Complexity Framework for Forbidden Subgraphs: When Hardness Is Not Preserved under Edge Subdivision

Barnaby Martin

Durham University, Durham, United Kingdom
barnaby.d.martin@durham.ac.uk
Sukanya Pandey
Utrecht University, Utrecht, The Netherlands
s.pandey1@uu.nl

Daniël Paulusma
Durham University, Durham United Kingdom
daniel.paulusma@durham.ac.uk

Siani Smith
Durham University, Durham, United Kingdom
siani.smith@durham.ac.uk
Erik Jan van Leeuwen ©
Utrecht University, Utrecht, The Netherlands
e.j.vanleeuwen@uu.nl

Abstract

A graph G is H-subgraph-free if G does not contain H as a (not necessarily induced) subgraph. We make inroads into the classification of three problems for H-subgraph-free graphs that have the properties that they are solvable in polynomial time on classes of bounded treewidth and NP-complete on subcubic graphs, yet NP-hardness is not preserved under edge subdivision. The three problems are k-Induced Disjoint Paths, C_{5}-Colouring and Hamilton Cycle. Although we do not complete the classifications, we show that the boundary between polynomial time and NP-complete differs for C_{5}-Colouring from the other two problems.

2012 ACM Subject Classification Mathematics of computing \rightarrow Graph theory; Theory of computation \rightarrow Graph algorithms analysis; Theory of computation \rightarrow Problems, reductions and completeness

Keywords and phrases forbidden subgraph; complexity dichotomy; edge subdivision; treewidth

1 Introduction

Let G and H be two graphs. If H can be obtained from G by a sequence of vertex deletions only, then H is an induced subgraph of G; else G is H-free. The induced subgraph relation has been well studied in the literature for many classical graph problems, such as Colouring, Feedback Vertex Set, Independent Set, and so on.

In this paper we focus on the subgraph relation. A graph G is said to contain a graph H as a subgraph if H can be obtained from G by a sequence of vertex deletions and edge deletions; else G is said to be H-subgraph-free. For a set of graphs \mathcal{H}, a graph G is \mathcal{H}-subgraph-free if G is H-subgraph-free for every $H \in \mathcal{H}$; we also write that G is $\left(H_{1}, \ldots, H_{p}\right)$-subgraph-free. Graph classes closed under edge deletion are also called monotone [1, 3].

Complexity classifications for H-subgraph-free graphs have been less well studied in the literature than for H-free graphs; see [2] for complexity classifications for Independent Set, Dominating Set and Longest Path and [5] for a classification for List Colouring; all these classifications hold even for \mathcal{H}-subgraph-free graphs, where \mathcal{H} is any finite set of graphs. In [6] a short, alternative proof for the classification for Independent Set for
H-subgraph-free graphs was given. In general, such classifications might be hard to obtain; see, for example, [6] for a partial classification for Colouring for H-subgraph-free graphs. Therefore, in [8] a more systematic approach was followed, namely by introducing a new framework for \mathcal{H}-subgraph-free graph classes (finite \mathcal{H}) adapting the approach of [6].

To explain the framework of [8] we need to introduce some additional terminology. Firstly, a class of graphs has bounded treewidth if there exists a constant c such that every graph in it has treewidth at most c. Now let $G=(V, E)$ be a graph. Then G is subcubic if every vertex of G has degree at most 3. The subdivision of an edge $e=u v$ of G replaces e by a new vertex w with edges $u w$ and $w v$. For an integer $k \geq 1$, the k-subdivision of G is the graph obtained from G by subdividing each edge of G exactly k times. Let \mathcal{G} be a class of graphs. For an integer k we let \mathcal{G}^{k} consist of the k-subdivisions of the graphs in \mathcal{G}.

The framework of [8] makes a distinction between "efficiently solvable" and "computationally hard", which could for example mean a distinction between "polynomial time" and NP-complete. Let Π be a decision problem that takes as input a (possibly weighted) graph. We say that Π is computationally hard under edge subdivision of subcubic graphs if there exists an integer $k \geq 1$ such that the following holds for the class of subcubic graphs \mathcal{G} : if Π is computationally hard for \mathcal{G}, then Π is computationally hard for $\mathcal{G}^{k p}$ for every integer $p \geq 1$. That is, a graph problem Π is a C123-problem (belongs to the framework) if it satisfies the following three conditions:

C1. Π is efficiently solvable for every graph class of bounded treewidth;
C2. Π is computationally hard for the class of subcubic graphs; and
C3. Π is computationally hard under edge subdivision of subcubic graphs.
The claw is the 4 -vertex star. A subdivided claw is a graph obtained from a claw after subdividing each of its edges zero or more times. The disjoint union of two vertex-disjoint graphs G_{1} and G_{2} has vertex set $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edge set $E\left(G_{1}\right) \cup E\left(G_{2}\right)$. The set \mathcal{S} consists of the graphs that are disjoint unions of subdivided claws and paths. As shown in [8], C123-problems allow for full complexity classifications for \mathcal{H}-subgraph-free graphs (as long as \mathcal{H} has finite size).

- Theorem 1 ([8]). Let Π be a C123-problem. For a finite set \mathcal{H}, the problem Π on \mathcal{H} -subgraph-free graphs is efficiently solvable if \mathcal{H} contains a graph from \mathcal{S} and computationally hard otherwise.

Examples of C123-problems include Independent Set, Dominating Set, List Colouring, Odd Cycle Transversal, Max Cut, Steiner Tree and Vertex Cover; see [8]. However, there are still many graph problems that are not C123-problems, such as Colouring (whose classification is still open even for H-subgraph-free graphs). Hence, it is a natural question if those problems can still be classified for graph classes defined by some set of forbidden subgraphs.

How do problems that do not satisfy C3 but that do satisfy C1 and C2 behave for H-subgraphfree graphs? Can we still classify their computational complexity?

Let us call such problems C12-problems. We study the problems k-Induced Disjoint Paths, C_{5}-Colouring and Hamilton Cycle. All of these problems are C12-problems. All of these violate our condition C3, but the manner of this violation is different for each of them. As we will observe later, for $k \geq 3, C_{5}$-Colouring becomes trivially true under k-subdivision. On the other hand, under k-subdivision (for any k), Hamilton Cycle becomes trivially false (unless we started with a cycle), and k-Induced Disjoint Paths
reduces to k-Disjoint Paths, which can be solved in polynomial time. Let us note that when the parameter k is part of the input, Disjoint Paths and Induced Disjoint Paths are C123-problems [8].

Let us make the following observation that is a restriction of Theorem 1.

- Theorem 2 ([8]). Let Π be a C12-problem. For a finite set \mathcal{H}, the problem Π on \mathcal{H} -subgraph-free graphs is efficiently solvable if \mathcal{H} contains a graph from \mathcal{S}.

Let H_{1} be the " H "-graph, that is, the graph on six vertices which is formed by an edge joining the middle vertices of two paths on three vertices. For $\ell \geq 2$, let H_{ℓ} be the graph obtained from H_{1} by subdividing the edge whose endpoints each have degree 3 exactly $\ell-1$ times. See Figure 1 for two examples. Note that hereonin H_{1}, \ldots, H_{k} will never denote arbitrary graphs, but rather the "H"-graphs we just defined. When allied with C 2 , Condition C3 ensure that C123-problems remain NP-hard on $\left(H_{1}, \ldots, H_{k}\right)$-subgraph-free graphs (for all k). Note that C 123 -problems are in P when on (H_{1}, H_{2}, \ldots)-subgraph-free graphs, as these have bounded treewidth [8].

Figure 1 Left: the graph H_{1}. Right: the graph H_{3}.

Our results are as follows.

- Theorem 3. k-Induced Disjoint Paths is in P for both of the classes of H_{1}-subgraphfree graphs and H_{2}-subgraph-free graphs. For all $\ell>4$, 2-Induced Disjoint Paths is NP-complete for the class of $\left(H_{4}, \ldots, H_{\ell-1}\right)$-subgraph-free graphs.
- Theorem 4. C_{5}-Colouring is in P for $\left(H_{1}, H_{2}, H_{3}\right)$-subgraph-free graphs, but it is NP-complete for $\left(H_{1}, H_{2}\right)$-subgraph-free graphs.
- Theorem 5. Hamilton Cycle is in P for the class of H_{1}-subgraph-free graphs.

Related Work for the Induced Subgraph Relation

Recall that for some graph H, a graph G is H-free if G can be obtained from H by a sequence that only consists of vertex deletions. There is an almost complete classification for Disjoint Paths, in [9], in which two cases are left open. For Induced Disjoint Paths, there is a complete classification in [12]. For k-Induced Disjoint Paths, there is a partial classification in [13]. For C_{5}-Coloring, there is a partial classification in 4]. For Hamilton PATH, some partial classification can be inferred from [10].

$2 k$-Induced Disjoint Paths

Let us recall our family of problems.

```
k-Induced Disjoint Paths
    Instance: a graph G and pairwise disjoint terminal pairs ( }\mp@subsup{s}{1}{},\mp@subsup{t}{1}{})\ldots,(\mp@subsup{s}{k}{},\mp@subsup{t}{k}{})\mathrm{ .
    Question: Does G have mutually induced paths }\mp@subsup{P}{}{1},\ldots,\mp@subsup{P}{}{k}\mathrm{ such that P}\mp@subsup{P}{}{i}\mathrm{ is an }\mp@subsup{s}{i}{}-\mp@subsup{t}{i}{}\mathrm{ path
    for i\in{1,\ldots,k}?
```

Note that k-Disjoint Paths does not insist the paths are mutually induced, but only that they are node-disjoint. The versions of these problems in which k is part of the input are denoted Induced Disjoint Paths and Disjoint Paths. Let us note that k-Disjoint Paths is in P for all k (14.

2.1 Tractability for the H_{2}-subgraph-free Case

The following will be a good warm-up for the more complicated case of H_{2}.

- Theorem 6. For every integer $k \geq 2$, k-Induced Disjoint Paths is in P on H_{1}-subgraphfree graphs.

Proof. We prove the result for $k=2$. The extension to $k \geq 2$ will be straightforward. Let G be an instance of 2-Induced Disjoint Paths together with two terminal pairs (s_{1}, t_{1}) and $\left(s_{2}, t_{2}\right)$. We may assume without loss of generality that there is no edge between s_{1} and t_{1} and no edge between s_{2} and t_{2}.

We first check if there exists a solution in which one of the paths has length 2 . We can do this in polynomial time as follows. We first consider all $O(n)$ options of choosing a vertex to be the middle vertex of one of these paths. We then check if the graph obtained from removing the guessed middle vertex and its two neighbouring terminals s_{i} and t_{i} as well all the neighbours of these three vertices has a connected component that contains both terminals s_{j} and t_{j} of the other pair. This takes polynomial time.

We now check if there exists a solution in which both paths have length at least 3 . We consider all $O\left(n^{4}\right)$ options of choosing the neighbours $s_{1}^{\prime}, t_{1}^{\prime}, s_{2}^{\prime}, t_{2}^{\prime}$ of $s_{1}, t_{1}, s_{2}, t_{2}$, respectively, on the two solution paths (should a solution exist). We discard a branch if there exists an edge between a vertex of $\left\{s_{1}, s_{1}^{\prime}, t_{1}, t_{1}^{\prime}\right\}$ and a vertex of $\left\{s_{2}, s_{2}^{\prime}, t_{2}, t_{2}^{\prime}\right\}$. Suppose this is not the case. We remove $s_{1}, t_{1}, s_{2}, t_{2}$ and every neighbour of a vertex in $\left\{s_{1}, t_{1}, s_{2}, t_{2}\right\}$ that does not belong to $\left\{s_{1}^{\prime}, t_{1}^{\prime}, s_{2}^{\prime}, t_{2}^{\prime}\right\}$. Afterwards, it suffices to solve 2-Disjoint Paths on the resulting graph G^{\prime} with terminal pairs $\left(s_{1}^{\prime}, t_{1}^{\prime}\right)$ and $\left(s_{2}^{\prime}, t_{2}^{\prime}\right)$. This can be seen as follows. Any solution of 2-Induced Disjoint Paths is a solution of 2-Disjoint Paths. Now suppose we have a solution $\left(P_{1}, P_{2}\right)$ of 2-Disjoint Paths. If there exist an edge between a vertex of P_{1} and a vertex of P_{2}, then we find the forbidden subgraph H_{1} (possibly after adding the vertices $s_{1}, t_{1}, s_{2}, t_{2}$ back). Since the number of branches is $O\left(n^{4}\right)$ and each created instances of 2-Disjoint Paths can be solved in polynomial time [14, 15], the running time of this case is polynomial as well.

2.2 Tractability for the H_{2}-subgraph-free Case

We would like to make some further assumptions about a k-Disjoint Paths (not induced) algorithm that we will call iteratively. We would like that a path between s_{i} and t_{i}
$(*)$ avoids neighbours of $\left\{s_{j}, t_{j}\right\}(i \neq j)$.
Now, we enforce this by preprocessing the input, or rather reducing a single input into multiple inputs that we then solve. Let us consider all paths of length three from each of the terminals $\left\{s_{1}, t_{1}, \ldots, s_{k}, t_{k}\right\}$ (if we meet another terminal this length will be potentially

Figure 2 The subgraph resulting from our construction.
less than three but then we either have a no-instance or we reduce to a case involving fewer pairs of terminals). We now consider all combinations of these and we forget about all other vertices at distance at most three from the corresponding terminals by moving to a subgraph. Note that removing vertices cannot introduce an H_{2} as a subgraph into the graph. In these preprocessed graphs the terminals all have degree 1 and the vertices at distance one and two all have degree 2, It follows that $(*)$ is enforced but we need to run our algorithm on polynomially many new graphs. Moreover, as discussed, we will have the additional property
(\dagger) terminals have degree 1 .
Now, we run an algorithm for k-Disjoint Paths and we either solve k-Induced Disjoint Paths or we end up, due to $(*)$, with a subgraph as shown in Figure 2 where we assume w.l.o.g. that a failure results in paths connecting the first two pairs of terminals.

Let $S=\left\{z_{1}, x_{1}, z_{3}, z_{2}, x_{2}, z_{4}\right\}$.
Suppose $z \in\left\{z_{1}, z_{2}, z_{3}, z_{4}\right\}$ has two neighbours outside of S. Then G has H_{2} as a subgraph. Thus we may assume (\ddagger) that z has at most one neighbour outside of S.

Suppose there are both the edges $\left(z_{1}, z_{2}\right)$ and $\left(z_{3}, z_{4}\right)$. Then G has a H_{2} as a subgraph, since we assumed $(*)$, which implies that $\left\{s_{1}, t_{1}, s_{2}, t_{2}\right\} \cap\left\{z_{1}, z_{2}, z_{3}, z_{4}\right\}=\emptyset$. Suppose there are both the edges $\left(z_{1}, z_{4}\right)$ and $\left(z_{2}, z_{3}\right)$. Then, by $(*)$, we again have $\left\{s_{1}, t_{1}, s_{2}, t_{2}\right\} \cap$ $\left\{z_{1}, z_{2}, z_{3}, z_{4}\right\}=\emptyset$, which implies we have an H_{2} whose middle path runs z_{1}, x_{1}, z_{3}.

Suppose we have one of the edges $\left(z_{1}, z_{2}\right)$ and $\left(z_{3}, z_{4}\right)$, and one of $\left\{x_{1}, x_{2}\right\}$ has a neighbour q outside of S. W.l.o.g. let us assume it is $\left(z_{1}, z_{2}\right)$ and x_{1}. Then there is an H_{2} with middle path x_{1}, z_{1}, z_{2} since $z_{2} \neq s_{2}$ by $(*)$. Suppose we have one of the edges $\left(z_{1}, z_{4}\right)$ and $\left(z_{2}, z_{3}\right)$, and one of $\left\{x_{1}, x_{2}\right\}$ has a neighbour q outside of S. W.l.o.g. let us assume it is $\left(z_{1}, z_{4}\right)$ and x_{1}. Then there is an H_{2} with middle path x_{1}, z_{1}, z_{4} since $z_{4} \neq t_{2}$ by $(*)$. Thus we are, w.l.o.g., in one of the two situations depicted in Figure 3 and Figure 4 . The dotted lines are possible edges and each vertex of $\left\{z_{1}, z_{2}, z_{3}, z_{4}\right\}$ has at most one neighbour outside of S.

- Lemma 7. Let G be an instance of k-Induced Disjoint Paths and let G^{\prime} be that instance after one application of Rule 1. Then G is a yes-instance of k-Induced Disjoint Paths iff G^{\prime} is a yes-instance of k-Induced Disjoint Paths.

Proof. Let us address the change we see in Figure 3 .
Suppose we have a solution to k-Induced Disjoint Paths in G. If it uses no vertices in S, then it is already a solution to k-Induced Disjoint Paths in G^{\prime}. Thus, it must use some vertex in S.

If the solution uses both x_{1} and x_{2}, then we can substitute the edge $\left(x_{1}, x_{2}\right)$ in the solution to k-Induced Disjoint Paths in G with x to obtain a solution to k-Induced Disjoint Paths in G^{\prime}. It cannot use neither of x_{1} or x_{2} so, w.l.o.g., suppose it used x_{1}. We can substitute this for x to obtain a solution to k-Induced Disjoint Paths in G^{\prime}, unless some other solution path runs through a neighbour q of x_{2}. Note q cannot be a terminal,

Figure 3 Rule 1. Possible connections in our subgraph (left). What we replace this subgraph with (right).

Figure 4 Rule 2. Possible connections in our subgraph (left). What we replace this subgraph with (right).
due to $(*)$, hence it has two neighbours p and r on this other solution path and these are outside of $\left\{z_{1}, x_{1}, z_{3}\right\}$ because this path must avoid x_{1} and any of its neighbours. But now $p, q, r, q, x_{2}, x_{1}, z_{1}, x_{1}, z_{3}$ forms an H_{2}.

Suppose we have a solution to k-Induced Disjoint Paths in G^{\prime}. If this solution does not involve x then it maps to a solution of k-Induced Disjoint Paths in G. Suppose now it does involve x. Suppose mapping x to either of x_{1} or x_{2} does not produce a solution to k-Induced Disjoint Paths in G. Then mapping x to either the edge $\left(x_{1}, x_{2}\right)$ (or the symmetric $\left.\left(x_{2}, x_{1}\right)\right)$ must produce a solution to k-Induced Disjoint Paths in G.

- Lemma 8. Let G be an instance of k-Induced Disjoint Paths and let G^{\prime} be that instance after one application of Rule 2. Then G is a yes-instance of k-Induced Disjoint Paths iff G^{\prime} is a yes-instance of k-Induced Disjoint Paths.

Proof. Let us address the change we see in Figure 4 where we assume (w.l.o.g.) that there was no edge in G from z_{3} to z_{4} or from z_{2} to z_{3}.

Suppose we have a solution to k-Induced Disjoint Paths in G. If it uses no vertices in S, the it is already a solution to k-Induced Disjoint Paths in G^{\prime}. Thus, it must use some vertex in S. Recall the assumption (\ddagger). Suppose the solution uses the edge z_{1} to z_{2}. Then it doesn't use any other vertex from S and we can keep this edge to obtain a solution for k-Induced Disjoint Paths in G^{\prime}. Suppose the solution uses the edge z_{1} to z_{4}. Then it doesn't use any other vertex from S and we can keep this edge to obtain a solution for k-Induced Disjoint Paths in G^{\prime}.

If the solution uses both x_{1} and x_{2}, then we can substitute the edge $\left(x_{1}, x_{2}\right)$ in the solution to k-Induced Disjoint Paths in G with x to obtain a solution to k-Induced

Figure 5 A counterexample to the statement that G has a subgraph H_{2} implies that G^{\prime} has a subgraph H_{2}.

Disjoint Paths in G^{\prime}. Suppose it uses neither of x_{1} and x_{2}. Then it uses either the edge $\left(z_{1}, z_{4}\right)$ or $\left(z_{1}, z_{2}\right)$ and we are in a previous case.

Now, suppose the solution uses z_{1} or z_{3}, then it must use x_{1} or z_{2}; and if it uses z_{2} or z_{4}, then it must use x_{1} or x_{2}. We assumed it was only one, so let us assume (w.l.o.g.) that it is x_{1}. Owing to (\ddagger), we can substitute this for x to obtain a solution to k-Induced Disjoint Paths in G^{\prime}.

Suppose we have a solution to k-Induced Disjoint Paths in G^{\prime}. If this solution does not involve x then it maps to a solution of k-Induced Disjoint Paths in G. Suppose now it does involve x. Suppose mapping x to either of x_{1} or x_{2} does not produce a solution to k-Induced Disjoint Paths in G. Then mapping x to either the edge (x_{1}, x_{2}) (or the symmetric $\left.\left(x_{2}, x_{1}\right)\right)$ must produce a solution to k-Induced Disjoint Paths in G.

- Lemma 9. If G omits H_{2} as a subgraph then G^{\prime} omits H_{2} as a subgraph.

Proof. Suppose G^{\prime} has an H_{2} involving x. If x is a leaf vertex in H_{2} then it is clear that G^{\prime} already had this H_{2} involving either x_{1} or x_{2}.

Suppose x is a degree 3 vertex in H_{2}. If the neighbours of x in the H_{2} were both neighbours of x_{1} or both neighbours of x_{2} in G then it is clear that G already had this H_{2}.

Now suppose one of the neighbours, say z_{1}^{\prime}, was adjacent to x_{1} and the other, say z_{2}^{\prime}, was adjacent to x_{2}. Let $x^{\prime}, x^{\prime \prime}, z_{1}^{\prime \prime}, z_{2}^{\prime \prime}$ form the remaining vertices of the H_{2} where $x, x^{\prime}, x^{\prime \prime}$ and $z_{1}^{\prime \prime}, x^{\prime \prime}, z_{2}^{\prime \prime}$ are both paths of length 2 in this H_{2}. Thus, $z_{1}^{\prime}, x, z_{2}^{\prime}, x, x^{\prime}, x^{\prime \prime}$ and $z_{1}^{\prime \prime}, x^{\prime \prime}, z_{2}^{\prime \prime}$ form the H_{2} in G^{\prime}. W.l.o.g. suppose x^{\prime} was adjacent to x_{1} in G. Now it is clear that $z_{1}^{\prime}, x_{1}, x_{2}$, $x_{1}, x^{\prime}, x^{\prime \prime}$ and $z_{1}^{\prime \prime}, x^{\prime \prime}, z_{2}^{\prime \prime}$ formed an H_{2} in G.

Finally, suppose that x is the degree 2 vertex in H_{2}. Let $z_{1}^{\prime}, x^{\prime}, z_{2}^{\prime}, x^{\prime}, x, x^{\prime \prime}, z_{1}^{\prime \prime}, x^{\prime \prime}, z_{2}^{\prime \prime}$ be the paths that form the H_{2} in G^{\prime}. Suppose, w.l.o.g., that x^{\prime} was adjacent to x_{1} in G. If $x^{\prime \prime}$ was also adjacent to x_{1} in G then $z_{1}^{\prime}, x^{\prime}, z_{2}^{\prime}, x^{\prime}, x_{1}, x^{\prime \prime}, z_{1}^{\prime \prime}, x^{\prime \prime}, z_{2}^{\prime \prime}$ are paths that form an H_{2} in G. Suppose now that $x^{\prime \prime}$ was adjacent to x_{2} but not x_{1} in G and we may also assume that x^{\prime} is adjacent to x_{1} but not x_{2}. Now $z_{1}^{\prime}, x^{\prime}, z_{2}^{\prime}, x^{\prime}, x_{1}, x_{2}, z_{2}, x_{2}, z_{4}$ are paths that form the H_{2} in G, unless $\left\{z_{2}, z_{4}\right\} \cap\left\{z_{1}^{\prime}, z_{2}^{\prime}\right\} \neq \emptyset$. W.l.o.g., suppose $z_{2}=z_{1}^{\prime}$. If $z_{2} \neq s_{2}$ and p is next on the path from t_{2} to s_{2} after the z_{2}, then $p, z_{2}, x_{2}, z_{2}, x^{\prime}, x_{1}, z_{1}, x_{1}, z_{3}$ is an H_{2} in G (note that $\left\{z_{1}, z_{3}\right\} \cap\left\{x^{\prime}, z_{2}, p\right\}=\emptyset$). Finally, if $z_{2}=s_{2}$ then we violate condition (\dagger).

Let us note that the sequent G has H_{2} as a subgraph then G^{\prime} has H_{2} as a subgraph is in general false. A counterexample for G is furnished in Figure 5 The dotted lines are possible edges and each vertex of $\left\{z_{1}, z_{2}, z_{3}, z_{4}\right\}$ has at most one neighbour outside of S.

- Corollary 10. k-Induced Disjoint Paths is in P on H_{2}-subgraph-free graphs.

Proof. We iteratively run our algorithm for k-Disjoint Paths. If it returns no, then it is also a no-instance to k-Induced Disjoint Paths. If it returns a solution, the either this is a solution to k-Induced Disjoint Paths or we use one of the two reduction rules.

Figure 6 The literal gadget (dashed lines indicate paths of length ℓ).

These make the instance smaller by one vertex, so the procedure will terminate. Note that it follows from Lemma 9 that we will never find an H_{2} as a subgraph.

2.3 NP-hardness for the H_{4}-subgraph-free Case

We follow very closely the argument from Section 2.4 in [11. It is not possible to take that construction and simply subdivide all edges some fixed number of times. However, some of the edges may be liberally subdivided. Indeed, our gadgets are precisely those from [11] with some edges subdivided $\ell-1$ times. These edges are drawn in dashed lines in our gadgets in Figures 6, 7 and 8 Thus, the dashed edges represent ℓ-paths.

Let $\ell \geq 1$ be an integer. Let ϕ be an instance of 3-SATISFIABILITY, consisting of m clauses C_{1}, \ldots, C_{m} on n variables z_{1}, \ldots, z_{n}. For each clause $C_{j}(j=1, \ldots, m)$, with $C_{j}=y_{3 j-2} \vee y_{3 j-1} \vee y_{3 j}$, then $y_{i}(i=1, \ldots, 3 m)$ is a literal from $\left\{z_{1}, \ldots, z_{n}, \bar{z}_{1}, \ldots, \bar{z}_{n}\right\}$.

Let us build a graph G_{ϕ}^{ℓ} with two specified vertices x and y of degree 2 . There will be a hole containing x and y in G_{ϕ} if and only if there exists a truth assignment satisfying ϕ.

For each literal $y_{j}(j=1, \ldots, 3 m)$, prepare a graph $G\left(y_{j}\right)$ on 20 named vertices $\alpha, \alpha^{\prime}, \alpha^{1+}, \ldots, \alpha^{4+}, \alpha^{1-}, \ldots, \alpha^{4-}, \beta, \beta^{\prime}, \beta^{1+}, \ldots, \beta^{4+}, \beta^{1-}, \ldots, \beta^{4-}$, together with certain paths in between using unnamed vertices, as drawn in Figure 6. (We drop the subscript j in the labels of the vertices for clarity.)

For $i=1,2,3$ add paths of length ℓ between α^{i+} and $\alpha^{(i+1)+} ; \alpha^{i-}$ and $\alpha^{(i+1)-} ; \beta^{i+}$ and $\beta^{(i+1)+}$; and β^{i-} and $\beta^{(i+1)-}$. Also add the edges $\alpha^{1+} \beta^{1-}, \alpha^{1-} \beta^{1+}, \alpha^{4+} \beta^{4-}, \alpha^{4-} \beta^{4+}, \alpha \alpha^{1+}$, $\alpha \alpha^{1-}, \alpha^{4+} \alpha^{\prime}, \alpha^{4-} \alpha^{\prime}, \beta \beta^{1+}, \beta \beta^{1-}, \beta^{4+} \beta^{\prime}, \beta^{4-} \beta^{\prime}$.

For each clause $C_{j}(j=1, \ldots, m)$, prepare a graph $G\left(C_{j}\right)$ with 10 named vertices $c^{1+}, c^{2+}, c^{3+}, c^{1-}, c^{2-}, c^{3-}, c^{0+}, c^{12+}, c^{0-}, c^{12-}$, together with certain paths in between using unnamed vertices, as drawn in Figure 7 (We drop the subscript j in the labels of the vertices for clarity.) Add paths of length ℓ between the following pairs of vertices: c^{12+} and $c^{1+} ; c^{12+}$ and $c^{2+} ; c^{12-}$ and $c^{1-} ; c^{12-}$ and $c^{2-} ; c^{0+}$ and $c^{12+} ; c^{0+}$ and $c^{3+} ; c^{0-}$ and $c^{12-} ; c^{0-}$ and c^{3-}.

For each variable $z_{i} .(i=1, \ldots, n)$, prepare a graph $G\left(z_{i}\right)$ with $2 z_{i}^{-}+2 z_{i}^{+}$vertices, where

B. Martin et al

Figure 7 The clause gadget together with its interface with the literal gadget (drawn above). Dashed lines indicate paths of length ℓ.

Figure 8 The variable gadget. Dashed lines indicate paths of length ℓ. Dotted lines indicate a continuation of the gadget.
z_{i}^{-}is the number of times \bar{z}_{i} appears in clauses C_{1}, \ldots, C_{m} and z_{i}^{+}is the number of times z_{i} appears in clauses C_{1}, \ldots, C_{m}.

Let $G\left(z_{i}\right)$ consist of two internally disjoint paths P_{i}^{+}and P_{i}^{-}with common endpoints d_{i}^{+} and d_{i}^{-}and lengths $1+(2 \ell) z_{i}^{-}$and $1+(2 \ell) z_{i}^{+}$, respectively. Label the vertices of P_{i}^{+}and P_{i}^{-}as in Figure 8 .

The final graph G_{ϕ}^{ℓ} will be constructed from the disjoint union of all the graphs $G\left(y_{j}\right)$, $G\left(C_{i}\right)$, and $G\left(z_{i}\right)$ with the following modifications:

- For $j=1, \ldots, 3 m-1$, add paths of length ℓ between the pairs: α_{j}^{\prime} and $\alpha_{j+1} ; \beta_{j}^{\prime}$ and β_{j+1}.
- For $j=1, \ldots, m-1$, add a path of length ℓ between c_{j}^{0-} and c_{j+1}^{0+}.
- For $j=1, \ldots, n-1$, add a path of length ℓ between d_{i}^{-}and d_{i+1}^{+}.
- For $i=1, \ldots, n-1$, let $y_{n_{1}}, \ldots, y_{n_{z_{i}^{-}}}$be the occurrences of \bar{z}_{i} over all literals. For $j=1, \ldots, z_{i}^{-}$, delete the path between $p_{i, 2 j-1}^{+}$and $p_{i, 2 j}^{+}$and add the four edges $p_{i, 2 j-1}^{+} \alpha_{n_{j}}^{2+}$, $p_{i, 2 j-1}^{+} \beta_{n_{j}}^{2+}, p_{i, 2 j}^{+} \alpha_{n_{j}}^{3+}, p_{i, 2 j}^{+} \beta_{n_{j}}^{3+}$.
- For $i=1, \ldots, n-1$, let $y_{n_{1}}, \ldots, y_{n_{z_{i}^{+}}}$be the occurrences of z_{i} over all literals. For

Figure 9 Cases that need to be checked for omission of graphs H_{ℓ}.
$j=1, \ldots, z_{i}^{+}$, delete the path between $p_{i, 2 j-1}^{-}$and $p_{i, 2 j}^{-}$and add the four edges $p_{i, 2 j-1}^{-} \alpha_{n_{j}}^{2+}$, $p_{i, 2 j-1}^{-} \beta_{n_{j}}^{2+}, p_{i, 2 j}^{-} \alpha_{n_{j}}^{3+}, p_{i, 2 j}^{-} \beta_{n_{j}}^{3+}$.

- For $i=1, \ldots, m$ and $j=1,2,3$, add the edges $\alpha_{3(i-1)+j}^{2-} c_{i}^{j+}, \alpha_{3(i-1)+j}^{3-} j_{i}^{j-}, \beta_{3(i-1)+j}^{2-} c_{i}^{j+}$, $\beta_{3(i-1)+j}^{3-} c_{i}^{j-}$.
- Add a path of length ℓ between the pairs of vertices: $\alpha_{3 m}^{\prime} d_{1}^{+}$and $d_{1}^{+} ; \beta_{3 m}^{\prime} d_{1}^{+}$and c_{1}^{0+}.
- Add the vertex x and add paths of length ℓ between the pairs of vertices: x and $\alpha_{1} ; x$ and β_{1}.
- Add the vertex y and add paths of length ℓ between the pairs of vertices: y and $c_{m}^{0-} ; y$ and d_{n}^{-}.
It is easy to verify that the maximum degree of G_{ϕ}^{ℓ} is 3 , that it is polynomial (actually linear) in the size $n+m$ of ϕ, and that x and y are non-adjacent and both have degree two.
- Lemma 11. Let $\ell \geq 5 . G_{\phi}^{\ell}$ omits as a subgraph $H_{4}, \ldots, H_{\ell-1}$.

Proof. Owing to the length of the ℓ-paths that populate our construction, we need only verify the omission of these graphs on the connected components of the graph G_{ϕ}^{ℓ} after the removal of these paths (except a pendant edge from the corresponding connected component at the extremities of an instance of these paths). In this fashion, we only need to check for omission of the given graphs in the non-trivial cases drawn in Figure 9

Indeed, the two cases are isomorphic. Let $i=4,5$. Any two vertices of degree at least three that are separated by a path of length i must be in the subgraph C_{6} at distance $6-i$ from one another. If $i=4$ then these vertices have a common neighbour so the H_{i} can't be completed. If $i=5$ then these two vertices are adjacent. For $6 \leq i \leq \ell-i$ it is not possible to find two vertices of degree at least thre that are separated by a path of length ℓ.

Note that G_{ϕ}^{ℓ} contains H_{1}, H_{2} and H_{3}.

- Lemma 12. ϕ is satisfied by a truth assignment if and only if G_{ϕ}^{ℓ} contains a hole passing through x and y.

Proof. First assume that ϕ is satisfied by a truth assignment $\xi \in\{0,1\}^{n}$. We will pick a set of vertices that induce a hole containing x and y.

1. Pick vertices x and y.
2. For $i=1, \ldots, 3 m$, pick the vertices $\alpha_{i}, \alpha_{i}^{\prime}, \beta_{i}, \beta_{i}^{\prime}$.
3. For $i=1, \ldots, 3 m$, if y_{i} is satisfied by ξ, then pick the vertices $\alpha_{i}^{1+}, \alpha_{i}^{2+}, \alpha_{i}^{3+}, \alpha_{i}^{4+}, \beta_{i}^{1+}, \beta_{i}^{2+}$, $\beta_{i}^{3+}, \beta_{i}^{4+}$. Otherwise, pick the vertices $\alpha_{i}^{1-}, \alpha_{i}^{2-}, \alpha_{i}^{3-}, \alpha_{i}^{4-}, \beta_{i}^{1-}, \beta_{i}^{2-}, \beta_{i}^{3-}, \beta_{i}^{4-}$.
4. For $i=1, \ldots, n$, if $\xi(i)=1$, then pick all the vertices of the path P_{i}^{+}and all the neighbours of the vertices in P_{i}^{+}of the form α_{k}^{2+} or α_{k}^{3+} for any k.
5. For $i=1, \ldots, n$, if $\xi(i)=0$, then pick all the vertices of the path P_{i}^{-}and all the neighbours of the vertices in P_{i}^{-}of the form α_{k}^{2+} or α_{k}^{3+} for any k.
6. For $i=1, \ldots, m$, pick the vertices c_{i}^{0+} and c_{i}^{0-}. Choose any $j \in\{3 i-2,3 i-1,3 i\}$ such that ξ satisfies y_{j}. Pick vertices α_{j}^{2-} and α_{j}^{3-}. If $j=3 i-2$, then pick the vertices $c_{j}^{12+}, c_{j}^{1+}, c_{j}^{12-}, c_{j}^{1-}$. If $j=3 i-1$, then pick the vertices $c_{j}^{12+}, c_{j}^{2+}, c_{j}^{12-}, c_{j}^{2-}$. If $j=3 i$, then pick the vertices c_{j}^{3+}, c_{j}^{3-}.
The given vertices do not yet induce a connected component, because we need to add the vertices of ℓ-paths in between. Thus, if p and q are vertices which we selected that have an ℓ-path between them (drawn as a dashed edge in the associated gadget), then we need to add the interior vertices of this path also.

It suffices to show that the chosen vertices induce a hole containing x and y. The only potential problem is that for some k, one of the vertices $\alpha_{k}^{2+}, \alpha_{k}^{3+}, \alpha_{k}^{2-}, \alpha_{k}^{3-}$ was chosen more than once. If α_{k}^{2+} and α_{k}^{3+} were picked in Step 3 , then y_{k} is satisfied by ξ. Therefore, α_{k}^{2+} and α_{k}^{3+} were not chosen in Step 4 or Step 5 . Similarly, if α_{k}^{2-} and α_{k}^{3-} were picked in Step 6 , then y_{k} is satisfied by ξ and α_{k}^{2-} and α_{k}^{3-} were not picked in Step 3. Thus, the chosen vertices induce a hole in G_{ϕ}^{ℓ} containing vertices x and y.

Now assume G_{ϕ}^{ℓ} contains a hole H passing through x and y. The hole H must contain α_{1} and β_{1}, and the paths leading to them, since they are the only two path neighbours of x. Next, either both α_{1}^{1+} and β_{1}^{1+} are in H or both α_{1}^{1-} and β_{1}^{1-} are in H.

Without loss of generality, let α_{1}^{1+} and β^{1+} be in H (the same reasoning that follows will hold true for the other case). Since α_{1}^{1-} and β^{1-} are both neighbours of two members of H, they cannot be in H. Thus, α_{1}^{2+} and β_{1}^{2+}, and the paths to them, must be in H. Since α_{1}^{2+} and β_{1}^{2+} have the same neighbours outside $G\left(y_{1}\right)$, it follows that H must contain α_{1}^{3+} and β_{1}^{3+}, and the paths that lead to them. Also, H must contain α_{1}^{4+} and β_{1}^{4+}, and the paths that lead to them. Suppose that α_{1}^{4-} and β_{1}^{4-} are in H. Because α_{1}^{i-} has the same neighbour as β_{1}^{i-} outside $G\left(y_{1}\right)$ for $i=2,3$, it follows that H must contain $\alpha_{1}^{3-}, \alpha_{1}^{2-}, \alpha_{1}^{1-}$. But then H is not a hole containing x, a contradiction. Therefore, α_{1}^{4-} and β_{1}^{4-} cannot both be in H, so H must contain $\alpha_{1}^{\prime}, \beta_{1}^{\prime}, \alpha_{2}, \beta_{2}$, and the paths to them.

By induction, we see for $i=1,2, \ldots, 3 m$ that H must contain $\alpha_{i}, \alpha_{i}^{\prime}, \beta_{i}, \beta_{i}^{\prime}$. Also, for each i, either H contains $\alpha_{i}^{1+}, \alpha_{i}^{2+}, \alpha_{i}^{3+}, \alpha_{i}^{4+}, \beta_{i}^{1+}, \beta_{i}^{2+}, \beta_{i}^{3+}, \beta_{i}^{4+}$ or H contains $\alpha_{i}^{1-}, \alpha_{i}^{2-}, \alpha_{i}^{3-}, \alpha_{i}^{4-}$, $\beta_{i}^{1-}, \beta_{i}^{2-}, \beta_{i}^{3-}, \beta_{i}^{4-}$.

As a result, H_{ϕ}^{ℓ} must also contain d_{1}^{+}and c_{1}^{0+} and the paths to them. By symmetry, we may assume H_{ϕ}^{ℓ} contains $p_{1,1}^{+}$and α_{k}^{2+}, for some k. Since α_{k}^{1+} is adjacent to two vertices in H, H must contain α_{k}^{3+} and the path of length ℓ toward it. Similarly, H cannot contain α_{k}^{4+}, so H contains $p_{1,2}^{+}$and $p_{1,3}^{+}$, as well as the paths through these. By induction, we see that H contains $p_{1, i}^{+}$for $i=1,2, \ldots, z_{i}^{+}$and d_{1}^{-}and the ℓ-paths in between. If H contains $p_{1, z_{i}^{-}}^{-}$, then H must contain $p_{1, i}^{-}$for $i=z_{i}^{-}, \ldots, 1$, a contradiction. Thus, H must contain d_{2}^{+} and the ℓ-path to it. By induction, for $i=1,2, \ldots, n$, we see that H contains all the vertices of the path P_{i}^{+}or P_{i}^{-}and by symmetry, we may assume H contains all the neighbours of the vertices in P_{i}^{+}or P_{i}^{-}of the form α_{k}^{2+} or α_{k}^{3+}, for any k .

Similarly, for $i=1,2, \ldots, m$, it follows that H must contain c_{i}^{0+} and c_{i}^{0-}. Also, H contains one of the following:

- $c_{i}^{12+}, c_{i}^{1+}, c_{i}^{12-}, c_{i}^{1-}$ and either α_{j}^{2-} and α_{j}^{3-} or β_{j}^{2-} and β_{j}^{3-} (where α_{j}^{2-} is adjacent to c_{i}^{1+}).
- $c_{i}^{12+}, c_{i}^{2+}, c_{i}^{12-}, c_{i}^{2-}$ and either α_{j}^{2-} and α_{j}^{3-} or β_{j}^{2-} and β_{j}^{3-} (where α_{j}^{2-} is adjacent to c_{i}^{2+}).
$=c_{i}^{3+}, c_{i}^{3-}$ and either α_{j}^{2-} and α_{j}^{3-} or β_{j}^{2-} and β_{j}^{3-} (where α_{j}^{2-} is adjacent to c_{i}^{3+}).
We can recover the satisfying assignment ξ as follows. For $i=1,2, \ldots, n$, set $\xi(i)=1$ if the vertices of P_{i}^{+}are in H and set $\xi(i)=0$ if the vertices of P_{i}^{-}are in H. By construction, it is easy to verify that at least one literal in every clause is satisfied, so ξ is indeed a satisfying assignment.

We are now in a position to prove Theorem 3 We need to borrow one lemma (whose proof is straightforward) from [11], and for which we need to define the problem 2-Induced Cycle. This has as input a graph with two labelled vertices, with yes-instances those inputs where there exists an induced cycle (hole) containing those two labelled vertices.

- Lemma 13 (See Theorem 2.7 in [11]). An instance (G, x, y) of 2-Induced Cycle, where x and y have degree 2, can be transformed in polynomial time into an instance of 2-INDUCED Disjoint Paths on a graph G^{\prime}.

Proof of Theorem 3. The first part for H_{1} appears as Theorem 6 while for H_{2} it appears as Corollary 10 Note that the H_{1} case is readily seen once the simplification (\dagger) is made, because k-Disjoint Paths must solve k-Induced Disjoint Paths since the input is H_{1}-subgraph-free.

For the second part, we reason via Lemma 13 . We construct G_{ϕ}^{ℓ}. By Lemma 12, G_{ϕ}^{ℓ} has a hole through x and y if and only if ϕ is satisfiable. Moreover, G_{ϕ}^{ℓ} is $\left(H_{4}, \ldots, H_{\ell-1}\right)$ -subgraph-free by Lemma 11

$3 \quad C_{5}$-Colouring

A homomorphism between graphs G and H is a function f from $V(G)$ to $V(H)$ so that, for all $x y \in E(G)$ we have $f(x) f(y) \in E(H)$. Let us recall our problem.
C_{5}-Colouring
Instance: a graph G.
Question: Does G have a homomorphism to the cycle C_{5} ?

- Lemma 14. There exists n_{1} so that for all $N \geq n_{1}$, and for all $x, y \in V\left(C_{5}\right)$, there is a walk of length N in C_{5} from x to y.

Proof. We may take $n_{1}=4$.
Consider $N=4$. To walk a distance of zero: walk two forward then two back. To walk at distance one (w.l.o.g.) forward: walk four backward. To walk at distance two (w.l.o.g.) forward: walk one back, one forward, and two forward.

Consider $N=5$. To walk a distance of zero: walk five forward. To walk at distance one (w.l.o.g.) forward: walk two forward, two back and one forward. To walk at distance two (w.l.o.g.) forward: walk one back, one forward, and three back.

Consider $N \geq 6$. Keep moving one forward then one back until one of the two previous cases applies.

- Corollary 15. Let G be an instance of C_{5}-Colouring and let G^{\prime} be the same instances after $n_{1}-1$ subdivisions. Then G^{\prime} is a trivial yes-instance of C_{5}-Colouring.
- Corollary 16. C_{5}-Colouring fails C3.

Let us note that C_{5}-Colouring fulfills C 1 and C 2 .

- Lemma 17. C_{5}-Colouring is NP-complete for $\left(H_{1}, H_{2}\right)$-subgraph-free graphs.

Proof. It is well-known [7] and easy to see that there is a reduction from K_{5}-colouring to C_{5}-Colouring that takes an input G and simply subdivides twice each edge. The obtained graph plainly omits both H_{1} and H_{2} as a subgraph (but generally contains many instances of H_{3}).

We are now in a position to prove Theorem 4
Proof of Theorem 4. The first part comes from Lemma 14 with $n_{1}=4$. The point is that any instance which omits each of H_{1}, H_{2} and H_{3} as a subgraph must be trivially true, because all paths between vertices of degree at least three are of length at least four. This means that vertices of degree at least three can be mapped anywhere on C_{5} and the instance can still be extended to a C_{5}-colouring.

The second part appears as Lemma 17 .

4 Hamilton Cycle

Recall that a Hamilton Cycle in a graph is one which visits every node exactly once. Let us recall our problem.

```
Hamilton Cycle
    Instance: a graph G.
    Question: Does G contain a Hamilton Cycle?
```

This section is devoted to the proof of Theorem 5, whose statement we recall.
Theorem 5 Hamilton Cycle is in P for the class of H_{1}-subgraph-free graphs.
Proof. Let G be an input to Hamilton Cycle. If G is not connected, it is a no-instance. Else, if G has no vertex of degree >2, then G is a yes-instance iff it is 2-regular (a cycle). Let v be a vertex of degree >2. If v has a neighbour of degree 1 , then G is a no-instance. If all neighbours of v have degree 2, then we are in the situation depicted in Figure 10 in which we draw the neighbours of v as $u_{i}(i=1,2,3, \ldots)$. Since any Hamilton Cycle that accesses u_{i} must involve v, for $i=1,2,3$, we derive a contradiction, as we can only come to v once and leave v once. Thus, G must be a no-instance of Hamilton Cycle (note that G need not be a no-instance of Hamilton Path). Let u be a neighbour of v of degree >2. Consider that u has two neighbours distinct from v, let us call them p, q and v has two neighbours distinct from u, let us call them r, s. Since G is H_{1}-free, it is not possible that $\{p, q\} \cap\{r, s\}=\emptyset$. Let us branch on two possibilities.
(Diamond case.) Suppose $\{p, q\}=\{r, s\}$ and G contains an induced diamond or K_{4}. If $\{u, v, p, q\}$ have no neighbours outside of $\{u, v, p, q\}$, then G is a yes-instance (G itself is either a diamond or K_{4}). If either of the following pairs have distinct neighbours outside of $\{u, v, p, q\}$ then G contains an $H_{1}:\{p, u\},\{u, q\},\{q, v\},\{v, p\}$.

Suppose u and v have no neighbours outside of $\{u, v, p, q\}$ except that are also neighbours of one of $\{p, q\}$. And now suppose one of p and q has a neighbour outside of $\{u, v, p, q\}$ and the other doesn't. Without loss of generality, suppose it is p.

Suppose there is some vertex adjacent to u or v or both, outside of $\{u, v, p, q\}$, and note that such a vertex must also be adjacent to p. There can be no more than one such vertex as otherwise we have an H_{1}. If t has a neighbour outside of $\{u, v, p, q\}$ then we have an H_{1}. So, t has no such neighbour and in fact G has precisely vertices $\{u, v, p, q, t\}$ and is a yes-instance.

Thus, we may assume that there is no vertex adjacent to u or v outside of $\{u, v, p, q\}$. This means G is a no-instance as p or q (whichever has the neighbour outside of $\{u, v, p, q\}$) may only be traversed once.

Now let us assume that p and q have distinct neighbours x and y outside of $\{u, v, p, q\}$. Note that each of them has a unique neighbour (else G contains an H_{1}). Now, let us build G^{\prime} from G by contracting $\{u, v, p, q\}$ to a single vertex. We draw this case in Figure 11 We claim G^{\prime} has a Hamilton Cycle iff G has a Hamilton Cycle.
(Proof of Claim.) The forward direction is trivial. For the backward direction, note that once any Hamilton Cycle visits any of $\{u, v, p, q\}$, necessarily from x or y, then it must visit them all in immediate succession, before leaving via whichever of x and y it didn't enter by.

Suppose now that one or more of u and v have neighbours outside of $\{u, v, p, q\}$ that are not neighbours of $\{p, q\}$. It follows that p and q have no neighbours outside of $\{u, v, p, q\}$. If $\{u, v, p, q\}$ induces a K_{4}, then we can build G^{\prime} from G by contracting $\{u, v, p, q\}$ to a single vertex. That G^{\prime} has a Hamilton Cycle iff G has a Hamilton Cycle follows exactly as in the previous claim (indeed, if we swap $\{p, q\}$ for $\{u, v\}$ we are in the previous case). If $\{u, v, p, q\}$ induces a diamond, then G is a no-instance (we draw this case in Figure 12.)
(Bull case.) Suppose $p=r$ but $q \neq s$ and G contains a bull with triangle $\{u, v, p\}$ and pendant edges $u q$ and $v s$. If there is an edge $u s$ or $v q$ (or $p s$ or $p q$) then we have a diamond and we are in a previous case. (There may or may not be the edge qs.) If u or v has degree >3 then there is an H_{1} so let us assume they have degree exactly 3 .

Suppose p has degree 2 , then we can contract $\{u, v, p\}$ to a single vertex. We claim that G^{\prime} has a Hamilton Cycle iff G has a Hamilton Cycle.
(Proof of Claim.) The forward direction is trivial. For the backward direction, note that once any Hamilton Cycle visits any of $\{u, v\}$, necessarily from q or s, then it must visit all of $\{u, p, v\}$ in immediate succession, before leaving via whichever of q and s it didn't enter by.

Suppose p has degree >2 and note that is must be ≤ 3 to avoid an H_{1} so we may assume p has precisely one neighbour outside of $\{u, v\}$ which we will call t. If t has degree 1 then this is a no-instance. If t has degree >2 then there is an H_{1} (Recall that there can be no edge from t to u or v as this would introduce a diamond. It is possible there is an edge from t to q or s). Thus, t has degree 2. Suppose one among q and s has no neighbour outside of $\{u, v, q, s, t\}$. Note that there is no edge $q v$ or $s u$ as this would create a diamond. If there is no edge $q s$ this is a no-instance. If there is an edge $q s$ then we can replace G by G^{\prime} in which we contract $\{u, v, p, t\}$ to a single vertex. We claim that G^{\prime} has a Hamilton Cycle iff G has a Hamilton Cycle.
(Proof of Claim.) Assume w.l.o.g. that q has no neighbour outside of $\{u, v, q, s, t\}$. For the forward direction we may traverse in the order s, q, u, v, p, t. For the backward direction, note that once any Hamilton Cycle visits t from outside of $\{u, v, q, s, t\}$, then it must visit all of $\{u, v, q, s, t\}$ in immediate succession, before leaving via s.

Suppose now that both q and s have a neighbour outside of $\{u, v, q, s\}$. In this case, there can be no edge $q s$, as this would introduce an H_{1}. We claim that G is a no-instance. We draw this case in Figure 13
(Proof of Claim.) Since any Hamilton Cycle that accesses any one of $\{q, s, t\}$ must involve two among $\{u, v, p\}$, we derive a contradiction, as we can only come to each from $\{u, v, p\}$

Figure 10 The case in which v has degree ≥ 3 and all its neighours have degree 2 .

Figure 11 The case in which $\{u, v, p, q\}$ induces a diamond or K_{4} and p and q are of degree 3 . The dashed lines are edges that may or may not be present.
once. Thus, G must be a no-instance of Hamilton Cycle.

5 Final Remarks

It is well known that H-Colouring is polynomial-time solvable whenever H is a bipartite graph [7]. We can generalise our results from C_{5}-Colouring to $C_{2 k+1}$-Colouring, but we will be less clear about some of the bounds.

```
C2k+1-ColOURING
    Instance: a graph G.
    Question: Does G have a homomorphism to the cycle C C2k+1}\mathrm{ ?
```

We omit the proofs of the following results.
Lemma 18. For each $k \geq 2$, there exists n_{k} so that for all $N \geq n_{k}$, and for all $x, y \in$ $V\left(C_{2 k+1}\right)$, there is a walk of length N in $C_{2 k+1}$ from x to y.

Figure 12 The case in which $\{u, v, p, q\}$ induces a diamond and p and q are of degree 2 .

Figure 13 The case in which p has precisely one neighbour outside of $\{u, v\}$ which we will call t

- Corollary 19. Let G be an instance of $C_{2 k+1}$-Colouring and let G^{\prime} be the same instances after $n_{k}-1$ subdivisions. Then G^{\prime} is a trivial yes-instance of $C_{2 k+1}$-Colouring.
- Corollary 20. $C_{2 k+1}$-Colouring fails C3.

Let us note that $C_{2 k+1}$-Colouring fulfills C1 and C2.

- Lemma 21. $C_{2 k+1}$-Colouring is NP-complete for $\left(H_{1}, \ldots, H_{k}\right)$-subgraph-free graphs.
- Theorem 22. $C_{2 k+1}$-Colouring is in P for $\left(H_{1}, \ldots, H_{n_{k}-1}\right)$-subgraph-free graphs. $C_{2 k+1^{-}}$ Colouring is NP-complete for $\left(H_{1}, \ldots, H_{k+1}\right)$-subgraph-free graphs.

Acknowledgements

We are grateful to Matthew Johnson, Jelle J. Oostveen and Hans Bodlaender for useful discussions.

References

1 Vladimir E. Alekseev, Rodica Boliac, Dmitry V. Korobitsyn, and Vadim V. Lozin. NP-hard graph problems and boundary classes of graphs. Theoretical Computer Science, 389:219-236, 2007.

2 Vladimir E. Alekseev and Dmitry V. Korobitsyn. Complexity of some problems on hereditary graph classes. Diskretnaya Matematika, 2:90-96, 1990.
3 Rodica Boliac and Vadim V. Lozin. On the clique-width of graphs in hereditary classes. Proc. ISAAC 2022, LNCS, 2518:44-54, 2002.
4 Maria Chudnovsky, Shenwei Huang, Pawel Rzazewski, Sophie Spirkl, and Mingxian Zhong. Complexity of C_{k}-coloring in hereditary classes of graphs. Proc. ESA 2019, LIPIcs, 144:31:131:15, 2019.
5 Petr A. Golovach and Daniël Paulusma. List coloring in the absence of two subgraphs. Discrete Applied Mathematics, 166:123-130, 2014.
6 Petr A. Golovach, Daniël Paulusma, and Bernard Ries. Coloring graphs characterized by a forbidden subgraph. Discrete Applied Mathematics, 180:101-110, 2015.
7 Pavol Hell and Jaroslav Nesetril. On the complexity of H-coloring. Journal of Combinatorial Theory, Series B, 48:92-110, 1990.
8 Matthew Johnson, Barnaby Martin, Jelle J. Oostveen, Sukanya Pandey, Daniël Paulusma, Siani Smith, and Erik Jan van Leeuwen. Complexity framework for forbidden subgraphs. CoRR, 2211.12887, 2022.
9 Walter Kern, Barnaby Martin, Daniël Paulusma, Siani Smith, and Erik Jan van Leeuwen. Disjoint paths and connected subgraphs for H-free graphs. Theoretical Computer Science, 898:59-68, 2022.
10 Walter Kern and Daniël Paulusma. Contracting to a longest path in H-free graphs. Proc. ISAAC 2020, LIPIcs, 181:22:1-22:18, 2020.
B. Martin et al.

11 Benjamin Lévêque, David Y. Lin, Frédéric Maffray, and Nicolas Trotignon. Detecting induced subgraphs. Discrete Applied Mathematics, 157:3540-3551, 2009.
12 Barnaby Martin, Daniël Paulusma, Siani Smith, and Erik Jan van Leeuwen. Induced Disjoint Paths and Connected Subgraphs for H-free graphs. Proc. WG 2022, LNCS, 13453:398-411, 2022.

13 Barnaby Martin, Daniël Paulusma, Siani Smith, and Erik Jan van Leeuwen. Few induced disjoint paths for H-free graphs. Theoretical Computer Science, 939:82-193, 2023.
14 Neil Robertson and Paul D. Seymour. Graph minors .XIII. The Disjoint Paths problem. Journal of Combinatorial Theory, Series B, 63:65-110, 1995.
15 Yossi Shiloach. A polynomial solution to the undirected Two Paths problem. Journal of the ACM, 27:445-456, 1980.

