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Abstract 

Background:  Glucose metabolism has been reported to be affected by dietary patterns, while the underlying 
mechanisms involved remain unclear. This study aimed to investigate the potential mediation role of circulating 
metabolites in relation to dietary patterns for prediabetes and type 2 diabetes.

Methods:  Data was derived from The Maastricht Study that comprised of 3441 participants (mean age of 60 years) 
with 28% type 2 diabetes patients by design. Dietary patterns were assessed using a validated food frequency ques‑
tionnaire (FFQ), and the glucose metabolism status (GMS) was defined according to WHO guidelines. Both cross-sec‑
tional and prospective analyses were performed for the circulating metabolome to investigate their associations and 
mediations with responses to dietary patterns and GMS.

Results:  Among 226 eligible metabolite measures obtained from targeted metabolomics, 14 were identified to 
be associated and mediated with three dietary patterns (i.e. Mediterranean Diet (MED), Dietary Approaches to Stop 
Hypertension Diet (DASH), and Dutch Healthy Diet (DHD)) and overall GMS. Of these, the mediation effects of 5 
metabolite measures were consistent for all three dietary patterns and GMS. Based on a 7-year follow-up, a decreased 
risk for apolipoprotein A1 (APOA1) and docosahexaenoic acid (DHA) (RR 0.60, 95% CI 0.55, 0.65; RR 0.89, 95% CI 0.83, 
0.97, respectively) but an increased risk for ratio of ω-6 to ω-3 fatty acids (RR 1.29, 95% CI 1.05, 1.43) of type 2 diabe‑
tes were observed from prediabetes, while APOA1 showed a decreased risk of type 2 diabetes from normal glucose 
metabolism (NGM; RR 0.82, 95% CI 0.75, 0.89).

Conclusions:  In summary, this study suggests that adherence to a healthy dietary pattern (i.e. MED, DASH, or DHD) 
could affect the GMS through circulating metabolites, which provides novel insights into understanding the biologi‑
cal mechanisms of diet on glucose metabolism and leads to facilitating prevention strategy for type 2 diabetes.
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Background
Type 2 diabetes contributes enormously to global bur-
dens of mortality and disability, which has been reported 
to affect around 425 million people worldwide in the 
past decade with an increased tendency of occurring 
in adolescent and young adults [1, 2]. In addition, more 
than 470 million people worldwide are estimated to 
suffer from prediabetes, a high-risk state of diabetes 
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development, whereof 5% to 10% will progress to type 
2 diabetes within a year [3]. Therefore, the identifying 
of high-risk individuals and the management of glucose 
metabolism status (GMS) before these conditions mani-
fest is essential.

The aetiology of glucose metabolism disorders (i.e. 
prediabetes and type 2 diabetes) is multi-factorial, with 
obesity, physical inactivity and genetic factors being 
important driving forces [4]. In addition, a large body of 
research has suggested diet as a key modifiable compo-
nent in the prevention, development, and management of 
prediabetes and type 2 diabetes [5, 6]. Many of the pre-
vious evidence, however, is based on single food items/ 
nutrients. Since people do not consume isolated foods/
nutrients and a high internal correlation between food 
items exists, this single food item approach might be in 
accurate and unable to measure the impact of the inter-
action among different foods on disease risk. Therefore, a 
more holistic dietary approach, in which food consump-
tion patterns are analysed, became more popular to cap-
ture the complex interaction of nutrients and foods with 
GMS [7, 8].

A higher adherence to healthy dietary patterns, such as 
the Mediterranean Diet (MED), Dietary Approaches to 
Stop Hypertension (DASH) Diet, and Dutch Healthy Diet 
(DHD) has been reported to be associated with a reduced 
risk of type 2 diabetes risk and its complications [9–11]. 
However, due to the complexity of diet composition, an 
accurate assessment of the specific effect of dietary pat-
terns on human health is still challenging.

In recent years, high-throughput metabolomics tech-
niques have been developed for the quantification of an 
individual’s comprehensive metabolites profile, making 
it eligible to objectively measure the dietary biomarkers, 
which could help to reveal the response to nutritional 
changes and further identify the early onset of metabolic 
diseases [12, 13].

Therefore, this study aimed to investigate the mediation 
role of circulating metabolites in the relation between 
healthy dietary patterns (i.e. MED, DASH, DHD) and 
prediabetes and type 2 diabetes, thereby facilitating a 
more effective nutritional prevention strategy and metab-
olomic monitoring for glycaemic control.

Methods
Study design and population
Data from The Maastricht Study, an observational, pro-
spective, population-based cohort study was used. The 
rationale and methodology have been described pre-
viously [14]. In brief, this study focuses on the aetiol-
ogy, pathophysiology, complications, and comorbidities 
of type 2 diabetes and is characterised by an extensive 
phenotyping approach. Eligible for participation were 

individuals between 40 and 75 years of age living in the 
southern part of the Netherlands. Participants were 
recruited through mass media campaigns and from the 
municipal registries and the regional Diabetes Patient 
Registry via mailings. Recruitment was stratified accord-
ing to known type 2 diabetes status, with an oversam-
pling of individuals with type 2 diabetes for reasons of 
efficiency. For the current study 3807 participants, who 
completed the baseline survey between November 2010 
and November 2013, were eligible for inclusion. The 
examinations of each participant were performed within 
a time window of 3 months after finishing the baseline 
survey.

The exclusion criteria for participants included in the 
further analysis were performed as follows: (1) 48 partici-
pants without measured metabolites; (2) 43 participants 
without information on glucose metabolism status; (3) 
168 participants with implausible energy intakes (<800 or 
>4200 kcal/day for men, and <500 or >3,500 kcal/day for 
women) [15]; (4) 69 participants of whom data on dietary 
assessment was incomplete for the calculation of dietary 
patterns; (5) 38 non-Caucasian participants. Finally, a 
total of 3441 participants, of which 1960 individuals with 
normal glucose metabolism (NGM), 514 with prediabe-
tes and 967 with type 2 diabetes by design, were included 
in the current study (Fig. 1).

Metabolomics quantification and processing
Fasting blood samples were collected in EDTA (ethyl-
enediaminetetraacetic acid) tubes. After centrifuging, 
plasma was stored at −80°C. Metabolite measures were 
quantified from EDTA plasma samples using the high-
throughput 1H-NMR (nuclear magnetic resonance) 
metabolomics platform (Nightingale Health Ltd., Hel-
sinki, Finland; https://​night​ingal​eheal​th.​com) at two 
separate occasions, i.e. years 2014 and 2016, respectively 
[16]. This platform provides simultaneous quantification 
of individual metabolites and metabolite ratios, details of 
the experimentation and applications of the NMR metab-
olomics platform have been described previously [17].

Metabolite measures that failed quality control (i.e. 
glutamine, pyruvate, glycerol, β-hydroxybutyrate, and 
acetate) were excluded from the analysis. The final set 
of metabolite measures included 145 metabolites and 
81 metabolite ratios in the current study, comprising 
total lipid concentrations, fatty acids composition and 
low-molecular-weight metabolites including ketone 
bodies, glycolysis-related metabolites, amino-acids, 
and metabolites related to immunity and fluid balance. 
To enhance interpretation, metabolite measures were 
classified into 3 clusters curated by Nightingale Health 
[17]: (1) lipid composition and particle concentration 
for lipoprotein subclasses (n=98); (2) lipids, fatty acids 

https://nightingalehealth.com


Page 3 of 16Yu et al. BMC Medicine          (2022) 20:450 	

and various low-molecular-weight metabolites (n=47); 
and (3) metabolite ratios (n=81) (Additional file  1: 
Table S1).

Missing data for absolute metabolite measures were 
imputed using R package Missforest [18]. Zero val-
ues in absolute measures were replaced by half of the 
lowest value of each corresponding metabolite. Then, 
metabolite ratios were recalculated according to the 
complete matrix of metabolites. In order to normal-
ize all the metabolite measures, a 10th percentile 
value (based on the distribution of the absolute meas-
ure/ratio under investigation) was added and subse-
quently ln-transformed. Finally, the obtained values 
were scaled to standard deviation units with normal 
distributions.

Assessment of glucose metabolism status
Participants underwent a standardized 2-h 75-g oral glu-
cose tolerance test (OGTT) after fasting overnight along 
with information about diabetes medication to determine 
the glucose metabolism status (GMS), which was defined 
based on the World Health Organization 2006 criteria 
as; normal glucose metabolism, NGM, fasting plasma 
glucose <6.1 mmol/L (GMS score=0); prediabetes, fast-
ing plasma glucose of 6.1–6.9 mmol/L and no hypogly-
caemic medications (GMS score=1); and type 2 diabetes, 
fasting plasma glucose ≥7.0 mmol/L or hypoglycaemic 
medications (GMS score=2) [19]. For safety reasons, par-
ticipants using insulin or with a fasting plasma glucose 
(FPG) value above 11.0 mmol/L (determined by finger 
prick) did not undergo the OGTT. For these individuals, 

Fig. 1  Overview of the study design. Fasting blood samples were obtained, and plasma were extracted to quantify the circulation metabolites 
based on NMR platform. Diet was assessed at baseline by a validated, self-administered FFQ developed based on the Dutch national FFQ tool, 
which was then calculated into dietary patterns, i.e. Mediterranean diet (MED), Dietary Approaches to Stop Hypertension (DASH) Diet, and 
Dutch Healthy Diet (DHD). Participants underwent a standardized 2-h 75-g oral glucose tolerance test (OGTT) after fasting overnight along 
with information about diabetes medication to determine the glucose metabolism status (GMS), which was defined based on the World Health 
Organization 2006 criteria as; normal glucose metabolism, NGM, fasting plasma glucose <6.1 mmol/L; prediabetes, fasting plasma glucose of 
6.1–6.9 mmol/L and no hypoglycaemic medications; and type 2 diabetes, fasting plasma glucose ≥7.0 mmol/L or hypoglycaemic medications. 
For safety reasons, participants using insulin or with a fasting plasma glucose (FPG) value above 11.0 mmol/L (determined by finger prick) did not 
undergo the OGTT. For these individuals, the FPG value and diabetes medication information was used to determine GMS. The exclusion criteria 
for participants included in the further analysis were performed as follows: (1) 48 participants without measured metabolites; (2) 43 participants 
without information on glucose metabolism status; (3) 168 participants with implausible energy intakes (<800 or >4200 kcal/day for men, and <500 
or >3500 kcal/day for women); (4) 69 participants of whom data on dietary assessment were incomplete for the calculation of dietary patterns; (5) 
38 non-Caucasian participants. Abbreviations: NMR, magnetic resonance spectroscopy; FFQ, food frequency questionnaire; MED, Mediterranean 
diet; DASH, Dietary Approaches to Stop Hypertension; DHD, Dutch Healthy Diet; OGTT, oral glucose tolerance test; GMS, glucose metabolism status; 
NGM, normal glucose metabolism; FPG, fasting plasma glucose
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the FPG value and diabetes medication information were 
used to determine GMS. A higher GMS score indicates 
a poorer glycaemic control, and each pair of GMS com-
parison was defined as that the GMS was developed from 
NGM to prediabetes, from NGM to type 2 diabetes, or 
from prediabetes to type 2 diabetes.

Assessment of dietary patterns
Diet was assessed at baseline by a validated, self-admin-
istered food frequency questionnaire (FFQ), i.e. Maas-
tricht-FFQ, developed based on the Dutch national FFQ 
tool [20]. The Maastricht-FFQ assessed the amount 
and frequency of intakes from 23 product groups com-
prising 253 food items within a reference period of one 
year. Intake of total energy and nutrients was calculated 
using the Dutch Food Composition Database (NEVO) 
[21]. More details on the development and the validity of 
this FFQ have been reported elsewhere [22]; briefly, the 
Maastricht-FFQ selected food items with the largest con-
tributions to both absolute intake and explained variance 
in intake of energy and 24 nutrients based on the Dutch 
National Food Consumption Survey 2007–2010 [23]. In 
addition, the Maastricht-FFQ was validated within the 
Nutrition Questionnaires plus (NQplus) study popula-
tion [24], where the population characteristics in The 
Maastricht Study [25] were generally comparable with 
the NQplus population with respect to age, BMI, smok-
ing status, educational attainment and food items.

Mediterranean Diet (MED) score
The MED score was based on 9 food components (i.e. 
vegetables, legumes, fruits and nuts, fish, cereals, dairy, 
meat, ratio [MUFA (monounsaturated fatty acids) + 
PUFA (polyunsaturated fatty acids)]/SFA (saturated fatty 
acids), and alcohol, with sex-specific medians of intakes 
as cut-off values. The median intake for food groups 
was derived from the FFQ. For healthy components (i.e. 
vegetables, legumes, fruits and nuts, fish, cereals, ratio 
(MUFA+PUFA)/SFA), a score of 0 was assigned for 
intake below the median of each food component, while 
a score of 1 was granted for intake higher or equal to the 
median of each food component. For unhealthy food 
components (i.e. red and processed meats, and dairy 
products), the scores were inverted (1 for intake below 
the median, 0 for intake above the median). Regarding 
alcohol consumption, a score of 1 was allocated if con-
sumption was between 10 and 50 g/day for males and 
between 5 and 25 g/day for females, and a score of 0 for 
any other amount of alcohol consumption. The sum of 
the scores for each food component resulted in the over-
all MED score (minimum 0, maximum 9) [26].

Dietary Approaches to Stop Hypertension (DASH) score
The DASH score was based on 8 food components (i.e. 
vegetables, fruits, nuts and legumes, wholegrain prod-
ucts, low-fat dairy, red and processed meat, sugar sweet-
ened beverages, and sodium intake) with sex-specific 
quintiles as cut-off values. For each food component, the 
score ranged between 1 and 5, which was assigned pro-
portionally to the intake level. A higher intake of healthy 
food components (i.e. vegetables, fruits, nuts and leg-
umes, wholegrain products, low-fat dairy) or unhealthy 
food components (i.e. red and processed meat, sugar-
sweetened beverages, and sodium intake) corresponded 
to higher scores. The sum of the scores for each food 
group resulted in the overall DASH score (minimum 8, 
maximum 40) [27].

Dutch Healthy Diet (DHD) score
The DHD score (version 2015) was used to measure the 
adherence to Dutch dietary guidelines of 2015, consisting 
of 15 food components (i.e. vegetables, fruits, wholegrain 
products, legumes, nuts, fish, tea, dairy, fats and oils, cof-
fee, red meat, processed meat, sweetened beverages and 
fruit juices, alcohol, and salt) [28]. For each healthy food 
component (i.e. vegetables, fruits, wholegrain products, 
legumes, nuts, fish, tea), intake equal to or higher than 
a cut-off value, specified according to the dietary guide-
lines, the maximum score (score=10) was given, while 
for intakes below that cut-off value the score was calcu-
lated by means of linear interpolation between threshold 
value (score=0) and cut-off value (score=10). For each 
unhealthy food component (i.e. dairy, fats and oils, red 
meat, processed meat, sweetened beverages and fruit 
juices, alcohol, and salt), the maximum score (score=10) 
was assigned if the intake was equal to or below a specific 
cut-off value, whereas for intake higher than that cut-off 
value the score was calculated by means of linear inter-
polation between the cut-off value (score=10) and the 
threshold value (score=0). The sum of the scores for each 
food group resulted in the overall DHD score (minimum 
0, maximum 140). A detailed description of the opera-
tionalization has been described elsewhere [28] (Addi-
tional file 1: Table S2).

Assessment of covariates
Covariates that were extracted from the questionnaire 
included age (years, continuous), sex (male or female), 
body mass index (BMI, kg/m2, continuous), education 
level (low, middle, or high), household income (<2000 
euros/month, 2000–3750 euros/month, or ≥3750 
euros/month), smoking status (never, current, or for-
mer smoker), energy intake (kcal/day, continuous), 
daily glucose intake (mmol/mol, continuous), estimated 
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glomerular filtration rate (eGFR, ml/min, continuous), 
total physical activity (h/week, continuous) [29], history 
of cardiovascular disease (yes or no), use of lipid-modi-
fication medication (yes or no), and the year for metab-
olomics measurement (2014 or 2016). Covariates were 
obtained from physical examination, laboratory assess-
ment, FFQ and medication interview. For categorial vari-
ables, missing data, i.e. smoking status (1.28%), level of 
education (1.95%), level of household income (4.02%), 
and history of cardiovascular disease (1.66%), was 
replaced by an indicator (using 0 as unknown); for con-
tinuous variables, missing data, i.e. total physical activ-
ity (7.46%), was replaced by the mean value of the total 
physical activity separated for sexes.

Statistical analysis
Descriptive statistics are presented as mean [±SD (stand-
ard deviation)] or median (interquartile range) for con-
tinuous variables, and frequency (percentage, %) for 
categorial variables. Differences between NGM, pre-
diabetes and type 2 diabetes at baseline, including 3 die-
tary-pattern scores, were compared by ANOVA test for 
continuous variables, and chi-squared test for categorial 
variables.

The dietary pattern scores were divided into 3 ter-
tiles for standardization: low adherence (tertile 1), mid-
dle adherence (tertile 2), and high adherence (tertile 3). 
Firstly, we performed a crude and adjusted ordinal logis-
tic regression analysis (STATA package ologit [30]) to 
evaluate the association between each dietary pattern 
and the GMS score (i.e. NGM vs. prediabetes vs. type 2 
diabetes). In addition, a logistic regression analysis was 
performed for the compare the GMS score in pairs (i.e. 
pair 1; GMS score 0 (NGM) vs 1 (prediabetes), pair 2 ; 
GMS score 0 (NGM) vs 2 (type 2 diabetes), pair 3; GMS 
score 1 (prediabetes) vs 2 (type 2 diabetes)), based on a 
crude and adjusted model (STATA package logit [31]). 
The main interaction terms (GMS score with sex and 
BMI) were added to the adjusted model (P-interac-
tion<0.05 was considered statistically significant).

To further investigate the associations of dietary pat-
terns with glucose metabolism, i.e. Homeostatic Model 
Assessment for Insulin Resistance (HOMA-IR) and hae-
moglobin A1c (HbA1c), we employed a linear regression 
analysis with stratification on sexes and BMI (i.e. obesity: 
BMI≥30 kg/m2, and non-obesity: BMI<30 kg/m2). For all 
analyses, lowest tertile of adherence was used as the ref-
erence group. A P value for trend test was conducted by 
assigning medians to per tertile as a continuous variable 
in the models.

Secondly, we used a linear regression analysis (STATA 
package regression [32]) to examine the associations 
between each dietary pattern and metabolite measures. 

For this, each metabolite measure was used as the 
dependent variable, and dietary pattern scores were used 
as the independent variable. In addition, the metabolite 
measures associated with the GMS score and with the 
defined GMS pairs were assessed based on ordinal and 
binary logistic regression respectively. Again, both crude 
and adjusted models were performed.

Thirdly, an adjusted mediation analysis was used to 
examine whether the metabolite measures that were both 
associated with dietary patterns and GMS are potential 
mediators. The significance of the mediated effects was 
assessed using Sobel-Goodman mediation Test (STATA 
package sgmediation [33]).

Finally, to assess the relative risk (RR) of type 2 diabe-
tes developed from NGM or prediabetes according to 
the identified metabolite measures, a Poisson regression 
analysis was performed using self-report incidences of 
type 2 diabetes obtained from a yearly follow-up till 7 
years (mean=5.83, standard deviation=0.91).

All the adjusted models mentioned above were per-
formed with the adjustments of continuous covariates, 
i.e. age (years), BMI ((kg/m2), energy intake (kcal/day), 
daily glucose intake (mmol/mol), eGFR (ml/min), total 
physical activity (h/week); and categorial covariates, sex 
(male or female), education level (low, middle, or high), 
household income (<2,000 euros/month, 2000–3750 
euros/month, or ≥3750 euros/month), smoking status 
(never, current, or former), history of cardiovascular 
disease (yes or no), use of lipid-modification medication 
(yes or no), and the year for metabolomics measurement 
(2014 or 2016) if applicable.

Sensitivity analyses were performed, for the identified 
metabolites by excluding the participants with incom-
plete data on covariates and newly type 2 diabetes diag-
nosed at baseline. All statistical tests were two sided. We 
calculated the false discovery rate (FDR) to correct for 
multiple testing at α<0.05 significance level.

Results
Characteristics of the study participants and adherence 
to the dietary patterns
In total 3441 individuals were included in the cur-
rent study with a mean age of 60 years and 49% (1689) 
women. Of all included participants, 1960 (57%) and 
514 (15%) participants were shown to be NGM and 
prediabetes respectively, while 967 (28%) participants 
were diagnosed with type 2 diabetes including 135 
type 2 diabetes cases diagnosed at baseline. All base-
line characteristics were found to be different across 
the GMS at P<0.05 (Table  1). In addition, the par-
ticipants with type 2 diabetes tended to be older (63 
years), less physically active (11.0 h/week), smokers 
(70%) and have a lower education level (45%), lower 
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income level (33%), and higher BMI (29.90 kg/m2) to 
individuals with NGM and prediabetes (P<0.001). 
The means of dietary-pattern scores were shown to 
be lower in NGM and prediabetes compared to type 2 
diabetes (P<0.001) (Table 1). In addition, the statistical 
interaction was observed between all dietary patterns 
and BMI for the GMS score, while only MED showed 
borderline statistical interaction with sex (Table 2).

Association between dietary patterns and glucose 
metabolism status
Higher adherence to a healthy dietary pattern was associ-
ated with lower odds of an increased GMS score (high-
est tertile vs lowest tertile: OR-MEDadjust 0.59, 95% CI 
0.50, 0.70; OR-DASHadjust 0.58, 95% CI 0.48, 0.69; OR-
DHDadjust 0.69, 95% CI 0.55, 0.87). Comparing NGM vs. 
prediabetes, NGM vs. type 2 diabetes, and prediabetes 

Table 1  Characteristics of participants with different glucose metabolism status in The Maastricht Studya

The intervals of glucose metabolism statuses were defined as follows: NGM, fasting plasma glucose <6.1 mmol/L; prediabetes, fasting plasma glucose of 6.1–6.9 
mmol/L and no hypoglycaemic medications; type 2 diabetes, fasting plasma glucose ≥7.0 mmol/L or hypoglycaemic medications

P<0.05 was considered statistically significant

Abbreviations: NGM normal glucose status, SD standard deviation, BMI body mass index, kcal kilocalories, MED Mediterranean Diet, DASH Dietary Approaches to Stop 
Hypertension diet, DHD Dutch Healthy Diet
† P values were calculated by the ANOVA test for continuous variables, or chi-squared test for categorial variables
a Baseline characteristics were expressed with as mean ± standard deviation, median (interquartile range) or n (%)
b Age at the time of recruitment

Characteristics Total (n=3441) Glucose metabolism status

NGM (n=1960) Prediabetes (n=514) Type 2 diabetes (n=967) P†

Women (%) 1689 (49.08) 1135 (57.91) 242 (47.08) 312 (32.26) <0.001

Ageb, years (mean ± SD) 60.14 ± 8.21 58.32 ± 8.14 61.96 ± 7.66 62.86 ± 7.68 <0.001

Education (%) <0.001

  Low 1144 (33.25) 525 (26.79) 181 (35.21) 438 (45.29)

  Middle 929 (27.00) 525 (26.79) 145 (28.21) 259 (26.78)

  High 1301 (37.81) 882 (45.00) 174 (33.85) 245 (25.34)

  Unknown 67 (1.95) 28 (1.43) 14 (2.72) 25 (2.59)

Smoking status (%) <0.001

  Never 1190 (34.58) 771 (39.34) 151 (29.38) 268 (27.71)

  Former 1774 (51.55) 947 (48.32) 297 (57.78) 530 (54.81)

  Current 433 (12.58) 228 (11.63) 60 (11.67) 145 (14.99)

  Unknown 44 (1.28) 14 (0.72) 6 (1.17) 24 (2.48)

Household Income (%) <0.001

  Low 1012 (29.41) 537 (27.40) 154 (29.96) 321 (33.20)

  Middle 1384 (40.22) 784 (40.00) 217 (42.22) 383 (39.61)

  High 769 (22.35) 533 (27.19) 533 (28.75) 134 (13.86)

  Unknown 276 (8.02) 106 (5.41) 41 (7.98) 129 (13.34)

History of CVD (%) 595 (17.29) 249 (12.70) 78 (15.18) 268 (27.71)

Physical activity (h/week) 12.75 (8.25, 18.25) 13.75 (9.00, 19.25) 13.13 (8.00, 18.25) 11.00 (6.75, 16.75) <0.001

eGFR, ml min−1 1.73 m−2 (mean ± SD) 79.97 ± 15.65 79.65 ± 14.14 78.88 ± 14.42 81.19 ± 18.82 <0.001

HbA1c (% mmol/mol) 5.6 (5.4, 6.2) 5.4 (5.2, 5.6) 5.7 (5.4, 6.0) 6.6 (6.3, 7.2) <0.001

Total glucose intake, mmol/L (mean ± SD) 15.21 (10.84, 20.24) 15.79 (11.40, 21.04) 14.88 (10.64, 19.82) 13.89 (9.88, 18.70) <0.001

BMI, kg/m2 (mean ± SD) 27.06 ± 4.53 25.52 ± 3.57 27.71 ± 4.28 29.90 ± 4.97 <0.001

Lipid-modifying medication (yes) 1,222 (36.00) 337 (17.34) 183 (36.02) 702 (74.52) <0.001

Daily energy intake, kcal/day (mean ± SD) 2,172.22 ± 603.17 2,176.84 ± 599.66 2195.33 ± 592.22 2146.60 ± 615.93 0.030

Fasting glucose, mmol/L (mean ± SD) 6.04 ± 1.62 5.18 ± 0.42 5.90 ± 0.59 7.89 ± 2.00 <0.001

MED score (range 0–9) 4.52 ± 1.64 4.67 ± 1.67 4.55 ± 1.63 4.22 ± 1.54 <0.001

DASH score (range 8–40) 23.97 ± 4.57 24.30 ± 4.63 23.83 ± 4.57 23.36 ± 4.36 <0.001

DHD score (range 0–140) 83.36 ± 14.73 85.12 ± 14.54 82.50 ± 15.11 79.99 ± 14.42 <0.001
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Table 2  Associations of dietary patterns with risk of glucose metabolism status in The Maastricht Study

Variables Tertile groups N Crude model Adjusted model

OR 95% CI OR 95% CI

Overall GMS
  MED Tertile 1 (0–3) 1678 Ref. Ref.

Tertile 2 (4–5) 809 0.91 0.77, 1.07 0.87 0.73, 1.05

Tertile 3 (6–9) 954 0.66 0.56, 0.77 0.59 0.50, 0.70

P for trend <0.001 0.008

P for interaction with sex 0.067

P for interaction with BMI 0.042

  DASH Tertile 1 (9–22) 1312 Ref. Ref.

Tertile 2 (23–26) 1117 0.83 0.71, 0.98 0.77 0.65, 0.92

Tertile 3 (26–38) 1012 0.69 0.58, 0.81 0.58 0.48, 0.69

P for trend <0.001 0.001

P for interaction with sex 0.052

P for interaction with BMI 0.037

  DHD Tertile 1 (32–77) 1147 Ref. Ref.

Tertile 2 (78–89) 1147 0.77 0.64, 0.93 0.79 0.63, 0.98

Tertile 3 (90–130) 1147 0.52 0.42, 0.63 0.69 0.55, 0.87

P for trend 0.001 <0.001

P for interaction with sex 0.049

P for interaction with BMI 0.026

NGM vs. prediabetes
  MED Tertile 1 (0–3) 1142 Ref. Ref.

Tertile 2 (4–5) 579 1.03 0.81, 1.31 1.01 0.78, 1.28

Tertile 3 (6–9) 753 0.88 0.70, 1.11 0.79 0.61, 0.97

P for trend 0.314 0.459

  DASH Tertile 1 (9–22) 896 Ref. Ref.

Tertile 2 (23–26) 802 0.79 0.62, 1.01 0.79 0.62, 1.00

Tertile 3 (26–38) 776 0.67 0.53, 0.86 0.68 0.53, 0.86

P for trend 0.041 0.036

  DHD Tertile 1 (32–77) 747 Ref. Ref.

Tertile 2 (78–89) 810 0.82 0.65, 1.04 0.74 0.58, 0.95

Tertile 3 (90–130) 917 0.65 0.51, 0.83 0.59 0.45, 0.76

P for trend 0.001 0.003

NGM vs. type 2 diabetes
  MED Tertile 1 (0–3) 1505 Ref. Ref.

Tertile 2 (4–5) 729 0.86 0.71, 1.05 0.98 0.88, 1.18

Tertile 3 (6–9) 854 0.51 0.42, 0.62 0.61 0.49, 0.77

P for trend <0.001 <0.001

  DASH Tertile 1 (9–22) 1109 Ref. Ref.

Tertile 2 (23–26) 955 0.77 0.64, 0.93 0.79 0.63, 0.98

Tertile 3 (26–38) 863 0.52 0.42, 0.63 0.69 0.55, 0.87

P for trend <0.001 <0.001

  DHD Tertile 1 (32–77) 964 Ref. Ref.

Tertile 2 (78–89) 976 0.74 0.62, 0.89 0.85 0.68, 1.06

Tertile 3 (90–130) 987 0.43 0.35, 0.52 0.62 0.48, 0.78

P for trend <0.001 <0.001
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vs. type 2 diabetes, high adherence to all dietary patterns 
showed a lower odds of developing either prediabetes or 
type 2 diabetes (Table  2). In addition, higher adherence 
to a healthy dietary pattern showed to be negatively asso-
ciated with HOMA-IR (stdβ (95% CI): −0.086 (−0.111, 
−0.061), −0.034 (−0.043, −0.024), −0.013 (−0.016, 
−0.010) for MED, DASH and DHD, respectively) and 
HbA1c (−0.716 (−0.913, −0.519), −0.191 (−0.262, 
−0.121), −0.098 (−0.120, −0.076) for MED, DASH, and 
DHD, respectively). Moreover, higher adherence to a 
healthy dietary pattern showed to be negatively associ-
ated with HbA1c in both non-obesity (BMI<30 kg/m2) 
and obesity (BMI≥30 kg/m2) participants, while higher 
adherence to a healthy dietary pattern was negatively 
associated with HOMA-IR in obesity participants but 
not in non-obesity participants (Table 3).

Variation of the plasma metabolome in response 
to the dietary patterns
Of the 226 metabolite measures (i.e. 145 metabolites 
and 81 metabolite ratios) used in the analyses, we iden-
tified 33 (14.60%; stdβ ranged −0.071 to 0.091), 59 
(26.11%; stdβ ranged −0.018 to 0.020), and 64 (28.32%; 
stdβ ranged −0.010 to 0.012) metabolite measures sig-
nificantly associated with adherence to the MED, DASH, 
and DHD score, respectively (P-FDR<0.05). Of these, 17 

metabolite measures were shown to be associated with 
all three dietary patterns, whereof the associations of 14 
metabolite measures were positive and the other asso-
ciations of 3 metabolite measures (isoleucine, ratio of 
phospholipids to total lipids in medium LDL (%), ratio 
of triglycerides to total lipids in medium HDL (%)) were 
negative. These metabolite measures were classified as 
cholesterol (n=1), apolipoproteins (n=1), branched-
chain amino acids (BCAA; n=1), fatty acids (n=3), and 
metabolite ratios (n=11) (Additional file 1: Table S4).

Associations of metabolite measures with different glucose 
metabolism status
Seventy-eight (35%) metabolite measures were iden-
tified to be associated with an increased GMS score 
as well as with the different GMS pairs at FDR<0.05, 
whereof the associations of 34 metabolite measures 
were positive and the other associations of 44 metabo-
lite measures were negative (Additional file 1: Table S4). 
When comparing the 17 dietary-pattern-associated 
metabolite measures and the 78 GMS-associated 
metabolite measures, we found 14 metabolite measures 
were significantly associated with both dietary patterns 
and GMS, including 6 metabolites and 8 metabolite 
ratios. Of these, associations of 12 metabolite measures 
were shown to be positively associated with dietary 

Table 2  (continued)

Variables Tertile groups N Crude model Adjusted model

OR 95% CI OR 95% CI

Prediabetes vs. type 2 diabetes
  MED Tertile 1 (0–3) 779 Ref. Ref.

Tertile 2 (4–5) 356 0.83 0.63, 1.08 0.81 0.62, 1.06

Tertile 3 (6–9) 346 0.63 0.48, 0.82 0.60 0.46, 0.78

P for trend <0.001 0.005

  DASH Tertile 1 (9–22) 619 Ref. Ref.

Tertile 2 (23–26) 477 0.95 0.74, 1.22 0.93 0.72, 1.20

Tertile 3 (26–38) 385 0.77 0.59, 1.01 0.73 0.56, 0.96

P for trend 0.026 0.037

  DHD Tertile 1 (32–77) 583 Ref. Ref.

Tertile 2 (78–89) 508 0.90 0.70, 1.16 0.88 0.68, 1.13

Tertile 3 (90–130) 390 0.66 0.50, 0.86 0.64 0.49, 0.83

P for trend 0.002 0.001

The intervals of glucose metabolism statuses were defined as follows: NGM, fasting plasma glucose <6.1 mmol/L; prediabetes, fasting plasma glucose of 6.1–6.9 
mmol/L and no hypoglycaemic medications; type 2 diabetes, fasting plasma glucose ≥7.0 mmol/L or hypoglycaemic medications

The adjustments included age (years, continuous), sex (male or female), BMI (kg/m2, continuous), level of education (low, middle or high), level of household income 
(<2000 euros/month, 2000–3750 euros/month, or ≥3750 euros/month), smoking status (never, current or former smoker), daily energy intake (kcal/day, continuous), 
daily glucose intake (mmol/mol, continuous), estimated glomerular filtration rate (eGFR, ml/min, continuous), total physical activity (h/week, continuous), usage of 
lipid-modification medication (no or yes), history of cardiovascular disease (no or yes), and the year for metabolomics measurement (2014 or 2016) if applicable

Reference group was tertile 1

P<0.05 was considered statistically significant

Abbreviations: NGM normal glucose metabolism, BMI body mass index, kcal kilocalories, MED Mediterranean Diet, DASH Dietary Approaches to Stop Hypertension 
diet, DHD Dutch Healthy Diet
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patterns but negatively associated with an increased 
GMS score, while 2 metabolite measures, i.e. isoleucine 
and ratio of ω-6 to ω-3 fatty acids, were negatively asso-
ciated with dietary patterns but positively associated 
with an increased GMS score (Additional file 1: Tables 
S3 and S4). In addition, all the 14 metabolite measures 
identified above showed to be associated with levels of 
HOMA-IR and HbA1c; again, higher isoleucine (stdβ 
0.182, P-FDR 1.50×10−15; stdβ 0.895, P-FDR 7.03×10−8, 
respectively) and the ratio of ω-6 to ω-3 fatty acids (stdβ 
0.130, P-FDR 1.42×10−26; stdβ 0.547, P-FDR 1.48×10−4, 
respectively) showed to be associated with higher 
HOMA-IR and HbA1c levels, while other metabolites 
with lower levels (Additional file 1: Table S4).

Mediation of metabolite measures in the relationship 
between dietary patterns and glucose metabolism status
Through mediation analyses we found all the 14 
metabolite measures above (total cholesterol in LDL, 
apolipoprotein A-I, estimated degree of unsatura-
tion, 22:6-docosahexaenoic acid (mmol/l), ω-3 fatty 
acids, isoleucine, ratio of phospholipids to total lipids 
in medium LDL, ratio of total cholesterol to total lipids 
in small LDL, ratio of 22:6 docosahexaenoic acid to 
total fatty acids, ratio of 18:2 linoleic acid to total fatty 
acids, ratio of ω-6 fatty acids to total fatty acids, ratio 
of polyunsaturated fatty acids to total fatty acids, ratio 
of ω-6 fatty acids to ω-3 fatty acids, and ratio of PUFA 
to MUFA) mediated between different dietary patterns 
and GMS (stdβ ranged −0.037 to −0.001; proportion 
of mediation ranged 4.21% to 66.18%). However, when 
comparing the different GMS pairs, the mediation 
effect of only 5 metabolite measures (i.e. apolipoprotein 
A1 (APOA1), docosahexaenoic acid (DHA), isoleucine, 
ratio of DHA to total fatty acids, and the ratio of ω-6 
to ω-3 fatty acids) maintained consistently. The indirect 
associations, which were used to indicate the 5 metabo-
lite measures mediated between dietary patterns and 
GMS, were shown to be negative (proportion of media-
tion: APOA1 ranged 6.79% to 41.43%, DHA ranged 
6.69% to 57.99%, isoleucine ranged 25.29% to 54.32%, 
ratio of DHA to total fatty acid ranged 9.34% to 42.37%, 
and the ratio of ω-6 to ω-3 fatty acids ranged 3.36% to 
58.98%). Though higher levels of both ω-3 and ω-6 fatty 
acids associated with higher adherence to dietary pat-
terns and lower odds of an increased GMS score, no 
evidence for either of them showed a consistent media-
tion effect; however, the ratio of ω-6 to ω-3 fatty acids 
showed a mediation effect, with positively associated 
with dietary patterns but negatively associated with 
an increased GMS score (Fig.  2 and Additional file  1: 
Tables S3–S7).

Longitudinal assessment of metabolite measures 
for incidence of type 2 diabetes
According to the yearly follow-up within 7 years, 86 
incident type 2 diabetes were identified (19 from NGM 
and 67 from prediabetes). Most of the newly diagno-
ses occurred in participants with low adherence to die-
tary patterns (79% for MED, 83% for DASH and 87% 
for DHD). The risk of type 2 diabetes was observed to 
be negatively associated with APOA1 in participants of 
NGM (RR 0.82, 95% CI 0.75, 0.89) and prediabetes (RR 
0.60, 95% CI 0.55, 0.65), respectively; in addition, a nega-
tive association was observed between DHA and the risk 
of type 2 diabetes (RR 0.89, 95% CI 0.83, 0.97) in predia-
betes participants but not in NGM participants. How-
ever, a higher ratio of ω-6 to ω-3 fatty acids was found to 
increase the risk of type 2 diabetes from prediabetes par-
ticipants (RR 1.29, 95% CI 1.05, 1.43), while no evidence 
was found for NGM participants (Table 4).

Sensitivity analysis
The identified 5 metabolite measures were included in a 
series of sensitivity analyses, where the results remained 
consistent after excluding participants with incomplete 
data on covariates and newly type 2 diabetes diagnoses at 
baseline (Additional file 1: Tables S8–S12).

Discussion
Leveraging data from a population-based cohort, this 
study identified a stable metabolic signature, consisting 
of 5 metabolite measures (i.e. APOA1, DHA, isoleucine, 
ratio of DHA to total fatty acids and ratio of ω-6 to ω-3 
fatty acids) that consistently mediates the associations 
between three healthy dietary patterns (i.e. MED, DASH, 
and DHD) and GMS, indicating the potential of a holistic 
dietary profile rather than individual foods/nutrients, in 
regulating circulating metabolites and thereby modify-
ing the glucose metabolism. The current study is one of 
the largest cohorts that used targeted metabolomic tech-
nique (NMR), instead of the widely used untargeted and 
non-quantified techniques, for blood metabolome inves-
tigation. Although it is known that targeted techniques 
do not achieve global coverage, this technique is thought 
to be more sensitive, accurate, and specific than the non-
targeted metabolomics approach.

Although some healthy dietary patterns have been 
reported and recommended, the common critical 
metabolites that suit for multiple dietary patterns and in 
relation to metabolic disorders have yet to be well inves-
tigated and understood. In the current study, the iden-
tified metabolites, that showed to be stable in response 
to nutritional changes, have the potential to identify the 
early onset of type 2 diabetes, thereby providing a new 
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understanding of the biological mechanisms explaining 
the association between diet and glucose metabolism. 
This could directly facilitate preventive nutritional rec-
ommendation for type 2 diabetes.

Previous studies already identified individual metabo-
lites (e.g. caffeine, carotenoids, flavonoids, and alkyl 
resorcinol) being associated with dietary patterns (e.g. 
Healthy Diet Indicator score) and food intakes (e.g. cof-
fee, vegetables and fruits), indicating that metabolites 
in biospecimens may serve as biomarkers for assessing 
diet [34–41]; however, the mediation role of metabolites 
in the relation between diet and human health is still 
poorly understood, such as glucose metabolism that was 

reported to be highly affected by circulating metabolites 
and diet [42]. Through rigorous analyses, this study firstly 
demonstrated the participants who adhered to healthier 
dietary patterns with better metabolically in glycaemic 
traits (i.e. glucose, HbA1c and HOMA-IR). Although 
mechanisms driving these dietary pattern-glycaemic 
traits associations are complex and multi-factorial, the 
metabolomic profile identified in the current study, i.e. 
APOA1, DHA, isoleucine, ratio of DHA to total fatty 
acids and ratio of ω-6 to ω-3 fatty acids, may help to 
imply the potential pathways for revealing the effects of 
dietary behaviours on glucose metabolism, which, inves-
tigations are therefore needed to elucidate the interplay 

Fig. 2  Metabolite measures associated and mediated between dietary patterns and glucose metabolism status. A Plasma metabolite measures 
associated with three dietary patterns and glucose metabolism status with their overlap. B Associations of metabolite measures with dietary 
patterns, glucose metabolism status, HOMA-IR and HbA1c. Red/green squares indicate positive associations, while blue/purple squares indicate 
negative associations. C Parallel coordinates chart showing the 14 significant mediated effects of plasma metabolite measures. The left panel shows 
the dietary patterns, the middle panel shows the plasma metabolite measures, and the right panel shows the pairs of glucose metabolism status. 
The curved lines across panels indicate the mediated effects, while the colours correspond to different associations (i.e. grey for positive/negative, 
and green for negative/positive). Abbreviations: MED, Mediterranean Diet; DASH, Dietary Approaches to Stop Hypertension diet; DHD, Dutch 
Healthy Diet; GMS, glucose metabolism status; NGM, normal glucose metabolism; T2D, type 2 diabetes; HOMA-IR, Homeostatic Model Assessment 
for Insulin Resistance; HbA1c, haemoglobin A1c; ldl_c_metab, total cholesterol in very small VLDL (mmol/l); apoa1_metab, apolipoprotein A-I (g/l); 
unsatdeg_metab, estimated degree of unsaturation; dha_metab, 22:6, docosahexaenoic acid (mmol/l); ω-3_metab, ω-3 fatty acids (mmol/l); ile_
metab, isoleucine; l_ldl_c_ratio, total cholesterol to total lipids ratio in large LDL (%); m_ldl_c_ratio, total cholesterol to total lipids ratio in medium 
LDL (%); s_ldl_c_ratio, total cholesterol to total lipids ratio in small LDL (%); m_hdl_tg_ratio, triglycerides to total lipids ratio in medium HDL (%); 
dha_fa_ratio,ratio of 22:6 docosahexaenoic acid to total fatty acids (%); la_fa_ratio, ratio of 18:2 linoleic acid to total fatty acids; ω-3_fa_ratio, ratio 
of ω-3 fatty acids to total fatty acids (%); ω-6_fa_ratio, ratio of ω-6 fatty acids to total fatty acids (%); pufa_fa_ratio, ratio of polyunsaturated fatty 
acids to total fatty acids (%); ω-6_ω-3_ratio, ratio of ω-6 fatty acids to ω-3 fatty acids; pufa_mufa_ratio, ratio of PUFA to MUFA; metab, metabolite; 
PUFA, polyunsaturated fatty acids; MUFA, monounsaturated fatty acids; VLDL, very low–density lipoprotein; HDL, high-density lipoprotein; LDL, 
low-density lipoprotein
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between specific diet related metabolites and their meta-
bolic and biological pathways.

APOA1, a protein with multiple therapeutic functions, 
has been reported to be associated with an improved 
glycaemic control in patients with type 2 diabetes and a 
decelerated progression of prediabetes to type 2 diabe-
tes [43–45]. Cell and animal studies have confirmed that 
APOA1 activates protein kinase A (PKA), which trans-
locates the transcription factor FoxO1 from the nucleus 
to the cytoplasm in a process that derepresses transcrip-
tion of the insulin gene and thereby increases insulin 
synthesis in β-cells [46]. In-vitro studies have further 
established that high-density lipoproteins and APOA1 
conserve β-cell function by inhibiting apoptosis in a 
process that is driven by oxysterol efflux and activation 
of the hedgehog signalling receptor [47, 48]. In addition, 
there is also mounting evidence that APOA1 improves 
glycaemic control by increasing glucose uptake into the 
skeletal muscle and the heart [49]. These observations 

are supported, at least in part, by findings from the cur-
rent study which indicated that an increment of plasma 
APOA1 levels is an increased GMS score, HbA1c level, 
and HOMA-IR level.

Isoleucine, one of the branched-chain amino acids 
(BCAA), which mainly derives from food abundant in 
proteins (e.g. dairy products and meat) and is highly 
related to metabolic disorders [50–52], was found to be 
a mediator in the relation between the high adherence 
to the dietary patterns (i.e. MED, DASH and DHD) and 
a lower risk of an increased GMS score. Similar find-
ings were observed in a previous study conducted in 
the USA showing that higher dietary BCAA (i.e. isoleu-
cine, leucine, valine) and plasma BCAA concentrations 
were jointly associated with an increased risk of incident 
type 2 diabetes risk [53]. The current study additionally 
shows that isoleucine mediates 25.29% to 54.32% of the 
relations between the dietary patterns with (a) NGM vs. 
type 2 diabetes and (b) prediabetes vs. type 2 diabetes, 
thereby, suggesting indicating a distinct pathway of diet 
affecting type 2 diabetes through isoleucine. These find-
ings were strengthened by experimental studies, showing 
that an increased level of BCAA affects insulin resistance 
by either activation of the mammalian target of rapamy-
cin complex 1 (mTORC1), which results in uncoupling 
of insulin signalling at an early stage, or by an impaired 
BCAA metabolism, thereby causing accumulation of 
BCAA and mitochondrial dysfunction, which is asso-
ciated with stress kinase activation and β-cell apopto-
sis [54]. Therefore, the current study not only provided 
evidence for a possible role of BCAA (i.e. isoleucine) 
as a biomarker for type 2 diabetes, but also indicates a 
plausible mediation role for BCAA between dietary pat-
terns and type 2 diabetes. However, considering the com-
plicated interactions between BCAA and many other 
metabolites [55], the independent effect of isoleucine on 
type 2 diabetes should be interpreted with caution and 
further investigated in future research.

Plasma DHA and the ratio of DHA to total fatty acids 
were shown to be positively associated with the dietary 
patterns (i.e. MED, DASH and DHD) and negatively 
associated with type 2 diabetes. This is in line with a 
clinical trial conducted in Australia, suggesting that fish 
oil enriched with DHA reduces insulin resistance and 
thereby helps to prevent type 2 diabetes [56]. Emerging 
evidence shows that marine n-3 polyunsaturated fatty 
acids (PUFAs), eicosapentaenoic acid (EPA), and DHA, 
are able to ameliorate insulin resistance in rodents, prob-
ably via regulating adipocytokines secretion [57–59], 
inhibiting adipose remodelling [60], lowering inflam-
mation [61], and enhancing mitochondrial function 
and β-oxidation [62]. A recent study investigated the 
individual effect of DHA supplementation on glucose 

Table 4  Relative risk of type 2 diabetes according to identified 
metabolite measures

The intervals of glucose metabolism statuses were defined as follows: NGM, 
fasting plasma glucose <6.1 mmol/L; prediabetes, fasting plasma glucose of 
6.1–6.9 mmol/L and no hypoglycaemic medications; type 2 diabetes, fasting 
plasma glucose ≥7.0 mmol/L or hypoglycaemic medications

The adjustments included age (years, continuous), sex (male or female), BMI (kg/
m2, continuous), level of education (low, middle or high), level of household 
income (<2000 euros/month, 2000–3750 euros/month, or ≥3750 euros/
month), smoking status (never, current or former smoker), daily energy intake 
(kcal/d, continuous), daily glucose intake (mmol/mol, continuous), estimated 
glomerular filtration rate (eGFR, ml/min, continuous), total physical activity (h/
week, continuous), usage of lipid-modification medication (no or yes), history of 
cardiovascular disease (no or yes), and the year for metabolomics measurement 
(2014 or 2016)

Reference group was tertile 1

P<0.05 was considered statistically significant

Abbreviations: NGM normal glucose metabolism, RR relative risk, BMI body mass 
index, kcal kilocalories, MED Mediterranean Diet, DASH Dietary Approaches to 
Stop Hypertension diet, DHD Dutch Healthy Diet, CI confidence interval, APOA1 
apolipoprotein A-I (g/l), DHA, 22:6 docosahexaenoic acid (mmol/l)

Variables Relative risk of type 2 
diabetes

RR 95% CI

Type 2 diabetes vs. NGM
  APOA1 0.82 0.75, 0.89

  DHA 0.97 0.79, 1.15

  Isoleucine 1.12 0.81, 1.57

  Ratio of DHA to total fatty acids 1.01 0.93, 1.09

  Ratio of ω-6 to ω-3 1.21 0.94, 1.56

Type 2 diabetes vs. prediabetes
  APOA1 0.60 0.55, 0.65

  DHA 0.89 0.83, 0.97

  Isoleucine 1.16 0.93, 1.47

  Ratio of DHA to total fatty acids 0.94 0.82, 1.06

  Ratio of ω-6 to ω-3 1.29 1.05, 1.43
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metabolism and found that DHA significantly attenuated 
hyperglycaemia and insulin resistance in db/db mice, 
which sheds light into the gut-organs axis as a promising 
target for restoring glucose homeostasis and suggests a 
therapeutic effect of DHA for treating diabetes [63].

Another interesting finding of the current study is that 
the ratio of ω-6 to ω-3 fatty acids showed to be positively 
associated with GMS (overall increment and each pair) 
and negatively associated with increased scores of all 
assessed dietary patterns. However, no evidence of either 
ω-3 and ω-6 fatty acids in mediating dietary patterns and 
GMS was found. ω-3 and ω-6 fatty acids compete in cer-
tain metabolic pathways, e.g. sharing the same conver-
sion enzyme and having inverse biological availability 
and activity in tissues. Therefore, the combined effect 
on glucose metabolism has gained wide discussion, but 
so far remains controversial [64]. Results of the present 
study are in line with a recently conducted study showing 
that the ratio of ω-6 to ω-3 fatty acids has the potential 
to serve as an essential predictive biomarker in the man-
agement of patients with type 2 diabetes [65]. In addi-
tion, previous research showed that differential intakes of 
dietary fat subtypes may affect diabetes risk by modifying 
the phospholipid composition of cell membranes [66]. 
This effect may play a role in blood glucose regulation 
through action on insulin secretion and insulin receptor 
properties [67, 68], which leads to developing normogly-
cemic blood glucose levels in individuals with the lowest 
ratio of ω-6 to ω-3 fatty acids. However, the exact balance 
and mechanism of the ratio of ω-6 to ω-3 fatty acids has 
not yet been well understood; further research is, there-
fore, warranted.

Furthermore, by using the longitudinal data on GMS, 
we observed there was 67 type 2 diabetes developed from 
514 prediabetes (13%), compared to 0.97% (19 type 2 dia-
betes out of 1960 NGM, which indicated the prediabetes 
with a higher risk to develop to type 2 diabetes. Except 
for ratio of DHA to total fatty acids, though might be due 
to the insufficient statistical power, the rest of four identi-
fied metabolite measures showed baseline levels longitu-
dinally associated with the risk of type 2 diabetes, which 
strengthen the robustness of results based on cross-sec-
tional analysis. Particularly the ratio of ω-6 to ω-3 fatty 
acids with evidence of prospective risk of type 2 diabetes 
for prediabetes but not NGM, which suggested it may be 
a key biomarker in predicting and preventing the deterio-
ration of prediabetes. Therefore, metabolic profiling may 
serve as a more accurate and unbiased method to assess 
the impact on the relationship between diet and health 
outcomes.

Main strengths of this study are the large size of this 
population-based cohort study with oversampling of 
individuals with type 2 diabetes, which enables accurate 

comparison of individuals with and without diabetes, 
and the large number of potential confounders that were 
considered. Moreover, the use of the NMR platform pro-
vided standardized measures of the metabolites, allowing 
exploration of measures beyond routinely measured bio-
markers. However, several limitations should be acknowl-
edged; first, an external replication cohort is warranted 
to validate the proposed panel of metabolite measures 
identified in the current study; second, based on an 
observational study design, any causal inference should 
be made with caution, since bidirectional associations 
may exist; third, though the mediation analyses indicate 
the important roles of metabolites in modulating diet on 
glucose metabolism, the biological mechanism should 
be demonstrated with caution given that the identified 
metabolites might not be involved in the dominant path-
ways, particularly those with low proportion of media-
tion effects. fourth, although analyses were adjusted for 
known potential confounders, the possibility of unmeas-
ured confounding (e.g. the fasting time before blood sam-
ple collection, the cooking methods, and the duration 
and intensity of smoking) and reverse causation remains; 
fifth, some of the clinical factors and dietary intakes were 
self-reported, therefore, misclassification errors are likely 
to have biased these findings toward the null; sixth, in 
the current study, dietary intakes were assessed by FFQs. 
Therefore, measurement error and misclassification 
are unavoidable due to the inability of a FFQ to capture 
details information (i.e. exact food types), the difficulty 
in the quantification of the intake, and the high depend-
ency on memory; finally, this sample was restricted to 
volunteers of European ancestry aged around 60 years at 
baseline and, therefore, further research is warranted to 
investigate to what degree these findings can be general-
ized to other populations.

Conclusions
In summary, this study suggests that adherence to a 
healthy dietary pattern (i.e. MED, DASH, or DHD) could 
affect glucose metabolism status through the regulations 
of the circulating metabolite levels, particularly through 
APOA1, DHA, isoleucine, ratio of DHA to total fatty 
acids and ratio of ω-6 to ω-3 fatty acids. This metabolite 
signature provides new insights into the understanding 
of the biological mechanisms of diet on glucose metabo-
lism, which facilitates the use of dietary metabolic pro-
filing for the objective measurement of dietary patterns 
and for the development of dietary recommendations for 
a better glycaemic control.
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