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Abstract—An important part of healthcare decision making is
to understand how certain actions relate to desired and undesired
outcomes. One key challenge is to deal with confounding vari-
ables, i.e., variables that influence the relation between actions
and outcomes. Existing techniques aim to uncover the underlying
statistical relations between actions and outcomes, but either
do not account for confounding variables or only consider the
process or case level instead of the event level. Therefore, this
paper proposes a novel relation mining approach for healthcare
processes that 1) explicitly accounts for confounding variables
at the event level, and 2) transparently communicates the effect
of the confounding variables to the user. We demonstrate the
applicability and importance of our approach using two eval-
uation experiments. We use a real-world healthcare dataset to
show that the identified relations indeed provide important input
for decision making in healthcare processes. We use a synthetic
dataset to illustrate the importance of our approach in the general
setting of causal model estimation.

Index Terms—process mining, statistical relations, confounding
variables, healthcare

I. INTRODUCTION

In many professional settings, taking the right actions often
determines whether a desired outcome can be obtained or
not. In a healthcare context, such desired outcomes include
improving a patient’s symptoms, curing a certain disease, or
plainly saving a patient’s life. Given the considerable impact of
certain actions in healthcare settings, there is a large desire to
better understand how taking (or not taking) particular actions
is linked to outcomes [1], [2]. The data that is collected
by modern Health Information Systems (HISs) provides a
valuable basis to study and understand this link. Among
others, HISs record which actions have been taken, when
these actions have been taken, and who was involved [3],
[4]. Nonetheless, the relation between actions and outcomes
is inherently complex and may depend on a large number of
contextual factors [1].

In process mining literature, various techniques have been
proposed that aim to discover such relations. They can be

subdivided into three main groups: machine-learning-based
approaches [5]–[7], statistics-based approaches [8]–[10], and
context-based approaches [11], [12]. However, none of the
existing techniques can deal with confounding variables at the
event level. While techniques ignoring confounding variables
can generate misleading or plainly wrong insights, techniques
focusing on the process or case level can only predict or
explain outcomes at those levels. Particularly in a healthcare
context, the consideration of the event level is highly important
since it allows to understand the outcome of individual actions,
such as treatments.

Against the background of this research gap, we use this
paper to propose a novel statistical relation mining technique
for healthcare processes that 1) explicitly accounts for con-
founding variables at the event level and 2) transparently
communicates the effect of the confounding variables to the
user. We consider a scenario where a decision maker needs to
choose from a set of responses given a particular action and we
aim to understand whether these responses can be related to
future actions. To develop and illustrate our conceptual ideas,
we build on the problem of aggressive behavior in residential
care facilities. In such a setting, we want to understand
whether a certain response taken by a caretaker (e.g., isolating
a client) to a patient’s action (e.g., aggressive behavior towards
people) is linked to a patient’s actions in the future (e.g., no
further aggressive behavior). At a technical level, we combine
process mining techniques with statistical testing methods. As
a result, our technique can identify complex hidden relations.
By doing so, we pave the way for better understanding the
complex relations in processes and improving decision-making
in a data-driven way.

The rest of the paper is organized as follows. Section II
elaborates on the problem and related work. Section III
introduces the formal preliminaries. Section VI presents our
approach for relation mining. Section V discuss the evaluation
of our approach before Section VI concludes the paper.
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II. BACKGROUND

This section introduces the background of our research.
Section II-A elaborates on the problem. Section II-B then
discusses related work and highlights the research gap.

A. Problem

In many processes, it is desirable to understand the impact
of executing certain actions, especially when there are several
alternative options available. For example, consider a resi-
dential care facility where patients with different intellectual
disabilities live together. One of the main objectives of such a
facility is providing the patients with the best possible quality
of life and, therefore, prevent instances of aggressive behavior
[13]. If aggressive behavior occurs, care staff have a number
of different options to respond to such an incident. Potential
responses range from mild measures, such as warning the
patient, to severe measures, such as secluding the patient.
Whether the chosen response has been effective with respect
to preventing further aggressive incidents in the future is a
complex question. The effectiveness of the response might be
affected by certain patient characteristics, the type, the severity
of the incident, or also other contextual factors.

To illustrate this, consider the scenario depicted in Figure 1.
In the scenario at hand, we encountered an incident of verbal
aggression and would like to understand to what extent
distracting the client is a response that leads to deescalation,
i.e., no aggression. Figure 1a shows a possible outcome for
100 cases if we do not consider any confounding variables.
As indicated by the weights of the outgoing arcs, the results
are highly inconclusive. It seems that distracting the client
has no meaningful effect since all possible outcomes have the
same probability (i.e., 25%). Figure 1b and Figure 1c, however,
show that this is conclusion is incorrect. By accounting for the
confounding variable severity, we realize that distracting the
client can indeed lead to fewer cases of aggression, but only
if the severity score is higher than 5 (see Figure 1c).

This example illustrates how complex understanding the
impact of actions and responses can be in real-life situations.
What is more, it shows that the consideration of confounding
variables can be essential. Not accounting for confounding
variables can lead to a flawed understanding of the underlying
process and, therefore, to poor decision making [14]. In the
next subsection, we briefly review existing literature to show
that, currently, there is no approach available that addresses
this problem.

B. Related Work

Understanding cause and effect relationships is an impor-
tant ingredient for effective business process improvement
[15]. Recognizing this, many researchers have developed ap-
proaches for analyzing and detecting such relationships based
on process execution data. As a result, a variety of approaches
exist that differ with respect to several dimensions. In general,
we can subdivide existing approaches into three main cate-
gories based on the overall strategy they pursue to identify

causal relationships: 1) machine-learning-based approaches, 2)
statistics-based approaches, and 3) context-based approaches.

Machine-learning-based approaches build on traditional
supervised learning techniques to both identify cause-effect
relationships, and estimate their effects. The first approaches
from this category mainly focus on understanding and ex-
plaining case-related phenomena [5], [15], [16]. What these
approaches have in common is that they only identify potential
causal relations. More recent approaches explicitly account for
causation, for example, by combining action-rule mining with
uplift trees [6] or using neural networks [7]. Both Verboven
and Martin [7] and Bozorgi et al. [6] account for confounding
as long as confounders are included in the data.

Statistics-based approaches build on established statistical
tests and models to identify cause-effect relationships. Naren-
dra et al. [9] propose an approach which uses structural causal
models to encode and confirm existing assumptions about
cause-effect relationships at the process level. The approach
from Koorn et al. [10] builds on chi-square tests to identify
relevant cause-effect relationships at the event level. However,
it does not consider confounding variables. Qafari and van der
Aalst [8] propose an approach based on structural equation
models to, for instance, detect causal relationships between
resources and process delays.

Context-based approaches build on techniques exploiting
specific context dimensions, such as time or proximity, to iden-
tify cause-effect relationships. For example, Hompes et al. [12]
use time series analysis to identify causal relations between
business process characteristics and process performance in-
dicators. Van Houdt et al. [17] leverage the time dimension by
employing probabilistic temporal logic. Polyvyanyy et al. [11]
present an approach that builds on the notion of proximity of
events in terms of time, space, and semantics. In essence, they
systematically develop domain-specific heuristics that allow
them to identify relevant cause-effect relationships.

The review above illustrates that there are various ap-
proaches available for detecting cause-effect relationships
based on process execution data. However, only a few existing
approaches account for the problem of confounding variables,
[6], [9], [17]. What is currently still missing is an approach
that considers confounding variables at the event level. Such
an approach would be able to make specific and valuable
recommendations on what action to perform. We therefore use
this paper to fill this gap.

III. PRELIMINARIES

In this section, we discuss the preliminaries of our work.
Section III-A introduces the notion of action-response logs.
Section III-B then explains how we can mine causal patterns
from such logs.

A. Action-response logs

The event logs used by traditional process mining tech-
niques are a collection of sequences of events. Each event
records information such as the corresponding case, the task,
the time of the execution, and the user (resource) who executed
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Fig. 1: Impact of considering confounding variables
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(c) ’Severity’ > 5

Client Event Timestamp Action Response(s) Severity

1 e1 12-05 09:53 VA Warning 5
1 e2 13-05 13:35 PO Distract Client,

Seclusion
9

1 e3 26-05 09:32 VA Warning 6
1 e4 26-05 11:02 PP Distract Client 7
2 e5 21-06 14:51 VA Distract Client 7
1 e6 23-06 21:23 VA Distract Client 6
2 e7 24-06 17:02 VA - 3
3 e8 29-07 11:22 VA Warning 4
3 e9 31-07 08:13 PO Warning,

Seclusion
9

3 e10 31-07 10:48 PP Distract Client 8

Legend: VA = Verbal Aggression, PP = Physical Aggression
(People), PO = Physical Aggression (Objects)

TABLE I: Excerpt of an action-response log

the task. A sequence of events that correspond to a particular
case is called a trace. In the context of this paper, we consider
a specific type of event log: an action-response log. It differs
from a traditional event log in the sense that such a log
contains traces that alternate between actions and the responses
towards these actions. We define an action-response log L as a
specific type of log, where each event contains a case id (e.g.,
client id), an action (e.g., “Verbal aggression (VA)”) and a
response taken towards the action (e.g., “Distract Client”).

To illustrate the notion of an action-response log, we use the
example of aggressive behavior in residential care facilities.
Table I illustrates action-response tuples, where each row
records an occurred event. The column “Action” indicates the
action of the event, and the column “Response(s)” lists the
response(s) to the event. We define a function πr to return the
set of response events {re1, . . . , ren} of an event e; we write
πr(e) = {re1, . . . , ren}. For each trace σ = 〈e1, . . . , en〉, the
sequence of responses is 〈πr(e1), . . . , πr(en)〉. For example, in
the action-response log listed in Table I, for event e1: πc(e1) =
1 is the case of event e1, πa(e1) = “Verbal Aggression”
(VA) is the action of e1, and πr(e1) = {“Warning”} is the
set of responses of e1. For each trace σ = 〈e1, ..., en〉, we
define the action-response trace γ(σ) = 〈(πa(e1), πr(e1)), ...,
(πa(en), πr(en))〉 = 〈(a1, r1), ..., (an, rn)〉. An approach to
convert a traditional event log into an action-response log has
been described in Koorn et al. [10].

Observed PO PP VA SIB τ Total

Terminate contact = 0 300 500 210 180 90 1280
Terminate contact = 1 100 100 90 60 10 360
Total 400 600 300 240 100 1640

Expected PO PP VA SIB τ Total

Terminate contact = 0 312.2 468.3 234.1 187.3 78.0 1280
Terminate contact = 1 87.8 131.7 65.9 52.7 22.0 360
Total 400 600 300 240 100 1640

Legend: VA = Verbal Aggression, PP = Physical Aggression (People),
SIB = Self-Injurious Behavior, PO = Physical Aggression (Objects)

TABLE II: Excerpt of the tables for an individual response
used to perform statistical tests; horizontal categories: effects
on follow-up actions

B. Mining causal patterns

Given an action-response log, it is possible to mine relevant
causal patterns [10]. Such patterns reveal, given a particu-
lar action, which relations between responses and follow-up
actions are statistically significant. As the existing notion of
causal patterns introduced in Koorn et al. [10] does not take
confounding variables into account, we set out to do so in this
paper. Below, we explain how we can mine causal patterns
from an action-response log using the chi-square-test.

Under the assumptions described in McHugh [18], the chi-
square test is used to test the hypothesis whether a response
has a significant effect on the follow-up actions, suggesting
a potential causal pattern. To perform the test, we calculate
the number of follow-up actions of different categories when
there is a particular response and compare these numbers to
when there is not such a response.

To test whether each response ri has an influence on the
follow-up action, we define Ma,r,A as a 2× |A| matrix:

Ma,r,A =

(
fr,1 fr,2 · · · fr,n
f¬r,1 f¬r,2 · · · f¬r,n

)
(1)

where fr,j =|{ei ∈ L | πa(ei) = a∧ πr(ei) = r ∧ πa(ei+1) =
aj}| and f¬r,j is the frequency distribution of effects of the
responses other than r, i.e., f¬r,j = | {e ∈ L | πa(e) =
a∧r /∈ πr(e)∧πa(ei+1) = aj}|. An example of Ma,r,A where
r is “Terminate contact” is listed in Table II. The chi-square
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Fig. 2: A visual representation of the proposed technique

test calculates the expected frequencies and compares them to
the observed frequencies M . If they differ significantly, then
the null hypothesis is rejected, which means the responses
have a statistically significant effect on the follow-up actions.

In the next section, we build on these concepts to define
a relation mining approach that explicitly accounts for con-
founding variables.

IV. APPROACH

In this section, we present our approach for relation mining
in healthcare processes. As shown in Figure 2, our technique
consists of three main steps: 1) action-response log creation,
2) statistical tests, and 3) applicable scenario selection. As
input, it expects data on potential confounding variables and
two specific parameters. As output, it provides quantitative
insights into the likelihood of confounding variables. Below,
we elaborate on the input, the three main steps, and the output.

A. Input

The input for our technique consist of two main elements: 1)
data on the candidate confounding variable and 2) parameters
k and M. In general, the data that is used for the candidate
confounding variable can be any attribute in the dataset. Note
that an assumption of this technique is that all candidate
confounding variables are included in the dataset. In Table I
this is showcased by the last column Severity. The data can
be of both categorical or continuous nature. In the proposed
technique, we use two parameters to determine the strategy
for detecting a possible confounding variable. First, we use k
to denote the number of stratified datasets that we create. By
default, this parameter is set to a value of 2. Simply put, if the
candidate variable consists of two categories (e.g. aggression
history, where the potential values are ‘yes’ or ‘no’), we split
the data into two datasets: one set only containing clients that
have a history of aggressive behavior and another set only
containing clients that were never aggressive before.

Second, we need a strategy to split the dataset into multiple
subsets. This holds for candidate variables that have more
than 2 categories and for numerical variables. Parameter M
determines this strategy. Two main approaches can be taken: 1)
use of domain knowledge, or 2) use of an automated approach.
The first approach is recommended as the interpretation of the
outcomes is highly dependent on domain knowledge. However,
if this is not feasible, there are approaches to automate the
splitting of data into subsets. One option is to split the data

such that the observations are distributed equally over the
categories (i.e. subsets). This minimizes the chances that the
assumptions for the statistical test are violated. The maximum
number of data subsets (k) can then be expanded in an iterative
way, keeping the size of each k equal as long as the test
assumptions are met.

B. Relation mining

The relation mining component is the core of our technique
and consists of three specific steps: 1) action-response log cre-
ation, 2) statistical tests, and 3) applicable scenario selection.
Action-response log creation. As described above, we use
an event log as starting point. We can convert an event log
into an action-response log in two ways. If the response is a
variable in the event log, we can use the conversion described
in Section III. If the response variable is not present in the
event log, the log can be converted to an action-response log
following the approach presented in Koorn et al. [19].
Statistical tests. We perform statistical tests in two steps to
identify confounding variables. The goal of each step is to: 1)
determine an original test score for the action-response rela-
tion, and 2) test how the action-response relation holds when
we consider a possible confounding variable. When looking
for confounding variables, we first calculate a chi-square test
score for the original dataset. The original dataset is the action-
response log introduced in Section III. The chi-square test
takes this log and calculates for each entry the expected values
based on the chi-distribution. Then, the observed frequencies
from the original log and expected frequencies based on the
chi-distribution are compared to each other and a test score
is calculated. This score indicates how large the difference
between these scores is. If the test score is significant, this
means there is at least one significant combination of action
type and response type. As such, we can conclude that there
is a relation between the action and response variable. If
the test score is not significant, this means that there is no
relation between the action and response variable. The exact
mathematical approach of the chi-square in the action-response
context is described in Section III.

Then, we introduce the possible confounding variable as an
extra variable, which we will refer to as the candidate variable
from here on. The candidate variable is used to stratify the
original data into k smaller datasets called subsets. Following
this, we perform the same test as the original test on each
of the subsets. We refer to respective results as the subset test
scores. The test scores for each subset can be significant or not
significant, again indicating whether or not there is a relation
between the action and the response variable.
Applicable scenario selection. At this point, there are three
possible scenarios that can occur: 1) the original test score
and subset test scores have the same results (indicating the
absence of confounding variables), 2) the original test has
the opposite results compared to each individual subset test
scores (indicating the presence of a confounding variable), or
3) the original test score has the same result as at least one
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Original data Subsets Confounding variable

Significant
All significant No confounding variable
Mixed results Mediator variable

All not significant Confounding variable

Not significant
All significant Confounding variable
Mixed results Mediator variable

All not significant No confounding variable

TABLE III: Scenarios for test results for confounding variable.
The (not) significant values refer to the test scores

subset and opposes at least one subset (indicating the presence
of a mediator variable). In Table III we present the different
scenarios. Below, we outline the conceptual rationale for each
scenario. In Section V, the scenarios are further exemplified
using a real- world case study on aggressive behavior. As
the technique is applicable beyond the setting of our case
study, we use the statistically appropriate terms dependent,
independent, and candidate variables below. In terms of the
case of aggressive behavior, these terms respectively refer to
response (independent), follow-up action (dependent), poten-
tial confounder (candidate).
Scenario 1: no confounding variable. The first scenario applies
when all test results are either significant or not significant.
If all test results are significant, there is a relation between
the independent and dependent variable, regardless of the
candidate variable. If all test results are not significant, there is
no relation between the independent and dependent variable,
regardless of the candidate variable. In both situations, the
candidate variable has no effect on the relationship between
independent and dependent variable. Thus, we can conclude
that the candidate variable is not a confounding variable.
Scenario 2: a confounding variable. The second scenario
applies when the original test result is opposite (in terms of
significance) to each of the subset test scores. In this scenario,
there is a significant effect of the candidate variable on the
relation between independent and dependent variable. When
the original test score is significant and the subset test scores
are not significant, the test results show that the hypothesized
relation between independent and dependent variable disap-
pears. In the opposite situation, where the original test score
is not significant but the subset test scores are significant,
the results show that under certain circumstances (i.e., those
captured in the candidate variable) there is a relationship that is
hidden when all data is combined. Hence, the hypothesis that
there is no relation between the independent and dependent
variable is falsified. Thus, in both situations, we can conclude
that the candidate variable is a confounding variable as the
candidate variable presents an alternative explanation to the
independent variable for explaining the dependent variable.
Scenario 3: a mediator variable. The third scenario applies
when mixed results are obtained in the subset test scores,
regardless of the original test score. In this scenario, if the
original test score is significant, we hypothesize that there
is a relation between the independent and dependent score.
However, the subset test scores show that this relation only
holds under certain circumstances, captured in the candidate

variable. In other words, the candidate variable mediates the
relation between independent and dependent variable. Thus,
we can conclude that the candidate variable is a specific type of
confounding variable. It has an influence, but does not provide
a complete alternative explanation for the relation between
the independent and dependent variables. If the original test
score is not significant, we hypothesize that there is no relation
between the independent and dependent variables. However,
the subset test scores show that under certain circumstances,
captured in the candidate variable, the relation does exist.
The relation disappears when all data is combined. Hence,
the candidate variable has an effect on the relation between
the independent and dependent variables. Thus, when mixed
results are obtained in the subset test scores, we can conclude
that the candidate variable is a specific type of confounding
variable which we refer to as the mediator variable.

C. Output

The output of our technique is set of causal relations. When
the technique detects a confounding variable, there are three
scenarios, as described above: 1) no confounding variable, 2)
confounding variable, and 3) mediator variable. Besides these
scenario, it is also possible that there is not enough data. This
occurs when, after data stratification, there is not enough data
in each subset to perform the Chi-square tests. The technique
produces test scores for the original set and each of the subsets
per response type. For each test, it will indicate whether or not
the score was significant or not significant. Based on this the
appropriate scenario (1-4) is determined. To create a coherent
overview, the output is presented in table format, see Table V
as example.

V. EVALUATION

This section presents a two-part evaluation of our approach.
The first part (Section V-A) focuses on applicability and
revisits the relationships discovered by Koorn et al. [10] in
the context of a real-world case study. We show that consid-
ering potential confounding variables indeed leads to different
results. The second part (Section V-B) uses a synthetic dataset
to demonstrate the importance of our approach in the general
setting of causal models. We show that our approach can help
to ensure that no wrong assumptions about the existence of
hidden confounders are made and how this impacts the results
of causal models.

A. Real-world case

Dataset. For demonstration purposes, we use a real-world
dataset of the care process at a Dutch residential care facil-
ity. The event log contains 21,384 recordings of aggressive
incidents from 1,115 clients. The process captured in this log
concerns the aggressive behavior of clients in their facilities
and the way caretakers respond to these incidents. The log
consists of aggressive incidents of clients that belong to one of
four different action classes. Each of these actions is followed
by a number of measures from the caretakers as responses to
the action. Each response belongs to one of nine different
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Actions

Physical aggression towards people 11,381
Physical aggression towards objects 1,446
Verbal aggression 5,778
Self-injury 2,779
Total 21,384

Responses

Talk to client 9,279
Held with force 3,624
Leave room 3,638
Distract client 2,561
Send away 3,169
Seclusion 1,156
Other measures 209
None 783
Ignore client 70
Total 24,489

Clients

Minimum number of actions per client 1
Maximum number of actions per client 449
Average number of actions per client 19.2
Total 1,115

TABLE IV: Overview of the characteristics of the real-world
dataset

response classes. We transformed this log into an action-
response log by defining the next aggressive incident of a client
as a follow-up action if it occurred within 9 days. Otherwise,
the link is not considered and the follow-up action is defined as
τ , i.e. none. This transformation procedure is in line with the
approach followed by Koorn et al. [10]. As a result, we obtain
a total of five different action classes. Table IV summarizes
the characteristics of our dataset.

Candidate variable. To put the results produced by our
approach into context, we compare our results to those from
the ARE miner [10]. Since the ARE miner uses the same
dataset as we do, we can revisit the relationships found
and control for the effects of candidate variables on them.
Among others, the ARE miner uncovered that responding to
verbal aggression with physical restraints (i.e., seclusion of
client) leads to an increased chance of escalation of future
violence (i.e., more violence towards persons). However, as
stated before, the ARE miner does not account for candidate
variables that can influence the discovered relations. Based
on insights from the healthcare organisation and aggression
literature, one promising candidate variable is identified: the
severity of an aggressive incident.

Previous research has linked the severity of an incident to
well-being of both client and caretakers [20]. Research has
also shown that support staff who experience high levels of
stress due to aggressive behaviour of their clients are likely to
respond in different ways [20]. Against this background, we
hypothesize that the severity of an incident is a confounding
variable for the relation between response of caretaker and
future aggression of clients.

Results. The first step of the approach is to determine how
the data is stratified. In our case, we stratified the data based
on domain knowledge. Severity refers to the gravity of the
incident as indicated by the caretaker on a 1-10 scale. Based

on this knowledge, two subsets are created. Thus, parameter
k equals the default value (k = 2). One subset is created for
mild incidents, i.e., incidents with a score between 1 and 7.
Another subset captures severe incidents, i.e., incidents with
a score ≥ 7.

Recall that the relation miner produces results for action-
response combinations. As such, a substantial amount of tables
and graphical representations were produced when checking
for the confounding variables. To illustrate the results, we
focus on an exemplary case. Table V presents the results
for the initial action self-injurious behavior where we check
for the candidate variable severity of the incident. Below,
we elaborate on the findings and show how each scenario
described in Section IV-B is reflected in the case study results.

No confounding variable. In Table V, we see that a number of
responses fall into the category of no confounding variable. For
example, “Terminate contact” as a response has a significant
effect on the future aggression after a self-injurious behavior
incident.

When the data is then stratified and tested again, the chi-
square results of the subset tests match the ones from the
original test (see Table V). Thus, the pattern of response and
follow-up action observed in the original data remains the
same for each of the subsets. From the results in Koorn et
al. [10], we know that this means that both for mild and
severe incidents the response “Terminate contact” increases
the chances of verbal aggression as future aggression. In
addition, terminating contact reduces the chances of future
self-injurious behavior. In other words, the severity score is
not a confounding variable in this context.

A confounding variable. A confounding variable is identified
when all the subsets return the opposite test scores compared
to the test scores from the original dataset. Table V shows
that the response “Send to other room” fits this description. In
the original dataset, a significant relation is observed between
this response and the follow-up actions. Koorn et al. [10] also
found that the response “Send to other room” reduces the
chance of a future repetition of the self-injurious behavior.

When the data is stratified and checked for the impact of
sending a client to their room, we can see that there is no
effect of this response on the future aggressive behavior of
the client. This means that the original finding of sending a
client to their room does not seem to have an effect when we
consider the severity of the incident. As such, the severity of
the incident is a confounding variable in this context and this
relation should be disregarded from the original findings.

A mediator variable. A mediator variable is present when the
tests results of the subsets are mixed. In our specific case, the
response “Distract client” meets these criteria. The test score
for the original data shows a significant relation. Koorn et
al. [10] also found that distracting a client results in a higher
chance of future violence against another person.

When stratifying the data based on the severity score,
this relationship holds for mild incidents but not for severe
incidents. The interpretation of the effect of distracting a client
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Response type Original set Subset 1: severity <7 Subset 2: severity ≥ 7 Scenario
Terminate contact Significant Significant Significant 1 (No confounding variable)

Send to other room Significant Insignificant Insignificant 2 (Confounding variable)
Distract client Significant Significant Insignificant 3 (Mediator variable)
Talk to client Significant Significant Significant 1 (No confounding variable)

Seclusion Insignificant Not enough data Not enough data - (Not enough data)
Hold with force Significant Significant Significant 1 (No confounding variable)

No measure Significant Significant Insignificant 3 (Mediator variable)

TABLE V: Results of candidate variable tests for the variable severity of incident. The action is self-injurious behavior. The
significance scores refer to the result of the chi-square score(s)

is a bit more complex. The results show that if an incident
is severe, distracting a client does not have an effect on
future aggression. In other words, distracting a client is neither
harmful nor helpful in this context. By contrast, if incidents
are mild in terms of severity, then distracting a client does
have an effect. We can therefore conclude that the severity
score is a mediator variable as it influences the initially found
relation between distracting a client and future aggression.

B. Synthetic experiment

Conditional Average Treatment Effect (CATE) estimation
[21] has been the main driving force behind recent de-
velopments in personalized medicine, marketing, and policy
research, based on observational data. In this section, we
demonstrate that the approach proposed in this paper can help
to ensure that the vital assumption of No Hidden Confounders
in the context of CATE estimation is met.
Setting. CATE estimation involves the estimation of the causal
effect of a response W ∈ {0, 1} on a follow-up action Y ∈ R
for an individual i characterized by features X ∈ X ⊂ Rn.
As per the Rubin/Neyman Potential Outcomes framework [22],
we assume that (in a binary setting) two potential follow-up
actions (PFA), i.e., outcomes, exist for each individual, Y0
and Y1, associated with W = 0 and W = 1, respectively. For
example, having an individual with “Verbal Agression”, giving
a response W being whether “Terminate contact” or not, we
have the potential followup action Y = 1 if there is physcial
aggression against people, or Y = 0 not. The CATE is then
the expected difference between the PFAs of an individual, or:

τ(x) := E[Y1 − Y0 | X = x] = µ1(x)− µ0(x) (2)

where the expected potential follow-up action is denoted by
µw(x) = E[Yw | x]. Of these PFAs, we only ever observe the
factual, i.e., Yf = Y (W ) =WY1 + (1−W )Y0. As such, the
CATE itself is unobservable for any i. For maximum clarity,
we will consistently refer to τ(x) as CATE in the remainder
of this paper.

While recent developments in CATE estimation has en-
abled granular causal effect estimation based on observational
data, adherence to standard assumptions regarding Stable
Unit Treatment Value (SUTVA), Overlap, and in particular
No Hidden Confounders is required [23], [24]. No Hidden
Confounders implies that confounders are observed, and in-
cluded in the data set so that (Y0, Y1) ⊥⊥ W |X = x. The
proposed approach helps to avoid violations of the no hidden
confounders assumption through variable selection, i.e., that

confounding variables are removed from the dataset since they
are not considered relevant for the prediction task at hand. In
the following paragraphs, we demonstrate how confounder-
agnostic variable selection can harm the performance of causal
models.

In particular, the impact of confounders on the potential
follow-up actions may be offset by their selection effects.
As such, using standard approaches to variable selection
based on performance on Yf can lead data scientists to omit
confounders. Such manual hiding of confounders then leads
to biased CATE estimates caused by the violation of the no
hidden confounders assumption. To illustrate this paradox, and
the importance of confounder detection for causal variable se-
lection, we will simulate two scenarios in a synthetic example.
Dataset. To simulate the two scenarios based on the original
data, but still have access to the ground truth, we extract 20
pre-response variables from the original dataset, including the
confounder “severity”. Furthermore, we one-hot encode all
categorical variables, and standardize the continuous variables.

We adopt the same data generating process as [7], [25] to
generate the PFA functions. This means that the variables and
response assignment are the same as in the original data set,
so the original response propensities (P(Wi = 1 | Xi = x))
are retained and selection bias persists. Additionally, in the
resulting PFA model the variables xs are introduced and
highly correlated to both PFA y0 and y1, but are unrelated
to the resulting CATE. In Scenario 1 the practioner includes
xs but omits the confounding variables. In Scenario 2 the
practitioner omits xs, which highly correlates with both Y0
and Y1, but includes the confounders. Scenario 1 represents
standard variable assignment, Scenario 2 represents taking into
account confounder identification using our approach.
Results. We use cfrnet, a powerful neural network-based
CATE estimator [26]. The performance on Yf is evaluated
using standard MSE. For the CATE estimation performance
we use the Precision in Estimation of Heterogeneous Effects
(PEHE) measure [27]:

PEHE =
1

N

N∑
i=1

(CATEi − ˆCATEi)
2. (3)

Note that this metric is not observable in real data, i.e., when
only Yf is known.

As expected, in Scenario 1 cfrnet achieves better perfor-
mance (24.53% lower MSE) on the observable outcome (Yf )
than with the confounders, but performs worse at CATE
estimation than in Scenario 2, with a 47.15% higher PEHE.
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We conclude that a trade-off can exist in causal estimation
between accurate prediction of causal effects and PFA out-
comes through confounding effects. As such, identification of
confounders is paramount for variable selection in causal mod-
els, ensuring no confounders in the data are omitted. Finally,
optimizing performance on Yf can guide CATE estimation
decisions only insofar confounding is corrected for.

VI. CONCLUSION

In this paper, we proposed a novel relation mining tech-
nique for healthcare processes that 1) explicitly accounts for
confounding variables at the event level and 2) transparently
communicates the effect of the confounding variables to the
user. Using an evaluation based on a real-world case and a
synthetic dataset, we demonstrated both the feasibility as well
as the importance of our approach. We showed that ignoring
the severity of incidents can lead to misleading conclusions
and, hence, wrong recommendations. We further demonstrated
that our approach can help ensure the no hidden confounder
assumption in causal model estimation and how it impacts the
causal model results.

Our approach is subject to two major limitations. First,
we require a certain distribution of the data to be able to
perform the statistical tests we employ. Second, we assume
independence between the studied (candidate) variables. Our
experiments, for example, assumed that the severity of an
incident does not influence the duration of an incident. Such
assumptions need to be manually checked prior to performing
the statistical tests using correlation matrices.

In future work, we plan to validate and apply our approach
on other healthcare cases. In addition, we will expand on this
work by looking into automating the check for interaction
effects among the confounding variables.
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