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Abstract

Background. Clinicians routinely use impressions of speech as an element of mental status
examination. In schizophrenia-spectrum disorders, descriptions of speech are used to assess
the severity of psychotic symptoms. In the current study, we assessed the diagnostic value
of acoustic speech parameters in schizophrenia-spectrum disorders, as well as its value in
recognizing positive and negative symptoms.
Methods. Speech was obtained from 142 patients with a schizophrenia-spectrum disorder and
142 matched controls during a semi-structured interview on neutral topics. Patients were cate-
gorized as having predominantly positive or negative symptoms using the Positive and
Negative Syndrome Scale (PANSS). Acoustic parameters were extracted with OpenSMILE,
employing the extended Geneva Acoustic Minimalistic Parameter Set, which includes standar-
dized analyses of pitch (F0), speech quality and pauses. Speech parameters were fed into a
random forest algorithm with leave-ten-out cross-validation to assess their value for a schizo-
phrenia-spectrum diagnosis, and PANSS subtype recognition.
Results. The machine-learning speech classifier attained an accuracy of 86.2% in classifying
patients with a schizophrenia-spectrum disorder and controls on speech parameters alone.
Patients with predominantly positive v. negative symptoms could be classified with an accur-
acy of 74.2%.
Conclusions. Our results show that automatically extracted speech parameters can be used to
accurately classify patients with a schizophrenia-spectrum disorder and healthy controls, as
well as differentiate between patients with predominantly positive v. negatives symptoms.
Thus, the field of speech technology has provided a standardized, powerful tool that has
high potential for clinical applications in diagnosis and differentiation, given its ease of com-
parison and replication across samples.

Introduction

In clinical practice, impressions of speech are routinely employed as an element of mental sta-
tus examination and are a primary source of information in the diagnostic process. Especially
in schizophrenia-spectrum disorders, descriptions of speech are used to assess specific symp-
toms such as alogia (e.g. poverty of speech) and blunted affect (e.g. diminished vocal inton-
ation), as well as positive symptoms such as excitement (e.g. pressured speech; Alpert,
Shaw, Pouget, & Lim, 2002). Although there is no consensus on the best sub-categorization
of the different symptoms of schizophrenia-spectrum disorders yet, an important distinction
is that between positive and negative symptoms. Being able to determine at different moments
in time whether a schizophrenia-spectrum patient experiences predominantly positive or
negative symptoms is of great clinical importance because these symptom subtypes require dif-
ferent treatment (Fusar-Poli et al., 2015). Moreover, persistent negative symptoms are strongly
related to functional outcomes (Lin et al., 2013; Milev, Ho, Arndt, & Andreasen, 2005), further
highlighting the need for a reliable distinction between subtypes. From a scientific perspective,
reliable identification of relevant subgroups of patients is highly important because the neuro-
biological underpinnings of their disorders are likely different (Cuthbert & Insel, 2013; Insel,
2014). Consider a patient with grandiose delusions, hallucinations, pressured speech and
derailment, v. a patient who presents with social withdrawal, alogia and catatonia: although
both patients could be classified as having schizophrenia, the processes underlying these clin-
ically non-overlapping symptom-collections might be entirely different.
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Traditionally, clinical rating scales, such as the Positive and
Negative Syndrome Scale (PANSS; Kay, Fiszbein, & Opfer,
1987) are used to assess both positive and negative symptoms
in schizophrenia. However, previous research has stressed the dra-
matic disparity between speech-based objective measurements of
individual characteristics (e.g. flat affect) and scale-based subject-
ive assessments assessed by clinicians; symptom rating scales are,
at best, only modestly related to objective measurements of the
behavior they intend to reflect (Cohen, Mitchell, & Elvevåg,
2014). Moreover, some PANSS items are highly influenced by
experience and preconceptions of the rater, which results in low
inter-rater reliability (Kølbæk et al., 2018). In daily practice,
these subjective assessments are not performed scale-based, but
ad hoc, leading to even higher inter-observer variation.
Especially, the assessment of negative symptoms remains prob-
lematic, since consensus-based instruments diverge on what
should be considered true negative symptoms and what should
be considered general/other illness components; such as, for
example, cognition (Marder & Galderisi, 2017). Developing
objective measurements to complement clinical ratings is thus
fundamental to overcome these serious validity concerns with
clinical assessments of positive and negative symptoms, and
enable development towards measurement-based care (Insel,
2017).

Recent advances in natural language processing have paved the
way towards automated speech analyses as a biomarker for psych-
osis (Corcoran et al., 2020; de Boer et al., 2018; de Boer, Brederoo,
Voppel, & Sommer, 2020; Hitczenko, Mittal, & Goldrick, 2020;
Tan & Rossell, 2020). Most studies in this field analyze language
content, including methods of measuring discourse coherence,
syntactic complexity and referential coherence (Bedi et al., 2015;
Corcoran et al., 2018; Holmlund et al., 2020; Mota, Furtado,
Maia, Copelli, & Ribeiro, 2014; Palaniyappan et al., 2019; Rezaii,
Walker, & Wolff, 2019). A source of information that is less com-
monly used is the acoustic aspects of speech. Articulation and
other components involved in speech production can be mea-
sured in the acoustic signal, for example by decomposing sound
waves into formants; i.e. acoustic resonance frequencies that indi-
cate the position and movement of the articulatory organs when
speaking. F1 (first formant) indicates jaw/mouth opening and
tongue height, while F2 corresponds to tongue positioning
(front/back) and lip rounding. Furthermore, F0, or fundamental
frequency, is an acoustic parameter of pitch. Such acoustic speech
features (F0 and F2 variability) have been associated with specific
negative symptoms (Bernardini et al., 2016; Covington et al.,
2012) and have also been utilized as differentiators between
individuals with schizophrenia-spectrum disorders and healthy
individuals in small samples (Martínez-Sánchez et al., 2015;
Tahir et al., 2019), attaining overall classification accuracies vary-
ing from 81% to 94%. Although these studies are promising, the
larger literature also reports studies that failed to find a difference
in acoustic features between schizophrenia-spectrum patients and
healthy individuals (Cohen, Mitchell, Docherty, & Horan, 2016;
Meaux, Mitchell, & Cohen, 2018).

These inconsistent findings may be due to the fact that several
studies took different approaches to computing and standardizing
acoustic parameters (Eyben et al., 2016). Individual research
groups develop and employ their own set of features, and the
studies reported above used acoustic feature sets that overlap
only partially. Furthermore, studies often include non-acoustic
features (e.g. the usage of determiners in speech) in their analyses.
Therefore, the results reported in the literature cannot always be

meaningfully compared (de Boer et al., 2020). Indeed, a recent
meta-analysis found the existing literature to be highly diverse
and unsystematic (Parola, Simonsen, Bliksted, & Fusaroli, 2020).
Furthermore, the rapid developments in natural language process-
ing have led to a proliferation in features, often amounting in up
to tens of thousands of acoustic parameters (Marmar et al., 2019).
While this abundance in features allows capturing many acoustic
characteristics, it comes at the cost of overfitting and preventing
clear interpretations of the underlying mechanisms (de Boer
et al., 2020). We analyzed the speech of patients with a
schizophrenia-spectrum disorder and healthy controls using the
extended Geneva Acoustic Minimalistic Parameter Set
(eGeMAPS) for acoustic analyses (Eyben et al., 2016). This par-
ameter set was developed to provide a baseline for affective speech
processing, in order to ensure easy replication and to improve
comparability of parameters.

Overall, some recent studies have shown promising results in
identifying schizophrenia-spectrum disorders from healthy con-
trols utilizing automated analysis of acoustic speech patterns
(Martínez-Sánchez et al., 2015; Tahir et al., 2019). Yet, inconsist-
encies remain and replications in large samples using interpret-
able and standardized speech parameters are required (Meaux
et al., 2018; Parola et al., 2020). Thus, the first aim of the current
study is to replicate the diagnostic potential of standardized
speech parameters in a large sample of patients with a
schizophrenia-spectrum disorder. The second aim is to explore
the value of acoustic analyses in differentiating between patients
who at that time experience predominantly positive v. negative
psychotic symptoms. Third, we aim to explore the relation
between acoustic features and cognitive and psychotic symptoms,
as well as the relation with antipsychotic medication. Based on
previous study from our group, we specifically expect increased
pauses to be related to the use of typical antipsychotics
(de Boer, Voppel, Brederoo, Wijnen, & Sommer, 2020).

Methods

Participants

Data from 142 Dutch patients with a schizophrenia-spectrum
disorder and 142 healthy age- and sex-matched controls from
the same community were collected between 2015 and 2020. All
procedures were approved by the Ethical Committee of the
University Medical Center Utrecht. Psychiatric diagnoses were
confirmed by the Structured Clinical Interview for DSM-IV
(SCID; First, 2014), the Comprehensive Assessment of
Symptoms and History (CASH; Andreasen, Flaum, & Arndt,
1992) or the Mini-International Interview (MINI; Sheehan
et al., 1998), depending on the study the participants originally
enrolled in. Healthy controls were screened for the absence of pre-
vious or current mental illness. Symptom severity and cognitive
functioning were rated by consensus rating of two trained
researchers, blinded to phonetic analysis, with the PANSS (Kay
et al., 1987) and Brief Assessment of Cognition (BACS; Keefe
et al., 2004). The patients were categorized as having predominant
negative v. positive symptoms based on PANSS scores. Since there
is no consensus in the literature on cutoff scores for such subca-
tegorizations, a median split was used. Patients were therefore
categorized as having predominantly negative symptoms if they
had a greater score on the negative than on the positive subscale
of the PANSS, and a negative subscale score ⩾ the median, being
12. The patients with predominantly positive symptoms consisted
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of patients with PANSS positive subscale scores that were greater
than their negative subscale scores, and a positive subscale score ⩾
the median, being 9. Of the 142 schizophrenia-spectrum cases, 44
had predominantly positive symptoms and 45 had predominantly
negative symptoms, the remaining patients had an equal combin-
ation of positive and negative symptoms.

Patients were divided into two categories based on different
dopamine binding profiles, namely patients with (1) low dopa-
mine D2 receptor (D2R) occupancy drugs (i.e. quetiapine, pali-
peridone, olanzapine and clozapine) or (2) high D2R occupancy
drugs (i.e. aripiprazole, risperidone, flupentixol, amisulpride and
haloperidol), following a previous report by our group (de Boer
et al., 2020). Antipsychotic drug dosages were recalculated into
chlorpromazine equivalents to evaluate the effect of dosage
between the drugs (Leucht et al., 2014).

Procedure

Speech recording

Semi-structured interviews varying from 5 to 30 min in length
(average 11 min) were conducted using a set of neutral open-
ended questions. For an elaborate description of this method-
ology, see previous reports by our group (de Boer, van
Hoogdalem, et al., 2020; de Boer, Voppel, et al., 2020; Voppel,
de Boer, Brederoo, Schnack, & Sommer, 2021). AKG-C544l cardi-
oid microphones were used to record the participant’s and inter-
viewer’s speech onto two different channels. Speech was digitally
recorded onto a Tascam DR40 solid state recorder, at a sampling
rating of 44.1 kHz with 16-bit quantization. Head-worn micro-
phones were used to keep the distance between the mouth and
the microphone as constant as possible (2 cm), since this has a
considerable effect on recorded vocal loudness. Microphones
were placed at a 45° angle from the participant’s mouth in
order to prevent aerodynamic noise.

Speech pre-processing

To remove crosstalk (i.e. speech from the interviewer on the par-
ticipant’s audio channel), the following steps were taken: (1) the
‘annotate to text grid silences’ function in PRAAT (Boersma &
Weenink, 2013) was used on the interviewer’s channel (settings:
minimum pitch 100 Hz, time step 0.0, silence threshold −30.0
dB, minimum silence duration 1.0 s, minimum sounding duration
0.1 s); (2) all resulting speech segments in which the interviewer
was silent were selected on the participants channel and (3) the
resulting speech segments were concatenated into a new audio
file containing only segments of speech of the participant.

Acoustic parameters

The eGeMAPS parameter set was extracted from the participant’s
speech using OpenSMILE (Eyben, Weninger, Gross, & Schuller,
2013). eGeMAPS provides arithmetic means and coefficients of
variation [standard deviation (S.D.) normalized by the arithmetic
mean] for each parameter. A total of 88 parameters were com-
puted at the speaker level and were used for feature selection
and classification model building. For a full overview of the para-
meters, see online Supplementary Table S1. The parameters can
be divided into the following types (Eyben et al., 2013): temporal
(e.g. speech rate; six parameters), frequency (e.g. fundamental fre-
quency; 24 parameters), spectral [e.g. Mel-frequency cepstral

coefficients (MFCCs), relative energy in different frequency
bands; 43 parameters] and energy/amplitude (e.g. intensity; 14
parameters).

Cognitive functioning

Cognition was assessed in all patients using the BACS (Keefe
et al., 2004) which consists of the following tasks: (1) List learning
– Verbal memory; (2) Digit sequencing - Working memory; (3)
Token motor task - Motor speed; (4) Category Instances and
Controlled Oral Word Association Test - Verbal fluency; (5)
Symbol coding - Attention and information processing speed
and (6) Tower of London - Executive function. Individual
BACS scores were converted into standardized Z-scores that are
corrected for age and gender based on previously published
norm scores (Keefe et al., 2008).

Statistical analysis

For categorical variables, a χ2 test, and for continuous variables
analysis of variance (ANOVAs) were used to assess differences
between groups in demographic characteristics. Following previ-
ous research (Marmar et al., 2019), random forest algorithms
were used to build machine-learning classifiers using acoustic
speech parameters to differentiate between schizophrenia-
spectrum patients and healthy controls, and to classify symptom
patterns (i.e. predominantly positive v. predominantly negative
symptoms). In this study, random forest classifiers were built
using the 88 speech markers, using leave-ten-out cross-validation
to divide the data into test and train sets. Random forests are
based on multiple classification trees. The nodes in these decision
trees are based on a binary ‘split’ of a predictor, aimed at minim-
izing misclassification in a training subset of the data. The process
continues recursively until a tree is formed that does not improve
from further splits or nodes. The probability of being a member of
a certain target class, is the fraction of that class in the terminal
node into which they fall. Once trees are iteratively built, per-case
classification is performed on the testing subset. The resulting
probability estimates are used to generate a receiver operator
curve (ROC) and its area under the curve (AUC). From the
trained trees, the importance of a specific predictor
(Gini-importance score) is estimated by setting the predictor to
a random number, and comparing the difference in predictive
power (AUCs) to the final model, measuring how much worse
the model becomes when replacing the predictor with random
data. Gini-importance scores are average scores over all recursive
trees, and can only be interpreted in relation to each other.
Bivariate Pearson correlations were performed to analyze associa-
tions between acoustic variables and clinical characteristics in the
patients for the top 10 features in both models. Correlation ana-
lyses were corrected for multiple comparison using false-discovery
rate (FDR). Alpha was set to 0.05 for all analyses.

Results

The schizophrenia-spectrum patients and controls did not differ
significantly in age, sex or parental educational levels (see
Table 1). The patients overall received less education than the
controls, which is to be expected given that the first psychosis
often occurs during educational years. The schizophrenia-
spectrum patients with predominantly positive symptoms had a
longer illness duration than the patients with predominantly
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Table 1. Demographics

HC

SSD SSD v. HC

Predominantly
positive v. negative

symptoms

Full sample Predominantly positive symptoms Predominantly negative symptoms Statistic p value Statistic p value

Sample size, n 142 142 44 45 – – – –

Male sex, n (%) 86 (60.6) 101 (71.1) 36 (81.8) 32 (71.1) χ2 = 3.52 0.061 χ2 =
1.42

0.234

Age, mean years (S.D.) 34.5 (13.75) 32.4 (12.53) 34.5 (13.03) 26.7 (9.95) F = 1.65 0.200 F = 3.84 0.053

Years of education, mean (S.D.) 15.0 (1.77) 13.2 (2.38) 12.9 (2.63) 13.4 (13.44) F = 51.4 <0.001** F = .987 0.323

Years of education parents, mean (S.D.) 12.8 (2.85) 12.4 (2.89) 12.3 (2.89) 12.8 (2.67) F = 1.13 0.288 F = .671 0.415

Duration disease years, mean (S.D.) – 6.4 (10.26) 9.5 (12.35) 3.2 (6.76) F = 9.00 0.004**

Chlorpromazine equivalent, mean (S.D.) – 237.0 (154.53) 268.5 (173.67) 228.7 (136.58) F = 1.31 0.257

DSM diagnosis, n (%) χ2 =
3.89

0.506

Schizophrenia – 55 (38.7) 19 (43.2) 21 (46.7)

Schizophreniform disorder – 7 (4.9) 2 (4.5) 2 (4.4)

Schizoaffective disorder – 15 (10.6) 6 (13.6) 2 (4.4)

Psychosis NOS – 65 (45.8) 17 (38.6) 20 (44.4)

PANSS, mean (S.D.)

Total – 47.0 (15.30) 51.3 (12.36) 55.2 (9.61) F = 2.65 0.107

Positive – 10.5 (4.70) 14.7 (4.45) 10.2 (2.80) F = 32.5 <0.001**

Negative – 12.3 (5.35) 10.7 (3.36) 17.6 (3.88) F = 80.3 <0.001**

General – 24.2 (7.94) 26.0 (6.53) 27.4 (6.21) F = 1.07 0.303

HC: healthy controls; SSD: schizophrenia-spectrum disorder patients.
Psychotic symptom subgroup analyses were performed in those patients that met criteria for either predominantly positive or negative symptoms. These subgroups are a subset (n = 89) of the full schizophrenia-spectrum disorder sample (n = 142).
** Indicates p value <0.01.
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negative symptoms. These subgroups did not differ significantly
on age, sex and parental educational levels. The patients with
predominantly positive symptoms had a longer illness duration
than the patients with predominantly negative symptoms
(Table 1).

Diagnostic classifier

The trained 10-fold cross-validated classifier had an accuracy of
86.2% with an AUC of 0.92 in distinguishing schizophrenia-
spectrum patients from healthy controls. Sensitivity was 85.1%
and specificity 87.2% (see Table 2).

Table 3 lists the ten acoustic parameters with the highest
importance scores in the final model, as well as the means and
S.D.s of these parameters in the schizophrenia-spectrum patients
and controls. For a full list of Gini-importance scores, see online
Supplementary Table S1. Three of the top parameters in the
model were temporal (voiced segment rate, unvoiced segment
length and S.D.), indicating short, fragmented speech segments
and longer pauses in the schizophrenia-spectrum patients com-
pared to controls. Patients with a schizophrenia-spectrum dis-
order were further classified using spectral parameters between
groups, namely a reduced mean spectral slope of voiced and
unvoiced regions (indicating a more tensed voice in the patients)
and reduced spectral flux variation (i.e. less difference between
spectra measured between two consecutive time windows, which
may indicate more monotone speech). Patients were further char-
acterized by reduced variation of F2 bandwidth (i.e. vowel band-
width, can indicate breathiness). Moreover, the energy of the first
and third formant as compared to pitch (F0) differed from
healthy controls, indicating differences in intonation characteris-
tics and voice quality. The patients showed a larger variation in
loudness compared to the controls.

Psychotic symptoms classifier

The trained 10-fold cross-validated model had an accuracy of
74.2% with an AUC–ROC of 0.76 in distinguishing patients
with predominantly negative from those with predominantly
positive symptoms. Sensitivity was 65.9% and specificity 80.0%
(see Table 2). Table 4 lists the top ten acoustic parameters in
the trained model, as well as the means and S.D.s of these para-
meters in the predominant positive and negative symptom
groups. For a full list of Gini-importance scores, see online
Supplementary Table S2. Patients with positive symptoms had a
smaller spectral slope indicating a smaller difference in energy
between low and high frequencies. Other spectral parameters
did not differ between groups. Seven of the top ten parameters
were frequency parameters (i.e. relating to the way vowels are pro-
nounced); patients with positive symptoms had a smaller F1 and
F2 bandwidth (i.e. vowel bandwidth, indicating breathiness),

lower mean F1 frequencies, less jitter variation (i.e. roughness
or voice quality) and less variation in F3 frequency (i.e. vowel
frequency).

Associations between acoustic variables and clinical
characteristics

Psychotic and cognitive symptoms
Pearson correlations for the top ten parameters from both classi-
fiers with PANSS positive, negative and general and composite
BACS scores are presented in Table 5. Acoustic variables corre-
lated most strongly with negative and to a lesser degree general
PANSS scores. After FDR correction, no significant associations
with cognitive functioning were found.

Antipsychotic medication
Pearson correlations between chlorpromazine equivalents and all
88 acoustic parameters revealed only one weak association; slope
V500–1500 (S.D.) was correlated with chlorpromazine equivalent
dose (r =−0.207, p = 0.019). This association did not remain sig-
nificant after FDR correction. A multivariate analysis of variance
(MANOVA) analysis comparing patients with low DR2 occu-
pancy drugs with patients using high DR2 occupancy drugs,
and chlorpromazine equivalent dose as a covariate, revealed no
significant overall group effect of medication type (F(1, 85) =
1.191, p = 0.269) or dose (F(1, 85) = 1.260, p = 0.206) on the acous-
tic parameters. An ANOVA analysis comparing the two medica-
tion groups on pause duration (mean unvoiced segment length)
specifically, with chlorpromazine equivalent dose as a covariate,
revealed a significant main effect of drug type (F(1, 126) = 4.532,
p = 0.035, partial η2 = 0.035). Antipsychotic dose showed no sig-
nificant effect on pause duration ( p = 0.642). Patients with high
DR2 occupancy drugs showed a greater pause duration (mean
= 0.28) than the patients with low DR2 occupancy drugs (mean
= 0.24).

Discussion

This study confirms previous research in showing that patients
with a schizophrenia-spectrum disorder can be reliably distin-
guished from healthy control participants by using automated
speech-based techniques, in a large sample. We extend the current
literature by further showing that patients with a schizophrenia-
spectrum disorder can be divided into those with predominantly
positive v. negative symptoms based on their speech acoustics.

By using standardized acoustic measures, high sensitivity, spe-
cificity and accuracy could be achieved in differentiating patients
from controls. The model assigns higher probability to a
schizophrenia-spectrum diagnosis when speech is fragmented
(i.e. frequent short-speech segments), has a decreased spectral
slope (i.e. less difference in energy between high- and low-speech

Table 2. Classification of performance metrics

Sens (95% CI) Spec (95% CI) NPV PPV Accuracy AUC (95% CI)

Diagnostic classifier (SSD v. HC) 0.851 (0.78-0.90) 0.872 (0.81-0.92) 0.854 (0.79-0.90) 0.870 (0.80-0.92) 0.8616 0.920 (0.89-0.95)

Symptom classifier (positive v.
negative symptoms)

0.659 (0.51-0.78) 0.800 (0.66-0.89) 0.706 (0.57-0.81) 0.763 (0.61-0.87) 0.7416 0.760 (0.66-0.86)

Legend: SSD: schizophrenia-spectrum disorder patients, HC: healthy controls, sens: sensitivity, spec: specificity, CI: confidence interval, NPV: negative predictive value, PPV: positive predictive
value, AUC: area under the curve.
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Table 3. Top ten acoustic parameters in the diagnostic classifier (schizophrenia-spectrum disorder v. healthy control)

Ranking Parameter Description May reflect
Feature
type Mean HC (S.D.) Mean SZ (S.D.) F-statistic p value

1 Voiced segments
per second
(mean)

Average number of continuous voiced regions per
second (more segments indicates more fragmented
speech with short speech segments).

Fragmentedness of
speech

Temporal 1.25 (0.014) 1.75 (0.559) 103.3 <0.001**

2 Slope UV 500–
1500 (mean)

Mean spectral Slope 0–500 Hz and 500–1500 Hz of
unvoiced regions; linear regression slope of the
logarithmic power spectrum within the two given
bands.

Tension Spectral −0.009 (0.0024) −0.006 (0.0025) 75.1 <0.001**

3 F2 bandwidth
(S.D.)

S.D. of the bandwidth of second formant Breathiness Frequency 0.36 (0.004) 0.33 (0.047) 20.0 <0.001**

4 Unvoiced
segment length
(mean)

The mean length of unvoiced regions (F0 = 0;
approximating pauses).

Pause length Temporal 0.20 (0.006) 0.26 (0.108) 33.9 <0.001**

5 Spectral flux (S.D.) S.D. of spectral flux difference of the spectra of two
consecutive frames.

Monotone speech Spectral 1.26 (0.178) 1.38 (0.241) 20.3 <0.001**

6 Loudness (S.D.) Loudness; estimate of perceived signal intensity
from an auditory spectrum.

Loudness Energy/
amplitude

0.96 (0.119) 1.06 (0.161) 33.7 <0.001**

7 Slope V 500–1500
(mean)

Mean spectral Slope 0–500 Hz and 500–1500 Hz of
voiced regions; linear regression slope of the
logarithmic power spectrum within the two given
bands.

Tension Spectral −0.02 (0.003) −0.02 (0.003) 26.8 <0.001**

8 F3 log relative
amplitude (S.D.)

S.D. of relative energy of the third formant’s center
frequency to the energy of the spectral peak at F0.

Vowel
pronunciation

Spectral −0.73 (0.071) −0.68 (0.093) 27.2 <0.001**

9 F1 log relative
amplitude (mean)

Mean relative energy of the first formant’s center
frequency to the energy of the spectral peak at F0.

Vowel
pronunciation

Spectral −96.3 (14.29) −105.7 (17.96) 23.6 <0.001**

10 Unvoiced
segment length
(S.D.)

S.D. of unvoiced regions (F0 = 0; approximating
pauses).

Pause length Temporal 0.39 (0.140) 0.50 (0.243) 75.1 <0.001**

S.D., standard deviation; UV, unvoiced; V, voiced.
Ranking based on average Gini-importance scores.
** indicates p value <0.01.
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Table 4. Top ten acoustic parameters in the psychotic symptoms classifier (positive v. negative symptoms)

Ranking Parameter Description May reflect
Feature
type

Mean predominantly
positive patients (S.D.)

Mean predominantly
negative patients (S.D.) F-statistic p value

1 Slope UV 500–
1500 (mean)

Mean spectral slope 0–500 Hz and 500–1500 Hz
of unvoiced regions; linear regression slope of
the logarithmic power spectrum within the two
given bands.

Tension Spectral −0.03 (0.012) −0.04 (0.017) 10.6 0.002**

2 MFCC3 (S.D.) S.D. of Mel-Frequency Cepstral Coefficient 3. Timbre Spectral 0.70 (0.149) 0.68 (0.218) 0.824 0.366

3 F1 bandwidth
(mean)

Mean bandwidth of first formant. Breathiness Frequency 1283.7 (54.01) 1318.0 (43.78) 10.9 0.001**

4 F3 frequency
(S.D.)

S.D. of third formant frequency. Vowel
pronunciation

Frequency 0.11 (0.017) 0.12 (0.012) 4.15 0.045*

5 Jitter (S.D.) S.D. of jitter; deviations in individual consecutive
F0 period lengths.

Voice quality Frequency 1.77 (0.240) 1.88 (0.255) 4.7 0.034*

6 F2 bandwidth
(mean)

Mean bandwidth of second formant. Breathiness Frequency 995.9 (76.23) 1034.9 (58.34) 7.37 0.008**

7 F1 frequency
(mean)

Mean frequency of first formant. Vowel
pronunciation

Frequency 511.0 (58.91) 521.3 (41.84) 0.949 0.333

8 Alpha ratio
voiced (S.D.)

S.D. of the alpha ratio of voiced segments; ratio of
the summed energy from 50 Hz to 1000 Hz and
1–5 kHz

Voice quality Spectral −0.36 (0.031) −0.35 (0.043) 1.45 0.232

9 F2 frequency
(S.D.)

S.D. of second formant frequency. Vowel
pronunciation

Frequency 1507.5 (78.60) 1528.4 (68.55) 2.97 0.089

10 F3 bandwidth
(mean)

Mean bandwidth of third formant. Breathiness Frequency 866.0 (84.45) 907.4 (66.85) 6.59 0.012*

Ranking based on average Gini-importance scores. S.D.: standard deviation; UV: unvoiced; V: voiced. ** indicates p value <0.01, * indicates p value <0.05.
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frequencies) and longer pauses. We further demonstrated that
speech parameters can be used to identify subjects with positive
and negative symptoms in schizophrenia-spectrum disorders.
This model assigns higher probability to positive symptoms
when there is less variation in jitter (i.e. roughness of the
voice), as well as differences in vowel quality (e.g. breathiness
and rounding of vowels, indicated by reduced variation in F3
formant frequencies, a lower F1 formant frequency and a smaller
F1 and F2 formant bandwidth (i.e. reach of the formants, affected
by jaw/mouth opening as well as tongue and lip positioning). This
indicates that speech-markers do not only differentiate between
‘normal’ and ‘disturbed’ speech, but also (reliably) reflect positive
and negative symptoms.

Our results showed that temporal (i.e. timing related) para-
meters are highly important in classifying patients and controls,
as three out of six temporal parameters were included in the
top ten parameters. This is an interesting finding since temporal
parameters comprise only 6.8% of the acoustic parameters used.
These findings are in correspondence with a recent meta-analysis
indicating that temporal aspects such as speech rate and pausing
patterns are often disturbed in schizophrenia-spectrum disorders
(Cohen et al., 2014; Parola et al., 2020). Contrastingly, temporal
parameters were not among the top ten parameters characterizing
positive v. negative psychotic symptoms. Timing-related para-
meters are not specific to a single-mental process. In this study,
we did not find an association between overall cognitive function-
ing and the timing related parameters in our models. However, a
more detailed exploration of this relation could reveal associations
between acoustic-timing and specific aspects of cognitive

functioning. Reduced speech rate can, for example, be the result
of slower word-retrieval, slower processing speed, slower articula-
tion or increased distractibility. Recent work has shown that
increased pausing in schizophrenia-spectrum disorders is mostly
observed clause-initial, suggesting that these patients require
more time to formulate a sentence (Çokal et al., 2019).
Moreover, in a previous report by our group we found that
patients with increased pausing specifically had difficulties with
memory-related tasks (Oomen et al., 2021). We found that several
of the acoustic parameters in our models were associated with
negative and to a lesser degree general PANSS scores, including
loudness, formant bandwidth and amplitude. These findings sug-
gest that patients with high negative PANSS scores have a more
breathy voice and reduced voice quality. Moreover, voiced seg-
ments per s was negatively associated with positive PANSS scores,
suggesting that patients with high positive PANSS have less frag-
mented speech. A thorough exploration of these associations is
beyond the scope of the current study; further research is needed
to explore how acoustic aspects are related to individual PANSS
items.

Our results revealed no effect of antipsychotic medication dose
on the acoustic parameters, which is in accordance with our previ-
ous work (de Boer et al., 2020). Furthermore, although we did not
find an overall effect of drug type on the acoustic variables, we repli-
cated our previous work in showing that the use of high DR2 drugs
was associated with increased pausing (de Boer et al., 2020).

Research on spectral profile parameters suggests they are
mostly associated with vocal valence, such as angry speech, as
well as the control over emotions (Eyben et al., 2016; Goudbeek

Table 5. Associations between top acoustic parameters and psychotic and cognitive symptoms

Classifier and ranking Acoustic parameters PANSS Positive PANSS Negative PANSS General BACS composite

Diagnostic 1 Voiced segments per second (mean) −0.299** 0.005 −0.170* −0.113

Diagnostic 2 Slope UV 500–1500 (mean) −0.003 −0.087 0.031 0.063

Diagnostic 3 F2 bandwidth (S.D.) −0.087 −0.160 −0.113 −0.041

Diagnostic 4 Unvoiced segment length (mean) 0.096 0.163 0.143 −0.017

Diagnostic 5 Spectral flux (S.D.) 0.087 0.250** 0.187* −0.058

Diagnostic 6 Loudness (S.D.) 0.050 0.264** 0.193* −0.093

Diagnostic 7 Slope V 500–1500 (mean) 0.096 0.109 0.077 −0.007

Diagnostic 8 F3 log relative amplitude (S.D.) 0.111 0.351** 0.271** −0.132

Diagnostic 9 F1 log relative amplitude (mean) −0.095 −0.298** −0.226** 0.125

Diagnostic 10 Unvoiced segment length (S.D.) 0.106 0.094 0.105 0.017

Symptoms 1 Slope UV 500–1500 (mean) −0.003 −0.087 0.031 0.063

Symptoms 2 MFCC3 (S.D.) −0.004 −0.114 −0.067 0.006

Symptoms 3 F1 bandwidth (mean) −0.063 0.261** 0.180* −0.074

Symptoms 4 F3 frequency (S.D.) 0.010 0.201* 0.153 0.033

Symptoms 5 Jitter (S.D.) −0.098 0.047 −0.018 −0.115

Symptoms 6 F2 bandwidth (mean) 0.012 0.284** 0.205* −0.017

Symptoms 7 F1 frequency (mean) −0.102 0.021 0.007 −0.180*

Symptoms 8 Alpha ratio voiced (S.D.) 0.079 0.248** 0.297** −0.107

Symptoms 9 F2 frequency (S.D.) −0.042 0.097 0.140 0.004

Symptoms 10 F3 bandwidth (mean) 0.054 0.271** 0.171* 0.024

Legend: Reported values are Pearson’s r values. ** indicates p value <0.01, * indicates p value <0.05. Bold values remained significant after FDR correction for multiple comparisons.
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& Scherer, 2010). Spectral slope and pitch variation have also been
associated with emotional stress (Simantiraki, Giannakakis,
Pampouchidou, & Tsiknakis, 2016). Frequency related parameters
have been associated with arousal, alertness and engagement in
the conversation (Goudbeek & Scherer, 2010). Applying these
interpretations to our findings suggests that patients with positive
v. negative symptoms show differences in terms of arousal, alertness
and engagement (frequency related parameters), and to a lesser
degree in vocal valence (e.g. angry/happy). However, it should be
noted that there is little research on the interpretation of acoustic
parameters in relation to psychopathology. Most research has
been conducted in healthy individuals. Interpreting the different
parameters in relation to schizophrenia-spectrum disorders or
psychotic symptoms therefore remains speculative for now.

Of note, there is some circularity in this line of research. On
the one hand PANSS scores are – for some part – based on a clin-
ical interpretation of speech (e.g. pauses; Alpert, Pouget, & Silva,
1995), on the other hand acoustic speech measurements are vali-
dated by their association with negative symptoms. Clinicians
describe a persons’ speech as being ‘flat’, ‘monotonous’ or ‘apro-
sodic’, which is then traced back to smaller F0 range and
decreased variability in F2 (Compton et al., 2018). Speech analysis
should be used routinely to understand the changes in speech
during psychosis, and should be favored over less precise clinical
descriptions of spoken language. Phonetic parameters have (rela-
tively) clear underlying biological mechanisms (Eyben et al.,
2016), while we do not know what a clinician hears when he
describes a patient’s speech as ‘monotonous’. For example, there is
evidence that clinicians are influenced by speaking patterns in asses-
sing the severity of all negative symptoms; when pause length is
manipulated in spoken language, clinicians tend to rate other (non-
speech) negative symptoms as more severe (Alpert et al., 1995).

This line of research is still in the proof of concept phase and will
face a number of challenges before it can be clinically implemented
(Dukart, Weis, Genon, & Eickhoff, 2021). For example, biases in
machine learning (Schnack, 2020), privacy issues, generalizability
and technical pitfalls should be dealt with in the first place
(Jacobson et al., 2020; Starke, De Clercq, Borgwardt, & Elger,
2020). After these critical hurdles are taken, we envision acoustic
analysis to have several valuable clinical implementations. For
example, speech analyses could be used in primary care facilities
as an initial screening instrument. Currently, diagnostic accuracy
in primary care is low as the personnel is not specifically trained
in psychiatric problems. Individuals with a high likelihood of a
schizophrenia-spectrum disorder could for example be prioritized
for a referral to a mental health care professional. Moreover, we
expect that accuracy of models like these will significantly improve
from the combination of different types of analyses, such as a com-
bination of acoustic, semantic and syntactic analyses (de Boer et al.,
2020). With sufficient levels of accuracy, possible clinical implemen-
tations could include relapse prediction, prediction of treatment effi-
cacy, prognosis, early diagnosis and differential diagnosis.

Although the temporal stability of speech anomalies in
schizophrenia-spectrum disorders has scarcely been studied
(Cohen et al., 2019), phonetic research has shown that some acous-
tic properties such as formant trajectories are highly stable over
time (Hasan, Jamil, & Rahman, 2004; Ingram, Prandolini, &
Ong, 2013; Nolan & Grigoras, 2005), making them suitable even
for speaker identification. If acoustic speech properties are indeed
highly personal and stable, deviations from such a stable personal
pattern may very well be a cue for relapse into psychosis in an indi-
vidual person. Further longitudinal studies are required to ascertain

how speech disturbances in schizophrenia-spectrum disorders
develop over time (Arevian et al., 2020; Cohen et al., 2019).

There were a number of limitations in the study. First,
although conservative leave-ten-out cross-validation was
employed, there remains a risk of overfitting. Replication in an
independent dataset is therefore required. Secondly, although sev-
eral variables that can influence the results have been explored,
not all factors could be controlled for. For example, we had no
data on smoking behavior, length or weight, which are known
to influence some aspects of speech. Moreover, the recordings
were made in different rooms, which may have affected some of
the acoustic aspects of speech. Therefore, future research should
assess the specificity of the classifier by controlling for these fac-
tors and by testing its performance in differential diagnosis of
psychiatric disorders. Finally, it should be noted that we averaged
the acoustic parameters over the interview duration (mean dur-
ation 10.8 min), which precludes dynamic differences over time.
Further research should therefore also incorporate dynamic
aspects of speech acoustics, such as convergence between speech
partners, to fully acknowledge the within-subject variety of speech
acoustics as well.

In conclusion, these findings show that standardized acoustic
speech parameters can be used to accurately classify patients
with a schizophrenia-spectrum disorder and healthy controls, as
well as differentiate between patients with predominantly positive
v. negatives symptoms. Our findings support the usefulness of
computational tools to characterize complex human behavior
such as speech. We strongly encourage the use of standardized
open-source software packages such as eGeMAPS since they
ensure easy comparison and replication across samples and
even cross-linguistically.
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