of agents in the leaves of S1 and S2 correspond to
A1 and A2.

Similarly, we show that (symmetric) EFA is weakly NP-hard even on a graph with vertex cover
number 2. The reduction is from Partition and the reduced graph is the same as the one in the
proof of Theorem 14. The preferences are defined as fp(q) = fq(p) = ai if p = pai ∈ A and q ∈ C,
and otherwise fp(q) = fq(p) = 0.

Theorem 15. EFA is weakly NP-hard even if the preferences are symmetric and the vertex cover
number of the seat graph is 2.

6 Parameterized Complexity of Local Search

As mentioned in Section 1.2, finding a stable solution under symmetric preferences by swapping two
agents iteratively is PLS-complete. In this section, we investigate the parameterized complexity of
local search of Stable Arrangement by considering Local k-STA, which determines whether a
stable arrangement can be obtained from any given arrangement by k swaps.

Given a set of agents P with preferences FP , a graph G with |V (G)| = |P|, an arrangement
π : P→ V (G), and an integer k, Local k-STA asks whether there is a stable arrangement π′ that
can be obtained from π in at most k swaps.

Theorem 16. Local k-STA is W[1]-hard parameterized by k even if the preferences are symmetric.

Proof. We give a reduction from the Independent Set problem which is known to be W[1]-
complete [17]. Let (H, k) be an instance of Independent Set where H is a graph on n vertices
and k an integer, the parameter, and the question is whether H has an independent set of size k.
Throughout the following, for convenience we will assume that n > k + 2.

We will construct an instance I = (P,FP, G, π, k) of Local k-STA such that I is a Yes-instance
if and only of H has an independent set of size k.

We construct a set of n + 3k + 5 agents P which is partitioned into the following subsets:
P = C1∪C2∪V∪{x1}∪Y∪{x2}. We have that |C1| = k, |C2| = k+2, and |Y| = k+1. Finally,
V = V (H) and we may refer to elements of the set V (H) = V both as vertices of H and of agents
of P. The definition of the preferences FP is given in Table 1. Note that they are symmetric.

We construct a graph G as follows. G consists of one clique on 2k + 2 vertices whose vertices
are C1∪C2 with |C1| = k and |C2| = k+2, one star on n+1 vertices whose center is x1 and whose
leaves are called VH , one star on k + 2 vertices whose center is x2 and whose leaves are called Y .

We now let π be a map that maps bijectively C1 to C1, C2 to C2, V to VH , Y to Y , x1 to x1

and x2 to x2. This finishes the construction of our instance I = (P,FP, G, π, k). See the instance
in Figure 3.

To prove the correctness of the reduction, we first show that given an independent set S in H of
size k, we can swap the assignments (in π) of the agents corresponding to S with the agents in C1

to obtain a stable arrangement π′. Conversely, we will show that if there is a stable arrangement π′

that is obtained from π in k swaps, then π′ must have been obtained by swapping the assignments
of the agents in C1 with some subset S ⊆ V which corresponds to an independent set in H.
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q ∈
C1 C2 V Y x1 x2

C1 0 −n −1 0 1 −1
C2 −n 0 1 1 −n −n

p ∈ V −1 1

{
−n, if pq ∈ E(H)
0, otherwise

0 −1 0

Y 0 1 0 0 −n 1
x1 1 −n −1 −n — −n
x2 −1 −n 0 1 −n —

Table 1: The preferences FP given in the proof of Theorem 16. For p, q from the corresponding
sets, the entry shows fp(q).

· · · VH

x1

V

x1

C1

C2

C2

C1
...

Y

x2

Y
x2

Figure 3: Illustration of the instance of Local k-STA constructed in the reduction of Theorem 16.
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Claim 16.2. If H has an independent set S of size k, then (P,FP, G, π, k) is a Yes-instance.

Proof. Let π′ be the arrangement obtained from π by swapping the assignments of the agents in S
with the assignments of the agents in C1. Since |S| = k, it is clear that π′ can be reached from π by
k swaps. We show that π′ is a stable arrangement. Suppose not, then there is a blocking pair (p, q)
for π′, i.e. if π′′ is the (p, q)-swap arrangement of π′, then Up(π

′′) > Uq(π
′) and Uq(π

′′) > Uq(π
′).

We conduct a case analysis on which sets of the above described partition of P contain p and
q. Throughout the following, we denote by π′′ a (p, q)-swap arrangement of π′ where p and q are
defined depending on the below cases.

Case 1 (p ∈ C1). Note that π′(p) ∈ VH : in π, the agents in C1 were mapped to C1 and π′ is
obtained from π by swapping the assignment of the agents in C1 with the agents in S ⊆ V
which are mapped to VH . This implies that Up(π

′) = 1. As x1 is the only agent to which p
has a positive preference, this is the maximum utility of p among all arrangements.

Case 2 (p ∈ C2). Note that π′(p) ∈ C2. Furthermore, π′(p) has k neighbors to which an element
of V is mapped, and k+1 neighbors to which an element of C2 is mapped. Hence, Up(π

′) = k.
We have that for any q ∈ P \ (V ∪Y ∪ {p}), fp(q) ≤ 0, and for q ∈ V ∪Y, fp(q) = 1, so in
order to increase the utility of p in any swap arrangement of π′, we would have to map p to
a vertex that has more than k + 1 neighbors to which an element of V ∪Y is mapped.

There are two such possibilities, namely either q = x1 or q = x2. Suppose q = x1. Note that
π′(x1) = x1, and x1 has k neighbors to which an agent from C1 is mapped, and n−k neighbors
to which an agent from V is mapped. Hence, Uq(π

′) = k− (n− k) = 2k−n. As π′′(q) ∈ C2,
Uq(π

′′) = −(k+1)n−k = −(k+2)n. As Uq(π
′) = 2k−n > −(k+2)n = Uq(π

′′), (p, q) is not
a blocking pair for π′. If q = x2, then we observe that Uq(π

′) = k+ 1 > −(k+ 1)n = Uq(π
′′),

so (p, q) is not a blocking pair for π′ either.

Case 3.1 (p ∈ V, p ∈ S). In this case, π′(p) ∈ C1, and Up(π
′) = k+ 2: π′(p) has k+ 2 neighbors

to which agents in C2 are mapped, and to the remaining neighbors of π′(p), elements of S
are mapped. Since S is an independent set, the latter contributes with a total value of 0 to
Up(π

′). We have that π′ in fact achieves the maximum utility for p, among all arrangements:
The only agents to which p has a positive preference are the ones in C2, and in π′, all agents
in C2 are mapped to neighbors of π′(p).

Case 3.2 (p ∈ V, p /∈ S). We observe that if q ∈ C1 ∪ (V \ S), then the utility of p compared to
the resulting swap arrangement does not change, since in this case, π′(p) ∈ VH 3 π′(q). The
remaining ones are as follows:

• If q ∈ S, then Uq(π
′) = k + 2 > −1 = Uq(π

′′).

• If q ∈ C2, then Uq(π
′) = k > −n = Uq(π

′′).

• If q ∈ Y, then Uq(π
′) = 1 > −n = Uq(π

′′).

• If q = x1, then Up(π
′) = −1 > −k ≥ Up(π′′).

• If q = x2, then Uq(π
′) = k + 1 > −n = Uq(π

′′).

Case 4 (p ∈ Y). We have that Up(π
′) = 1, as x2 = π′−1(x2) is the only neighbor of π′(p). There

is only one way to increase the utility of p in one swap. It is to map p to a vertex to whose
neighbors agents of C2 are mapped. This means that we would have to swap p with some
q ∈ C2 ∪ S. However, if q ∈ C2, we would have that Uq(π

′) = k > −n = Uq(π
′′) in the

(p, q)-swap arrangement π′′ for π′. Moreover, if q ∈ S, then π′(q) ∈ C1. Then we would have
that Uq(π

′) = k + 2 > 0 = Uq(π
′′) in the (p, q)-swap arrangement π′′.

Case 5 (p ∈ x1). We observe that Ux1(π′) = 2k−n. In the (p, q)-swap arrangement π′′, we have:

• If q ∈ S, Up(π
′) = 2k − n > −n(k + 2)− (k − 1) = Up(π

′′).
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• If q ∈ V \ S, Uq(π
′) = −1 > −k − 1 ≥ Uq(π′′).

• If q ∈ C1, Uq(π
′) = 1 > 1− (n− k) = Uq(π

′′).

• If q ∈ C2, Up(π
′) = 2k − n > −n(k + 1)− k = Up(π

′′).

• If q ∈ Y, Up(π
′) = 2k − n > −n = Up(π

′′).

• If q ∈ x2, Up(π
′) = 2k − n > −n(k + 1) = Up(π

′′).

Case 6 (p ∈ x2). We observe that Ux2
(π′) = k + 1, and this is the maximum utility that x2 can

achieve.

We have shown that there is no blocking pair in π′, so it is indeed a stable arrangement. y

We now prove the converse direction of the correctness of this reduction. Suppose (P,FP, G, π, k)
is a Yes-instance of Local k-STA , and let π′ be an arrangement obtained from π in k swaps such
that π′ is stable. We will show that for π′ to be stable, these k swaps need to swap the agents of
C1 with k agents S in V, and furthermore the agents in S need to correspond to an independent
set in H.

First, we immediately observe that since |C2| = k+ 2, and for each p ∈ C2, π(p) ∈ C2, at least
two agents of C2 remain assigned to a vertex in C2 by π′. For a similar reason, namely |Y| = k+1,
at least one agent in Y is still mapped to a vertex in Y .

Observation 16.3. There are two distinct p1, p2 ∈ C2 such that π′(p1) ∈ C2 and π′(p2) ∈ C2.
Furthermore, there is at least one agent p ∈ Y such that π′(p) ∈ Y .

Next, we show that in π′, neither x1 nor x2 can be mapped to a vertex in the clique C1 ∪ C2.

Claim 16.4. π′(x1) /∈ C1 ∪ C2 and π′(x2) /∈ C1 ∪ C2.

Proof. Suppose π′(x1) ∈ C1 ∪ C2. First, we have that Ux1(π′) ≤ k − 2n, since k is the maximum
utility that x1 can have in any arrangement, and by Observation 16.3, there are at least two agents
from C2 that are mapped to neighbors of π′(x1). Again by Observation 16.3, there is one agent
y ∈ Y that is still mapped to a vertex in Y . That vertex has only one neighbor (the center of
the star to which the vertices in Y are leaves), so Uy(π′) ≤ 1. Now, if π′′ is the (x1, y)-swap
arrangement of π′, then Ux1(π′′) ≥ −n (π′′(x1) having only one neighbor) and Uy(π′′) ≥ 2: x1 is
not mapped to a neighbor of y in π′′, and y has non-negative preferences to the remaining agents;
by Observation 16.3, π′′(y) has at least two neighbors to which an agent of C2 is mapped. So,
Ux1

(π′′) ≥ −n > k − 2n ≥ Ux1
(π′), as n > k, and Uy(π′′) ≥ 2 > 1 ≥ Uy(π′), hence (x1, y) is a

blocking pair in π′, a contradiction to π′ being stable.
Similarly, if π′(x2) ∈ C1 ∪ C2 and π′′ is the (x2, y)-swap arrangement of π′, then we have that

Ux2(π′′) ≥ −n > k − 2n ≥ Ux2(π′) and Uy(π′′) ≥ 2 > 1 ≥ Uy(π′), so (x2, y) is a blocking pair. y

Claim 16.5. There is no agent p ∈ C1 such that π′(p) ∈ C1 ∪ C2.

Proof. Suppose there is. Then we have that Up(π
′) ≤ −2 · n, since by Observation 16.3, p has

at least two neighbors to which an agent of C2 is mapped, and x1 is the only agent that p has a
positive preference to, and x1 is not assigned to a neighbor of π′(p) by Claim 16.4.

By Observation 16.3, there is an agent y ∈ Y with π′(y) ∈ Y . We have that Uy(π′) ≤ 1. Now,
(p, y) is a blocking pair of π′: let π′′ be the (p, y)-swap arrangement of π′. Then, Up(π

′′) ≥ −n, since
π′′(p) ∈ Y which only has one neighbor x2. Furthermore we can observe that Uy(π′′) ≥ 2: π′′(y)
has at least two neighbors to which agents of C2 are mapped by Observation 16.3, x1 is the only
agent to which y has a negative preference, and Claim 16.4 ensures that π′′(x1) = π′(x1) /∈ C1∪C2.
Hence, Up(π

′′) ≥ −n > −2 · n ≥ Up(π′), and Uy(π′′) ≥ 2 > 1 ≥ Uy(π′). y

Claim 16.5 yields the following information about the swaps that were executed to obtain π′

from π.
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Claim 16.6. The k swaps executed to obtain π′ from π are (p1, c1), (p2, c2), . . ., (pk, ck), where

1. C1 = {c1, . . . , ck}, and for all i ∈ [k], pi /∈ C1 ∪C2.

2. for all i, j ∈ [k] with i 6= j, pi 6= pj.

Proof. Part 1 is immediate from Claim 16.5 and the fact that |C1| = k: if there was one swap that
did not remove an agent in C1 from C1 ∪C2, then for at least one agent c ∈ C1, π′(c) ∈ C1 ∪C2.
For Part 2, suppose there are i, j ∈ [k] with i 6= j such that pi = pj =.. p, and suppose wlog. that
i < j. Then, after swapping c1 and p, we have that p is mapped to a vertex in C1. Then, when
swapping p and c2, c2 is still mapped to a vertex in C1. Since by Part 1, each agent is affected by
at most one swap, we have that π′(c2) ∈ C1 ∪ C2, a contradiction with Claim 16.5. y

Now, combining Claim 16.6 with 16.4 tells us that x1 and x2 remain unaffected by the k swaps
that yielded π′.

Observation 16.7. π′(x1) = x1 and π′(x2) = x2.

Claim 16.6 ensures that each agent is affected by at most one swap and that each swap affects
one unique agent in C1. Furthermore, it rules out that the agents of C1 are swapped with agents
from C1 ∪C2, and Observation 16.7 rules out that they are swapped with x1 or x2. As our goal
is to show that they are swapped with agents from V, the only case that remains to be ruled out
is when they are swapped with an agent from Y.

Claim 16.8. There is no i ∈ [k] such that pi ∈ Y.

Proof. Suppose there is, and let (pi, ci) be the corresponding swap. Let π∗ be the (pi, ci)-swap
arrangement of π and note that by Claim 16.6 and Observation 16.7, Uci(π

∗) = Uci(π
′) = −1. As

|V| > k, there is at least one agent q ∈ V that π′ assigns to VH . Again by Observation 16.7, we have
that Uq(π

′) = −1. Let π′′ be the (ci, q)-swap arrangement of π′. Then, Uci(π
′′) = 1 > −1 = Uci(π

′)
and Uq(π

′′) = 0 > −1 = Uq(π
′), so (ci, q) is a blocking pair for π′, a contradiction with π′ being

stable. y

Claim 16.9. If π′ is stable, then H contains an independent set of size k.

Proof. The above claims and observations lead us to the conclusion that the agents p1, . . . , pk
(in the notation of Claim 16.6) form a size-k subset, say S, of V = V (H). We argue that if
π′ is stable, then S is indeed an independent set in H. Suppose for the sake of a contradiction
that there is an edge between pi and pj in H for some i 6= j. Then, Upi(π

′) ≤ (k + 2) − n.
Consider again the agent y ∈ Y from Observation 16.3 which is such that π′(y) ∈ Y . We have
that Uy(π′) = 1 (together with Observation 16.7). Now let π′′ be the (pi, y)-swap arrangement
of π′. Then, Upi(π

′′) = 0 > (k + 2) − n = Upi(π
′) (as by our initial assumption, n > k + 2) and

Uy(π′′) = k + 2 > 1 = Uy(π′), so (pi, y) is a blocking pair for π′. y

This concludes the correctness proof of the reduction. We observe that |P| = n+3k+5 = O(n),
|FP| = O(n2), |V (G)| = |P| = O(n), and |E(G)| = O(n + k2) (G contains two stars with n and
k+1 leaves, respectively and a clique on O(k) vertices). So, the size of the instance of Local k-STA
is O(n2) and the parameter k remained unchanged, which completes the proof.

We observe that the structure of the instance of Local k-STA is in fact quite restricted and
yields the following stronger form of Theorem 16. First, in the preferences of the Local k-STA
instance, we only have 4 different values of preferences. Second, the seat graph G obtained in the
reduction above has a vertex cover of size 2k+3: take 2k+1 vertices from C1∪C2 and the vertices
x1 and x2. This means that even including the vertex cover number γ of the seat graph in the
parameter, the problem remains W[1]-hard.

18



Corollary 4. Local k-STA remains W[1]-hard parameterized by k+ γ where γ denotes the vertex
cover number of the seat graph, even when the number of preference values is 4.

Moreover, it is not difficult to see that Local k-STA can be solved in time nO(k) by brute force.
We simply guess all sets of k pairs of agents, swap their assignments, and then verify whether or
not the resulting assignment has a blocking pair. On the other hand, the value of the parameter
k + γ in the above reduction is linear in the value of the parameter of the Independent Set
instance. Since Independent Set does not have an no(k) time algorithm unless ETH fails [13],
this implies that the runtime of this naive brute force algorithm is in some sense tight under ETH
— even when the vertex cover number of the seat graph can be considered another component of
the parameter, and even when we only have 4 different choices for values of preferences.

Corollary 5. Local k-STA can be solved in time nO(k), and there is no no(k+γ) time algorithm,
where γ denotes the vertex cover number of the seat graph, even when the number of preference
values is 4, unless ETH is false.

7 Conclusion

In this paper, we embark a new model of hedonic games, called Seat Arrangement. The
proposed model is powerful enough to treat real-world topological preferences. The results of the
paper are summarized as follows: (1) We obtained basic results for the stability and fairness. In
particular, we proved that the PoF is unbounded for the nonnegative case and we gave a upper
bound d̃(G) and an almost tight lower bound d̃(G)−1/4 for the binary case. (2) We presented the
dichotomies of computational complexity of four Seat Arrangement problems in terms of the
order of components. (3) We proved that MWA can be solved in time nO(γ) where γ is the vertex
cover number whereas it is W[1]-hard for γ and cannot be solved in time no(n) and f(γ)no(γ),
respectively, under ETH. Furthermore, MUA and symmetric EFA are weakly NP-hard even on
graphs with γ = 2. (4) We proved that Local k-STA is W[1]-hard when parameterized by k + γ
and cannot be solved in time no(k+γ) under ETH, whereas it can be solved in time nO(k).
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[4] V. Bilò, A. Fanelli, M. Flammini, G. Monaco, and L. Moscardelli. Nash stable outcomes
in fractional hedonic games: Existence, efficiency and computation. J. Artif. Intell. Res.,
62:315–371, 2018.

[5] H. L. Bodlaender, T. Hanaka, Y. Okamoto, Y. Otachi, and T. C. van der Zanden. Subgraph
isomorphism on graph classes that exclude a substructure. In CIAC 2019, pages 87–98, 2019.

[6] A. Bogomolnaia and M. O. Jackson. The stability of hedonic coalition structures. Games and
Economic Behavior, 38(2):201 – 230, 2002.

[7] F. Brandt, V. Conitzer, U. Endriss, J. Lang, and A. D. Procaccia. Handbook of Computational
Social Choice. Cambridge University Press, New York, NY, USA, 1st edition, 2016.

19



[8] S. Brânzei and K. Larson. Coalitional affinity games and the stability gap. In IJCAI 2009,
pages 79–84, 2009.

[9] S. Brânzei and K. Larson. Social distance games. In IJCAI 2011, pages 91–96, 2011.

[10] I. Caragiannis, C. Kaklamanis, P. Kanellopoulos, and M. Kyropoulou. The efficiency of fair
division. Theory of Computing Systems, 50(4):589–610, 2012.
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[18] J. H. Dréze and J. Greenberg. Hedonic coalitions: Optimality and stability. Econometrica,
48(4):987–1003, 1980.

[19] J. Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449–467, 1965.

[20] H. N. Gabow. Data structures for weighted matching and nearest common ancestors with
linking. In SODA 1990, pages 434–443, 1990.

[21] H. N. Gabow and R. E. Tarjan. Algorithms for two bottleneck optimization problems. Journal
of Algorithms, 9(3):411 – 417, 1988.

[22] M. Gairing and R. Savani. Computing stable outcomes in hedonic games. In SAGT 2010,
pages 174–185, 2010.

[23] M. Gairing and R. Savani. Computing stable outcomes in hedonic games with voting-based
deviations. In AAMAS 2011, pages 559–566, 2011.

[24] D. Gale and L. S. Shapley. College admissions and the stability of marriage. The American
Mathematical Monthly, 69(1):9–15, 1962.

[25] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

[26] T. Hanaka, H. Kiya, Y. Maei, and H. Ono. Computational complexity of hedonic games on
sparse graphs. In PRIMA 2019, pages 576–584, 2019.

[27] A. Igarashi and E. Elkind. Hedonic games with graph-restricted communication. In AAMAS
2016, pages 242–250, 2016.

20



[28] R. W. Irving. An efficient algorithm for the stable roommates problem. Journal of Algorithms,
6(4):577 – 595, 1985.

[29] R. W. Irving. Stable marriage and indifference. Discrete Applied Mathematics, 48(3):261 –
272, 1994.

[30] R. W. Irving and D. F. Manlove. The stable roommates problem with ties. Journal of
Algorithms, 43(1):85 – 105, 2002.

[31] S. Kijima, Y. Otachi, T. Saitoh, and T. Uno. Subgraph isomorphism in graph classes. Discrete
Mathematics, 312(21):3164 – 3173, 2012.

[32] Sagar Massand and Sunil Simon. Graphical one-sided markets. In IJCAI-19, pages 492–498.
International Joint Conferences on Artificial Intelligence Organization, 2019.

[33] N. Nguyen, A. Rey, L. Rey, J. Rothe, and L. Schend. Altruistic hedonic games. In AAMAS
2016, pages 251–259, 2016.

[34] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani. Algorithmic Game Theory. Cam-
bridge University Press, Cambridge, 2007.

[35] D. Peters. Graphical hedonic games of bounded treewidth. In AAAI 2016, pages 586–593,
2016.

21


	1 Introduction
	1.1 Our contribution
	1.2 Related work

	2 The Model
	3 Stability and Fairness
	4 Computational Complexity
	4.1 Tractable case
	4.2 Intractable case

	5 Parameterized Complexity
	6 Parameterized Complexity of Local Search
	7 Conclusion

