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Abstract

We present a method to visually assess the stability of deep learned projections. For this, we perturb the high-dimensional data
by controlled sequences and visualize the resulting changes in the 2D projection. We apply our method to a recent deep learned
projection framework on several training configurations (learned projections and real-world datasets). Our method, which is
simple to implement, runs at interactive rates, sheds several novel insights on the stability of the explored method.

CCS Concepts

* Human-centered computing — Information visualization; Visual analytics; Visualization systems and tools;

1. Introduction

Multidimensional projections (MPs) are established methods for vi-
sualizing high-dimensional data. Within such methods, deep learning
approaches, pioneered by [HS06], have several attractive features:
They are simple to implement, work generically for any type of
high-dimensional data, are fast (especially when using GPU imple-
mentations), parametric, and have out-of-sample abilities, i.e., can
project unseen data along training data. Several such methods have
been proposed [BLS17,vdMO09]. Recently, Neural Network Projec-
tions (NNP) [EHT20], and its variants [EHT21, KET*22, MEF*20],
proposed a deep learning approach which learns the style of any
user-supplied projection technique such as t-SNE, UMAP, or PCA,
to name a few, with high quality and little training effort.

Yet, NNP and its variants have not been studied for their stability.
Simply put, their users do not have a clear idea how, and how much,
the resulting projection would change when its (unseen) input data
changes. This is important to know in practice to assess how a trained
NNP would fare on, or generalize to, unseen data. How different can
this data be from the training data to still obtain plausible projection
results? Which types (and amounts) of changes affect the resulting
projection the most? And what is the maximum allowed change so
that the visual interpretation of a projection would not be affected?

Stability analysis of MP methods was addressed earlier, most
notably by Garcia et al. [GFVLD13]. However, they studied changes
in terms of method hyperparameters and adding more data points,
not changing the points themselves. Also, they did not study deep
learning MP methods. Surveys of MP methods [Yin07, BBH12,
KH13, SVPM14, CG15,NA18, EMK*19] mention stability as an
important trait but do not provide quantitative evaluations thereof
and also do not cover deep learning methods.

We present a method to answer the above questions which is
simple to implement, fast to compute, and can be used for any deter-
ministic or parametric MP technique, even beyond the NNP class.
We use our method to analyze NNP’s stability under a family of
changes of different amplitudes. For each change type, we empiri-
cally find the maximum change beyond which the projection’s visual
interpretation for the task of finding the different clusters present in
the dataset is affected. We illustrate the above for NNP trained on
different projections and real-world datasets.
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2. Method

Let D = {x} C R" be a high dimensional dataset and P : R" — R? the
(NNP) projection method that maps each x € D to a point P(x) € R2.
Let Ax be a small change applied to point x, AD = {Ax|x € D} the
set of these changes, and D’ = {x + Ax|x € D} the set D where each
point has been changed accordingly. Let P(D) = {P(x)|x € D} be
the 2D scatterplot obtaining by projecting D, P(D') the scatterplot
from projecting D', and AP the visual difference between P(D) and
P(D’). In the following, D is the training set for NNP, but any other
(unseen) dataset can be equally used.

Since NNP is a deep learning method, when ||AD|| — 0 (data
changes Ax are very small for all points in D), || AP|| — O (the projec-
tion will not visibly change). Here, || - || denotes the L2 metric. The
more AD increases, the more, arguably, will the projection change
AP increase. At some point, P(D') will be so different from P(D)
that users looking at it will not see the same data structure that P
originally depicted. The smaller is the ratio AP/AD (related to the
derivative of the projection function P), the more stable is the pro-
jection, and conversely. This way of measuring stability has been
used recently for other high-dimensional datasets such as dynamic
projections [VGdS*20] and dynamic treemaps [VSC*20].

Knowing the point || AD||where P’ is visually assessed as depicting
a different data structure than P is useful. Take one key use-case for
projections — their ability to depict clusters of similar samples in the
data [NA18, TAE*09, TBB*10,SA15]. Knowing how much the data
D can change until we see different clusters tells us how ‘far away’
from the training set D we can expect that NNP generalizes. This
next tells us when we can reuse a previously trained NNP or if we
must train NNP again since the new data D’ is too different from D.

Based on the above, we propose the following workflow for visu-
ally exploring the stability of NNP:

e Define a family of perturbations F. A perturbation f € F is a way
to change the data, D’ = f(D, ), where G is an intuitive parameter
used to control the amount of change AD.

e For each perturbation type f € F

— generate K increasingly large changes {AD;} so that ||AD;|| <
|AD;||,Vi < j,1 <i<K,1< j<K,of NNP’s training set D.
— compute the corresponding projections {P(D;)} for {AD;}.
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— visually find the largest i € [1..K] for which P(D}) still shows
the same clusters as P(D). We call the change amount ; the
frontier of the projection P. Changes of NNP’s input beyond
this frontier yield projections which users interpret differently
in terms of visual clusters than the original projection P(D).

3. Experiments to measure stability

We apply our method to study NNP’s stability for different learned
projections, real-world datasets, and perturbation types, as follows.

3.1. Perturbation types

Many types of perturbations f are possible. We next propose five such
perturbations with different analysis goals. Note that the actual ranges
of the data dimensions in D are normalized to the [0, 1] interval,
following NNP’s implementation [EHT20].

Translation: Moves a point x with a value o7 € [0, 1] along a frac-
tion op € [0, 1] of randomly chosen dimensions from the total n ones.
Simulates additive bias to a subset of data dimensions.

Scaling: Like translation, but scales the chosen dimensions by a
factor o € [0, 1]. Simulates multiplicative bias.

Jittering: Adds random noise uniformly spread in [—1, 1] to a frac-
tion 6, € [0, 1] of randomly chosen dimensions from the n ones.

Dimension permutation: Swaps K randomly-picked dimension-
pairs from the n ones, where K = 6p/n for a given op € [0, 1]. Ideally,
NNP (or any projection) should be fully robust to such changes since
the order of dimensions is irrelevant.

Dimension removal: Removes a fraction 6 € [0, 1] randomly cho-
sen dimensions from the total n ones, to test how robust is NNP to
potential missing dimensions.

After perturbing the data D, we linearly renormalize D’ in the R”"
unit hypercube to make it fit the constraints of NNP listed above.

3.2. Datasets and projection techniques

We trained NNP to mimic three popular projection techniques —
PCA [Jol02], t-SNE [vdMHO0S8], and UMAP [MHM18]. Its hyper-
parameters, taken from [EFHT20], are no regularization, ADAM
optimization, noise-after-data augmentation, mean absolute error loss,
and a three fully-connected hidden layer architecture with 600, 240,
and 600 units respectively. We verified that the training converged
with small losses in the range of earlier reported ones [EFHT20].

We tested NNP’s stability for the perturbations in Sec. 3.1, one
perturbation at a time, on three datasets: MNIST [LCB10] (60K
28 x 28 grayscale images of ten handwritten digits), FashionMNIST
(60K images of ten clothing item classes), and Reuters [Tho17] (10K
text documents with a vocabulary size of over 35K terms; we used the
10 most frequent classes to make this dataset similar to the first two).
Training set sizes for the three datasets were 10K, 10K, and 4.5K
samples respectively. Next, we sampled the perturbation parameter
space (07,0p,0s,07,0gr,0p) over the [0, 1] range with step size 0.1
and plotted the results, color coded by class to ease interpretation.
We repeated our tests several times to account for the random nature
of the perturbations and visually confirmed result consistency. We
next present a subset (for space reasons) of these results. All images
and our method’s Python source code are publicly available [Bre20].

3.3. Translation stability

Figure 1(top) shows how NNP behaves in presence of additive bias.
For each (dataset, projection) pair, we show nine combinations of
or € {0.1,0.3,0.7} and op € {0.1,0.5,0.9}. For MNIST, we see a
clear trend: The projection ‘collapses’ towards it center, with clusters

increasingly mixing, as both the translation factor 67 and the number
of dimensions Gp it is applied to grow. This is explained by the fact
that translation affects only a subset of randomly chosen dimensions.
Interestingly, the visual degradation for the same 67,6p varies per
learned projection: For t-SNE, this is the largest, clusters get already
mixed for 67 = 0.5,6p = 0.5. For PCA, the degradation is the least,
the effect being similar to a uniform scaling of the projection. Visual
clusters do not become significantly more mixed up when 67 or
Op increase, since they are already poorly separated in the original
PCA projection. UMAP fares visually between t-SNE and PCA. We
believe this is due to the already very strong visual cluster sepa-
ration in the original UMAP projection, a known characteristic of
this method [MHM18,EMK™19]. FashionMNIST has very similar
results, likely since it is a similar-nature (grayscale image) dataset —
see supplementary material [Bre20].

For Reuters, the situation is starkly different: All methods loose
visual cluster separation when o7 or 6p are above 0.1 (see also
online material for more images). While we do not know why this
occurs, this is a very important insight as it tells that NNP’s stability
vs additive noise is strongly influenced by the nature of the projected
dataset or the training set size (Reuters: 4.5K samples; MNIST and
FashionMNIST: 10K samples). As such, users should not assume
that if NNP behaves robustly on one type of data trained for the same
will hold for other types.

3.4. Scaling stability

Figure 1(bottom) analyzes scaling stability. We see that NNP behaves
very stably irrespective of the dataset or learned projection. We also
see that the visual cluster separation decreases as the scaling factor
approaches zero. This makes sense as the variance captured by the
downscaled dimensions is essentially reduced.

3.5. Jittering stability

Figure 2(top) shows that, for the MNIST dataset and all learned pro-
jections, NNP is remarkably robust to adding noise to up to 10 to 20%
(o7 €10.1,0.2]) of the n dimensions, given that the noise bandwidth
is the full range [0, 1] of the dimensions. As noise is added to more
dimensions, visual clusters get mixed up, quite similar to the additive
noise effect (Fig. 1). For the Reuters dataset, the situation is very
different: Even the smallest amount of jitter completely ‘collapses’
the projection, regardless of the learned technique, even more so than
for additive noise. This strengthens our insight that NNP’s stability is
strongly dependent on the nature of the projected data and/or training
set size and far less on the learned projection technique.

3.6. Dimension permutation stability

As Sec. 3.1 noted, we expect NNP to be fully stable vs dimension
permutation. Figure 2(middle) confirms this for all projections up to
roughly 30-40% permuted dimension-pairs (cp up to 0.3..0.4). For
larger Gp, projections slowly collapse and the visual clusters mix
up. This is an unexpected insight. The cause may be NNP’s fully
connected and bottleneck architecture which ‘specializes’ at training
certain parts of some layers to process specific data dimensions.
As the n dimensions of a point go one-to-one in the n units of the
input layer, permuting dimensions can create confusion, akin to
the known sensitivity of deep learning image classifiers to rotated
images [SK19]. If so, we could consider data augmentation for
NNP’s training to remove this unwanted dimension-order sensitivity.

3.7. Dimension removal stability

Figure 2(bottom) explores NNP’s stability when removing an increas-
ingly large number of data dimensions. Surprisingly, the projection
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Figure 1: Translation (top) and scaling (bottom) stability analysis, MNIST and Reuters datasets, NNP trained for t-SNE, PCA, and UMAP.

changes quite little up to roughly 40% (cg = 0.4) removed dimen-
sions, and this holds for all learned projections and datasets tested.
Up to some extent, this can be explained by redundancies being
present in the input data or, in other words, the tested datasets having
a (far) smaller intrinsic dimensionality than their » dimensions. Still,
since NNP does not explicitly aim to detect or use the data’s intrin-
sic dimensionality, and since the removed dimensions are randomly
picked, this is a quite interesting, and positive, result. We plan to fur-
ther investigate this effect and its potential connection to projecting
random subspaces of a high-dimensional space.

We compactly visualize translation, scaling, and dimension re-
moval by 2D trails that connect the projections P(x + Ax) of each
sample x € D, see left insets in Figs. 1 and 2, computed for MNIST
projected by NNP trained with t-SNE and 6p 5 pr € [0,0.5], K = 50
sample steps. We see here the nonlinear nature of NNP: Translations
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and scalings (linear) map to curved trails. We also see that translation
and dimension permutation keep the visual clusters better separated
(less color mixing) than scaling and dimension removal and also the
strong ‘projection collapsing’ effect of translation. To better see the
locality of the perturbations, we also aggregate them using kernel
density plots [Sil86] of the projected perturbed points, visualized by
a white-to-red heatmap (left insets, Figs. 1 and 2). The far stronger

‘collapse’ effect of translation vs the more local behavior of the other

perturbations is visible in the central red hotspot of the translation
heatmap plot.

Given NNP’s high inference speed [EHT20], all above visualiza-
tions are created in real time for datasets of hundreds of thousands of
samples and hundreds of dimensions on a commodity PC while in-
teractively modifying the perturbation parameters. This allows users
to freely explore NNP’s stability in any desired direction.
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Figure 2: Jittering (top), dimension permutation (middle), and dimension removal (bottom) stability analysis, MNIST and Reuters datasets,

NNP trained for t-SNE, PCA, and UMAP.

4. Conclusion

Our results show that NNP is in most cases stable even to signif-
icant amounts of perturbations of various types. As perturbations
increase in amplitude or number of affected dimensions, the NNP
projection ‘collapses’ inwards smoothly in terms of the shapes and
relative positions of the visual clusters. This can be explained by
NNP’s deterministic nature — though not all deterministic projection
techniques show an equally graceful degradation. Yet, this does not
happen in all cases — for the Reuters dataset, the collapse occurs
even for small perturbations. Finding out which characteristics (a.k.a.
traits [NA18, EMK*19]) in the nature of a given dataset causes
this particular behavior can lead to refining NNP to exhibit higher
stability, a direction we want to explore next.

Other further directions of work are possible, as follows.

Evaluation: More datasets and learned projections can be used to
test NNP’s stability. Quantitative measurement of the projection
stability is another low-hanging fruit to explore. We also aim to
understand the reasons for instability and adapt NNP (or its training)
to correct for this. As any (deep learned) regressor, NNP inherently
changes its output upon its input change. Yet, not all input changes
are equal. We foresee ways to refine NNP’s training to become less
sensitive to certain types of input changes which are deemed less
important. For this, we plan to design custom perturbations to model

the actual variability, or noise, present in a given application domain,
and improve NNP to handle these specifically per-domain, thereby
extending earlier work [EFHT20] which aimed at making NNP more
robust by effectively exploring how specific data changes induce
projection changes.

Comparison: Comparing NNP’s stability with that of the actual
projection techniques that NNP learns, e.g., t-SNE or UMAP, and
adding such results to public benchmarks [EMK* 19] will help users
choose suitable projection techniques from a stability viewpoint.

Explanation: Annotating projections with explanations of their vi-
sual patterns is a powerful tool for understanding high-dimensional
data [TZvD*21,dSRM*15]. Using explanations with our pertur-
bation analysis can help finding which dimensions are behind the
appearance of (un)stable parts of a projection, thus show why points
come together or get separated. This can help us next to understand
how stability depends on the dataset type. Secondly, studying how
explanations themselves are (un)stable with respect to data perturba-
tions is useful for getting more trust in the explanations themselves.
All'in all, this will help designing visual explanations more robust to
noise, gauging the actual effect on the user’s perception of the data
implied by such projection instabilities, and also for using explana-
tions to actually measure the stability of a projection technique.
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