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Abstract
The field of process mining focuses on distilling knowledge of the (historical) execution of a
process based on the operational event data generated and stored during its execution. Most
existing process mining techniques assume that the event data describe activity executions
as degenerate time intervals, i.e., intervals of the form [t, t], yielding a strict total order on
the observed activity instances. However, for various practical use cases, e.g., the logging of
activity executions with a nonzero duration and uncertainty on the correctness of the recorded
timestamps of the activity executions, assuming a partial order on the observed activity
instances is more appropriate. Using partial orders to represent process executions, i.e., based
on recorded event data, allows for new classes of process mining algorithms, i.e., aware of
parallelism and robust to uncertainty. Yet, interestingly, only a limited number of studies
consider using intermediate data abstractions that explicitly assume a partial order over a
collection of observed activity instances. Considering recent developments in processmining,
e.g., the prevalence of high-quality event data and techniques for event data abstraction, the
need for algorithms designed to handle partially ordered event data is expected to grow in the
upcoming years. Therefore, this paper presents a survey of process mining techniques that
explicitly use partial orders to represent recorded process behavior. We performed a keyword
search, followed by a snowball sampling strategy, yielding 68 relevant articles in the field.
We observe a recent uptake in works covering partial-order-based process mining, e.g., due
to the current trend of process mining based on uncertain event data. Furthermore, we outline
promising novel research directions for the use of partial orders in the context of process
mining algorithms.
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2 S. J. J. Leemans et al.

1 Introduction

Over the recent years, the field of process mining [1] gained attention in both academia and
industry, i.e., witnessed by the IEEE International Conference on Process Mining Series1

and several commercial process mining solutions, e.g., among others, Celonis2 and UI Path
ProcessMining.3 Processmining canbe considered a collectionof tools, techniques,methods,
and algorithms designed to translate recorded operational event data, generated during the
execution of processes, into actionable knowledge. In this context, the different types of
processes that can be analyzed using process mining techniques are vast, e.g., administrative
processes, logistic processes, medical processes, and production processes. As a prerequisite
for applying process mining, processes are assumed to leave a digital trace in a company’s
information systems.

Three major sub-fields are identified in process mining. Process discovery techniques
[2] aim to translate the recorded event data into a (graphical) process model, e.g., a BPMN
model [3]. The process modeling formalisms used, i.e., either automatically discovered or
designedmanually, often compactly represent all the process’s possible (parallel) executions.
The goal of a discovered process model is to accurately describe the behavior observed in the
event data, reasonably generalize w.r.t. the behavior observed in the data, and to be human
interpretable. The first two goals are imperative formany data-driven algorithms, yet, the third
requirement is less common. The second branch of techniques is referred to as conformance
checking techniques [4]. The techniques in this branch aim to relate the observed event data
w.r.t. a given reference process model. Here, the complexity lies in the fact that a process
model often describes vast amounts of different executions (possibly infinite). Finally, process
enhancement techniques aim to find possible improvement points for the process. Examples
of such techniques are decision point mining [5] and performance prediction [6].

The event data analyzed by process mining algorithms are stored in event logs. In its
simplest form, such an event log is a data table consisting of three columns. Consider Table 1,
which describes a simplified example of an event log. The first column records the instance
of the process, e.g., the customer for which the process was executed. The second column
captures what activity has been performed for the process instance. The third column records
at what point in time the activity was performed. A row in Table 1 is an event. The same
activity can be executed several times (i.e., repetition of activities) in the context of the
same instance of a process, i.e., the explicit differentiation between events (recordings) and
activities (task performed) captures this.

In practice, more data attributes are recorded for events, e.g., the start and end timestamp of
the executed activities and the resource performing the activity. Despite the simplistic nature
ofTable 1,most processmining algorithmsadopt a correspondingmathematical formalization
of their input: sequences of atomically executed activities. However, activities executed in
real processes are often not atomic, i.e., the instances of executed activities typically have a
nonzero duration. Consequently, multiple activities may overlap during their execution. It is
hard to represent such an overlapping when using sequences of activities as a mathematical
representation of the process, i.e., without explicit differentiation between activity start and
end times. Even if we accurately differentiate between events describing activity start and
end times, respectively, assuming a total order among these events requires us to observe all
possible interleaving of the parallel activities to conclude their parallel relationship. Rather

1 https://icpmconference.org/.
2 https://celonis.com.
3 https://www.uipath.com/product/process-mining.
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Table 1 A simplified example of
a classical event log

Process ID Activity Timestamp

.

.

.
.
.
.

.

.

.

7 Register 2022–01–02 12:23PM

7 Analyze defect 2022–01–02 12:30PM

7 Inform user 2022–01–02 12:45PM

7 Simple repair 2022–01–02 12:45PM

8 Register 2022–01–02 12:23PM

7 Test repair 2022–01–02 13:05PM

7 Archive repair 2022–01–02 13:21PM

8 Analyze defect 2022–01–02 12:30PM

8 Inform user 2022–01–02 12:45PM

.

.

.
.
.
.

.

.

.

Each row describes an event (a historical recording of an activity per-
formed for an instance of the process)

than formalizing the recorded event data as an input, an alternative mathematical formalism
closer to the underlying phenomenon, i.e., the process itself, is of interest. In this context, some
authors use the notion of partial orders as a suitable intermediate representation. The use of
partial orders naturally supports capturing activities’ start and end timestamps. Additionally,
it serves as a basis for several other problems, e.g., arbitrary ordering of activity instances
with the same timestamp and general uncertainty in event logging.

Whereas partial orders have been considered the context of process mining (and are
promising for future work in the field), an overview of their use in process mining is lacking.
Hence, in this paper, we present a survey and outlook of work in the field of partial-order-
based process mining. We performed a keyword search, followed by a snowball sampling
strategy, yielding 68 relevant articles in the field. The works considered roughly follow the
general architecture depicted in Fig. 1, i.e., the recorded operational event data are translated
into a partial-order-based representation, which is subsequently used as algorithmic input.
We study how partial orders are extracted from event data and present an in-depth study of
the different use cases of partial orders in both process discovery and conformance checking.
Additionally, we discuss other use cases of partial orders (i.e., outside of process discovery
and conformance checking) and highlight novel research directions where partial orders are
expected to be particularly impactful.

The remainder of this paper is structured as follows. In Sect. 2, we briefly present back-
ground concepts that ease the readability of this paper. In Sect. 3, we present the survey
methodology adopted. In Sect. 4, we present the survey results. In Sect. 5, we discuss other
application areas of partial orders and interesting future research directions. Section 6 con-
cludes this paper.

2 Background

In this section, we introduce background concepts that ease the overall readability of this
paper. We discuss partial orders, event data, process modeling formalisms, and the different
semantics under which partial orders can be considered.
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4 S. J. J. Leemans et al.

Fig. 1 Schematic overview of the general architecture of the techniques covered in this paper, illustrated in
the context of process mining. The techniques considered translate the recorded event data to partial orders
(“Partial Order Abstraction”), which are used as their primary algorithmic input

Fig. 2 Labeled partial order
corresponding to the activity
instances of case 7 in Table 2 (we
only show �-values)

2.1 Partial orders

A strict partial order (X ,≺) is an irreflexive (x⊀x), anti-symmetric (x≺y∧y≺x �⇒ x=y)
and transitive (x≺y∧y≺z �⇒ x≺z) binary relation over a set X . For example, consider
Fig. 2 visualizing a simple example partial order over the nodes {a, b, c, e, g, h}. Whereas
we focus on strict partial orders, we simply refer to partial orders in the remainder of the
paper. Note that due to the transitivity property, in Fig. 2, node a is preceding each other
node.

In some cases, we associate the elements of a partial order with a label, e.g., to represent
the fact that the same activity can be executed multiple times for a single process instance.
To this end, we use the notion of a Labeled Partial Order (LPO), where given some partial
order (X ,≺), an arbitrary set of labels � and labeling function � : X→�. Tuple (X ,≺, �)

represents a labeled partial order over X .

2.2 Event data

The information systems employed in companies, e.g., Enterprise Resource Planning (ERP)
systems such as SAP4 and Customer Relationship Management (CRM) systems such as

4 https://www.sap.com/.
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Salesforce,5 track the execution of the activities performed in the context of the processes
they support. For example, an insurance provider can extract an insurance claim’s exact
historical course of action from such a system. Every activity executed, including various
details such as the customer ID, vehicle type, total claim, and involved resources, is available.
When analyzed correctly, such a rich source of data can significantly enhance the overall
knowledge of the process and can thus be used to improve the process.

Consider Table 2, in which we present a simplified example of an event log. Even though
Table 2 is still simplified, it is more realistic than the event log shown in Table 1.

Each row represents an activity instance of the process. For example, the first row in the
table records that employee Bob executed the Register Defect activity for a process instance
with ID 7. The activity took 2 min and had an associated cost of 25 U.S. Dollars. Multiple
rows have the same value for the Process Instance ID-column, i.e., allowing us to capture all
activity instances executed for the same customer, patient, insurance claim, or, in this case,
for the same repair. We refer to the digital recording of a process instance as a case. Hence,
an event log describes a collection of cases.

A partial order over the activity instances, i.e., as recorded by the events, can be defined.
The relation holds for two events e and e′ if the completion timestamp of e is strictly smaller
than the start time of event e′.6 Reconsider Fig. 2, which captures a labeled partial order
corresponding to the activities recorded for case 7 in Table 2. There are, however, various
other ways in which partial orders can be defined for a given event log, which we discuss in
more detail in Sect. 4.1.

2.3 Process modeling formalisms

A process model describes how cases flow through a (business) process and denotes which
activities (captured by the universe of activity names A) can be executed and in what order.
Formally, a process model expresses a, possibly infinite, set of process behavior, i.e., defined
either as a sequence or a partial order.

As an example, we briefly describe the notion of Petri nets [7], i.e., an often-used process
modeling formalism in process mining that compactly represents concurrent behavior. Addi-
tionally, many high-level process modeling formalisms, e.g., BPMN [8], can be transformed
to Petri nets. A Petri net is a bipartite graph connecting a set of places, used to represent the
model’s state (visualized as circles), to a set of transitions, used to manipulate the state of the
described process (visualized as boxes). For example, consider Fig. 3, depicting an example
Petri net consisting of 9 places (circles) and 9 transitions (boxes).

A Petri net is described by a tuple (P, T , F, λ, MI , MO) in which P is a set of places, T
is a set of transitions, F⊆(P×T )∪(T×P) is a set of arcs, λ : T�A is a labeling function
and MI , MO�P are multisets of places, indicating the desired initial and final state of
the Petri net.7 The labeling function λ (in Fig. 3, the label function values are visualized
within the transitions) allows us to let different transitions describe the same activity a∈A.
Furthermore, in certain cases, e.g., when a transition is used for “routing purposes”, we
have λ(t)=τ (transition t8 in Fig. 3) indicating that no corresponding activity exists for the
transition.

5 https://www.salesforce.com/.
6 In case either only the start or end time of an activity is recorded, it is trivial to transform such data to the
form presented in Table 2, i.e., by copying the missing timestamp from the available timestamp.
7 Observe that a Petri net with designated initial and final marking is also referred to as an Accepting Net.
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Places can hold tokens, which together determine the state (the marking) of the Petri net.
For example, in Fig. 3, place p1 holds one token. If all places with arcs to a transition t
contain a token in a marking (e.g., t1 in Fig. 3), then the transition can fire, which consumes
these tokens from the incoming places {p|(p, t)∈F} and produces tokens on outgoing places
{p|(t, p)∈F}. Firing a transition t may correspond to the execution of an activity λ(t)∈A.
The net starts in the initial marking MI , and by a sequence of transition firings, changes state
until the final marking MO is reached. For example, in the marking depicted in Fig. 3, i.e.,
[p1], transition t1 is the only transition that is allowed to fire, i.e., describing activity a. After
firing transition t1 and correspondingly observing activity a, the new marking of the net is
[p2], i.e., one token in place p2. The labeled transitions in a transition sequence describe the
activity instances that are expected to be observed for a case of the process that the model
represents.

The firing rule (described in the previous paragraph) generates sequences of transitions
which can be converted into sequences of activities by applying the λ-function. However,
partially ordered semantics can be expressed by several process modeling formalisms as
well, including BPMN [8], Message Sequence Charts [9] and Petri nets [10]. In most process
modeling formalisms, the execution of two activities a, b∈Amay be independent, that is, the
execution of a does not directly influence the execution of b and vice versa. If the execution
of activities does not take time (i.e., is atomic), then a and b are interleaved. If a process
model does specify activity duration (e.g., Petri nets can be extended to include such a
time-perspective [11]), the activities are assumed to be executed concurrently. For example,
consider the marking [p3, p4] in Fig. 3, reachable after the consecutive firing of transitions t1
and t2 (activities a and b, respectively). Depending on whether we assume transitions to have
a certain duration, transition t3 (activity g) can be executed either interleaved or concurrent
with transition t4 or t5 (activities c or d). Observe that the partial order depicted in Fig. 2 is
also described by the Petri net in Fig. 3.

2.4 Partially ordered trace semantics

We assume that a partial order can be either derived from a process model (cf. Sect. 2.3) or
extracted from an event log (studied in Sect. 4.1). In contrast to a total order, partially ordered
behavior does not express an ordering relation between all of its described events (or activity
instances). Such absence of an ordering between events does not mean that a corresponding
total order representation of the partial order behavior does not exist. The existence of a
corresponding total order representation, i.e., derived from a partial order, is of use, e.g.,
it allows one to apply any existing process mining algorithm on partial-order based event
data. Note that transforming an event log to a partial order representation and subsequently
deriving total order sequences may yield more behavioral total orders compared to directly
deriving total orders from the event log.

The total order representation of a partial order depends on the interpretation of the absence
of a relation between two events describing activities a and b, yielding different partial order
trace semantics (i.e., either defined by a process model or recorded in an event log). We
observe the following semantics (schematically visualized in Fig. 4).

• In Certain Semantics (CS), the unordered activities are assumed to occur and are exe-
cutable in any order. We distinguish two sub-types of certain semantics:
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10 S. J. J. Leemans et al.

– The observed activity instances a and b are Interleaved (CS-I) if theymay be executed
or may have been executed in any order (e.g., a followed by b or b followed by a),
but they cannot overlap in time.

– The observed activity instances a, and b are concurrent (CS-C) if they may overlap
or may have overlapped in time during execution. For concurrent semantics, activity
executions cannot be atomic and must take time.

• In theUncertain Semantics (US), unordered activities are assumed to have been executed,
or may be performed, in one particular unknown order. We know that a and b can be
executed or were executed in a particular order, but we do not know which order.

We use the three semantics identified to structure our survey presented in Sect. 4.

3 Methodology

In this section, we briefly discuss the review methodology adopted. The goal of this work
is to provide a comprehensive overview of the use of partial orders as a primary citizen in
process mining techniques. As such, we adopt a semi-systematic literature review approach
[12] aiming to provide a qualitative overview of the state-of-art. A semi-systematic literature
review is intended to study topics that have been conceptualized differently and studied by
different researchers, possibly within different fields. Said literature review type allows one,
e.g., to detect novel research directions and themes. A typical outcome is, as is the case in
this article, a synthesis of the current state of knowledge. In the remainder of this section,
we discuss the literature collection strategy (Sect. 3.1) and the corresponding search results
(Sect. 3.2).

3.1 Literature collection

In this section, we briefly present the literature collection strategy adopted. The literature
collection strategy, consists of three separate phases:

1. Keyword Search; To identify relevant literature, we query three databases: Scopus (https://
scopus.com), ACM Digital Library (https://dl.acm.org/), and SpringerLink (https://link.
spinger.com). We use the search term TITLE-ABS-KEY ( “process mining”
AND ( “partial order” OR “partial orders” ) ) in Scopus. We use
the same logical query for the other databases (the exact syntax differs per database).
All data related to the literature collection, i.e., collected papers, filtered collections, etc.,
are publicly available.8 The search results include conference/journal papers, collections
(books/proceedings), and encyclopedia entries. We only consider journal and conference
papers.

2. Author Knowledge; We augment the results of the keyword search by addition of relevant
articles known to the authors.

3. Snowball Sampling [13]; We apply snowball sampling on the selected papers (outputs of
Step 1. and 2.). We consult the references of the selected papers and further select articles
that are of relevance to the survey. Snowball sampling is iteratively applied, i.e., results
of a previous round that are included in the survey form the input for the next round of
sampling, until a fix-point is reached.

8 https://docs.google.com/spreadsheets/d/11P44bZtTH6EQXA2oapgTuyo2Sl-Ep_6vYqQZGKbF8C8.
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Table 3 Schematic of the results
of the literature collection phase

Phase Collection strategy Results Retained

1 Keyword search 210 39

2 Author knowledge 16 14

3 Snowball sampling 61 15

Total: – 287 68

3.2 Search results

In this section,wepresent the results of the literature search.ConsiderTable 3,which schemat-
ically presents the outputs of the different steps of the literature collection step.

The initial keyword search yielded a total of 210 articles, i.e., Scopus: 15, ACM: 15,
and SpringerLink: 185 (some articles exist in multiple sources). On the keyword results, we
performed a global search for all papers on the terms partial, partial order and
event data. All papers that yielded no match were excluded directly. For the remaining
papers, we investigated the definition of event data and assessed the use of partial orders in
this context. Various papers that mention the notion of partial orders (e.g., in the related work
section) use the “classical notion of event logs” in the technique(s) they describe (cf. Table 1).
These papers are removed from the selection. Additionally, various works do not consider
the notion of event data at all, e.g., describing process model formalisms that support partial
orders. Such works have been excluded from the selection as well. After careful selection,
39 papers remained. We augmented the selection with papers that are known to the authors.
In total, 16 papers known to the authors (yet not part of the results of the literature search)
have been assessed, out of which 14 have been included. Snowball sampling was iteratively
applied on the selected 53 articles, yielding an additional 61 potential articles out of which
15 were included in the survey. As such, in total, 68 articles are identified in the context of
partial-order-based process mining.

4 Partial-order-based process mining: a survey

In this section, we present the results of our survey. First, in Sect. 4.1, we a review the different
types of partial order extraction techniques. We structure the remaining works along the lines
of different application domains of partial orders rather than structuring it chronologically,
with the aim of providing a global overview of the performed research in the respective
domains. We do so, as for both process discovery (discussed in Sect. 4.2) and conformance
checking (discussed in Sect. 4.3), a major share of work can be identified. Both sections
are structured along the lines of the different semantics identified (certain versus uncertain,
cf. Sect. 2.4). Works covering other domains in process mining are discussed separately in
Sect. 4.4 (Other Application Areas).

4.1 Partial order extraction

In this section,we cover the primary step of any partial-order-based processmining technique,
i.e., partial order extraction based on the event data stored in an information system (cf.
Fig. 1). A few techniques have been proposed to convert sequences of recorded events into
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12 S. J. J. Leemans et al.

partial orders of events. In this section, we discuss these different techniques, structuring the
discussion using the following two criteria:

1. Which information captured in the event log is used to derive a partial order?
2. Which of the certain and uncertain relations are captured by the partial order?

Existing approaches derive partial order traces using two types of information. The first
type concerns internal information that is already stored in the event data to infer partial
orders. Within this stream of approaches, three types of event attributes are typically used:
the sequential ordering of events in a log, the timestamps of events, the activity life-cycle
information, and the data attributes of events. In contrast, the second type concerns the
external knowledge that is available to derive concurrent activities, namely domain knowledge
or a normative process model. Using these types of information, the existing approaches then
obtain partial order traces, based on one of the identified semantics (cf. Sect. 2.4): certain
(concurrent or interleaved) or uncertain. In the following, we discuss existing approaches
with respect to these two criteria.

4.1.1 Exploiting information within an event log

Traditional process mining techniques assume that an event log is available and that the
event log consists of a set of sequences of events. The sequential ordering of events is used to
derive causal relations between the activities that the events represent. If there is information
that indicates otherwise, the other types of relations, such as concurrency or interleaved, are
concluded. In the following, we discuss these techniques and the information they use to
derive partial orders.

Total order and log based
A common approach to derive partially ordered traces is to leverage different total ordering
of events in a log. Most discovery algorithms use the total ordering of event data to infer
a process model which includes causal and concurrency relations. These types of relations
have a certain semantics. Among these relations, the concurrency relations can be used as
a concurrency oracle. Such a concurrency oracle indicates which activities are executed
concurrently. This information is subsequently used to convert a sequence of events into a
partial order. For example, a classical process discovery algorithm, i.e., the α-miner [14],
uses the total order of events to compute a direct succession relation. Built on the direct
successions, the α-miner infers the causality, parallel, and choice relations between activities.
The set of parallel relations can be seen as a concurrency oracle. The resulting partial orders
inherit the concurrency relations and the semantics induced by the discovery algorithm.
These concurrency relations have a interleaved semantic in nature (instead of uncertain).
For example, given two traces 〈a, b, c, d〉 and 〈a, c, b, d〉, the α-miner returns b and c to be
parallel. This concurrency oracle can then be used to construct a partial order (X ,≺), where
≺={(a, b), (a, c), (b, d), (c, d), (a, d)}.

In [15], the authors use such an oracle-based approach to transform the traces into event
structures [16], which are used to compare different subsequent groups of process executions
in order to detect concept drift, i.e., changes in the execution of the process. In [17], a similar
approach is adopted for general process comparison. (Here, groups of execution do not need
to be close in time-proximity.) Another example is [18], in which the authors propose to build
instance graphs based on classical event logs. In an instance graph, each vertex represents
an activity instance. Two vertices may only be connected using an arc if there is a causal
relationship between the source and target node, i.e., according to some causal relation
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oracle. In an instance graph, transitive relations are explicitly forbidden, i.e., an instance
graph resembles the transitive reduction of a partial order.

Total order and time/data based
Another commonly used type of information to derive partial orders is to use other data
attributes in the event data, such as the timestamp of events or the life-cycle information.
The timestamps of events indicate when individual events occurred, e.g., starting or finishing
the execution of an activity. However, in some instances, these timestamps are recorded at
a coarse-granular level, e.g., only the days are recorded, the hours and minutes are missing,
or are known to be unreliable [19, 20]. The events may also be recorded simultaneously,
having the same timestamp. Theseworks describe the corresponding construction of behavior
graphs [21], which are transitive reductions of partial orders based on the uncertain event
data. Lu et al. [22] propose to use this information to consider the events that have identical
timestamps as having an uncertain ordering and creating the partial order accordingly.

When events contain timestamps that indicate the start and completion time of an activity,
one may use such information to derive true concurrency relations between the events and
use these to obtain partial orders that have a certain-concurrency semantics. Interestingly,
when using start and end timestamps of events to derive partial orders of activity instances,
the partial orders derived are interval orders [23], i.e., describing the additional property that
if x≺y and w≺z, then either x≺z or w≺y, i.e., concurrency between sequential behavior of
x and y, and, w and z, respectively, is not observed.

Leemans et al. [24] propose a technique that leverages the α-miner and uses start and
complete information to derive partial orders and concurrence information. In [25], the
authors propose to learn a temporal network representation of an event log. Such a network
is based on Allen’s interval algebra [26] and captures how frequently a specific relation is
present in the event log. Various (existing/commonly used) relations can be derived from the
network that can be subsequently used, e.g., for process discovery.

4.1.2 Using external knowledge

In addition to the information within an event log, external knowledge regarding the relations
may also be used to convert sequences into partial orders. Most work either uses a external
concurrency oracle, or, a reference process model.

External concurrency oracle
Some techniques assume the existence of an external concurrency oracle that indicates the
possible concurrent or interleaved activities. The exact procedures to obtain such an oracle
are left open and may vary, e.g., a domain expert may be used. Dumas et al. [27] propose a
two-step approach to derive partial orders enriched with conflict relations, i.e., labeled prime
event structures (PESs), using a given external concurrency oracle. Observe that as a fallback
method, the log-based concurrency oracle can be used.

Process model
When a normative process model is available, the certain information regarding concurrent
or interleaved activities in the process model can be used to convert total orders into partial
orders. The resulting partial orders have the same semantics as the process models used.
Fahland and van der Aalst [28] propose to replay traces on a model to obtain partially
ordered runs to simplify process models.
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4.2 Discovering process models from partial orders

This section discusses process discovery techniques that use partial orders directly or explic-
itly exploit the notion of concurrency. We first briefly discuss classical process discovery
algorithms. Secondly, we cover techniques that explicitly assume activity lifecycles, i.e.,
enabling these techniques to observe true concurrency. Thereafter, we focus on partial-order-
based process discovery algorithms.

4.2.1 Classical process discovery

Most classical discovery techniques (see [2] for a detailed overview) use the total order
of events in an event log and derive concurrency based on the context of events, i.e., as
covered in Sect. 4.1. It has been shown that concurrency can be reliably discovered [29],
as long as the concurrency involves more complex structures than just activities, i.e., oth-
erwise classical process discovery techniques cannot distinguish between activities being
concurrent (i.e., potentially overlapping) and being interleaved (i.e., both being executed yet
non-overlapping).

Nevertheless, discovering concurrency remains challenging due to the information
required from the event log: a process of 10 concurrent activities has 10!=3 628 800 dif-
ferent orders of execution. In techniques that use the directly follows abstraction, e.g., the
previously presented α miner [14] and its derivatives, this amount of information is alleviated
to 10∗9 = 90 observations. In comparison, the same information can be captured using only
one partially ordered trace.

Discovery techniques that detect concurrency using totally ordered traces inherently use
uncertain semantics: at least one partially ordered run must match the given totally ordered
trace in the discovered model.

In contrast, [30] uses the eventually follows abstraction to directly construct a partially
ordered model, which, due to label splitting, supports looping behavior.

4.2.2 Discovery based on lifecycle information

In event logs, events can be annotated with an attribute indicating the life cycle information
of that event. In particular, an event can indicate the start of the execution of an activity
(an activity instance) and the completion of an activity instance. For instance, the trace
〈as, bs, bc, ac〉 denotes a trace of two activity instances (a and b), such that a started, after
which b started and completed, after which a completed. More elaborate life cycle models,
for instance, supporting pausing and resuming execution, have been proposed [31]. However,
such models have thus far not been leveraged for process discovery.

In [32], the authors propose to revise the internal data structure used of a classical process
discovery algorithm, i.e., the Heuristic Miner [33], to be aware of activity instances. Other
examples of techniques that use life cycle information are Tsinghua alpha (Tα) [34] and
Inductive Miner—life cycle (IMlc) [24]. IMlc uses the concurrent semantics, whereas Tα

uses the interleaved semantics. Tα and IMlc do not need to know which start event belongs
to which completion event, as they abstract the behavior in the event log on an activity
level (rather than the activity instance level). They only consider when an activity starts and
completes, not when a particular activity instance starts or ends. Such techniques do not use
this information as it is not available in event logs with life cycle information: for instance,
in the trace 〈as, as, ac, ac〉 it is unknown which one of the start events as link to which
completion event ac.
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In contrast, such information is necessary to construct a partially ordered trace. On the
other hand, a partial order cannot express that a should start before b but should end only
after b completes. Hence, life cycle information and partially ordered traces are orthogonal
and partially ordered traces in which the events are annotated with life cycle information
could be defined.

4.2.3 Partial-order-based process discovery

This section considers process discovery techniques that directly work on partial orders. It
is important to note that a large amount of works focuses on the Petri net synthesis problem
based on labeled partial orders [35–43]. These techniques discover a Petri net that describes
a (partial order) language that is as close as possible to the input LPOs. Typically, the resulting
models are hard to interpret by ahumananalyst.Wedivide thework covered in this section,i.e.,
partial-order-based process discovery techniques, according to the usage of partial orders
under certain semantics and uncertain semantics.

Certain semantics
This section covers process discovery techniques that assume certain trace semantics. As this
category covers a large amount of work, we order the work chronologically.

In [44, 45], Herbst describes, i.e., as one of the first authors on process discovery, various
classes of process discovery problems, explicitly assuming the existence of a partial order
over the instances of a workflow. In [46], partial orders are first transformed to eventually
follows relations, transitively reduced, de-duplicated and transformed into a process model.

In [47], the authors do not use partial orders as an intermediary object. However, they do
account for multiple activity stages, e.g., ready, started, etc. These states are used to detect
concurrency among two activities in the process. The relation (and others) is used to construct
an execution graph, which can be seen as the transitive closure of a partial order over the
observed activities (if activities only occur once). The execution graphs are combined into a
workflow graph.

In [48], the authors introduce the Multi-Phase Miner, which aggregates instance graphs
(partially ordered traces) into Petri nets. This aggregation first collapses the instance graphs
into projected instance graphs. Each activity of the instance graph is a node (rather than
each activity instance), and the edges are annotated with how often they appeared in the
corresponding instance graph. Second, the union of all projected instance graphs is taken.
Third, the union is transformed into an EPC using structural transformation rules. However,
the models that preserve all behavior in the input event log tend to be imprecise. The authors
show that these steps preserve behavior, and fitness is guaranteed; however, the methodmight
generalize and sacrifice precision.

In [49], the author proposes to discover block-structured workflow models. The algorithm
assumes that the event data capture start and end times. In the first step of the algorithm,
repeated executions of activities are grouped together by an overarching fresh activity, i.e.,
representing the repeated behavior. In the second step, the ordering relations between the dif-
ferent activities in the event log are used to create trace clusters. The clusters are merged, e.g.,
based on observations of interleaving. Every cluster is transformed into a block-structured
process model, which are combined together into a single resulting process model.

The authors in [9] use Message Sequence Charts (MSCs), which denote messages sent
between processes, with the messages sent for one process being totally ordered. Each MSC
is translated into a partially ordered trace. Using a set of these translated MSCs, the Multi
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Phase Miner can be applied, with two limitations: Each message label must be unique in
each trace, and the derived partial orders must be transitively reduced.

In [50], the authors propose to construct Petri nets from partially ordered traces using
synthesis: Using linear programming, a Petri net is constructed that can replay at least all
partially ordered traces in the log.

In [51], the authors introduce three algorithms to discover process models from partially
ordered event logs. To this end, first, a collection of conclusions is derived from the par-
tially ordered runs—a conclusion expresses equality between tokens produced and tokens
consumed, corresponding to the edges of the partially ordered trace. Second, a Petri net is
constructed that adheres to these conclusions.

In [52], an event log is translated to a first-order logic expression, which is subsequently
used to update a workflow model incrementally. In [53, 54], the authors propose to learn
labeled partial orders which are subsequently converted into event structures. From the event
structures, occurrence nets are deduced,which are subsequently folded into a Petri net (allow-
ing the integration of negative trace information).

In [27], the authors use partial orders enriched with choices and conflict relations (prime
event structures (PESs)). Events in these PESes that are equivalent (or equivalent enough to
allow for imprecisions to be included) are combined, and the result is translated to a Petri net.
Note that to construct partially ordered traces, the presence of a concurrency oracle for each
activity is assumed. Thus, duplicate labels are not possible. In [55], a public implementation
of the proposal of [27] is presented.

In [56], the authors use conditional partial order graphs (CPOGs) to visualize event data
and as an intermediate step towards process mining. In a (potentially cyclic) graph, the edges
can be annotated with boolean variables, such that for each combination of boolean variable
assignments, a partial order results. The language of a CPOG is the set of total ordered
traces resulting from all possible variable assignments. Finding the smallest CPOG given a
set of partially ordered traces is called CPOG synthesis, and several approaches have been
proposed. A CPOG describes an acyclic partially ordered language and can thus be seen
as a process model. Finally, data mining techniques are applied to provide intuition to the
variables of the CPOG.

In [57], amore generic approach extending partial orders is adopted. Event logs are defined
as a partial order over the events (rather than a total order). Yet, the paper primarily focuses
on assigning regions to events that help further decompose the process discovery problem.
In this context, since using a process discovery algorithm is seen as a black box in this paper,
partial orders have no added benefit over total orders.

PrimeMiner [58] first uses life-cycle information to create partially ordered runs. Second,
it folds themost frequently (up to varying thresholds) partially ordered runs into a prime event
structure. Third, the prime event structure is synthesized into a Petri net using the theory of
compact token flow regions.

Uncertain semantics
Interestingly, almost all work in partial-order-based process discovery assumes complete
certainty in the event data logging. In [59], the authors assume a partially ordered event log,
in whichmultiple trace notions might be present, i.e., events can be linked to various artifacts.
A directly follows-based model is discovered from partially ordered and multi-trace event
logs. This approach assumes that a partial order indicates an order’s absence, thus using
uncertain semantics.

In [60], the authors assume that event data contains uncertainty. The authors assume
simple uncertainty, i.e., the exact activity may not be known, or the exact timestamp may
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not be known (i.e., an interval is assumed). The authors propose to build behavior graphs as
an intermediate representation of the data, which is a transitive reduction of a partial order
representation of the behavior.

4.3 Conformance checking

In this section, we cover the area of conformance checking. Recall that conformance checking
aims to assess whether the execution of a process, i.e., as recorded in the event data, conforms
to a given reference process model. We first briefly cover techniques defined for the classical
notion of event data, i.e., totally ordered event data. Subsequently, we briefly cover works
considering partial orders within conformance checking. In line with the previous sections,
we structure the discussion of the techniques in their usage of partial orders under certain
semantics and uncertain semantics.

4.3.1 Classical conformance checking

The first work concerning the conformance checking problem is often referred to as token-
based replay [61]. The approach heuristically “replays” the observed behavior in the context
of a given process model (usually a Petri net). To accommodate for the heuristic nature of
the previous work, the notion of alignments was introduced [62]. An alignment quantifies an
observed trace in the context of an execution sequence of a givenmodel. It does so bymapping
each observed activity in a trace (if possible) to a corresponding activity in the given process
model. An alignment, for example, allows us to pinpoint whether certain activities were
skipped or duplicated. For a detailed overview of classical conformance checking techniques,
we refer to [4].

4.3.2 Conformance checking using partially ordered event data

A few techniques have been proposed to check conformance between partially ordered traces
and normative process models. We identify the same main streams for partial-order-based
conformance checking as we observe for process discovery, i.e., certain semantics and uncer-
tain semantics. In the remainder of this section, we discuss works in each category in more
detail.

Certain semantics
One of the earliest works in partial-order based conformance checking is the verification
module ofVipTool [63–65], supporting the comparison of a scenario (LPO)with a given Petri
net. Lu et al. were the first to consider partial ordered traces for conformance checking [22].
The proposed approach is founded on the notion of alignments. In particular, partial ordered
traces are converted to an occurrence net (i.e., a Petri net that describes the observed partial
order in the event data), and a synchronous product is computed between the occurrence net
and the normative model. From the initial marking of the synchronous product to its final
marking, the shortest path of transitions is computed and unfolded into a partially ordered
alignment. In [66], this work is formalized and applied in a healthcare case study.

In [27], the authors propose to use event structures [16] as an intermediary data structure
for processmining operations. An event structure describes a partial order over a set of events,
as well as a conflict relation, i.e., representing the notion of mutually exclusive events. The
authors propose to derive an event structure from both the event log and the process model,
which they subsequently compare to each other (exploiting the work proposed in [67]).

123



18 S. J. J. Leemans et al.

Senderovich et al. [68] consider conformance checking andprocess improvement of sched-
uled processes. The proposed technique assumes that both the schedule and the event log
describe a partial order of activity instances. Both artifacts are transformed into a open
fork/join network and are used to compare the schedule and true execution from various
perspectives.

In [69], the authors adopt a partial order notion for the observed event data. Using this
representation, the authors propose to use automated planning algorithms [70] and provide an
algorithmic framework in the standardized Planning Domain Definition Language (PDDL)
language.

Uncertain semantics
In [71, 72], the authors assume that events are recorded in an atomic fashion, yet, the granular-
ity of the timestamp recordings is coarse-grained. As such, the data describe multiple events
occurring at the same point in time. The proposed algorithm computes totally ordered align-
ments based on the partially ordered event data. Yet, upper and lower bounds for alignments
are given, rather than an exact conformance value.

van der Aa et al. [73] represent events recorded in the context of a process instance
as a sequence of disjoint sets of events. When the sequences consist of an event set that
contains more than one event, that recording is categorized as uncertain. In the work, the
authors assume that each event observed in the uncertain set has been executed; however, the
ordering of the events is unknown. The authors propose to compute the possible resolutions of
the observed event data, i.e., all possible total orderings of the observed events. Furthermore,
the probability of a resolution is quantified as well. The general conformance of an observed
uncertain process instance is computed by computing the sum of all resolution probabilities
multiplied with the corresponding resolution’s conformance (using classical conformance
checking over total orders). The authors present three different resolution strategies, i.e.,
strategies to compute a trace resolution probability distribution. To reduce the computational
effort, the authors proposemeans to compute the expected conformance value and confidence
intervals.

4.4 Other application areas

Partial orders have been leveraged in other process mining studies as well. We briefly discuss
the following lines of work: deviation detection, behavioral pattern mining, trace clustering,
process monitoring, performance measurement and prediction, and process comparison, and
we provide a brief overview of each.

4.4.1 Deviation detection

Process-oriented deviation detection aims to detect outliers in terms of process executions. In
this context, in [74], partial order representations of event data are used to quantify deviations
of primary process behavior. In [75], we present a framework that can detect anomalous
behavioral patterns, taking a given reference model as a basis for the anomaly detection.
These patterns are represented as partially ordered behavioral graphs. Denisov et al. [76]
assume a partial order event log and focus on the repair/augmentation of event logs, i.e., to
anticipate the possible occurrence ofmissing events. However, partial orders are not explicitly
used to model the uncertainty.
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4.4.2 Behavioral pattern mining

Similar to frequent itemsetmining [77], behavioral patternmining techniques aim tofind com-
mon behavioral patterns that are shared by sub-fragments of the recorded process instances.
In [78], the authors propose to discover episodes, i.e., partial orders defined over events. How-
ever, the goal of the work is to find frequent patterns in terms of episodes, i.e., an episode
is typically describing a subset of the events in a trace. As an input, classical event logs are
used. As such, the work bears great similarity to work from the field of partial-order aware
frequent pattern mining [79, 80]. In [81, 82], the authors adopt partial orders on the observed
events and use the notion of behavioral patterns to refer to frequently occurring sub-orders of
the collection of partial order traces. In [83], the authors propose a semi-supervised approach
for pattern detection. The user provides a set of patterns, i.e., specified in a DSL, which are
transformed into partial order representations. Subsequently, pattern detection and matching
are applied to find meaningful and frequent matches.

4.4.3 Trace clustering

In trace clustering, the goal is to combine process executions that share some form of com-
monality, i.e., either behavioral or based on other “environment variables.” In [84], a generic
framework for trace clustering, i.e., grouping of different recorded traces in an event log,
is proposed. The proposed technique assumes the observed event data to be a total order of
events. However, it allows the centroids of the clustering method to be arbitrary behavioral
artifacts, including partial order runs derived from a process model.

4.4.4 Process monitoring, performance measurement and prediction

In this section, we cover techniques that focus on process monitoring (i.e., covering ongoing
cases) and techniques that focus onperformancemeasurement of (ongoing/historical) cases of
a process. In [85], the authors assume that event data describe activity instances. The authors
propose to learn queueing networks based on the process using schedules and event data as
input. The WoMan framework [86] describes a general workflow management framework
based on first-order logic that assumes that activity start and end are always recorded. As
such, the framework supports the partial ordering of workflow tasks. The framework has also
been extended for prediction [87, 88]. In [89], the authors assume that cases describe activity
instances with an associated partial order. The orders are, however, used in an implicit manner
as the authors assess various optimization strategies to perform “cost-informed” process
improvement.

In [90], the authors present an event-interval-based performance measurement approach.
The authors assume the potential existence of start and end timestamps and use the intervals
to define different notions of time intervals, e.g., case-level intervals, waiting time intervals,
etc. However, the proposed measurements do not explicitly exploit the partial order nature
of the intervals considered. In [91], the authors propose a performance measurement and
prediction framework. The technique assumes that the event data are partially ordered and
use partial order alignments to quantify the observed event data and compute alternative
execution scenarios using an arbitrary reference model.

A noteworthy sub-field of performance measurement and prediction is queue mining [68,
92, 93]. In these works, the process is assumed to be representable by some form of queueing
network. Often, a detailed level of timestamp granularity is assumed, yielding partial orders
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over the observed events. However, the partial order representation is often not explicitly
used or exploited.

4.4.5 Process comparison

In process comparison, the goal is to compare two groups of executions of a process and
identify significant commonalities and differences. In [94], the authors define a partial order
over the events observed in the event log. The event data are subsequently mapped onto
perspective graphs which allows the user to spot significant differences between logs on an
arbitrarily chosen data perspective. Similar approaches are presented in [67, 95]; however,
said approaches are strictly defined for model-model comparison.

4.4.6 Visualization

Recently, different authors have considered novelways to visualize partial order event data. In
[96], the authors propose a visualization tool that allows the user to group events happening
in the same hour, day, month, etc. Clearly, such a grouping yields a partial order on the
observed events (even if one timestamp is recorded per event). The technique also supports
mixed granularity in the timestamp recording of events. Similarly, in [97], the authors propose
a generalization of the “Variant Explorer.”

5 Discussion

In this section, we discuss several interesting dimensions of the use of partial orders in the
context of process mining. In Sect. 5.1, we discuss the distribution of the works considered
in the context of the different categories discussed (data extraction, process discovery, etc.).
Additionally, we present a chronological overview of the development of partial-order-based
process mining. In Sect. 5.2, we sketch various novel directions in process mining, where
the use of partial orders as a representation of processes may be of explicit benefit. Finally,
in Sect. 5.3, we reflect on challenging aspects of the use of partial orders in the context of
process mining.

5.1 Overview

In this section, we present a structured overview of the results of our survey, i.e., as discussed
in Sect. 4.

Consider Fig. 5, in which we present the general distribution of the work considered, over
the different categories identified.9

We have separated Petri net synthesis from general process discovery. Additionally, for
both process discovery and conformance checking, we differentiate between certain and
uncertain semantics. Interestingly, extraction, process discovery and Petri net synthesis
together span slightly over half of the works considered. Conformance checking represents
15% of the considered techniques. In both process discovery and conformance checking, the
number of works considering the uncertain semantics is relatively low. In the other appli-
cation areas, the process monitoring, performance measurement and prediction category

9 Observe that a minor fraction of the work identified spans multiple categories, e.g., extraction and process
discovery.
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Fig. 5 Overview of the distribution of the work considered, over the different categories identified

(represented as Monitoring/Prediction in the figure) stands out, representing roughly 14%
of the techniques covered. Conceptually, this (over)representation makes sense since a vast
majority of the works considers the process performance dimension (both in monitoring and
prediction) which typically requires the use of both start and end timestamps.

In Fig. 6, we plot the chronological development of partial-order-based process mining.
We observe that the first work considering event data as a partial order stems from 1998. An
initial spike of articles is observed around the year 2009, and later in 2015. In general, after
2015, the number of works supporting partial orders is higher compared to the years before.
This is in line with the general increase in event data availability as well as the more recently
developed research line on process mining with uncertain data.

5.2 Outlook

As indicated, partial orders are primarily used when either both start and end timestamps of
events are present, or, when some form of uncertainty is present in the data. In this section,
we highlight other application areas as well as interesting novel lines of work.
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Fig. 6 Chronological development of partial-order-based process mining

5.2.1 Data logging quality

As highlighted by the uncertainty semantics, logging quality is a prominent issue in real event
data. The survey shows that tackling various data logging quality issues using partial orders
as a representation is a viable solution. However, interestingly, both in process discovery and
conformance checking, the vast majority of techniques assume the certain semantics (cf.
Sect. 5.1). Hence, more work towards uncertainty in event data and correspondingly using
partial order event data as an intermediary representation can be done. In some instances,
certain semantics, combined with data quality issues, are also applicable. For example, if the
level of detail of logging is limited, e.g., events are recorded on a day level, a partial order
can be used to express that the events occurred on the same day.

5.2.2 Event abstraction

Recently, various studies investigated the application of existing process mining techniques,
i.e., process discovery, conformance, or enhancement studies, on non-standard event data
sources. Examples include, among various others, customer journey analysis [98], various
applications in healthcare [99] and the analysis of sensor data [100]. In such contexts, the
recorded data are often of a different level of granularity compared to the level at which
one aims to analyze the process. The level at which the data are recorded is often more fine-
grained than the intended target level of analysis. To accommodate for this mismatch, a novel
branch of techniques emerged, focusing on the application of (semi)-automated techniques
that lift the recorded event data to the business level, i.e., referred to as event abstraction
techniques [101]. Consider Fig. 7, in which the concept of event abstraction is exemplified.

The two high-level business activity instances, i.e., register request and check ticket, are
recorded as sequences of lower-level events. Hence, even if recording the process activities
occurs in an atomic fashion,when abstracting these recorded activities to a higher level notion,
events recording both start and end times of the higher-level business activities appear. As

123



Partial-order-based process mining: a survey and outlook 23

Fig. 7 Example visualization of the problem of logging at different granularity levels versus the business activ-
ity level (adopted from [101]). Multiple recorded events constitute a high-level business process activity, e.g.,
the event sequence 〈reg_act_start,opsi_pp_open,reg_act_end〉 corresponds to register request

such, analysis of the process data, i.e., at a higher level of abstraction, greatly benefits from
techniques that naively support partially ordered event data.

5.2.3 Accurate performance quantification

Performance measures can be improved by taking the partial order of events in an event
log into account. That is, waiting time for an activity can be considered to start with the
completion of the previous sequential event in the trace—rather than simply the previous
event in the trace. That is, an event a that was executed concurrently to an event b should not
influence the waiting time for b. The partial order, derived from a process model or otherwise,
informs the last sequential event in the trace.

5.3 Challenges

Here, we identify challenges in the context of the use of partial orders as an (intermediate)
event data representation. We discuss tool support and standardization, as well as computa-
tional complexity.

5.3.1 Tool support and standardization

Whereas totally ordered event logs arewell supported by processmining tools and established
file-formats such as CSV and XES,10 tool support for partially ordered logs is limited and
fragmented. To the best of our knowledge, there are no well-established file formats or
frameworks for storing partially ordered trace sets or event logs. However, in [59], the notion
ofObject-CentricEvent Logs is presented, i.e., a first conceptual design novel event log format
that more explicitly takes the relationship between events and objects (e.g., items belonging
to an order) into account. In the definition (Def. 3 of the paper), a partial order over the
events is assumed. As such, events are considered to be atomic, yet, may be recorded at the
same point in time. Furthermore, when applying partially order-based tools, it is up to the
user to verify that the semantics that the tool that produced the partial orders assumes match
the semantics that the tool that uses them as an input assumes. Arguably, said semantics of
partial orders are, from a cognitive perspective, more challenging to understand, analyze, and
reason with than total orders. Hence, we identify a clear need for a standardized framework
to support partial orders as an event data representation.

10 https://xes-standard.org/.
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5.3.2 Computational complexity

The computational complexity of partial orders can be prohibitively high. The number of
totally ordered traces supported by a partially ordered trace (in the case of certain semantics) is
exponential in the length and factorial in the breadth of the trace,where length denotes ordered
parts and breadth denotes unordered (i.e., concurrent/interleaved) parts. Figure 4 shows an
example, and a completely unordered trace of 10 events has 10!=3 628 800 corresponding
totally ordered traces. It is not uncommon for log traces to have over 100 events. This clearly
shows the need for optimizations, such as the design of divide and conquer computational
strategies [102], to cope with said computational complexity.

6 Conclusion

Existingprocessmining techniques use total orders of process activities as their primary input.
However, the sheer nature of activities, i.e., having a clear start and end point in time, and the
inherent uncertainty in process data logging are not supported by a total order assumption.
Hence, we advocate the use of partial orders as an intermediary data representation for
process mining algorithms. We have evaluated the current state of the art in process mining
w.r.t. the use of partial orders.Weobserve that partial orders are predominantly used inprocess
discovery and conformance checking. Most work focuses on start/end timestamp recording,
i.e., handling uncertainty in event logging is a relatively new development. Various works
have been identified that cover other interesting application areas of process mining.We have
identified different interesting areas in process mining where partial orders are of particular
interest. Finally, we have elaborated on the challenges expected in adopting partial orders as
a primary citizen in process mining algorithms.
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