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Abstract
A graph G is H-subgraph-free if G does not contain H as a (not necessarily induced) subgraph.
We make inroads into the classification of three problems for H-subgraph-free graphs that have
the properties that they are solvable in polynomial time on classes of bounded treewidth and
NP-complete on subcubic graphs, yet NP-hardness is not preserved under edge subdivision. The
three problems are k-Induced Disjoint Paths, C5-Colouring and Hamilton Cycle. Although
we do not complete the classifications, we show that the boundary between polynomial time and
NP-complete differs for C5-Colouring from the other two problems.

2012 ACM Subject Classification Mathematics of computing → Graph theory; Theory of computa-
tion→ Graph algorithms analysis; Theory of computation→ Problems, reductions and completeness

Keywords and phrases forbidden subgraph; complexity dichotomy; edge subdivision; treewidth

1 Introduction

Let G and H be two graphs. If H can be obtained from G by a sequence of vertex deletions
only, then H is an induced subgraph of G; else G is H-free. The induced subgraph relation
has been well studied in the literature for many classical graph problems, such as Colouring,
Feedback Vertex Set, Independent Set, and so on.

In this paper we focus on the subgraph relation. A graph G is said to contain a graph H as
a subgraph if H can be obtained from G by a sequence of vertex deletions and edge deletions;
else G is said to be H-subgraph-free. For a set of graphs H, a graph G is H-subgraph-free if
G is H-subgraph-free for every H ∈ H; we also write that G is (H1, . . . ,Hp)-subgraph-free.
Graph classes closed under edge deletion are also called monotone [1, 3].

Complexity classifications for H-subgraph-free graphs have been less well studied in the
literature than for H-free graphs; see [2] for complexity classifications for Independent
Set, Dominating Set and Longest Path and [5] for a classification for List Colouring;
all these classifications hold even for H-subgraph-free graphs, where H is any finite set of
graphs. In [6] a short, alternative proof for the classification for Independent Set for
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2 Complexity Framework For Forbidden Subgraphs

H-subgraph-free graphs was given. In general, such classifications might be hard to obtain;
see, for example, [6] for a partial classification for Colouring for H-subgraph-free graphs.
Therefore, in [8] a more systematic approach was followed, namely by introducing a new
framework for H-subgraph-free graph classes (finite H) adapting the approach of [6].

To explain the framework of [8] we need to introduce some additional terminology. Firstly,
a class of graphs has bounded treewidth if there exists a constant c such that every graph
in it has treewidth at most c. Now let G = (V,E) be a graph. Then G is subcubic if every
vertex of G has degree at most 3. The subdivision of an edge e = uv of G replaces e by a new
vertex w with edges uw and wv. For an integer k ≥ 1, the k-subdivision of G is the graph
obtained from G by subdividing each edge of G exactly k times. Let G be a class of graphs.
For an integer k we let Gk consist of the k-subdivisions of the graphs in G.

The framework of [8] makes a distinction between “efficiently solvable” and “computa-
tionally hard”, which could for example mean a distinction between “polynomial time” and
NP-complete. Let Π be a decision problem that takes as input a (possibly weighted) graph.
We say that Π is computationally hard under edge subdivision of subcubic graphs if there
exists an integer k ≥ 1 such that the following holds for the class of subcubic graphs G: if Π
is computationally hard for G, then Π is computationally hard for Gkp for every integer p ≥ 1.
That is, a graph problem Π is a C123-problem (belongs to the framework) if it satisfies the
following three conditions:

C1. Π is efficiently solvable for every graph class of bounded treewidth;
C2. Π is computationally hard for the class of subcubic graphs; and
C3. Π is computationally hard under edge subdivision of subcubic graphs.

The claw is the 4-vertex star. A subdivided claw is a graph obtained from a claw after
subdividing each of its edges zero or more times. The disjoint union of two vertex-disjoint
graphs G1 and G2 has vertex set V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2). The set S
consists of the graphs that are disjoint unions of subdivided claws and paths. As shown
in [8], C123-problems allow for full complexity classifications for H-subgraph-free graphs (as
long as H has finite size).

I Theorem 1 ([8]). Let Π be a C123-problem. For a finite set H, the problem Π on H-
subgraph-free graphs is efficiently solvable if H contains a graph from S and computationally
hard otherwise.

Examples of C123-problems include Independent Set, Dominating Set, List Colouring,
Odd Cycle Transversal, Max Cut, Steiner Tree and Vertex Cover; see [8].
However, there are still many graph problems that are not C123-problems, such as Colouring
(whose classification is still open even for H-subgraph-free graphs). Hence, it is a natural
question if those problems can still be classified for graph classes defined by some set of
forbidden subgraphs.

How do problems that do not satisfy C3 but that do satisfy C1 and C2 behave for H-subgraph-
free graphs? Can we still classify their computational complexity?

Let us call such problems C12-problems. We study the problems k-Induced Disjoint
Paths, C5-Colouring and Hamilton Cycle. All of these problems are C12-problems.
All of these violate our condition C3, but the manner of this violation is different for each
of them. As we will observe later, for k ≥ 3, C5-Colouring becomes trivially true under
k-subdivision. On the other hand, under k-subdivision (for any k), Hamilton Cycle
becomes trivially false (unless we started with a cycle), and k-Induced Disjoint Paths
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reduces to k-Disjoint Paths, which can be solved in polynomial time. Let us note that
when the parameter k is part of the input, Disjoint Paths and Induced Disjoint Paths
are C123-problems [8].

Let us make the following observation that is a restriction of Theorem 1.

I Theorem 2 ([8]). Let Π be a C12-problem. For a finite set H, the problem Π on H-
subgraph-free graphs is efficiently solvable if H contains a graph from S.

Let H1 be the “H”-graph, that is, the graph on six vertices which is formed by an edge
joining the middle vertices of two paths on three vertices. For ` ≥ 2, let H` be the graph
obtained from H1 by subdividing the edge whose endpoints each have degree 3 exactly `− 1
times. See Figure 1 for two examples. Note that hereonin H1, . . . ,Hk will never denote
arbitrary graphs, but rather the “H”-graphs we just defined. When allied with C2, Condition
C3 ensure that C123-problems remain NP-hard on (H1, . . . ,Hk)-subgraph-free graphs (for
all k). Note that C123-problems are in P when on (H1, H2, . . .)-subgraph-free graphs, as
these have bounded treewidth [8].

Figure 1 Left: the graph H1. Right: the graph H3.

Our results are as follows.

I Theorem 3. k-Induced Disjoint Paths is in P for both of the classes of H1-subgraph-
free graphs and H2-subgraph-free graphs. For all ` > 4, 2-Induced Disjoint Paths is
NP-complete for the class of (H4, . . . ,H`−1)-subgraph-free graphs.

I Theorem 4. C5-Colouring is in P for (H1, H2, H3)-subgraph-free graphs, but it is
NP-complete for (H1, H2)-subgraph-free graphs.

I Theorem 5. Hamilton Cycle is in P for the class of H1-subgraph-free graphs.

Related Work for the Induced Subgraph Relation

Recall that for some graph H, a graph G is H-free if G can be obtained from H by a
sequence that only consists of vertex deletions. There is an almost complete classification for
Disjoint Paths, in [9], in which two cases are left open. For Induced Disjoint Paths,
there is a complete classification in [12]. For k-Induced Disjoint Paths, there is a partial
classification in [13]. For C5-Coloring, there is a partial classification in [4]. For Hamilton
Path, some partial classification can be inferred from [10].

2 k-Induced Disjoint Paths

Let us recall our family of problems.
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k-Induced Disjoint Paths
Instance: a graph G and pairwise disjoint terminal pairs (s1, t1) . . . , (sk, tk).
Question: Does G have mutually induced paths P 1,. . . ,P k such that P i is an si-ti path

for i ∈ {1, . . . , k}?

Note that k-Disjoint Paths does not insist the paths are mutually induced, but only that
they are node-disjoint. The versions of these problems in which k is part of the input are
denoted Induced Disjoint Paths and Disjoint Paths. Let us note that k-Disjoint
Paths is in P for all k [14].

2.1 Tractability for the H2-subgraph-free Case
The following will be a good warm-up for the more complicated case of H2.

I Theorem 6. For every integer k ≥ 2, k-Induced Disjoint Paths is in P on H1-subgraph-
free graphs.

Proof. We prove the result for k = 2. The extension to k ≥ 2 will be straightforward. Let G
be an instance of 2-Induced Disjoint Paths together with two terminal pairs (s1, t1) and
(s2, t2). We may assume without loss of generality that there is no edge between s1 and t1
and no edge between s2 and t2.

We first check if there exists a solution in which one of the paths has length 2. We can
do this in polynomial time as follows. We first consider all O(n) options of choosing a vertex
to be the middle vertex of one of these paths. We then check if the graph obtained from
removing the guessed middle vertex and its two neighbouring terminals si and ti as well
all the neighbours of these three vertices has a connected component that contains both
terminals sj and tj of the other pair. This takes polynomial time.

We now check if there exists a solution in which both paths have length at least 3. We
consider all O(n4) options of choosing the neighbours s′1, t′1, s′2, t′2 of s1, t1, s2, t2, respectively,
on the two solution paths (should a solution exist). We discard a branch if there exists
an edge between a vertex of {s1, s

′
1, t1, t

′
1} and a vertex of {s2, s

′
2, t2, t

′
2}. Suppose this is

not the case. We remove s1, t1, s2, t2 and every neighbour of a vertex in {s1, t1, s2, t2} that
does not belong to {s′1, t′1, s′2, t′2}. Afterwards, it suffices to solve 2-Disjoint Paths on the
resulting graph G′ with terminal pairs (s′1, t′1) and (s′2, t′2). This can be seen as follows. Any
solution of 2-Induced Disjoint Paths is a solution of 2-Disjoint Paths. Now suppose
we have a solution (P1, P2) of 2-Disjoint Paths. If there exist an edge between a vertex of
P1 and a vertex of P2, then we find the forbidden subgraph H1 (possibly after adding the
vertices s1, t1, s2, t2 back). Since the number of branches is O(n4) and each created instances
of 2-Disjoint Paths can be solved in polynomial time [14, 15], the running time of this
case is polynomial as well. J

2.2 Tractability for the H2-subgraph-free Case
We would like to make some further assumptions about a k-Disjoint Paths (not induced)
algorithm that we will call iteratively. We would like that a path between si and ti

(∗) avoids neighbours of {sj , tj} (i 6= j).

Now, we enforce this by preprocessing the input, or rather reducing a single input into
multiple inputs that we then solve. Let us consider all paths of length three from each of
the terminals {s1, t1, . . . , sk, tk} (if we meet another terminal this length will be potentially
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.

s1 z1 x1 z3 t1

s2 z2 x2 z4 t2

Figure 2 The subgraph resulting from our construction.

less than three but then we either have a no-instance or we reduce to a case involving fewer
pairs of terminals). We now consider all combinations of these and we forget about all other
vertices at distance at most three from the corresponding terminals by moving to a subgraph.
Note that removing vertices cannot introduce an H2 as a subgraph into the graph. In these
preprocessed graphs the terminals all have degree 1 and the vertices at distance one and
two all have degree 2, It follows that (∗) is enforced but we need to run our algorithm on
polynomially many new graphs. Moreover, as discussed, we will have the additional property

(†) terminals have degree 1.

Now, we run an algorithm for k-Disjoint Paths and we either solve k-Induced Disjoint
Paths or we end up, due to (∗), with a subgraph as shown in Figure 2 where we assume
w.l.o.g. that a failure results in paths connecting the first two pairs of terminals.
Let S = {z1, x1, z3, z2, x2, z4}.

Suppose z ∈ {z1, z2, z3, z4} has two neighbours outside of S. Then G hasH2 as a subgraph.
Thus we may assume (‡) that z has at most one neighbour outside of S.

Suppose there are both the edges (z1, z2) and (z3, z4). Then G has a H2 as a subgraph,
since we assumed (∗), which implies that {s1, t1, s2, t2} ∩ {z1, z2, z3, z4} = ∅. Suppose
there are both the edges (z1, z4) and (z2, z3). Then, by (∗), we again have {s1, t1, s2, t2} ∩
{z1, z2, z3, z4} = ∅, which implies we have an H2 whose middle path runs z1, x1, z3.

Suppose we have one of the edges (z1, z2) and (z3, z4), and one of {x1, x2} has a neighbour
q outside of S. W.l.o.g. let us assume it is (z1, z2) and x1. Then there is an H2 with middle
path x1, z1, z2 since z2 6= s2 by (∗). Suppose we have one of the edges (z1, z4) and (z2, z3),
and one of {x1, x2} has a neighbour q outside of S. W.l.o.g. let us assume it is (z1, z4)
and x1. Then there is an H2 with middle path x1, z1, z4 since z4 6= t2 by (∗). Thus we are,
w.l.o.g., in one of the two situations depicted in Figure 3 and Figure 4. The dotted lines are
possible edges and each vertex of {z1, z2, z3, z4} has at most one neighbour outside of S.

I Lemma 7. Let G be an instance of k-Induced Disjoint Paths and let G′ be that instance
after one application of Rule 1. Then G is a yes-instance of k-Induced Disjoint Paths iff
G′ is a yes-instance of k-Induced Disjoint Paths.

Proof. Let us address the change we see in Figure 3.
Suppose we have a solution to k-Induced Disjoint Paths in G. If it uses no vertices

in S, then it is already a solution to k-Induced Disjoint Paths in G′. Thus, it must use
some vertex in S.

If the solution uses both x1 and x2, then we can substitute the edge (x1, x2) in the
solution to k-Induced Disjoint Paths in G with x to obtain a solution to k-Induced
Disjoint Paths in G′. It cannot use neither of x1 or x2 so, w.l.o.g., suppose it used x1. We
can substitute this for x to obtain a solution to k-Induced Disjoint Paths in G′, unless
some other solution path runs through a neighbour q of x2. Note q cannot be a terminal,
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s1 z1 x1 z3 t1

s2 z2 x2 z4 t2

s1 z1 z3 t1

x

s2 z2 z4 t2

Figure 3 Rule 1. Possible connections in our subgraph (left). What we replace this subgraph
with (right).

s1 z1 x1 z3 t1

s2 z2 x2 z4 t2

s1 z1 z3 t1

x

s2 z2 z4 t2

Figure 4 Rule 2. Possible connections in our subgraph (left). What we replace this subgraph
with (right).

due to (∗), hence it has two neighbours p and r on this other solution path and these are
outside of {z1, x1, z3} because this path must avoid x1 and any of its neighbours. But now
p, q, r, q, x2, x1, z1, x1, z3 forms an H2.

Suppose we have a solution to k-Induced Disjoint Paths in G′. If this solution does
not involve x then it maps to a solution of k-Induced Disjoint Paths in G. Suppose
now it does involve x. Suppose mapping x to either of x1 or x2 does not produce a solution
to k-Induced Disjoint Paths in G. Then mapping x to either the edge (x1, x2) (or the
symmetric (x2, x1)) must produce a solution to k-Induced Disjoint Paths in G. J

I Lemma 8. Let G be an instance of k-Induced Disjoint Paths and let G′ be that instance
after one application of Rule 2. Then G is a yes-instance of k-Induced Disjoint Paths iff
G′ is a yes-instance of k-Induced Disjoint Paths.

Proof. Let us address the change we see in Figure 4, where we assume (w.l.o.g.) that there
was no edge in G from z3 to z4 or from z2 to z3.

Suppose we have a solution to k-Induced Disjoint Paths in G. If it uses no vertices
in S, the it is already a solution to k-Induced Disjoint Paths in G′. Thus, it must use
some vertex in S. Recall the assumption (‡). Suppose the solution uses the edge z1 to z2.
Then it doesn’t use any other vertex from S and we can keep this edge to obtain a solution
for k-Induced Disjoint Paths in G′. Suppose the solution uses the edge z1 to z4. Then
it doesn’t use any other vertex from S and we can keep this edge to obtain a solution for
k-Induced Disjoint Paths in G′.

If the solution uses both x1 and x2, then we can substitute the edge (x1, x2) in the
solution to k-Induced Disjoint Paths in G with x to obtain a solution to k-Induced
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s1 z1 x1 z3 t1

s2 z2 x2 z4 t2

Figure 5 A counterexample to the statement that G has a subgraph H2 implies that G′ has a
subgraph H2.

Disjoint Paths in G′. Suppose it uses neither of x1 and x2. Then it uses either the edge
(z1, z4) or (z1, z2) and we are in a previous case.

Now, suppose the solution uses z1 or z3, then it must use x1 or z2; and if it uses z2 or z4,
then it must use x1 or x2. We assumed it was only one, so let us assume (w.l.o.g.) that it is
x1. Owing to (‡), we can substitute this for x to obtain a solution to k-Induced Disjoint
Paths in G′.

Suppose we have a solution to k-Induced Disjoint Paths in G′. If this solution does
not involve x then it maps to a solution of k-Induced Disjoint Paths in G. Suppose
now it does involve x. Suppose mapping x to either of x1 or x2 does not produce a solution
to k-Induced Disjoint Paths in G. Then mapping x to either the edge (x1, x2) (or the
symmetric (x2, x1)) must produce a solution to k-Induced Disjoint Paths in G. J

I Lemma 9. If G omits H2 as a subgraph then G′ omits H2 as a subgraph.

Proof. Suppose G′ has an H2 involving x. If x is a leaf vertex in H2 then it is clear that G′
already had this H2 involving either x1 or x2.

Suppose x is a degree 3 vertex in H2. If the neighbours of x in the H2 were both
neighbours of x1 or both neighbours of x2 in G then it is clear that G already had this H2.

Now suppose one of the neighbours, say z′1, was adjacent to x1 and the other, say z′2, was
adjacent to x2. Let x′, x′′, z′′1 , z′′2 form the remaining vertices of the H2 where x, x′, x′′ and
z′′1 , x

′′, z′′2 are both paths of length 2 in this H2. Thus, z′1, x, z′2, x, x′, x′′ and z′′1 , x′′, z′′2 form
the H2 in G′. W.l.o.g. suppose x′ was adjacent to x1 in G. Now it is clear that z′1, x1, x2,
x1, x

′, x′′ and z′′1 , x′′, z′′2 formed an H2 in G.
Finally, suppose that x is the degree 2 vertex in H2. Let z′1, x′, z′2, x′, x, x′′, z′′1 , x′′, z′′2 be

the paths that form the H2 in G′. Suppose, w.l.o.g., that x′ was adjacent to x1 in G. If x′′
was also adjacent to x1 in G then z′1, x′, z′2, x′, x1, x

′′, z′′1 , x′′, z′′2 are paths that form an H2
in G. Suppose now that x′′ was adjacent to x2 but not x1 in G and we may also assume
that x′ is adjacent to x1 but not x2. Now z′1, x

′, z′2, x′, x1, x2, z2, x2, z4 are paths that form
the H2 in G, unless {z2, z4} ∩ {z′1, z′2} 6= ∅. W.l.o.g., suppose z2 = z′1. If z2 6= s2 and p is
next on the path from t2 to s2 after the z2, then p, z2, x2, z2, x

′, x1, z1, x1, z3 is an H2 in G
(note that {z1, z3} ∩ {x′, z2, p} = ∅). Finally, if z2 = s2 then we violate condition (†). J

Let us note that the sequent G has H2 as a subgraph then G′ has H2 as a subgraph is in
general false. A counterexample for G is furnished in Figure 5. The dotted lines are possible
edges and each vertex of {z1, z2, z3, z4} has at most one neighbour outside of S.

I Corollary 10. k-Induced Disjoint Paths is in P on H2-subgraph-free graphs.

Proof. We iteratively run our algorithm for k-Disjoint Paths. If it returns no, then it
is also a no-instance to k-Induced Disjoint Paths. If it returns a solution, the either
this is a solution to k-Induced Disjoint Paths or we use one of the two reduction rules.
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α1+ α3+ α3+ α4+

α α′

α1− α2− α3− α4−

β1+ β2+ β3+ β4+

β β′

β1− β2− β3− β4−

Figure 6 The literal gadget (dashed lines indicate paths of length `).

These make the instance smaller by one vertex, so the procedure will terminate. Note that it
follows from Lemma 9 that we will never find an H2 as a subgraph. J

2.3 NP-hardness for the H4-subgraph-free Case
We follow very closely the argument from Section 2.4 in [11]. It is not possible to take that
construction and simply subdivide all edges some fixed number of times. However, some of
the edges may be liberally subdivided. Indeed, our gadgets are precisely those from [11] with
some edges subdivided `− 1 times. These edges are drawn in dashed lines in our gadgets in
Figures 6, 7 and 8. Thus, the dashed edges represent `-paths.

Let ` ≥ 1 be an integer. Let φ be an instance of 3-Satisfiability, consisting of
m clauses C1, . . . , Cm on n variables z1, . . . , zn. For each clause Cj (j = 1, . . . ,m), with
Cj = y3j−2 ∨ y3j−1 ∨ y3j , then yi (i = 1, . . . , 3m) is a literal from {z1, . . . , zn, z1, . . . , zn}.

Let us build a graph G`φ with two specified vertices x and y of degree 2. There will be a
hole containing x and y in Gφ if and only if there exists a truth assignment satisfying φ.

For each literal yj (j = 1, . . . , 3m), prepare a graph G(yj) on 20 named vertices
α, α′, α1+, . . . , α4+, α1−, . . . , α4−, β, β′, β1+, . . . , β4+, β1−, . . . , β4−, together with certain paths
in between using unnamed vertices, as drawn in Figure 6. (We drop the subscript j in the
labels of the vertices for clarity.)

For i = 1, 2, 3 add paths of length ` between αi+ and α(i+1)+; αi− and α(i+1)−; βi+ and
β(i+1)+; and βi− and β(i+1)−. Also add the edges α1+β1−, α1−β1+, α4+β4−, α4−β4+, αα1+,
αα1−, α4+α′, α4−α′, ββ1+, ββ1−, β4+β′, β4−β′.

For each clause Cj (j = 1, . . . ,m), prepare a graph G(Cj) with 10 named vertices
c1+, c2+, c3+, c1−, c2−, c3−, c0+, c12+, c0−, c12−, together with certain paths in between using
unnamed vertices, as drawn in Figure 7. (We drop the subscript j in the labels of the vertices
for clarity.) Add paths of length ` between the following pairs of vertices: c12+ and c1+; c12+

and c2+; c12− and c1−; c12− and c2−; c0+ and c12+; c0+ and c3+; c0− and c12−; c0− and c3−.

For each variable zi .(i = 1, . . . , n), prepare a graph G(zi) with 2z−i + 2z+
i vertices, where
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α1− α2− α3− α4−

β1− β2− β3− β4−

c1+ c1−

c1+ c1−

c12+ c12−

c0+ c2+ c2− c0−

c3+ c3−

Figure 7 The clause gadget together with its interface with the literal gadget (drawn above).
Dashed lines indicate paths of length `.

p+
i,1 p+

i,2 • • P+
• • p+

i,2z+
i
−1 p+

i,2z+
i

d+ d−

p−i,1 p−i,2 • •
P−

• • p−
i,2z−

i
−1 p−

i,2z−
i

Figure 8 The variable gadget. Dashed lines indicate paths of length `. Dotted lines indicate a
continuation of the gadget.

z−i is the number of times zi appears in clauses C1, . . . , Cm and z+
i is the number of times

zi appears in clauses C1, . . . , Cm.
Let G(zi) consist of two internally disjoint paths P+

i and P−i with common endpoints d+
i

and d−i and lengths 1 + (2`)z−i and 1 + (2`)z+
i , respectively. Label the vertices of P+

i and
P−i as in Figure 8.

The final graph G`φ will be constructed from the disjoint union of all the graphs G(yj),
G(Ci), and G(zi) with the following modifications:

For j = 1, . . . , 3m − 1, add paths of length ` between the pairs: α′j and αj+1; β′j and
βj+1.
For j = 1, . . . ,m− 1, add a path of length ` between c0−

j and c0+
j+1.

For j = 1, . . . , n− 1, add a path of length ` between d−i and d+
i+1.

For i = 1, . . . , n − 1, let yn1 , . . . , ynz
−
i

be the occurrences of zi over all literals. For

j = 1, . . . , z−i , delete the path between p+
i,2j−1 and p+

i,2j and add the four edges p+
i,2j−1α

2+
nj

,
p+
i,2j−1β

2+
nj

, p+
i,2jα

3+
nj

, p+
i,2jβ

3+
nj

.
For i = 1, . . . , n − 1, let yn1 , . . . , ynz

+
i

be the occurrences of zi over all literals. For
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α1+ •

• α

α1− •

β1+ •

• β

β1− •

• α2− α3− •

• β2− β3− •

c1+ c1−

• •

Figure 9 Cases that need to be checked for omission of graphs H`.

j = 1, . . . , z+
i , delete the path between p−i,2j−1 and p−i,2j and add the four edges p−i,2j−1α

2+
nj

,
p−i,2j−1β

2+
nj

, p−i,2jα3+
nj

, p−i,2jβ3+
nj

.
For i = 1, . . . ,m and j = 1, 2, 3, add the edges α2−

3(i−1)+jc
j+
i , α3−

3(i−1)+jc
j−
i , β2−

3(i−1)+jc
j+
i ,

β3−
3(i−1)+jc

j−
i .

Add a path of length ` between the pairs of vertices: α′3md+
1 and d+

1 ; β′3md
+
1 and c0+

1 .
Add the vertex x and add paths of length ` between the pairs of vertices: x and α1; x
and β1.
Add the vertex y and add paths of length ` between the pairs of vertices: y and c0−

m ; y
and d−n .

It is easy to verify that the maximum degree of G`φ is 3, that it is polynomial (actually
linear) in the size n+m of φ, and that x and y are non-adjacent and both have degree two.

I Lemma 11. Let ` ≥ 5. G`φ omits as a subgraph H4, . . . ,H`−1.

Proof. Owing to the length of the `-paths that populate our construction, we need only
verify the omission of these graphs on the connected components of the graph G`φ after the
removal of these paths (except a pendant edge from the corresponding connected component
at the extremities of an instance of these paths). In this fashion, we only need to check for
omission of the given graphs in the non-trivial cases drawn in Figure 9.

Indeed, the two cases are isomorphic. Let i = 4, 5. Any two vertices of degree at least
three that are separated by a path of length i must be in the subgraph C6 at distance 6− i
from one another. If i = 4 then these vertices have a common neighbour so the Hi can’t be
completed. If i = 5 then these two vertices are adjacent. For 6 ≤ i ≤ `− i it is not possible
to find two vertices of degree at least thre that are separated by a path of length `. J

Note that G`φ contains H1, H2 and H3.

I Lemma 12. φ is satisfied by a truth assignment if and only if G`φ contains a hole passing
through x and y.

Proof. First assume that φ is satisfied by a truth assignment ξ ∈ {0, 1}n. We will pick a set
of vertices that induce a hole containing x and y.
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1. Pick vertices x and y.
2. For i = 1, . . . , 3m, pick the vertices αi, α′i, βi, β′i.
3. For i = 1, . . . , 3m, if yi is satisfied by ξ , then pick the vertices α1+

i , α2+
i , α3+

i , α4+
i , β1+

i , β2+
i ,

β3+
i , β4+

i . Otherwise, pick the vertices α1−
i , α2−

i , α3−
i , α4−

i , β1−
i , β2−

i , β3−
i , β4−

i .
4. For i = 1, . . . , n, if ξ(i) = 1, then pick all the vertices of the path P+

i and all the
neighbours of the vertices in P+

i of the form α2+
k or α3+

k for any k.
5. For i = 1, . . . , n, if ξ(i) = 0, then pick all the vertices of the path P−i and all the

neighbours of the vertices in P−i of the form α2+
k or α3+

k for any k.
6. For i = 1, . . . ,m, pick the vertices c0+

i and c0−
i . Choose any j ∈ {3i− 2, 3i− 1, 3i} such

that ξ satisfies yj . Pick vertices α2−
j and α3−

j . If j = 3i − 2, then pick the vertices
c12+
j , c1+

j , c12−
j , c1−

j . If j = 3i − 1, then pick the vertices c12+
j , c2+

j , c12−
j , c2−

j . If j = 3i,
then pick the vertices c3+

j , c3−
j .

The given vertices do not yet induce a connected component, because we need to add the
vertices of `-paths in between. Thus, if p and q are vertices which we selected that have an
`-path between them (drawn as a dashed edge in the associated gadget), then we need to
add the interior vertices of this path also.

It suffices to show that the chosen vertices induce a hole containing x and y. The only
potential problem is that for some k, one of the vertices α2+

k , α3+
k , α2−

k , α3−
k was chosen more

than once. If α2+
k and α3+

k were picked in Step 3, then yk is satisfied by ξ. Therefore, α2+
k

and α3+
k were not chosen in Step 4 or Step 5. Similarly, if α2−

k and α3−
k were picked in Step

6, then yk is satisfied by ξ and α2−
k and α3−

k were not picked in Step 3. Thus, the chosen
vertices induce a hole in G`φ containing vertices x and y.

Now assume G`φ contains a hole H passing through x and y. The hole H must contain
α1 and β1, and the paths leading to them, since they are the only two path neighbours of x.
Next, either both α1+

1 and β1+
1 are in H or both α1−

1 and β1−
1 are in H.

Without loss of generality, let α1+
1 and β1+ be in H (the same reasoning that follows will

hold true for the other case). Since α1−
1 and β1− are both neighbours of two members of

H, they cannot be in H. Thus, α2+
1 and β2+

1 , and the paths to them, must be in H. Since
α2+

1 and β2+
1 have the same neighbours outside G(y1), it follows that H must contain α3+

1
and β3+

1 , and the paths that lead to them. Also, H must contain α4+
1 and β4+

1 , and the
paths that lead to them. Suppose that α4−

1 and β4−
1 are in H. Because αi−1 has the same

neighbour as βi−1 outside G(y1) for i = 2, 3, it follows that H must contain α3−
1 , α2−

1 , α1−
1 .

But then H is not a hole containing x, a contradiction. Therefore, α4−
1 and β4−

1 cannot both
be in H, so H must contain α′1, β′1, α2, β2, and the paths to them.

By induction, we see for i = 1, 2, . . . , 3m that H must contain αi, α′i, βi, β′i. Also, for each
i, either H contains α1+

i , α2+
i , α3+

i , α4+
i , β1+

i , β2+
i , β3+

i , β4+
i or H contains α1−

i , α2−
i , α3−

i , α4−
i ,

β1−
i , β2−

i , β3−
i , β4−

i .
As a result, H`

φ must also contain d+
1 and c0+

1 and the paths to them. By symmetry, we
may assume H`

φ contains p+
1,1 and α2+

k , for some k. Since α1+
k is adjacent to two vertices

in H, H must contain α3+
k and the path of length ` toward it. Similarly, H cannot contain

α4+
k , so H contains p+

1,2 and p+
1,3, as well as the paths through these. By induction, we see

that H contains p+
1,i for i = 1, 2, . . . , z+

i and d−1 and the `-paths in between. If H contains
p−1,z−

i

, then H must contain p−1,i for i = z−i , . . . , 1, a contradiction. Thus, H must contain d+
2

and the `-path to it. By induction, for i = 1, 2, . . . , n, we see that H contains all the vertices
of the path P+

i or P−i and by symmetry, we may assume H contains all the neighbours of
the vertices in P+

i or P−i of the form α2+
k or α3+

k , for any k.
Similarly, for i = 1, 2, . . . ,m, it follows that H must contain c0+

i and c0−
i . Also, H

contains one of the following:
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c12+
i , c1+

i , c12−
i , c1−

i and either α2−
j and α3−

j or β2−
j and β3−

j (where α2−
j is adjacent to

c1+
i ).
c12+
i , c2+

i , c12−
i , c2−

i and either α2−
j and α3−

j or β2−
j and β3−

j (where α2−
j is adjacent to

c2+
i ).
c3+
i , c3−

i and either α2−
j and α3−

j or β2−
j and β3−

j (where α2−
j is adjacent to c3+

i ).
We can recover the satisfying assignment ξ as follows. For i = 1, 2, . . . , n, set ξ(i) = 1 if the
vertices of P+

i are in H and set ξ(i) = 0 if the vertices of P−i are in H. By construction, it
is easy to verify that at least one literal in every clause is satisfied, so ξ is indeed a satisfying
assignment. J

We are now in a position to prove Theorem 3. We need to borrow one lemma (whose proof is
straightforward) from [11], and for which we need to define the problem 2-Induced Cycle.
This has as input a graph with two labelled vertices, with yes-instances those inputs where
there exists an induced cycle (hole) containing those two labelled vertices.

I Lemma 13 (See Theorem 2.7 in [11]). An instance (G, x, y) of 2-Induced Cycle, where
x and y have degree 2, can be transformed in polynomial time into an instance of 2-Induced
Disjoint Paths on a graph G′.

Proof of Theorem 3. The first part for H1 appears as Theorem 6 while for H2 it appears
as Corollary 10. Note that the H1 case is readily seen once the simplification (†) is made,
because k-Disjoint Paths must solve k-Induced Disjoint Paths since the input is
H1-subgraph-free.

For the second part, we reason via Lemma 13. We construct G`φ. By Lemma 12, G`φ
has a hole through x and y if and only if φ is satisfiable. Moreover, G`φ is (H4, . . . ,H`−1)-
subgraph-free by Lemma 11. J

3 C5-Colouring

A homomorphism between graphs G and H is a function f from V (G) to V (H) so that, for
all xy ∈ E(G) we have f(x)f(y) ∈ E(H). Let us recall our problem.

C5-Colouring
Instance: a graph G.
Question: Does G have a homomorphism to the cycle C5?

I Lemma 14. There exists n1 so that for all N ≥ n1, and for all x, y ∈ V (C5), there is a
walk of length N in C5 from x to y.

Proof. We may take n1 = 4.
Consider N = 4. To walk a distance of zero: walk two forward then two back. To walk

at distance one (w.l.o.g.) forward: walk four backward. To walk at distance two (w.l.o.g.)
forward: walk one back, one forward, and two forward.

Consider N = 5. To walk a distance of zero: walk five forward. To walk at distance one
(w.l.o.g.) forward: walk two forward, two back and one forward. To walk at distance two
(w.l.o.g.) forward: walk one back, one forward, and three back.

Consider N ≥ 6. Keep moving one forward then one back until one of the two previous
cases applies. J

I Corollary 15. Let G be an instance of C5-Colouring and let G′ be the same instances
after n1 − 1 subdivisions. Then G′ is a trivial yes-instance of C5-Colouring.
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I Corollary 16. C5-Colouring fails C3.

Let us note that C5-Colouring fulfills C1 and C2.

I Lemma 17. C5-Colouring is NP-complete for (H1, H2)-subgraph-free graphs.

Proof. It is well-known [7] and easy to see that there is a reduction from K5-colouring to
C5-Colouring that takes an input G and simply subdivides twice each edge. The obtained
graph plainly omits both H1 and H2 as a subgraph (but generally contains many instances
of H3). J

We are now in a position to prove Theorem 4.

Proof of Theorem 4. The first part comes from Lemma 14 with n1 = 4. The point is that
any instance which omits each of H1, H2 and H3 as a subgraph must be trivially true,
because all paths between vertices of degree at least three are of length at least four. This
means that vertices of degree at least three can be mapped anywhere on C5 and the instance
can still be extended to a C5-colouring.

The second part appears as Lemma 17. J

4 Hamilton Cycle

Recall that a Hamilton Cycle in a graph is one which visits every node exactly once. Let us
recall our problem.

Hamilton Cycle
Instance: a graph G.
Question: Does G contain a Hamilton Cycle?

This section is devoted to the proof of Theorem 5, whose statement we recall.

Theorem 5. Hamilton Cycle is in P for the class of H1-subgraph-free graphs.

Proof. Let G be an input to Hamilton Cycle. If G is not connected, it is a no-instance.
Else, if G has no vertex of degree > 2, then G is a yes-instance iff it is 2-regular (a cycle).
Let v be a vertex of degree > 2. If v has a neighbour of degree 1, then G is a no-instance. If
all neighbours of v have degree 2, then we are in the situation depicted in Figure 10, in which
we draw the neighbours of v as ui (i = 1, 2, 3, . . .). Since any Hamilton Cycle that accesses
ui must involve v, for i = 1, 2, 3, we derive a contradiction, as we can only come to v once
and leave v once. Thus, G must be a no-instance of Hamilton Cycle (note that G need not
be a no-instance of Hamilton Path). Let u be a neighbour of v of degree > 2. Consider that
u has two neighbours distinct from v, let us call them p, q and v has two neighbours distinct
from u, let us call them r, s. Since G is H1-free, it is not possible that {p, q} ∩ {r, s} = ∅.
Let us branch on two possibilities.

(Diamond case.) Suppose {p, q} = {r, s} and G contains an induced diamond or K4. If
{u, v, p, q} have no neighbours outside of {u, v, p, q}, then G is a yes-instance (G itself is
either a diamond or K4). If either of the following pairs have distinct neighbours outside of
{u, v, p, q} then G contains an H1: {p, u}, {u, q}, {q, v}, {v, p}.

Suppose u and v have no neighbours outside of {u, v, p, q} except that are also neighbours
of one of {p, q}. And now suppose one of p and q has a neighbour outside of {u, v, p, q} and
the other doesn’t. Without loss of generality, suppose it is p.
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Suppose there is some vertex adjacent to u or v or both, outside of {u, v, p, q}, and note
that such a vertex must also be adjacent to p. There can be no more than one such vertex
as otherwise we have an H1. If t has a neighbour outside of {u, v, p, q} then we have an
H1. So, t has no such neighbour and in fact G has precisely vertices {u, v, p, q, t} and is a
yes-instance.

Thus, we may assume that there is no vertex adjacent to u or v outside of {u, v, p, q}.
This means G is a no-instance as p or q (whichever has the neighbour outside of {u, v, p, q})
may only be traversed once.

Now let us assume that p and q have distinct neighbours x and y outside of {u, v, p, q}.
Note that each of them has a unique neighbour (else G contains an H1). Now, let us build
G′ from G by contracting {u, v, p, q} to a single vertex. We draw this case in Figure 11. We
claim G′ has a Hamilton Cycle iff G has a Hamilton Cycle.

(Proof of Claim.) The forward direction is trivial. For the backward direction, note that
once any Hamilton Cycle visits any of {u, v, p, q}, necessarily from x or y, then it must visit
them all in immediate succession, before leaving via whichever of x and y it didn’t enter by.

Suppose now that one or more of u and v have neighbours outside of {u, v, p, q} that are
not neighbours of {p, q}. It follows that p and q have no neighbours outside of {u, v, p, q}. If
{u, v, p, q} induces a K4, then we can build G′ from G by contracting {u, v, p, q} to a single
vertex. That G′ has a Hamilton Cycle iff G has a Hamilton Cycle follows exactly as in the
previous claim (indeed, if we swap {p, q} for {u, v} we are in the previous case). If {u, v, p, q}
induces a diamond, then G is a no-instance (we draw this case in Figure 12).

(Bull case.) Suppose p = r but q 6= s and G contains a bull with triangle {u, v, p} and
pendant edges uq and vs. If there is an edge us or vq (or ps or pq) then we have a diamond
and we are in a previous case. (There may or may not be the edge qs.) If u or v has degree
> 3 then there is an H1 so let us assume they have degree exactly 3.

Suppose p has degree 2, then we can contract {u, v, p} to a single vertex. We claim that
G′ has a Hamilton Cycle iff G has a Hamilton Cycle.

(Proof of Claim.) The forward direction is trivial. For the backward direction, note that
once any Hamilton Cycle visits any of {u, v}, necessarily from q or s, then it must visit all of
{u, p, v} in immediate succession, before leaving via whichever of q and s it didn’t enter by.

Suppose p has degree > 2 and note that is must be ≤ 3 to avoid an H1 so we may assume
p has precisely one neighbour outside of {u, v} which we will call t. If t has degree 1 then
this is a no-instance. If t has degree > 2 then there is an H1 (Recall that there can be no
edge from t to u or v as this would introduce a diamond. It is possible there is an edge from
t to q or s). Thus, t has degree 2. Suppose one among q and s has no neighbour outside of
{u, v, q, s, t}. Note that there is no edge qv or su as this would create a diamond. If there is
no edge qs this is a no-instance. If there is an edge qs then we can replace G by G′ in which
we contract {u, v, p, t} to a single vertex. We claim that G′ has a Hamilton Cycle iff G has a
Hamilton Cycle.

(Proof of Claim.) Assume w.l.o.g. that q has no neighbour outside of {u, v, q, s, t}. For
the forward direction we may traverse in the order s, q, u, v, p, t. For the backward direction,
note that once any Hamilton Cycle visits t from outside of {u, v, q, s, t}, then it must visit
all of {u, v, q, s, t} in immediate succession, before leaving via s.

Suppose now that both q and s have a neighbour outside of {u, v, q, s}. In this case, there
can be no edge qs, as this would introduce an H1. We claim that G is a no-instance. We
draw this case in Figure 13.

(Proof of Claim.) Since any Hamilton Cycle that accesses any one of {q, s, t} must involve
two among {u, v, p}, we derive a contradiction, as we can only come to each from {u, v, p}
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u1

u2 v
...

u3

Figure 10 The case in which v has degree ≥ 3 and all its neighours have degree 2.
u

x p q y

v

Figure 11 The case in which {u, v, p, q} induces a diamond or K4 and p and q are of degree 3.
The dashed lines are edges that may or may not be present.

once. Thus, G must be a no-instance of Hamilton Cycle. J

5 Final Remarks

It is well known that H-Colouring is polynomial-time solvable whenever H is a bipartite
graph [7]. We can generalise our results from C5-Colouring to C2k+1-Colouring, but we
will be less clear about some of the bounds.

C2k+1-Colouring
Instance: a graph G.
Question: Does G have a homomorphism to the cycle C2k+1?

We omit the proofs of the following results.

I Lemma 18. For each k ≥ 2, there exists nk so that for all N ≥ nk, and for all x, y ∈
V (C2k+1), there is a walk of length N in C2k+1 from x to y.

p

u v

q

Figure 12 The case in which {u, v, p, q} induces a diamond and p and q are of degree 2.
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q u

p t

s v

Figure 13 The case in which p has precisely one neighbour outside of {u, v} which we will call t

I Corollary 19. Let G be an instance of C2k+1-Colouring and let G′ be the same instances
after nk − 1 subdivisions. Then G′ is a trivial yes-instance of C2k+1-Colouring.

I Corollary 20. C2k+1-Colouring fails C3.

Let us note that C2k+1-Colouring fulfills C1 and C2.

I Lemma 21. C2k+1-Colouring is NP-complete for (H1, . . . ,Hk)-subgraph-free graphs.

I Theorem 22. C2k+1-Colouring is in P for (H1, . . . ,Hnk−1)-subgraph-free graphs. C2k+1-
Colouring is NP-complete for (H1, . . . ,Hk+1)-subgraph-free graphs.
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