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This paper introduces a novel two-stream deep model based on graph convolutional network (GCN)
architecture and feed-forward neural networks (FFNN) for learning the solution of nonlinear partial dif-
ferential equations (PDEs). The model aims at incorporating both graph and grid input representations
using two streams corresponding to GCN and FFNN models, respectively. Each stream layer receives
and processes its input representation. As opposed to FFNN which receives a grid-like structure, the
GCN stream layer operates on graph input data where the neighborhood information is incorporated
through the adjacency matrix of the graph. In this way, the proposed GCN-FFNN model learns from
two types of input representations, i.e. grid and graph data, obtained via the discretization of the PDE
domain. The GCN-FFNN model is trained in two phases. In the first phase, the model parameters of each
stream are trained separately. Both streams employ the same error function to adjust their parameters by
enforcing the models to satisfy the given PDE as well as its initial and boundary conditions on grid or
graph collocation (training) data. In the second phase, the learned parameters of two-stream layers are
frozen and their learned representation solutions are fed to fully connected layers whose parameters
are learned using the previously used error function. The learned GCN-FFNN model is tested on test data
located both inside and outside the PDE domain. The obtained numerical results demonstrate the appli-
cability and efficiency of the proposed GCN-FFNN model over individual GCN and FFNN models on 1D-
Burgers, 1D-Schrödinger, 2D-Burgers, and 2D-Schrödinger equations.

� 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Partial differential equations (PDEs) are widely used in the
mathematical formulation of physical phenomena in a variety of
science and engineering applications such as modeling fluid flow,
mechanical stress, or material temperature among others. The ana-
lytic solutions of PDEs are not often available and therefore several
numerical methods such as Finite Difference Methods (FDM) [1],
Finite Element Methods [2], splines [3,4], finite volume method
[5], Spectral based method [6] have been developed for approxi-
mating the solution of the given PDEs.

In particular, in finite difference-based methods, the domain of
the PDE is discretized. The solution is only provided for the prede-
fined grid points and additional interpolation is required to obtain
the solution for the whole domain. Moreover, the method has a
low accuracy in irregular domains, which limits its application in
such domains. The finite-element method relies on the discretiza-
tion of the domain via meshing which can be a challenging and
time-consuming process, especially for complex geometries or
higher-dimensional PDEs. In addition, similar to finite difference
methods, the solution is approximated locally at each mesh point
and therefore additional interpolation is required to find the solu-
tion at an arbitrary point in the domain [7].

Another class of methods that has been proposed in the litera-
ture for the simulation of dynamical systems is based on machine
learning approaches and in particular kernel-based models as well
as artificial neural networks. The use of neural network-based
models for solving ordinary and partial differential equations goes
back to the early ’90s, see [8–11]. The Hopfield neural networks are
used in [9] to solve first-order differential equations. The authors in
[12] introduced a feed-forward neural network-based model to
solve ordinary and partial differential equations. In their work,
the model function is expressed as a sum of two terms where
the first term, which contains no adjustable parameters, satisfies
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the initial/boundary conditions and the second term involves a
trainable feed-forward neural network. In contrast to mesh-based
approaches such as finite difference and finite element methods,
neural network models (see [8,13,14]) can generate a closed-
form solution and do not require meshing.

Mehrkanoon et al. [15–17,7], for the first time, proposed a sys-
tematic machine learning approach based on primal–dual LS-SVM
(Least Squares Support Vector Machines) formulation to learn the
solution of dynamical systems governed by a range of differential
equations including ordinary differential equations (ODEs), partial
differential equations (PDEs), differential algebraic equations
(DAEs). Unlike the neural network based approaches described in
[12,18] that the user had to define a form of a trial solution, which
in some cases is not straightforward, in the LS-SVM-based
approach the optimal model is derived by incorporating the ini-
tial/boundary conditions as constraints of an optimization
problem.

In particular, in LS-SVM based model [15,7], the domain of the
differential equation is first discretized to generate collocation
points that are located inside the domain as well as on its initial
and or boundary. Next, one starts with an LS-SVM representation
of the solution in the primal and formulates a constrained opti-
mization problem to obtain the optimal values for the model
parameters (i.e. weights and biases). More precisely, the initial/
boundary conditions of the differential equation are incorporated
as constraints of an optimization problem. The formulated con-
strained optimization problem aims to enforce the LS-SVM repre-
sentation of the solution to satisfy the given differential equation
on the collocation points inside the domain (through the defined
objective of the optimization problem) as well as on the initial/
boundary of the domain (through the defined hard constraints).
One should note that this is not a regression task, as the solution
of the differential equation is not provided during the training. In
fact, by solving the constrained optimization problem, the optimal
representation of the solution is obtained in the dual. The LSSVM
code for learning the solution of PDEs (LSSVM-PDE-Solver) is avail-
able at 1.

It should also be noted that in the systematic machine learning
approach presented in [15,16,7], one can alternatively start with a
different representation than the LS-SVM representation; for
instance, a neural networks based representation, see [19]. In addi-
tion, the hard constraints of the LS-SVM optimization formulation
corresponding to the initial/boundary conditions of the PDE can
also be relaxed and instead added as an additional term in the
objective function of the optimization problem, see [19]. Therefore,
motivated by the systematic LS-SVM approach [15,7], the authors
in [19] started with a feed-forward neural networks representation
and introduced the physics-informed deep learning model and
showed its effectiveness in solving differential equations. However,
to the best of our knowledge, this existing link between the sys-
tematic LS-SVM approach [15,7] for solving differential equations
and the physics-informed deep learning model [19] has not been
explicitly stated in the literature. Sirignano and Spiliopoulos [20]
developed the Deep Galerkin Method (DGM), where the solution
of high-dimensional PDE is approximated by a neural network.
Zhu et al. [21] developed a dense convolutional encoder-decoder
network and E and Yu [22] proposed the Deep Ritz method, based
on fully-connected layers and residual connections for solving
PDEs.

It is the purpose of this paper to introduce a novel two-stream
deep model based on Graph Convolutional Networks (GCNs) and
feed-forward neural networks (FFNN) to learn the solution of the
given differential equations. GCNs have been successfully applied
1 https://github.com/SMehrkanoon/LSSVM-PDE-Solver
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in many application domains such as natural language processing
[23,24], computer vision [25,26] and weather elements forecasting
[27,28] tasks. The use of GCNs for learning the solution of PDEs has
not been well explored. In the context of PDEs, the grid and graph
input data are obtained by discretizing the PDE domain. The pro-
posed model aims to learn from both types of input representa-
tions, i.e. grid and graph data. In particular, FFNN processes the
grid data, while GCNs operates on graph data and learns the rela-
tion between the features by incorporating the neighborhood
information through the adjacency matrix of the graph. The high-
lights of this manuscript can be summarized as follows:

� To introduce a graph convolutional network (GCN) based model
to integrate the neighborhood information of the graph data
obtained by the discretization of the PDE domain in the learning
process.

� To propose a two-stream deep architecture based on the feed
forward neural networks (FFNN) and GCN-based model to learn
from both grid and graph input representations. This is a step
towards the development of multi-view and/or multi-
modality learning approaches in learning the solution of
dynamical systems.

� To evaluate the proposed model for approximating the solution
of 1D-Burgers, 1D-Schrödinger, 2D-Burgers and 2D-Schrödinger
equations.”

This paper is organized as follows. The proposed model is described
in Section 2. The numerical experiments and discussion of the
obtained results are given in Section 3. The conclusion is drawn in
Section 4.
2. Proposed model

This section first introduces the generation of graph and grid
structure data obtained by discretization of the domain of the
PDE. Next our two-stream deep neural networks architecture, i.e.,
GCN-FFNN model, which learns from both grid and graph data as
well as the used loss functions are introduced. In Table 1, we list
the main symbols and their definitions.
2.1. Graph structure data

The domain of the PDE is first discretized into N nodes. For a 2D-
dimensional domain, N ¼ X � T , where X and T are the numbers of
elements in space and time dimensions, respectively. We next con-
struct a graph where in particular the neighbors of the i; jð Þ-th node
located inside the domain are i� 1; jð Þ; iþ 1; jð Þ; i; j� 1ð Þ and
i; jþ 1ð Þ-th nodes. The constructed graphs for equations with two
and three-dimensional domains are shown in Fig. 1 (a) and (b),
respectively. Here, in the case of two variables each node in the
graph has neighbors in two directions x and t, while in the case
of three variables nodes have neighbors in three directions x; y,
and t. In the constructed graph, let ZB be the set of all boundary
condition nodes, ZI be the set of all initial condition nodes, and
ZBI ¼ ZB [ ZI. In addition, let ZD be the set of all nodes except
the boundary and initial condition nodes, i.e. all nodes located
inside the domain. The cardinality of the above-defined sets ZBI

and ZD are denoted by jZBIj and jZDj.
2.2. Grid structure data

The same discretization steps that were previously used to cre-
ate the graph data are also used here to generate the grid data
points. However, as opposed to previously introduced graph data,



Table 1
Summary of the main symbol’s definition.

Symbol Definition

GCN Graph Convolutional Networks
FFNN Feed Forward Neural Networks
ZB Set of all boundary condition nodes
ZI Set of all initial condition nodes
ZBI Union of ZB and ZI sets
ZD Set of nodes inside the domaineA Sum of the adjacency and identity matrixeD Diagonal degree matrix

H ‘ð Þ Matrix of activations in the ‘-th layer

W ‘ð Þ GCN weights for the ‘-th layer
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the grid data points do not have edge information and only contain
the grid data points.

2.3. GCN-FFNN model

Here we propose our two-stream deep neural networks archi-
tecture which consists of Graph Convolutional Networks (GCNs)
and feed-forward neural networks (FFNN) models in its first and
second streams, respectively.

The architecture of the proposed GCN-FFNN model is shown in
Fig. 2. The FFNN model shown in the second stream of Fig. 2 was
presented in [19,29]. Here, this stream is extended by adding
another stream, i.e. the GCN-based model, followed by fully con-
nected layers. The proposed two-stream model incorporates both
graph and grid input data in the learning process. In particular,
the GCN-based model receives the graph input data while the grid
data are fed to the FFNN model. The GCN-based model can inte-
grate the neighborhood information through the adjacency matrix
of the graph to improve the prediction accuracy. Therefore, the
GCN-FFNN model exploits complementary information of multiple
features, i.e., graph and grid data structures, to learn a better rep-
resentation of the PDE solutions.

The proposed model is trained in two phases. In the first phase,
the models in the two streams are trained separately. The same
error function is used to adjust the parameters of both streams
by enforcing the models to satisfy the given PDE as well as its ini-
tial and boundary conditions on grid or graph training data. In the
second phase, the learned parameters of two-stream layers are fro-
zen and their learned representation solutions are fed to fully con-
nected layers whose parameters are learned using the previously
employed error function. In addition to evaluating the proposed
GCN-FFNN model, we have also individually examined each
Fig. 1. The used graph structures. (a) nodes with two attributes. (b) nodes with three att
The remaining nodes inside the domain are depicted by red.
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stream, i.e. FFNN as well as GCN-based models. It should be noted
that the FFNN-based model has been previously proposed in the
literature [19], whereas the GCN-based model and its combination
with the FFNN-based model are introduced in this paper. In what
follows, the GCN-based model in the GCN-FFNN architecture is
explained in more detail.
2.4. GCN-based model

A model based on core Graph Convolutional Network (GCN)
[30] is developed and used in the first stream of the proposed
GCN-FFNN model to learn the solution of partial differential equa-
tions. GCN is an efficient variant of convolutional neural networks
which operates directly on graphs. In particular, the following
layer-wise propagation rule is utilized in a multi-layer Graph Con-
volutional Network [30]:

H ‘þ1ð Þ ¼ r eD�1
2eA eD�1

2H ‘ð ÞW ‘ð Þ
� �

: ð1Þ

Here, eA is the sum of the adjacency matrix and the identity matrix

to include self connections. eD ¼ diag d1;d2; . . . ;dNð Þ is the diagonal

degree matrix with di ¼
P

j
eAij. In addition, H ‘ð Þ is the matrix of acti-

vations in the ‘-th layer with H 0ð Þ equals to the feature representa-
tion of the nodes. W ‘ð Þ is the convolution weights for the ‘-th layer
and r is the activation function, in our case the hyperbolic tangent
activation function is used. The model receives the input of the
shape N � P, where N is the number of nodes and P denotes the
number of node attributes. In our case, for 2-dimensional PDE,
P ¼ 2 and for 3-dimensional PDE, P ¼ 3. Furthermore, the graph
structure, i.e. edge information, is also provided to the model
through the adjacency matrix. The architecture of our proposed
GCN-based model for learning the solutions of PDEs is shown in
Fig. 3. The model takes the graph as input. Each node in the graph
represents a coordinate point in space and time domain. This graph
input is fed to a GCN layer followed by a residual connection and a
hyperbolic tangent activation function. The residual part takes also
the graph input and has a convolution layer with a filter size of
1� 1 to bring the input to the same dimension as the output of
the GCN layer. Next, three convolution layers with a filter size of
1� 1, each with a hyperbolic tangent activation function are
applied. The output of the last convolution layer is followed by a
fully-connected layer. We use the systematic machine learning
approach presented in [7] to learn the parameters of the model.
The proposed GCN-based model receives all the nodes from ZBI

and ZD sets as input as well as the partial differential operator f �½ �
ributes. Blue nodes are initial conditions and green nodes are boundary conditions.



Fig. 2. Architecture of the GCN-FFNN model for learning solutions to PDEs.

Fig. 3. Architecture of the GCN-based model.
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which is obtained by putting all the involved terms of the given
PDEs on the left-hand side of the equation so that the right-hand
side of the PDE is zero. The model then outputs an approximate
solution û for the given PDE. The solution û is learned by solving
an optimization problemwhose objective consists of two terms cor-
responding to the losses defined on inside domain nodes as well as
on the initial/boundary condition nodes. The input data to the
model consists of the above-mentioned 2- or 3-dimensional nodes
and their graph structure (adjacency matrix). It should be noted
that here the adjacency matrix is sparse due to the way that the
edges of the graph are constructed, see Section 2.1. Here, we use
an efficient optimization code available at [31] for dealing with
large-scale sparse adjacency matrix in our GCN-layer.
2.5. Loss function

Following the work of Mehrkanoon and Suykens [7], here we
use a loss function that enforces the representation of the solution,
obtained by our proposed GCN-based model architecture, to satisfy
the given differential equations and its initial/boundary conditions.
Similar to [7], we aim at minimizing the mean squared loss func-
tion to adjust the model parameters. Here, the used loss function
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is composed of two terms given in Eq. (2). The first term, i.e.
MSED, enforces the representation of the solution to satisfy the
given differential equation inside its domain. The second term,
i.e. MSEBI, corresponds to making the difference between the true
initial/boundary solutions and the model predictions as small as
possible. More precisely, given the differential operator f �½ � and

the collocation nodes from both inside the domain (i.e. Z i
D) as well

as on the initial/boundary of the domain (i.e. ZBI
i), the MSED and

MSEBI losses are defined in Eqs. (3) and (4), respectively.

MSEtotal ¼ MSED þMSEBI; ð2Þ

MSED ¼

XjZD j

i¼1

f û½ � Z i
D

� �
jZDj : ð3Þ

MSEBI ¼

XjZBIj

i¼1

u ZBI
i� �� û ZBI

i� �� �2
jZBIj : ð4Þ
3. Numerical results

In this section, four experiments are performed to demonstrate
the efficiency of the proposed GCN-FFNN model for learning the
solution of 1D- and 2D-Burgers equations as well as 1D- and 2D-
Schrödinger equations. The model parameters are learned in a
transductive fashion. The input dataset is divided into train and
test sets. The training set contains nodes from both inside the
domain as well as its initial and boundary. Two scenarios are
examined for test nodes, i.e. test nodes inside and outside the
domain of PDE, see Fig. 4. In the first case, see Fig. 4 (a), some grid
points along the x-dimension are first randomly selected and then
all the (x,t)-nodes with those selected x-coordinate positions form
the inside domain test nodes. It should be noted that for PDEs with
3-dimensional domains, the random grid points are selected along
the x- and y-dimensions, and subsequently all the nodes (x,y,t)-
nodes with those selected (x,y)-coordinate positions form the
inside domain test nodes. In the second case, see Fig. 4 (b), the test
nodes are from outside the domain. In both test cases, the test set
is 10% of the whole dataset.

The accuracy of the obtained approximate solution is measured
by means of mean squared as well as infinite error norms defined
as follows:

MSEtest ¼

XNtest

i¼1

e2i

Ntest
; L1 ¼ jjejj1: ð5Þ



Fig. 4. Two scenarios for selecting the test nodes. Purple triangle nodes are test samples and yellow circle nodes are training samples. (a): The test nodes are from inside the
domain. (b): The test nodes are from outside the domain.
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Here, ei ¼ u Zi
test

� �
� û Zi

test

� �
where Zi

test is the i-th test node and

Ntest is the number of test nodes. The obtained results of three mod-
els, i.e. FFNN, GCN, and GCN-FFNN, on the above-mentioned four
equations are compared. All the models are trained using L-BFGS
with a learning rate of 1.0 for a maximum of 50000 epochs [32].
To make a fair comparison, all the models receive the same training
and test sets. The number of layers, hidden units, and trainable
parameters of each of the used modules of GCN-FFNN architecture
for each equation are empirically found and tabulated in Table 2.
3.1. 1D-burgers equation

The 1D-Burgers equation with boundary and initial conditions
is given in Eq. (6) [19]:

ut þ uux � 0:01=pð Þuxx ¼ 0; x 2 �1;1½ �; t 2 0; 0:99½ �;
u x;0ð Þ ¼ �sin pxð Þ;

u �1; tð Þ ¼ u 1; tð Þ ¼ 0:

8><>: ð6Þ

Here, the differential operator is defined as
f u½ � :¼ ut þ uux � 0:01=pð Þuxx. The solution we seek to approximate
with our proposed model is u x; tð Þ (shown as u in the equation).
The variables ux and ut are the partial derivatives of u with respect
to x and t, respectively. uxx is the second partial derivative of u with
respect to x.

In the first scenario, the two dimensional domain of the 1D-
Burgers equation, i.e. x; tð Þ 2 �1;1½ � � 0;0:99½ �, is divided into
N ¼ 256� 100 nodes, which are evenly spaced in each dimension.
We have randomly selected 10% of N nodes to form the test nodes
inside the domain. In the second scenario, the nodes in the ranges
x; tð Þ 2 �1;1½ � � 0;0:89½ � are used for training and the test nodes
outside the domain are selected from 0:89 < t 6 0:99. The obtained
MSEs and infinity norm of each model are tabulated in Table 3.
Both used metrics show that the proposed GCN-FFNN model
achieved the best results for both inside and outside test nodes.

Fig. 5 corresponds to the first scenario where the test nodes are
from inside the domain. In particular, Fig. 5 (a), (b) and (c) show
the true and approximate solution obtained by GCN-FFNN model
for the 1D-Burgers equation at x ¼ �0:15; x ¼ 0:15 and x ¼ 0:94.
Here, the prediction at x ¼ �0:15 is from training set, whereas
the predictions at x ¼ 0:15 and x ¼ 0:94 are from test set. The
obtained residuals are shown in Fig. 5 (d), (e) and (f). Fig. 6 corre-
sponds to the second scenario where the test nodes are from out-
side the domain. Fig. 6 (a), (b) and (c) show the true and
approximate solution obtained by GCN-FFNNmodel. Here, the pre-
dictions at t ¼ 0:50 and t ¼ 0:75 are from the train set, while the
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predictions at t ¼ 0:99 are from the test set. Fig. 6 (d), (e) and (f)
are the residuals at t ¼ 0:50; t ¼ 0:75 and t ¼ 0:99.
3.2. 1D-Schrödinger equation

The 1D-Schrödinger equation with boundary and initial condi-
tions is described in Eq. (7) [29].

iwt þ 0:5wxx þ jwj2w ¼ 0; x 2 �5;5½ �; t 2 0; p2
� �

;

w x;0ð Þ ¼ 2sech xð Þ
w �5; tð Þ ¼ w 5; tð Þ
wx �5; tð Þ ¼ wx 5; tð Þ

8>>><>>>: ð7Þ

The differential operator is defined as

f u½ � :¼ f ¼ iwt þ 0:5wxx þ jwj2w. Let u and v denote the real and imag-
inary components of w, respectively. Then the 1D-Schrödinger
equation can be rewritten as follows [29]:

ut ¼ �0:5vxx � u2 þ v2
� �

v ;
v t ¼ 0:5uxx þ u2 þ v2

� �
u:

(
ð8Þ

In the first scenario, the domain of the 1D-Schrödinger equation
x; tð Þ 2 �5;5½ � � 0; p2

� �
is divided into N ¼ 257� 201 nodes, which

are evenly spaced for each dimension. Following the previously
mentioned approaches for creating the test nodes, 10% of N nodes
are randomly selected to form the inside domain test nodes. In
the second scenario, the nodes in the ranges
x; tð Þ 2 �5;5½ � � 0;0:9 p

2

� �
are used for training and the outside

domain test nodes are selected from 0:9 p
2 < t 6 p

2. The obtained
results for the 1D-Schrödinger equation on both inside and outside
domain test nodes are shown in Table 3. FFNN outperforms the
other models for inside domain test nodes. For the outside domain
test nodes, the GCN-FFNN model shows the least MSE error com-
pared to the other models, while its infinity norm error remains
higher compared to FFNN.

Fig. 7 corresponds to the first scenario where the test nodes are
from inside the domain. In Fig. 7 (a), (b) and (c) the true solution
and the obtained results of GCN-FFNN model at x ¼ �1:17; x ¼ 0
and x ¼ 1:56 are shown, respectively. Here, the prediction at
x ¼ �1:17 is from training set, whereas the predictions at x ¼ 0
and x ¼ 1:56 are from test set. The obtained residuals are shown
in Fig. 7 (d), (e) and (f). Fig. 8 corresponds to the second scenario
where the test nodes are from outside the domain. The true and
approximate solutions at t ¼ 0:11 t ¼ 0:80 and t ¼ 1:57 are shown
Fig. 8 (a), (b) and (c), respectively. Here, the predictions at t ¼ 0:11
and t ¼ 0:80 are from the training set, while the predictions at



Table 2
The empirically found hyper-parameters of each module of the GCN-FFNN model for each equations. In the GCN-based model, the GCN layer, convolution layers, and the fully
connected layer have the same hidden unit number.

PDE Modul # Layers # Hidden Units # Trainable Parameters

1D-Burgers FFNN-based model [19] 8 20 2601
GCN-based model 1 12 553
Fully-Connected 2 48 144

1D-Schrödinger FFNN-based model [29] 6 100 40902
GCN-based model 1 256 199426
Fully-Connected 1 1 2

2D-Burgers FFNN-based model [29] 8 20 2621
GCN-based model 1 12 577
Fully-Connected 2 16 48

2D-Schrödinger FFNN-based model [29] 5 50 7952
GCN-based model 1 18 1208
Fully-Connected 2 16 48

Table 3
The obtained MSEs and infinity norm errors for inside and outside test sets.

PDE Model Test nodes

Inside the domain Outside the domain
MSEtest L1 MSEtest L1

1D-Burgers FFNN 5:10 � 10�6 0:025 6:04 � 10�6 0:029

GCN 6:44 � 10�4 0:139 8:81 � 10�4 0:383

GCN-FFNN 3:87 � 10�6 0:022 1:50 � 10�6 0:019

1D-Schrödinger FFNN 9:00 � 10�6 0:008 5:42 � 10�5 0:017

GCN 1:30 � 10�4 0:023 9:48 � 10�4 0:030

GCN-FFNN 8:75 � 10�5 0:011 3:39 � 10�5 0:027

2D-Burgers FFNN 1:68 � 10�3 0:085 4:52 � 10�3 0:086

GCN 2:27 � 10�3 0:094 5:92 � 10�4 0:030

GCN-FFNN 1:49 � 10�3 0:077 5:99 � 10�4 0:027

2D-Schrödinger FFNN 1:47 � 10�7 0:002 3:02 � 10�7 0:002

GCN 1:19 � 10�6 0:003 1:51 � 10�6 0:003

GCN-FFNN 1:47 � 10�7 0:002 2:58 � 10�7 0:002
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t ¼ 1:57 are from the outside domain test nodes. The obtained
residuals are shown in Fig. 8 (d), (e) and (f).
3.3. 2D-burgers equation

The 2D-Burgers equation with boundary and initial conditions
is given in Eq. (9) [29].

ut þ u ux þ uy
� �� 0:1 uxx þ uyy

� � ¼ 0; x; yð Þ 2 0;1½ �; t 2 0;3½ �;
u x; y;0ð Þ ¼ 1= 1þ exp xþ y� tð Þ=0:2½ �ð Þ;

(
ð9Þ

Here, the differential operator is defined as
f u½ � :¼ f ¼ ut þ u ux þ uy

� �� 0:1 uxx þ uyy
� �

.
The domain of the 2D-Burgers equation, i.e.

x; y; tð Þ 2 0;1½ � � 0;1½ � � 0;3½ �, is divided into N ¼ 26� 26� 31
nodes. In the first scenario, 10% of N nodes are randomly selected
to form the inside domain test nodes and the remaining nodes are
used for training the models. In the second scenario, the nodes in
the ranges x; y; tð Þ 2 0;1½ � � 0;1½ � � 0;2:7½ � are used for training
and the outside domain test nodes are selected from 2:7 < t 6 3.
From Table 3, one can observe that for the 2D-Burgers equation,
the GCN-FFNN model outperforms the other models on inside
domain test nodes using both MSE and infinity norms. For outside
domain test nodes, GCN outperforms the other models in terms of
MSE metric, while the GCN-FFNN model achieved the least infinity
norm compared to the other models.
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Fig. 9 (a) and (b) show the true solution at t ¼ 1 and t ¼ 3 from
training and test set, respectively. The obtained residuals are
shown in Fig. 9 (c) and (d).

3.4. 2D-Schrödinger equation

The 2D-Schrödinger equation with boundary and initial condi-
tions are depicted in Eq. (10) [29]

iwt þ wxx þ wyy þw x; yð Þw ¼ 0; x; yð Þ 2 �5;5½ �; t 2 0;1½ �;
w x; y; tð Þ ¼ ieit= cosh xð Þ þ cosh yð Þð Þ

(
ð10Þ

with

w x; yð Þ ¼ 3� 2tanh2 xð Þ � 2tanh2 yð Þ; ð11Þ
Here, the differential operator is defined as
f u½ � :¼ f ¼ iwt þ wxx þ wyy þw x; yð Þw. Let u and v denote the real
and imaginary components of w, then the 2D-Schrödinger equation
can be rewritten as follows [29]:

ut ¼ �vxx � vyy �wv ;
v t ¼ uxx þ uyy �wu:

�
ð12Þ

The domain of the 2D-Schrödinger equation, i.e.
x; y; tð Þ 2 �5;5½ � � �5;5½ � � 0;1½ �, is divided into N ¼ 26� 26� 11
nodes. In the first scenario, 10% of N nodes are randomly selected
to form the inside domain test nodes and the remaining nodes are
used for training the models. In the second scenario, the nodes in
the ranges x; y; tð Þ 2 �5;5½ � � �5;5½ � � 0; 0:9½ � are used for training



Fig. 5. First scenario: The plots for the 1D-Burgers equation obtained by GCN-FFNN model corresponding to the first scenario where test nodes are from inside the domain.
(a), (b) and (c): The true and approximate solution obtained by GCN-FFNN model. (d), (e) and (f): The obtained residuals u x; tð Þ � û x; tð Þ. The data at x ¼ �0:15 belongs to the
training set, while the data at x ¼ 0:15 and x ¼ 0:94 are from test set.

Fig. 6. Second scenario: The plots for the 1D-Burgers equation obtained by GCN-FFNN model corresponding to the second scenario where test nodes are from outside the
domain. (a), (b) and (c): The true and approximate solution obtained by GCN-FFNN model. (d), (e) and (f): The obtained residuals u x; tð Þ � û x; tð Þ. The data at t ¼ 0:50 and
t ¼ 0:75 belong to the training set, while the data at t ¼ 0:99 is from test set.
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Fig. 7. First scenario: The plots for the 1D-Schrödinger equation obtained by GCN-FFNN model corresponding to the first scenario where test nodes are from inside the
domain. (a), (b) and (c): The true and approximate solution obtained by GCN-FFNNmodel. (d), (e) and (f): The obtained residuals u x; tð Þ � û x; tð Þ. The data at x ¼ �1:17 belongs
to the training set, while the data at x ¼ 0 and x ¼ 1:56 are from test set.

Fig. 8. Second scenario: The plots for the 1D-Schrödinger equation obtained by GCN-FFNN model corresponding to the second scenario where test nodes are from outside
the domain. (a), (b) and (c): The true and approximate solution obtained by GCN-FFNN model. (d), (e) and (f): The obtained residuals u x; tð Þ � û x; tð Þ. The data at t ¼ 0:11 and
t ¼ 0:80 belong to the training set, while the data at t ¼ 1:57 is from test set.
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Fig. 9. The plots for the 2D-Burgers equation obtained by GCN-FFNN model. (a) and (b): The true solution u x; y; tð Þ. (c) and (d): The obtained residuals u x; y; tð Þ � û x; y; tð Þ. The
data at t ¼ 1 and t ¼ 3 are from the training set and test set (outside the domain), respectively.

Fig. 10. The plots for the 2D-Schrödinger equation obtained by GCN-FFNN model for the outside domain test at t ¼ 1. (a): The true solution u x; y; tð Þ. (b): The obtained
residuals u x; y; tð Þ � û x; y; tð Þ.
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and the outside domain test nodes are selected from 0:9 < t 6 1. As
can be seen from Table 3, for the 2D-Schrödinger equation, FFNN
and GCN-FFNN models achieved comparable results on inside
domain test nodes using both MSE and infinity norm metrics. For
outside domain test nodes, the GCN-FFNN model outperforms other
models using the MSE metric while it also achieved comparable
results to the FFNN model in terms of infinity normmetric. The true
solution and the obtained residual at outside domain test time t ¼ 1
are shown in Fig. 10 (a) and (b), respectively.
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4. Conclusion and future work

In this paper, a new two-stream architecture based on graph
convolutional network (GCN) and feed-forward neural networks
(FFNN) is developed for solving partial differential equations
(PDEs). The model learns from both grid and graph input represen-
tations obtained by discretizing the domain of the given PDE. The
proposed model is examined on four nonlinear PDEs, i.e. 1D-
Burgers, 1D-Schrödinger, 2D-Burgers and 2D-Schrödinger equa-
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tion. The performance of the models are evaluated on test data
located inside and outside the domain. Thanks to the incorporation
of both types of input representations, the proposed GCN-FFNN
model often outperforms the other tested models for the studied
PDEs. The proposed GCN-FFNN model can also be viewed as one
of the first attempts in integrating the multi-modality or multi-
view deep learning approaches in learning the solution of differen-
tial equations. The proposed model allows to exploit complemen-
tary information of multiple features or modalities in the context
of new representation learning of PDE solutions. For more practical
applications, the proposed model can potentially be integrated in
simulation software that are used to simulate PDEs arising in real
world applications such as astronautics, biomechanics, chemical
and mechanical engineering, fluid mechanics and geophysical
flows. In this work, we trained the models with L-BFGS in a full-
batch approach. However, with an increasing number of nodes,
node attributes and/or connected edges, the size of the graph
increases which can potentially prevent a full batch approach for
training the networks due to memory constraints. This also limits
a much finer discretization of the domain. For future work, one
may consider training the model in batches with different opti-
mization methods, which would also allow a much finer discretiza-
tion. Additionally, the number of edges in the graph can be
increased with the second or third neighborhood, which can allow
GCN to better incorporate the neighborhood information. The
implementation of our GCN-FFNN model is available at 2.
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[27] T. Stańczyk, S. Mehrkanoon, Deep graph convolutional networks for wind
speed prediction, in: Proc. of European Symposium on Artificial Neural
Networks, Computational Intelligence and Machine Learning, ESANN, 2021,
pp. 147–152.

[28] D. Aykas, S. Mehrkanoon, Multistream graph attention networks for wind
speed forecasting, in, in: IEEE Symposium Series on Computational
Intelligence (SSCI) IEEE, 2021, pp. 1–8.

[29] Y. Li, F. Mei, Deep learning-based method coupled with small sample learning
for solving partial differential equations, Multimedia Tools Appl. 80 (11)
(2021) 17391–17413.

[30] T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional
networks, arXiv preprint arXiv:1609.02907.

[31] M. Poli, S. Massaroli, J. Park, A. Yamashita, H. Asama, J. Park, Graph neural
ordinary differential equations, arXiv preprint arXiv:1911.07532.

[32] D.C. Liu, J. Nocedal, On the limited memory bfgs method for large scale
optimization, Math. Programm. 45 (1) (1989) 503–528.

Onur Bilgin received the Dipl.-Ing. degree in Mechani-
cal Engineering from RWTH (Aachen, Germany) in 2012.
After completing his Dipl.-Ing., he worked from 2013 to
2020 as a Design Engineer in Dürr Ecoclean GmbH
(Monschau, Germany). In 2022, he received the M.Sc.
degree in Data Science for Decision Making from
Maastricht University (The Netherlands). He is currently
a Graduate Student at the University of South Florida
(Tampa, USA). His current research interests are deep
learning, natural language processing, and computa-
tional science.

http://refhub.elsevier.com/S0925-2312(22)01151-1/h0005
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0005
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0005
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0010
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0010
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0010
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0010
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0015
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0015
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0020
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0020
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0025
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0025
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0025
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0030
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0030
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0030
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0035
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0035
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0040
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0040
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0040
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0045
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0045
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0050
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0050
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0055
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0055
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0060
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0060
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0060
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0065
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0065
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0065
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0070
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0070
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0070
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0075
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0075
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0075
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0080
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0080
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0090
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0090
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0090
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0100
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0100
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0105
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0105
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0105
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0115
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0115
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0115
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0115
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0125
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0125
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0125
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0125
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0130
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0130
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0130
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0130
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0130
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0140
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0140
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0140
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0140
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0145
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0145
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0145
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0160
http://refhub.elsevier.com/S0925-2312(22)01151-1/h0160
https://github.com/onurbil/pde-gcn


O. Bilgin, T. Vergutz and S. Mehrkanoon Neurocomputing 511 (2022) 131–141
Thomas Vergutz received a B.Sc degree in Mechatronics
Engineering from Universidade Federal de Uberlândia in
2013. He was from 2010 to 2013 the leader of a team in
the robotics group (EDROM) at Universidade Federal de
Uberlândia, this group won several awards and com-
petitions during this time. He worked at AmBev, from
2014 to 2018 as an Automation Engineer and from 2018
on as an Artificial Intelligence Coordinator. In 2019
AmBev granted him a scholarship to pursue an M.Sc. He
is currently a student at Maastricht University, pursuing
an M.Sc. in Data Science for Decision Making.
Siamak Mehrkanoon received the B.Sc. degree in pure
mathematics and the M.Sc. degree in applied mathe-
matics from Iran University of Science and Technology,
Tehran, Iran, in 2005 and 2007, respectively. He
obtained the Ph.D. degrees in numerical analysis and
machine learning from Universiti Putra Malaysia, Seri
Kembangan, Malaysia, and Katholieke Universiteit Leu-
ven (KU Leuven), Leuven, Belgium, in 2011 and 2015,
respectively. He was a Visiting Researcher with the
Department of Automation, Tsinghua University, Bei-
jing, China, in 2014, a Post-Doctoral Research Fellow
with the University of Waterloo, Waterloo, ON, Canada,

from 2015 to 2016, and a Visiting Post-Doctoral Researcher with the Cognitive
Systems Laboratory, University of Tübingen, Tübingen, Germany, in 2016. He was
141
an FWO Post-Doctoral Research Fellow with the Stadius Center for Dynamical
Systems, Signal Processing and Data Analytics, KU Leuven from 2016 to 2018 and an
Assistant Professor at the Department of Data Science and Knowledge Engineering
(DKE), Maastricht University, the Netherlands from 2018-2022. He is currently an
Assistant Professor at the Department of Information and Computing Sciences,
Utrecht University, Utrecht, Netherlands and affiliated with Maastricht University
as a free researcher. His current research interests include deep learning, neural
networks, kernel-based models, numerical algorithms, optimization and compu-
tational science. He has been awarded several Grants including PDM from KU
Leuven and prestigious Fund for Scientific Research from FWO Flanders.


	GCN-FFNN: A two-stream deep model for learning solution to partial differential equations
	1 Introduction
	2 Proposed model
	2.1 Graph structure data
	2.2 Grid structure data
	2.3 GCN-FFNN model
	2.4 GCN-based model
	2.5 Loss function

	3 Numerical results
	3.1 1D-burgers equation
	3.2 1D-Schrödinger equation
	3.3 2D-burgers equation
	3.4 2D-Schrödinger equation

	4 Conclusion and future work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	References


