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a b s t r a c t

Due to the recent development of deep learning techniques applied to satellite imagery, weather
forecasting that uses remote sensing data has also been the subject of major progress. The present
paper investigates multiple hours ahead coastal sea elements forecasting in the Netherlands using
UNet based architectures. The hourly satellite image data from the Copernicus observation program
spanned over a period of two years has been used to train the models and make the forecasting,
including seasonal forecasting. Here, we propose 3D dimension Reducer UNet (3DDR-UNet), a variation
of the UNet architecture, and further extend this novel model using residual connections, parallel
convolutions and asymmetric convolutions which result in introducing three additional architectures,
i.e. Res-3DDR-UNet, InceptionRes-3DDR-UNet and AsymmInceptionRes-3DDR-UNet respectively. In
particular, we show that the architecture equipped with parallel and asymmetric convolutions as well
as skip connections outperforms the other three discussed models.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Renewable energy system has received increasing attention in
he last years. In this context, the ability to accurately predict
eather elements is crucial to the effective use of weather el-
ments resources. In particular, it has been shown that weather
orecasting affects sectors like agriculture, forestry, transportation
nd healthcare among others, thus having a major impact on the
lobal economy [1–5].
Classical approaches to perform weather forecasting heavily

elied on thermodynamics, Navier–Stokes equations, the statisti-
al properties of the data, as well as the various properties of the
tmosphere [6–9]. This set of methods belongs to the numerical
eather prediction (NWP) approaches and generally require a

arge amount of computational resources since the processing is
one on supercomputers [10]. Furthermore, it has been shown
hat NWP-based approaches might suffer from computational
nstability, mainly due to the initial conditions of the models [11].

Recent data-driven approaches on the other hand perform
simulation of an entire system in order to predict its next

tate. The main technique used by these methods is the usage
f historical data to forecast the weather. Based on the success
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provided by machine learning models (i.e. support vector ma-
chines, random forests, Gaussian processes, and neural networks)
to forecast time series, these approaches have also been used
for weather data [12–18]. In particular, neural-networks-based
models can use either shallow or deep architectures. As opposed
to shallow networks that require domain knowledge and feature
engineering, deep convolutional neural networks are less con-
strained by domain expertise. Indeed, these networks are capable
of extracting the underlying complex patterns of the data by
stacking of multiple nonlinear layers. Deep learning based mod-
els have already shown promising results in weather elements
forecasting as well as several other domains such as biomedical
signal analysis, healthcare, neuroscience, and dynamical systems
[19–22]. Among successful deep models, the UNet architecture
which consists of two main parts, i.e. the contracting and ex-
panding, has been shown to be efficient in many computer vision
related tasks. It is efficient at processing the input data at lower
resolutions and restoring it to its original resolution. In particular,
UNet-based architectures have been successfully applied to medi-
cal data for diverse tasks such as segmentation, cell counting, and
reconstruction [23–25].

In this paper, we explore incorporating different elements to
extend the core UNet architecture for weather forecasting task.
The aim of the paper is to develop new deep architectures that
can better learn the underlying complex mapping between a set
of input satellite images and a set of out satellite images. In
particular, the developed architectures are used to predict the
values of different sea elements, i.e. eastward and northward
water velocity, water salinity and water surface height, up to
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Overview of the model input/output. Consecutive satellite images of different sea elements are concatenated and fed into our models. A single image per
ea element is then generated in the output. The time steps from t − d to t correspond to the lags (number of consecutive past images) of the models to predict
he image at time step t + h, where d is the number of lags and h is the number of time steps ahead. Intercorrelated features are extracted across sea elements to
enerate the forecast.
2 h ahead, using historical satellite images of a coastal area of
he Netherlands. More precisely, the models receive a set of past
atellite images containing different sea elements at time steps
− d, . . . , t . Then, the models output a single image per sea
lement at time step t + h where in our case h ranges from 12 h
o 72 h ahead. The input data is 4-dimensional with the shape
10, 128, 128, 4). The first dimension corresponds to the number
f past images in time (here referred to as lag and denoted by d)
sed by the models to predict the feature. The second and third
imensions correspond to the height and width of each image.
he fourth dimension corresponds to the number of sea elements.
imilar to the input data, the models output is also 4-dimensional
ut with the shape (1, 128, 128, 4). Here, the first dimension is
ne indicating that the models predict only one image at a time.
n overview of this procedure is shown in Fig. 1.
This paper proposes four different UNet core based models,

ach one being an extended version of the previous one. The
roposed models simultaneously extract intercorrelated features
rom different sea elements to perform their forecasting. We
how that the model that uses a combination of asymmetric,
arallel convolutions and skip connections inside each residual
lock outperforms the other introduced models.

. Related work

Weather forecasting based on deep-learning models has re-
ently gain a lot of attention due to the rapid advance of neural
etwork techniques and the availability of weather data [18,21,
6–28]. The authors in [29], used a deep convolutional neural
etwork to predict thunderstorms and heavy rains. The model
as then compared against traditional machine learning models
uch as random forests and support vector machines. The au-

hors in [30] incorporated multiple ConvLSTM layers to predict

2

the precipitation rate using radar data. Moreover, the authors
in [31] combine multistream convolutional neural networks with
a self-attention mechanism [32,33] for precipitation forecasting.

In this paper, we are interested in weather forecasting based
on satellite imagery. Successful approaches have been presented
in the literature for performing frame prediction [34–36], and
recently, it has also been applied to weather forecasting prob-
lems. For instance, the authors in [37], used satellite data in
combination with deep-learning techniques to perform sea sur-
face temperature (SST) prediction in a subarea of the East China
sea. The main type of layer used in this work was the ConvLSTM
layer and was compared to three different models: support vector
regression (SVR) model, a persistence model that was simulating
a naive forecast, and a third model based on LSTM layers. It was
shown that the ConvLSTM model outperformed the other models
for ten-days-ahead prediction in a recursive fashion.

Similarly to the previous work, sea surface temperature fore-
casts is also performed using deep learning and remote sensing
imagery from satellite data in [38]. The methodology discussed
in [38] is based on a multi-input convolutional neural networks
that process the inputs using different spatial resolutions. The
end goal of this work was to establish a relationship between sea
surface temperature forecasting and tropical instability waves.

In [39], eight cyclone datasets were used for two main ob-
jectives: classifying whether the given image contains a storm
or not, as well as predicting the storm’s location. In contrast
with the previous work, this methodology is not end-to-end since
multiple preprocessing steps are performed before training the
deep learning model. In particular, multiple optical-flow-based
techniques are used to perform temporal interpolation and the
result of this processing is then fed to the deep-learning models.
The neural networks used are existing approaches that provide a

fast inference time, namely YOLO [40] and RetinaNet [41].
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Fig. 2. Architecture of the 3DDR-UNet model. The annotations above the convolutions correspond to the output shape of those convolutions. Also, the number of
filters is indicated below. We can appreciate that the first part reduces the dimensionality and then the second part upsamples the data to its original size (except
for the temporal dimension). Between the reduction and expansion parts, intermediate convolutions reduce the temporal dimension (lags) from 10 to 1.

Fig. 3. Architecture of Res-3DDR-UNet model. The annotations above the residual blocks correspond with the output shape of such blocks. Similarly to 3DDR-UNet,
the first part reduces the dimensionality, and the second part upsamples the data to its original size (except for the temporal dimension). Between the reduction
and expansion parts, intermediate convolutions reduce the temporal dimension (lags) from 10 to 1.
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Fig. 4. Architecture of the InceptionRes-3DDR-UNet model. The annotations above the inception residual blocks correspond to the output shape of such blocks.
Similarly to the previous models, the first part reduces the dimensionality, and the second part upsamples the data to its original size (except for the temporal
dimension). Between the reduction and expansion parts, intermediate convolutions reduce the temporal dimension (lags) from 10 to 1.
-

Fig. 5. Example of kernel decomposition in the asymmetric convolution
operation.

The authors in [17,42] augment the UNet as well as TransUNet
odels with an attention mechanism to capture the most rel-
vant features in the input data and have shown the efficiency
f their approach for precipitation nowcasting tasks on radar
mages that cover the precipitation information in the Nether-
ands and its neighboring countries. Another similar research
ork in [43] performs precipitation nowcasting using artificial
eural networks and satellite data. In this work, thermal infrared
mage prediction is first performed in order to get an estimate
f the predicted precipitation. Hourly data is used and the neu-
al network model is compared to other approaches such as
inear interpolation, steady-state methodology and persistence
rediction.
Future frame prediction is an active field of research in com-

uter vision. In this context, within the field of deep learning,
wo main approaches are generally considered: auto-encoders
nd generative adversarial neural networks [44–47]. In particular,
ariations of the UNet model can efficiently perform future frame
redictions applied to weather forecasting. The work in [48]
xtends the feature extraction ability of the UNet by adding mod-
les that operate with the data at different scales. In this work, in
rder to extend the feature extraction capability of the core UNet
odel, we explore equipping it with different elements such as

esidual connection, parallel branches as well as asymmetric con-
olutions. As opposed to [49] where they use CNN as core model
4

and augment it with residual connection for segmentation task
with medical images as input, here in our Res-3DDR-UNet, UNet
is used as core model and is augmented with similar residual
connection as that of [49]. Moreover, Res-3DDR-UNet is used in
coastal sea forecasting task.

3. Proposed models

We seek to propose a model that accurately maps a set of
input images to a set of output images. To this end, the UNet
architecture [23] is used as the core model and is enriched by
incorporating more advanced elements suitable for the task un-
der consideration. The UNet architecture is initially designed for
medical image segmentation and has similar structure to that of
an auto-encoder. A first contracting part, where the features are
extracted from the input image, is followed by an expanding part
that performs classification on each pixel.

In this paper, we propose an extended UNet architecture.
Additionally modern enhancement techniques such as residual
connections [50], inception modules [51,52] and asymmetric con-
volutions [53] are taken into account when designing these mod-
els. The residual or skip connections have been shown to improve
the performance of deep networks by avoiding the vanishing
of small gradients. On the other hand, inception modules apply
convolutions with different kernels at the same level to capture
features from larger and smaller areas in parallel. In the same
way, asymmetric convolutions allow us to enlarge the network,
and thus, its learning capacity, and at the same time, the number
of parameters is reduced.

Here four different models, each one being an extended
version of the previous one are proposed. These models are
3DDR-UNet, Res-3DDR-UNet, InceptionRes-3DDR-UNet and Asy-
mmInceptionRes-3DDR-UNet.

3.1. 3D dimension reducer UNet (3DDR-UNet)

This section introduces the 3D Dimension Reducer UNet (3DDR
UNet) which is based on the UNet core architecture [23]. The
classical UNet model is a fully convolutional neural networks with
two parts: A contraction part or encoder and an expansion part or
decoder. The first part is composed of stacked convolutions and
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Fig. 6. Architecture of the AsymmInceptionRes-3DDR-UNet model. The annotations above the asymmetric inception residual blocks correspond to the output shape
of such blocks. Similarly to the previous models, the first part reduces the dimensionality, and the second part upsamples the data to its original size (except for
the temporal dimension). Between the reduction and expansion parts, intermediate convolutions reduce the temporal dimension (lags) from 10 to 1.
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Fig. 7. Example of the sea surface height in meters of the studied region.

Fig. 8. Comparison of the number of parameters and convolutional layers
between models.

pooling operations to extract features and capture the context
in the input. The second symmetric part combines the features
5

extracted in the contraction part with an upsampled output. In
this way, the network expands the data to its original size and
projects the learned features onto the pixel space to perform an
accurate classification of them.

Here, we propose the 3DDR-UNet architecture, which manip-
ulates 3-dimensional data in the encoder and 2-dimensional data
in the decoder. This configuration allows the network to capture
spatial and temporal dependencies from a stack of 2-dimensional
images in the contracting part.

Then, the first input dimension (time dimension) is reduced
from d (number of past time steps or lags, which is 10 in our
case) to 1 in the horizontal connections of the network before
it is concatenated in the decoder. Those extracted and combined
features are later used to reconstruct one single image in the
decoder. The reduction in the first input dimension is carried
out by convolutions with kernel size d × 1 × 1 (10 × 1 × 1
n our case. Where ‘d’ corresponds to the number of lags) and
alid padding. The first dimension of the kernel corresponding to
he number of lags, and valid padding, results in a single value in
he first dimension of the data after this convolution. The output
f these operations is a weighted average of different time steps
n the input. Essentially, this architecture extracts features in the
ncoder part and averages them in a weighted fashion over the
irst dimension before it is fed into the decoder part.

The number of convolutional filters grows exponentially after
ach pooling from n to 16n in the encoder part, and shrinks again
o n in the decoder part. Here the kernel size is set to 3 × 3 × 3
hich means the kernel is applied to patches of 3 × 3 pixels over
stack of 3 images (in the temporal dimension). The size of both
he pooling and the upsampling operations is set to 1 × 2 × 2.
his size means that the pooling is applied to patches of 2 × 2
ixels per image (in the temporal dimension). In this way, the
emporal dimension of the data remains unchanged during the
ooling and upsampling, while the spatial dimension of the data
i.e. second and third dimensions) is reduced in the encoder and
ater upsampled in the decoder.

Given the nature of the task, we train the network to perform
regression of every pixel. Traditionally UNet is used for seg-
entation tasks. Here, as opposed to the segmentation tasks, in
hich each pixel belongs to a class, we first normalize the input
nd output data. Then, the mean squared error (MSE) metric is
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Fig. 9. MSE of each model for different variables at different hours ahead.
sed during the training to minimize the difference between the
redicted value of each pixel and the ground truth value. The
rchitecture 3DDR-UNet of the network is shown in Fig. 2.

.2. Residual 3D dimension reducer UNet (Res-3DDR-UNet)

The second proposed model, Residual 3D Dimension Reducer
Net (Res-3DDR-UNet), is an extension of the 3DDR-UNet model
ntroduced previously. In order to augment its learning capacity,
e scale up the model by adding a generous number of convo-

utional operations. We use three convolutional layers and a skip
onnection around the first layer and the final activation to avoid
he vanishing of gradients. All these operations form a residual
lock.
Further, the outputs of the last convolutions in the block

re normalized making use of a batch normalization layer. This
ormalization seek to increase the robustness of the network and
lleviate the vanishing gradient problem.
Following the lines of [50], we skip two convolutional layers

n each block which enhances the performance as well as faster
raining. As a result of these changes, the number of trainable
arameters grows by 50% compared to the 3DDR-UNet. It should
e noted that the kernel size of the convolutions, pooling, and
psampling, as well as the loss function, were similar to the ones
sed in 3DDR-UNet. The architecture of the Res-3DDR-UNet is
hown in Fig. 3.
6

3.3. Inception residual 3D dimension reducer UNet (InceptionRes-
3DDR-UNet)

Motivated by the effectiveness of the inception modules in
CNN classifiers [51,54], we include similar modules in our resid-
ual blocks. Within this module, the data stream is split into par-
allel convolutions with different kernel sizes. Later, the branches
are concatenated again. This structure is motivated by the ability
to extract various features by using multiple kernel sizes applied
to the same data. After these parallel operations, the features are
concatenated and combined with a 1 × 1 × 1 convolution, which
is equivalent to a weighted average. Hence, the network learns to
favor over time the branches with the most suitable kernels. Es-
sentially, this module allows the network to use different kernels
for the task, and give more importance to the most relevant ones.

Here, in particular, we use three parallel branches with 1 × 1
× 1, 3 × 3 × 3 and 5 × 5 × 5 kernels. As suggested in [54], we ap-
proximate the 5 × 5 × 5 convolution by two sequential 3 × 3 × 3
convolutions, leading to a reduction in the computational cost. In
addition, a convolution of 1 × 1 × 1 is included at the beginning
of each branch to reduce the dimensionality of the data, and
thus, reduce the computational cost. Furthermore, inspired by the
performance of [52], we kept the residual connection that skips
the parallel branches. The number of convolutional filters, kernel
sizes of pooling and upsampling as well as the loss function are
the same as those of the previous models. The architecture of
InceptionRes-3DDR-UNet is shown in Fig. 4.
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Fig. 10. MSE of individual sea elements for the different models. The forecasts are performed using (a) 12 h, (b) 24 h, (c) 48 h, and (d) 72 h ahead.
3.4. Asymmetric inception residual 3D dimension reducer UNet
(AsymmInceptionRes-3DDR-UNet)

Driven by the need to reduce the parameters in InceptionRes-
3DDR-UNet, we introduce a lighter, yet more effective model.
Here we use asymmetric convolutions [53] to lower the complex-
ity of the parallel convolutions. As shown in Fig. 5, each kernel is
decomposed into three simpler ones and applied consecutively.
The resulting combination of operations is an approximation
of the original operation with considerably fewer parameters
(see [53] for more details). In consequence of such a reduction of
parameters, we can afford to remove the 1 × 1 × 1 convolution
t the beginning of each branch within the asymmetric inception
esidual block, whose purpose is to reduce the complexity of the
ata, and thus, making the model lighter. However, to make the
odel comparable to the previous ones, we increased the number
f parameters. To this end, we include two more parallel branches
n each block. The number of convolutional filters, the kernel size
f pooling and upsampling as well as the loss function are the
ame as in the previous described models. The architecture of
symmInceptionRes-3DDR-UNet is shown in Fig. 6.

. Data description

The data used in this paper consists of satellite images. It is
rovided by Copernicus,1 the observation program led by the

European Commission and the European Space Agency (ESA).
Specifically, it is part of the dataset ‘‘Atlantic - European North

1 https://marine.copernicus.eu/.
 P

7

West Shelf - Ocean Physics Analysis and Forecast’’ [55], covering
a geographical area from E 002◦ 000 to E 006◦ 000 and latitude
from N 51◦ 600 to N 53◦ 400. The spatial resolution is approxi-
mately 1.5 km, so every pixel represents a region the size of 1.5×

1.5 km. We chose such a geographical area since it covers both
the land and sea of the Netherlands. Furthermore, the selected
observations start on 1st March 2017 and end on 13th February
2019, with an hourly temporal resolution. The dataset consists of
four weather variables, i.e. eastward current velocity (EastCUR),
northward current velocity (NorthCUR), seawater salinity (SAL)
and sea surface height (SSH).

Therefore, each time step of each variable is represented by
a 135 × 135 image (see Fig. 7). For reproducibility purposes,
the code as well as the dataset are available on Github.2 More
details on the included variables, can be found in the official
documentation.3

5. Experimental results

5.1. Data preprocessing

As the data contains sea elements, the pixels in the image
that represent the ground should not be taken into account by
the network. In practice, the pixels corresponding to the land
are masked initially. Hence, we apply a MinMax scaling with a

2 https://github.com/jesusgf96/Sea-Elements-Prediction-UNet-Based-Models.
3 https://resources.marine.copernicus.eu/documents/PUM/CMEMS-NWS-
UM-004-013.pdf.

https://marine.copernicus.eu/
https://github.com/jesusgf96/Sea-Elements-Prediction-UNet-Based-Models
https://resources.marine.copernicus.eu/documents/PUM/CMEMS-NWS-PUM-004-013.pdf
https://resources.marine.copernicus.eu/documents/PUM/CMEMS-NWS-PUM-004-013.pdf
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Fig. 11. AsymmInceptionRes-3DDR-UNet’s forecast of all variables 48 h ahead
in winter. The data is scaled back to its original values.
8

Table 1
Time steps used for validation and testing.

Spring Summer Autumn Winter

Validation From 01/04/2018 01/07/2018 01/10/2018 01/01/2019
To 22/04/2018 22/07/2018 22/10/2018 22/01/2019

Testing From 23/04/2018 23/07/2018 23/10/2018 23/01/2019
To 13/05/2018 12/08/2018 13/11/2018 13/02/2019

boundary of 0.1 and 1 to the pixels representing the sea elements
as follows:

x = 0.1 +
((x − xmin) ∗ (1 − 0.1))

xmax − xmin
. (1)

Then the pixels representing the ground are assigned a zero
value. In this way, the pixels that belong to the ground are
invisible to the models because of the ReLu activation function
used within them. Moreover, we crop the images seven pixels
from the right and the bottom sides, resulting in a 128 × 128
hape, which is suitable for the subsequent convolutional and
ooling operations. The data is arranged in such a way that the
esulting object is a four-dimensional array T ∈ RL×H×W×V ,
here L is the number of time-steps, which makes up the time
imension. H and W refer to the size of the image and form the
patial dimensions. The last element V corresponds to the sea
ariables.

.2. Experimental setup

For all the models, we use all the variables as input, and
e forecast the same variables in the future. The number of
onvolutional filters is chosen in such a way that all models
ontain a comparable total number of trainable parameters.
In our experiments, the number of lags is set to 10 as em-

irically it was found to yield better performance compared to
ther tested lag values. Therefore, the model receives ten hours
f information to predict a single time step, which translate into
aving an input with shape (10, 128, 128, 4) and output with
hape (1, 128, 128, 4). In addition, to test the forecasting ability
f the models as well as their robustness, four different exper-
ments are carried out. It consists of performing 12-, 24-, 48-,
nd 72-hours-ahead forecasts for all the variables. The models are
rained with data ranging over a year, from 1st March 2017 to 1st
ebruary, which is a total 8760 h of training data. The validation
ata is composed of 2016 h, and represents 504 h from each
eason (spring, summer, autumn and winter). This validation data
orresponds to a period of time after the training data. Similarly,
he test data is composed of another 2016 h after the training
ata. The specific days used in both the validation and test can
e found in Table 1.

.3. Training

The same training setup is used in all the models. As men-
ioned previously in Section 3, the mean squared error (MSE) is
sed as the loss function to minimize the differences between
he predicted and the ground-truth images. Adam optimization
ethod [56], with TensorFlow default parameters, i.e. the learn-

ng rate = 0.001, β1 = 0.9, β2 = 0.999 and the epsilon = 1e-07,
s used to optimize the loss function. The batch size and the
ropout rate are set to 16 and 0.5 respectively. No regularization
r data augmentation is used. We also implemented a checkpoint
allback that monitors the validation loss and the models were
rained for 100 epochs in each of the experiments. The best
esults are then saved based on the performance of the models
n the validation data. Also, the models were trained to predict
very element for a particular numbers of hours ahead.
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Table 2
Test MSE of all models in all four seasons.

Hours ahead

Model 12 h 24 h 48 h 72 h

Persistence 1.09 × 101 1.55 × 1001 3.06 × 101 4.50 × 101

3DDR-UNet 5.40 × 102 7.78 × 102 1.21 × 101 1.69 × 101

Res-3DDR-UNet 6.34 × 102 7.99 × 102 1.42 × 101 1.77 × 101

InceptionRes-3DDR-UNet 5.19 × 102 7.08 × 102 1.20 × 101 1.47 × 101

AsymmInceptionRes-3DDR-UNet 5.15 × 102 7.56 × 102 1.17 × 101 1.41 × 101
Table 3
Test MSE of all models in different seasons.
Season Model 12-h-ahead 24-h-ahead 48-h-ahead 72-h-ahead

Spring

Persistence 8.51 ×102 1.49 ×101 2.84 ×101 4.29 ×101

3DDR-UNet 7.45 ×102 9.95 ×102 1.37 ×101 2.14 ×101

Res-3DDR-UNet 8.37 ×102 1.01 ×101 1.65 ×101 1.69 ×101

InceptionRes-3DDR-UNet 6.63 × 102 9.37 × 102 1.43 ×101 1.78 ×101

AsymmInceptionRes-3DDR-UNet 6.98 ×102 9.56 ×102 1.38 × 101 1.66 × 101

Summer

Persistence 5.27 ×102 8.78 ×102 2.16 ×101 3.81 ×101

3DDR-UNet 4.10 ×102 7.92 ×102 1.37 ×101 1.69 ×101

Res-3DDR-UNet 5.23 ×102 6.85 ×102 1.23 ×101 1.97 ×101

InceptionRes-3DDR-UNet 4.37×102 6.55 × 102 1.06 ×101 1.49 ×101

AsymmInceptionRes-3DDR-UNet 4.03 × 102 7.88 ×102 1.04 × 101 1.43 × 101

Autumn

Persistence 4.23 ×102 8.07 ×101 1.91 ×101 2.79 ×101

3DDR-UNet 3.36 ×102 4.81 ×102 6.95 ×102 7.89 ×102

Res-3DDR-UNet 3.97 ×102 5.61 ×102 8.92 ×102 1.27 ×101

InceptionRes-3DDR-UNet 3.29 ×102 4.31 × 102 6.98 ×102 6.75 × 102

AsymmInceptionRes-3DDR-UNet 2.97 × 102 4.66 ×102 6.79 × 102 7.11 ×102

Winter

Persistence 1.09 ×101 1.55 ×101 3.06 ×101 4.50×101

3DDR-UNet 6.62 ×102 8.51 ×102 1.62 ×101 1.90 ×101

Res-3DDR-UNet 7.66 ×102 9.44 ×102 1.88 ×101 1.99 ×101

InceptionRes-3DDR-UNet 6.41 × 102 8.18 × 102 1.63 ×101 1.71 ×101

AsymmInceptionRes-3DDR-UNet 6.51 ×102 8.28 ×102 1.58 × 101 1.62 × 101
5.4. Results and discussion

This section presents the results obtained from the experi-
ents described. In addition, we include a persistence model as
baseline comparison. Given time series input data, the per-

istence model outputs the last value of the input. That means
his model assumes that the value of the predicted variables will
ot change with respect to the last input. The MSEs obtained
or all the models for each of the configurations are tabulated in
able 2. The MSE error is computed per feature per pixel over the
enormalized values given in the forecasts. In Tables 2 and 3, the
SE is averaged across features. The results in Table 2 correspond

o testing the models on the four combined seasons. It can be
bserved that, for all the models, the forecast error increases as
he number of hours ahead increases. In addition, one can notice
hat, the performance difference of our models with respect to
he persistence model increases as the number of hours ahead
ncreases.

AsymmInceptionRes-3DDR-UNet model performs better than
he other models in almost all the scenarios. This improvement in
he performance is more apparent as the number of hours ahead
ncreases.

In Table 3, the test MSE of each model is displayed separated
or each season. Similar to the previous results, AsymmInception-
es-3DDR-UNet outperforms the other discussed models in most
he setups. One may also observe that seasons with more chang-
ng weather conditions such as winter makes it more challenging
or the networks to learn the underlying complex patterns. All of
he four models yield noticeably better forecasts in seasons with
ore stable weather, like summer. Furthermore, a comparison of

he final number of convolutional layers of each model can be
ound in Fig. 8. Fig. 9 shows the MSE of the test data obtained
or each sea element. Fig. 10 (a,b,c,d) corresponds to 12-, 24-, 48-

nd 72-hours-ahead forecasts respectively. In general, we observe
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that, of the considered variables in this study, seawater salinity is
the most challenging variables to predict.

An example of the 48-hours-ahead forecast with AsymmInce-
ptionRes-3DDR-UNet model during winter is shown in Fig. 11. As
it can be seen, the forecast is accurate, even when it comes to
seawater velocity (EastCUR and NorthCUR), which contains quite
different areas. The results obtained suggest that the inclusion
of parallel branches of convolutions, presented in InceptionRes-
3DDR-UNet and Asymm InceptionRes-3DDR-UNet models has led
to a more noticeable performance improvement. Likely, the dif-
ferent simultaneous transformations applied to the data through
parallel branches provide these models with an extended feature
extraction capability. In particular, the building blocks in Asymm
InceptionRes-3DDR-UNet contain more parallel branches than
InceptionRes-3DDR-UNet, which might lead to more efficiency.
Its decomposed kernels allow having many more convolutional
operations without increasing the number of total parameters by
a large number.

6. Conclusion

In this paper, four new models based on the UNet archi-
tecture are introduced for multi-step-ahead coastal sea element
forecasting. The proposed models are examined under differ-
ent setups, i.e. different seasons and numbers of hours ahead.
Among the discussed models, AsymmInceptionRes-3DDR-UNet
and InceptionRes-3DDR-UNet have shown better performance
due to the use of parallel convolutions. However, the incorpora-
tion of asymmetric convolutions and additional parallel branches
make the AsymmInceptionRes-3DDR-UNet perform slightly bet-
ter than the latter, yielding the most promising results on the

studied tasks.
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