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Abstract

This paper presents FaceXHuBERT, a text-less speech-
driven 3D facial animation generation method that allows
to capture personalized and subtle cues in speech (e.g. iden-
tity, emotion and hesitation). It is also very robust to back-
ground noise and can handle audio recorded in a variety
of situations (e.g. multiple people speaking). Recent ap-
proaches employ end-to-end deep learning taking into ac-
count both audio and text as input to generate facial an-
imation for the whole face. However, scarcity of publicly
available expressive audio-3D facial animation datasets
poses a major bottleneck. The resulting animations still
have issues regarding accurate lip-synching, expressivity,
person-specific information and generalizability. We ef-
fectively employ self-supervised pretrained HuBERT model
in the training process that allows us to incorporate both
lexical and non-lexical information in the audio without
using a large lexicon. Additionally, guiding the training
with a binary emotion condition and speaker identity dis-
tinguishes the tiniest subtle facial motion. We carried out
extensive objective and subjective evaluation in compari-
son to ground-truth and state-of-the-art work. A percep-
tual user study demonstrates that our approach produces
superior results with respect to the realism of the anima-
tion 78% of the time in comparison to the state-of-the-art.
In addition, our method is 4 times faster eliminating the
use of complex sequential models such as transformers. We
strongly recommend watching the supplementary video be-
fore reading the paper. We also provide the implementa-
tion and evaluation codes with a GitHub repository link.
https://github.com/galib360/FaceXHuBERT

1. Introduction

Speech-driven 3D facial animation is a growing yet chal-
lenging research area with applications to games, VR/AR
and film production. Conversational virtual humans with
social and emotional interaction capabilities are used in a

Figure 1. FaceXHuBERT: An end-to-end encoder-decoder ar-
chitecture that encodes audios using self-supervised pretrained
speech model HuBERT and decodes to vertex displacements us-
ing GRU followed by a fully connected linear layer that produces
3D facial animation as 3D mesh sequences.

range of applications such as chatbots for customer ser-
vice and marketing, simulations for education and health-
care and remote communication. Facial expressions are the
first point of attention in conversational communication and
humans are very receptive to subtle nuances in facial anima-
tion which is explained by the uncanny valley theory [43].

Typically, facial animation workflows rely on profes-
sional technical artists using blendshape facial animation
[39] or performance capture aiming to mitigate most of the
labor intensive work [1–3]. However, as these characters
take place in more interactive applications, the demand to
automatically generate their behavior on-the-fly increases.
Research on facial animation focuses on 2D talking faces
[35, 40, 51, 62], 3D facial animation constructed from 2D
images and videos [21,27,41,65] and 3D speech-driven fa-
cial animation [8, 20, 25, 37, 54, 58, 67]. In this paper, we
propose a novel approach for 3D speech-driven facial ani-
mation.

3D speech-driven facial animation is either based on
phoneme-based approaches using procedural algorithms
[4, 17] or data-driven approaches using machine learning
[59], motion graphs [15] and deep learning [58, 67]. The
former requires explicit definition of co-articulation rules
and requires manual work. While the latter aims to elim-
inate that by learning speech-animation parameters map-
ping from data, it still relies on intermediary representations
of speech units. Recent approaches on 3D speech anima-
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tion synthesis effectively employ end-to-end deep learning
models [20, 25, 37, 54, 67] eliminating the need for inter-
mediary representations. Large speech and language mod-
els [13, 30] open the way towards more realistic speech-
driven facial animation. However, the lack of 3D facial
animation data matching audio and text poses a major bot-
tleneck and current models cannot generalize to arbitrary
speech input. Most recently, Fan et al. [25] suggested a
self-supervised speech representation learning method us-
ing transformers to mitigate these issues. However, the
method cannot handle expressive animations, the results
are still far from capturing personalized and subtle cues in
speech and the method is computationally very expensive
to train.

Our work improves on this work and proposes FaceX-
HuBERT, a text-less speech-driven expressive 3D facial ani-
mation generation method using self-supervised speech rep-
resentation learning. In our proposed encoder-decoder net-
work (see Fig. 1), we effectively employ self-supervised
pretrained HuBERT model to incorporate and encode both
lexical and non-lexical information without using a large
lexicon and speech-3D data pairs allowing it to generalize
to any speech input. Our method is simple and efficient
eliminating the use of complex sequential models such as
transformers and instead uses a decoder based on Gated Re-
current Units. The main contributions of our work are:

• An efficient text-less speech-driven expressive 3D
facial animation method using self-supervised
speech representation learning. FaceXHuBERT pro-
duces expressive and realistic animations in an effi-
cient way using a HuBERT-based encoder and GRU-
based decoder without the use of a large lexicon and
using only audio input. Additionally, guiding the train-
ing with an emotion condition and speaker identity dis-
tinguishes the tiniest subtle facial motions. The results
show that our method produces more realistic results in
a more efficient manner (i.e. 4 times faster in compar-
ison to a vanilla transformer and almost 3 times faster
in comparison to state-of-the-art [25]).

• Proof of self-supervised pretrained speech model
HuBERT [30] for the downstream task of expres-
sive 3D facial animation synthesis. Our method pro-
duces accurate lip-sync as well as allows to capture
personalized and subtle cues in speech (e.g. identity,
emotion and hesitation). It is also very robust to back-
ground noise and can handle audio recorded in a vari-
ety of situations (e.g. multiple people speaking, back-
ground noise, laughter, lip-smacking).

• Extensive objective and subjective analyses. We
compared our method to state-of-the-art and ground-
truth as well as made comparisons between various
seq-to-seq neural network architectures using 3D ver-
tex error as an objective metric. Subjective analysis in-

cludes qualitative generalizability analysis in terms of
different languages, text-to-speech, noise, low-quality
audio input and single subject training. We also con-
ducted several perceptual user studies. Our results
demonstrate that our approach produces superior re-
sults with respect to the realism of the animation 78%
of the time in comparison to the state-of-the-art [25].

2. Related Work

Extensive research has been conducted in the domain of
automatic facial expression analysis and synthesis in the
2D pixel domain for the purpose of detecting expressions
[34, 56, 60], for generating audio-driven talking faces [29,
35, 40, 62, 66] or for video-based facial re-enactment/face
swapping [48, 51, 57].

The approaches for 3D facial animation synthesis can
be classified into video-driven and audio-driven facial an-
imation. While the former focuses on transferring facial
animation from 2D videos to 3D faces, the latter maps
speech (audio and text) to 3D facial animation parame-
ters. Earlier works on video-driven facial animation fo-
cused on optimization-based 3D facial performance cap-
ture [11, 14, 32], while recent works use deep learning
[21, 27, 41, 44, 55]. For an extensive survey on 3D face
reconstruction, tracking and morphable models, we refer
to [23, 42, 68]. Some methods use retargeting algorithms
to convert facial expressions from one 3D mesh to the other
[16, 53] or from 2D images to 3D faces [64, 65]. Finally,
there is a group of research focusing on physics-based an-
imation of faces [10, 33]. In our work, we focus on 3D
speech-driven facial animation using deep learning.

3D Speech-Driven Facial Animation 3D speech-driven
facial animation typically uses phoneme-based procedural
approaches [4, 17]. Although these methods come with
the advantage of animation control and easy integration to
artist-friendly pipelines, they are not fully automatic and
require defining explicit rules for co-articulation. Another
line of research uses machine learning [59] or graph-based
approaches [15] to learn speech-animation mappings from
data. These methods rely on blending between speech units
and cannot capture the complexity of the dynamics of visual
speech [58]. They rather focus on the lower face and are not
robust to emotion and style variations. Recent approaches
on 3D speech animation synthesis effectively employ deep
learning models [8, 20, 25, 37, 54, 58, 67]. Taylor et al. [58]
proposes a sliding window approach instead of an RNN fo-
cusing on capturing neighborhoods of context and coartic-
ulation effects. VisemeNet [67] builds upon the viseme-
based JALI [4] model and combines this with an LSTM-
based neural network. However, these two methods [58,67]
still rely on intermediary representations of phonemes and
they focus on the mouth movement. Most previous works
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do not include automatic tongue animation except [8]. Col-
lecting large-scale datasets using professional performance
capture workflows is expensive and time consuming but the
resulting faces are highly realistic. To elevate this disad-
vantage, some methods use 3D automatic face reconstruc-
tion methods from in-the-wild videos, which are especially
useful in situations where professional performance capture
systems are not available, e.g. dyadic speech-driven facial
animation [36,47]. However, these methods are prone to 3D
reconstruction errors and cannot generate results that are as
realistic as the former.

Closest to our work are Karras et al. [37], Cudeiro et
al. [20], Richard et al. [54], Fan et al. [24, 25]. Karras et
al. [37] proposes an end-to-end convolutional neural net-
work that learns a mapping from input waveforms to the 3D
vertex coordinates of a face model. They aim to resolve the
ambiguity in mapping between audio and face by introduc-
ing an additional emotion component to the network, which
is learned from data. However, the method is not trained on
multiple speakers and cannot handle identity variations and
requires a longer-term audio context to infer the emotional
state. Instead, Cudeiro et al. [20] presents the audio-driven
facial animation method VOCA that generalizes to new
speakers using a training dataset with 12 subjects eliminat-
ing the need for retargeting. However, VOCA fails to real-
istically synthesize upper face motion and does not include
emotional variations. Similar to VOCA, Richard et al. [54]
aims for audio-driven animation that can capture variations
in multiple speakers including a much larger dataset of 250
subjects. They address the problem of lack of upper face
motions using a categorical latent space that disentangles
audio-correlated and audio-uncorrelated information based
on a cross-modality loss. Fan et al. [24] proposes an audio
and text-driven facial animation method that incorporates
the large language model GPT-2 [52] to encode the textual
information. The authors found that combined audio and
text input yielded better results than audio-only or text-only
model. However, the results still have problems regarding
accurate lip-sync. Most closely related to our work is Face-
Former [25] which uses a self-supervised pretrained speech
model that addresses the scarcity of available data in ex-
isting audio-visual datasets. The model produces superior
results in comparison to Cudeiro et al. [20] and Richard et
al. [54] using a modified version of transformers to handle
longer sequences of data. However, none of these methods
can handle arbitrary variations in speech input while pro-
ducing accurate lower and upper facial animation for multi-
ple identities and emotions.

3. Problem Formulation
We formalize the task of audio-driven 3D facial anima-

tion as a generic sequence modeling (seq2seq) problem in
which the input sequence is a raw audio waveform whereas

the output sequence is a 3D face mesh sequence (i.e. 4D
scan). Hence, the problem can be formalized as follows:

Given audio A and ground-truth 3D mesh sequence Y=
(y1, y2, y3, ..., yTY

), TY is the total number of available vi-
sual frames or 3D scanned frames in the sequence. There-
fore, one sequence of Y is a (TY , V ) dimensional matrix
where V denotes the number of 3D vertices in the mesh
topology. On the input side, since audio stream A is a
continuous data stream, with the help of an encoder, we
encode the continuous audio into a discrete representation
X = (x1, x2, x3, ..., xTX

) where X is a (TX , B) dimen-
sional matrix and TX and B are the discreet time-steps and
the encoded representation respectively.

The goal is to train an end-to-end architecture to learn the
mapping between A (together with additional conditions)
and Y to generate Ŷ = (ŷ1, ŷ2, ŷ3, ..., ŷTy ) so that the Ŷ
best approximates Y.

4. Proposed Approach
We present FaceXHuBERT, an end-to-end encoder-

decoder neural network architecture. Our model uses the
pretrained HuBERT speech model as the audio encoder
while for the decoder, we use Gated Recurrent Unit (GRU)
[18]. Fig. 2 shows the overall architecture of our proposed
approach. The encoder encodes the continuous audio infor-
mation into discreet time-step representations and adjusts
the representations so that the time-steps match with that
of the face scan data. The decoder incorporates the emo-
tion and subject identity information, consists of a 2-layered
GRU with hidden size 256 followed by a fully connected
linear layer. The decoder regresses vertex displacements
and adds to the subject’s template mesh to generate the pre-
dicted mesh sequence. Algorithm 1 in the supplementary
material depicts the overall steps of the proposed network.
In the next two subsections, we describe the details of the
FaceXHuBERT Encoder and Decoder.

4.1. FaceXHuBERT Encoder

Our proposed method effectively adopts the state-of-the-
art self-supervised pretrained speech model HuBERT in
the encoder for the downstream task of 3D facial anima-
tion generation. Since it is able to learn and produce high
quality discreet hidden representations of continuous au-
dio streams combining both acoustic and language infor-
mation, the authors of HuBERT recommend to consider
using HuBERT pretrained representations for a variety of
downstream tasks [30]. HuBERT architecture introduces a
BERT-like [22] masked language modelling encoder for the
transformer layers. It introduces a simple cross-entropy loss
for predicting masked units in contrast to its predecessor
Wave2Vec 2.0’s [9] complex contrastive loss. In addition,
unlike Wave2Vec 2.0, HuBERT is trained with multiple it-
erations. During the first iteration, HuBERT uses unsuper-
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Figure 2. FaceXHuBERT: The encoder encodes the audio waveform A and produces discreet frame level embedding. The Input Rep-
resentation Adjustment module in the encoder adjusts the encoded information with the output 4D scan data and produces X such that
TX = TY = T . The Decoder takes in X and with the help of the 2-layered 256 hidden sized GRU, produces the hidden representation H .
Additional conditions such as the speaker identity and emotion label are embedded and multiplied with H before the hidden representation
is decoded into vertex displacement values and added to the corresponding subject’s neutral face to produce the animation output Ŷ . The
loss function is computed based on Ŷ and ground-truth (GT), Y.

vised simple k-means clustering for acoustic unit discov-
ery to facilitate the self-supervised masked language mod-
eling learning that takes place in the second iteration. In
the second iteration, the training is done on the discovered
discrete hidden units with a predictive loss on the masked
regions only, forcing the model to learn a combined acous-
tic and language model using a BERT-like encoder, hence
the name H(idden)-u(nit)-BERT. The model is trained on
960 hours of unlabeled speech data [49] which contains En-
glish recordings of copyright-free audiobooks by volunteers
from the internet. The authors claim that this approach is the
first big step towards text-less Natural Language Processing
(NLP). For detailed explanation of how different HuBERT
models were trained and for comparison to previous work,
we refer to the original paper [30].

The FaceXHuBERT Encoder is composed of a CNN
encoder that discretizes the continuous audio data into
512 dimensional representations. Feature Projection layer
projects the 512 dimensional representation into 768 dimen-
sional representation, a positional convolution embedding
layer and 12 transformer layers to capture the contextual in-
formation in the sequence. In our approach, we adopt the
“base” HuBERT model with 95M parameters which pro-
duces 768 dimensional embedding at the last hidden state.
We initialize the pretrained weights and freeze the model
parameters including the CNN feature encoder layer, fea-
ture projection layer and the first two transformer layers.
The last ten transformer layers are kept unfrozen and re-
main trainable. HuBERT generates a feature sequence in
20ms windows (i.e. 50 fps). Therefore, in our architecture,
we encode a one second of audio into 50 frames with 768
dimensional embeddings. For example, for a training data

with 4 seconds of audio stream, the output from the encoder
will be (4× 50, 768) = (200, 768) dimensional matrix.

Input Representation Adjustment This module adjusts
the input representation and output representations and do
not contain any trainable parameters. This is devised to
ensure the one-to-one frame level relationship between de-
coder input X and output Y such that TX = TY = T .
This function is generically devised in such a way that it
can handle any input-output frequency pair. More details
on this can be found in the supplementary material.

4.2. FaceXHuBERT Decoder

For the FaceXHuBERT Decoder, we use a Gated Recur-
rent Unit (GRU) instead of a complex transformer model.
Our extensive analysis shows that, combined with the Hu-
BERT encoder, GRU-based decoder produces realistic re-
sults in a more efficient manner. Our GRU-based decoder
consists of 2 layers with hidden unit size of 256, followed
by one fully connected linear layer that maps the last hid-
den state to vertex displacement values of the 3D vertices of
the face. It represents the faces in terms of their displace-
ment values with respect to the neutral template vertices of
a given subject. Between the GRU and the fully connected
layer, we add the additional conditions and fuse them with
the hidden state representation with element-wise multipli-
cation. The additional conditions are (i) subject identity and
(ii) emotion (neutral or expressive in our experiments). We
defined the training subjects and the emotion label as one-
hot vectors and linearly embed them with two separate 256
dimensional vectors to facilitate the element-wise multipli-
cations.
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Eq. (1), Eq. (2), Eq. (3) and Eq. (4) show the core com-
putations of our decoder’s forward propagation.

Γr = σ(W l
r[alt−1, a

l
t] + blr) (1)

ãlt = tanh(W l
a[Γr � alt−1, a

l
t] + bla) (2)

Γu = σ(W l
u[alt−1, a

l
t] + blu) (3)

alt = Γu � ãlt + (1− Γu)� alt−1 (4)

The subscript t denotes the frame number or time-step
in the sequence whereas the superscript l denotes the hid-
den layer where l = [1, 2] (i.e. two hidden layers). When
l = 1, the activation values alt (not alt−1) in Eq. (1), Eq. (2)
and Eq. (3) take the input value xt, hence, a1t = xt. When
l = 2, the activation values a2t = ht, each being 256 di-
mensional hidden unit. The second GRU layer produces the
hidden units H = [h1, h2, h3, ..., hT ] for a sequence with
T frames. Furthermore, we initialize a0 = ~0 to start the
training.

Eq. (5), Eq. (6), Eq. (7) and Eq. (8) show how the subject
identity and emotion conditions are incorporated into the
network.

S = WS · [SubjectOneHot] + bS (5)
E = WE · [EmotionOneHot] + bE (6)

H̃ = H � S � E (7)
Ŷ = (WŶ · H̃ + bŶ )⊕ [NeutralFace] (8)

The subject label and the emotion label are represented
as one-hot vectors that we linearly embed to 256 dimen-
sional S and E vectors using Eq. (5) and Eq. (6) respec-
tively. In Eq. (7), the hidden representation H with dimen-
sions (T, 256) is multiplied in an element-wise manner with
both the embedding vectors of the given subject, S (i.e.
training subjects) and the style of the given sequence, E
(i.e. neutral or expressive). Finally, in Eq. (8), the fully
connected linear layer decodes the hidden representation
into (T, V ) dimensional vertex displacement values which
is then added to the respective subject’s neutral face vertex
values, where [NeutralFace] is a (1, V ) dimensional data.

5. Experimental Setup
5.1. Dataset and Pre-processing

For our experiments, we used the BIWI [26] dataset
which is the only dataset that is available publicly upon re-
quest with both emotion and identity labels. VOCASET
[45] and Multiface [63] datasets allow incorporating identi-
ties but not emotions. BIWI contains synchronized audio-
4D scan pairs of 14 human subjects uttering 40 phonetically
balanced English sentences twice: first neutrally, second
with emotional expressions. Therefore, the dataset contains
(14 × 40 × 2) = 1120 sequences of audio-4D scan pairs.
In reality, due to some missing sequences from 4D scans,

there are in total 1088 audio-4D pairs. The sequences in the
dataset are 4.39 seconds in duration on average including
both neutral and emotional sequences. Furthermore, on av-
erage, neutral sentences are 4.28 seconds long whereas the
emotional sentences are 8.90 seconds long. To ensure ef-
ficient training, we pre-process the data by scaling the 3D
vertices to have a uniform range of values for all three co-
ordinates across the dataset (e.g. [-0.5,0.5]). The data is
captured at 25fps with 23370 3D vertices in the mesh topol-
ogy. The pre-processed dataset is then split in 90% train,
5% validation and 5% test sets. More details on dataset pre-
processing can be found in the supplementary material.

5.2. Model Experiments

We experimented with different seq-to-seq neural net-
work architectures including a vanilla RNN, LSTM, GRU
and Transformer as FaceXHuBERT Decoder. In this sec-
tion, we will briefly discuss about the model experiments
and their results.
HuBERT-RNN model is devised by using RNN with the
2 hidden layers and with hidden size 256. The resulting
3D facial animations are acceptable in terms of visual qual-
ity and lip-sync. However, it does not generalize well for
longer in-the-wild audios. The resultant animations are not
smooth, noisy and show visual artefacts.
HuBERT-LSTM model uses LSTM with 2 hidden layers
and with hidden size 256. The resulting animations start to
move in the very beginning but immediately becomes static
and maintains the stagnant pose throughout the remaining
frames of the sequence. As mentioned in [28], LSTM dom-
inates for short term motion generation yet soon converges
to a mean pose.
HuBERT-Transformer uses a vanilla transformer as de-
coder. We trained using both teacher forcing and autore-
gressive approaches. The former yields static facial pose
throughout the animation sequence while the latter pro-
duces meaningful animations. However, due to the network
complexity, the training time is 4 times slower when com-
pared to our proposed approach. Additionally, the trans-
former based approach is constrained by a pre-defined max-
imum length of input sequence.
HuBERT-GRU network architecture of this model is our
proposed model described in Sec. 4. Using GRU in the
vertex decoder yields audio coherent animations for both
test-set sequences as well as arbitrarily long in-the-wild au-
dio sequences recorded in variety of situations. This model
produces the most realistic and expressive results. Exten-
sive evaluations can be found in the following section.
Training Details and Tools All the models in our experi-
ments were trained for 100 epochs on an HP ZBook Fury
G7 laptop with an Intel Core i7-10850H 2.7 GHz (12 cores)
CPU, 32GB RAM and Nvidia Quadro RTX 3000 6GB
VRAM. We optimized on Huber Loss function [31] and
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(a) Neutrally generated
animation

(b) Expressively gener-
ated animation

(c) Difference between
(a) & (b)

(d) Neutrally generated
animation

(e) Expressively gener-
ated animation

(f) Difference between
(d) & (e)

Figure 3. Effect of the emotion label during inference: our approach can generate facial animations that are style controllable by a
binary emotion label. Given two in-the-wild audio signal examples, Figs. 3a to 3c correspond to the male example whereas Figs. 3e to 3f
correspond to the female example. Figs. 3a and 3d are generated neutrally whereas Figs. 3b and 3e are generated expressively. Figs. 3c
and 3f show the colorized differences based on per-vertex distances between neutrally and expressively generated face meshes where
extreme red depicts 100% of the computed distance and extreme blue depicts 0% of the computed distance. It is evident that the emotion
signal effects the facial regions that are uncorrelated with speech.

used Adam optimizer [38] during the training. The dropout
value of the recurrent units was set to 0.3. We used Py-
Torch [50] for implementing the models. Meshlab [19] and
PyMeshLab [46] were used to compute mean face vertex
error for quantitative evaluation. Trimesh [7] together with
OpenCV [12] and ffmpeg [61] were used for rendering and
visualizing. The entire codebase for training, evaluating and
visualizing can be found in the supplementary material.

6. Evaluation
Evaluation of the 3D facial animation generation is chal-

lenging and there is no unanimously accepted single objec-
tive metric in the literature. Therefore, in addition to exten-
sive quantitative evaluations using mean face vertex error
as an objective metric, we also conducted several qualita-
tive evaluations in terms of visual assessments. Further-
more, since facial animation is perceptual, we conducted
user studies to compare our approach with ground-truth as
well as the state-of-the-art. Because FaceFormer proved to
be superior than the other state-of-the-art works, we com-
pared our approach only with FaceFormer [25].

6.1. Quantitative and Qualitative Evaluation

We measure and compare our proposed methodology
quantitatively based on mean face vertex error. For each
test-set sequence we take the vertex distance values of the
predicted data with respect to the ground-truth reference for
all the frames. We take the arithmetic mean of the calcu-
lated differences across the frames for all the test sequences
and compute the average value to get the “Mean Face Ver-
tex Error”. Tab. 1 reports this error value together with
corresponding training time for each of the models we pre-
sented in Sec. 5.2. In addition, we also compared our ap-
proach with the state-of-the-art FaceFormer model. It is to
be noted that FaceFormer fails to generate meaningful an-
imations when trained on the whole BIWI dataset (i.e. all
14 subjects with all available sequences). Therefore, for a

Model Mean Face Training
Type Vertex Error5 Time (h)

HuBERT-RNN 5.06 ≈ 5.33
HuBERT-LSTM 5.98 ≈ 5.55

HuBERT-Transformer1 8.74 ≈ 5.27
HuBERT-Transformer2 5.13 ≈ 25.00

FaceFormer3 5.95 ≈ 6.38
FaceXHuBERT3 5.45 ≈ 1.52

FaceFormer4 6.36 ≈ 16.11
FaceXHuBERT4 4.80 ≈ 5.10

FaceXHuBERT- w/o emo 4.93 ≈ 5.69
HuBERT-FaceFormer 4.96 ≈ 19.58

1 Teacher-forcing scheme. Produces static animations.
2 Autoregressive scheme.
3 Model trained on only 6 subjects for fair comparison.
4 Model trained on the whole dataset (i.e. all 14 subjects). FaceFormer
does not produce good results when trained on the whole dataset.
5 In millimeters (mm) when the face resides in a 1m3 bounding box.

Table 1. Objective evaluation results of the experiments and
trained models. Our approach not only produces the minimum
Mean Face Vertex Error on test-set sequences but also reduces the
training time significantly. FaceXHuBERT is more than 4 times
faster than transformer based architecture and almost 3 times faster
than the state-of-the-art.

fair comparison, in addition to training on the whole dataset,
we trained FaceFormer and FaceXHuBERT with the Face-
Former’s suggested training including only 6 training sub-
jects. The proposed FaceXHuBERT yields the minimum
mean face vertex error while reducing the network com-
plexity and training time significantly. Additionally, Face-
Former trains well on the whole dataset only when we re-
place their Wav2Vec2.0-based audio encoder with FaceX-
HuBERT encoder (HuBERT-FaceFormer in Tab. 1). How-
ever, the mean face vertex error is higher and the training
is almost 4 times slower in comparison to ours. Besides,
we trained our approach without incorporating the emotion
label (FaceXHuBERT-w/o emo in Tab. 1) similar to how
FaceFormer is trained.

The quality of animations generated by FaceXHuBERT
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(a) GT (b) FaceFormer (c) Ours (d) Difference

Figure 4. Qualitative comparison of expressiveness between Face-
Former and FaceXHuBERT (Ours). Given an audio sequence from
the test-set, Fig. 4a is the ground-truth whereas Figs. 4b and 4c are
the corresponding frames from animations generated using Face-
Former and FaceXHuBERT respectively. Fig. 4d shows the col-
orized per vertex distance computed between Figs. 4b and 4c. An-
imation generated by our approach is more expressive because the
upper face region is more responsive and expressive to the emo-
tionally expressive audio sequences than the one of FaceFormer.

has been studied carefully to understand the generalizabil-
ity capabilities of the model in terms of various aspects such
as- smoothness of the animation, coherence with respect to
speech, different background noises in input audio, multi-
ple speakers, different languages, different subjects, use of
TTS (text2speech) instead of real audio and limited train-
ing data. The proposed approach is robust in terms of all
the above-mentioned aspects. Additionally, by training the
network without the binary emotion label (FaceXHuBERT-
w/o emo) in the decoder, we lose the expressive style con-
trol capability during inference. In this case, facial ex-
pressiveness of the generated animations rely solely on the
audio signal and are qualitatively slightly less expressive
than the proposed model’s predictions. Yet it still captures
and distinguishes between neutral and emotional aspects
in speech signals. Furthermore, we qualitatively compared
our approach to the FaceFormer (see Fig. 4) and found that
FaceXHuBERT generates more expressive animations that
are closer to the ground-truth. Unlike our approach, Face-
Former is not robust to variety of noises overlapping with
the audio signal and produces visual artefacts. We recom-
mend watching the supplementary video for visual quality
judgement.

6.2. Perceptual Evaluation

“A work of art doesn’t exist outside the perception of
the audience.”

Abbas Kiarostami

In order to demonstrate the realism of facial anima-
tion produced by our proposed approach and to compare
to ground-truth and current state-of-the-art, we conducted
perceptual user studies. The user studies were hosted on
Qualtrics [6] and carried out using Prolific [5], ensuring that
the participants get compensated appropriately. We con-
ducted three separate user studies where the users selected

User Preference Realism
I. Ours vs. Ground-Truth 25.45± 13.20
II. Ours vs. FaceFormer 77.73± 17.59

III. Ours-Emotional vs. Ours-Neutral 66.35± 5.66

Table 2. User study results: The Realism score depicts the av-
erage percentage of participants that preferred the left item to the
right item in the corresponding row in terms of expressiveness.

their preferences based on the realism of the rendered 3D
facial animation videos. In Experiment I, the users indi-
cated their preference between Ground-truth data vs Ours.
In Experiment II, the users were shown side-by-side com-
parisons of FaceFormer and FaceXHuBERT generated with
the same audio input. Lastly, in Experiment III the users de-
picted their preference between neutrally and expressively
generated animations both using our approach. Fig. 3 quan-
titatively and visually shows the difference between neu-
trally and expressively generated animations. The facial re-
gions (i.e. upper face, eye region, cheeks) that are expected
to be effected by the emotion condition deform differently
than in the corresponding neutral animation. To solidify our
argument, the third experiment was conducted to prove that
the expressiveness in facial animation is actually perceived
by users.

For all three experiments, the participants where shown a
series of A vs. B video pairs and were asked to choose one
between the two animations that looks more realistic and
more expressive. In order to ensure good quality data, we
included random attention check questions. The attention
check questions consist of a video pair in which one of the
videos is totally out-of-sync with the accompanied audio.

The results of the three experiments are reported in
Tab. 2. In Experiment I, on average, 25.45% of the partici-
pants preferred animation generated by our model over the
ground-truth animation. This is expected as the generated
animations do not model some of the facial motion such as
the eye blinks that are present in the ground-truth. Further-
more, the ground-truth has more variations across the whole
face. In Experiment II, on an average, 77.73% of the par-
ticipants preferred animations generated by our model over
the animations generated by FaceFormer. In Experiment III,
on average, 66.35% of the participants preferred animations
generated by our model with expressive signal over the an-
imations generated without the expressive signal.

7. Ablation Study
Ablation on FaceXHuBERT Encoder We conducted
extensive experiments to understand and optimize the effect
of HuBERT in our encoder. This ablation study is devised
by freezing the model’s pretrained weights at various lay-
ers starting from no-freezing (i.e. all the layer parameters
are trainable) to all weights frozen (i.e. all the layers are
frozen to their pretrained weights). The results of the abla-
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tion study is reported in Tab. 3. In light of the encoder struc-
ture as described in Sec. 4.1, the network configurations for
this ablation study are as follows- (i) no layers are frozen,
(ii) CNN encoder is frozen, (iii) CNN encoder and feature
projection layers are frozen. For models (iv) to (viii), in ad-
dition to freezing the CNN encoder and feature projection
layer, we incrementally freeze two transformer layers. For
model (ix), only the last transformer layer is kept trainable
whereas for (x), the entire pretrained model is frozen during
training. Although all the above mentioned configurations
yield qualitatively coherent animations, we found that (iv)
produces the least mean face vertex error. Furthermore, as
we move from model (iv) to (x), the animations become
more stiffer and less expressive.
Ablation on FaceXHuBERT Decoder We experimented
with different configurations of the GRU structure in terms
of number of hidden layers and hidden unit size to optimize
for the mean vertex error. Tab. 4 shows the results of the
FaceXHuBERT decoder ablation study. The first column
represents the number of hidden layers (e.g. 2L) and hidden
size (e.g. 128) in the GRU structure. All the configurations
mentioned in the table produce qualitatively coherent ani-
mations but training the proposed configuration results in
producing the least mean face vertex error, ensuring that the
predictions are more closer to the ground-truth, hence more
realistic and expressive.

8. Discussion and Limitations
Using a self-supervised pretrained speech model such

as HuBERT produces significant improvements for the 3D
speech-driven facial animation task. It clearly shows the
importance of the encoder model, while using a simple
decoder component. It does not only have the ability to
disambiguate speech uncorrelated factors for facial anima-
tion, but also addresses the scarcity of synchronized audio-
visual datasets by incorporating pretrained speech represen-
tations based on a large speech model. We assume that
it can be adopted to solve similar downstream tasks such
as audio-driven gesture synthesis. Additionally, we showed
that guiding the training with an emotion label captures the
facial deformations uncorrelated with and correlated with
emotion context.

Due to the limitation of the BIWI dataset, we could only
guide the learning in a binary manner (i.e. neutral and ex-
pressive). However, we assume that with a balanced dataset
containing specific emotion categories in the data, we will
be able to learn and generate audio-driven facial anima-
tions for respective emotion categories. Furthermore, our
approach is limited to offline animation generation. In the
future, we plan to extend our work to be real-time friendly.
Our proposed approach works on 3D meshes and still needs
to be mapped to a rigged character. Additionally, since the
face scans of the dataset do not contain eyes and tongue, our

Model Mean Face No. of Training
variant Vertex Error (mm) parameters Time (h)

(i) 5.17 114166622 ≈ 8.19
(ii) 4.86 109966174 ≈ 5.75
(iii) 5.00 109571166 ≈ 6.38
(iv) 4.80 95395422 ≈ 5.10
(v) 4.84 81219678 ≈ 5.83
(vi) 4.85 67043934 ≈ 5.50
(vii) 4.89 52868190 ≈ 5.27
(viii) 5.02 38692446 ≈ 5.13
(ix) 4.95 31604574 ≈ 4.86
(x) 5.24 19795678 ≈ 3.88

Table 3. FaceXHuBERT Encoder Ablation Study Results. Model
(iv) depicts the proposed approach.

Model Mean Face No. of Training
variant Vertex Error (mm) parameters Time (h)
2L-256 4.80 95395422 ≈ 5.10
1L-256 4.93 95000670 ≈ 5.55
2L-128 4.92 85385566 ≈ 5.33
2L-64 5.00 80491230 ≈ 5.27
2L-32 5.19 78071710 ≈ 4.30

Table 4. FaceXHuBERT Decoder Ablation Study Results. Model
2L-256 depicts the proposed approach.

method could not take into account animations of some face
parts such as eye gaze and tongue.

9. Conclusion

In this paper, we presented FaceXHuBERT, an effi-
cient text-less speech-driven expressive 3D facial animation
method using self-supervised speech representation learn-
ing. At the core of our model is the pretrained HuBERT-
based encoder combined with an efficient GRU-based de-
coder instead of a complex model based on transformers.
Our method can produce accurate lip-sync and expressive
facial animations for arbitrary audio input without the need
of long training times and large dataset. Our method does
not only produce accurate lip-sync but also captures per-
sonalized and subtle cues in speech (e.g. identity, emotion
and hesitation). It is also very robust to background noise
and can handle audio recorded in a variety of situations (e.g.
multiple people speaking, background noise, laughter, lip-
smacking). Our extensive objective and subjective analyses
show that FaceXHuBERT outperforms the state-of-the-art.
We hope that our approach will be a stepping stone towards
text-less speech-driven expressive 3D facial animation.
Ethical Consideration Models trained on face scans can
easily be used for generating synthetic content that can jeop-
ardize humans and their privacy. We must act responsibly
by considering the aspects pertaining to privacy and ethics.
Acknowledgement We would like to thank the authors of
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Zurich CVL for providing us access to the Biwi 3D Audiovi-
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A. Supplementary Material

A.1. FaceXHuBERT Algorithm

Algorithm 1 depicts a high level pseudo code of the
training procedure of FaceXHuBERT described in section
Sec. 4. Given an audio waveform A, Subject Label, Emo-
tion Label as inputs and corresponding 4D scan Y as out-
put, the proposed network learns the mapping between the
inputs and the output during training epochs. The network
optimizes on Huber Loss function and uses Adam optimizer
to update the weights and biases during backpropagation.

Algorithm 1 Network Training

Given input audio (A) and output 4D-Scan (Y ):
A = AudioWaveform . Raw Audio Waveform
Y = [T, V ] -D Matrix . Ground-Truth 4D Data

S ← SubjectEmbedding(SubjectOneHot)
E ← EmotionEmbedding(EmotionOneHot)
B ← AudioEncoder(A)
X ← InputRepresentationAdjustment(B)
H ← GRU(X)
H̃ ← H � S � E
Ŷ ← FullyConnected(H̃)
L ← HuberLoss(Y, Ŷ )
AdamOptimizer()

A.2. Input Representation Adjustment

This module adjusts the input representation and out-
put representations and do not contain any trainable pa-
rameters. This is devised to ensure the one-to-one frame
level relationship between input X and output Y such that
TX = TY = T . This function is generically devised in
such a way that it can handle any input-output frequency
pair given, fo ≤ fi, where fi is the frequency of encoded
discreet representation of the input audio and fo is the fre-
quency of the face scan data. If fi

fo
= k ∈ Z+ where Z+

denotes the set of positive integers, then the adjustment is a
straightforward reshape function such that input dimension
(TX , B) = (kTY , B) becomes a (TY , kB) dimensional
data. If k /∈ Z+, we resample the input representation
using linear interpolation so that input dimension (TX , B)
becomes (dkeTY , B) before reshaping the embedding into
(TY , dkeB) dimensional data to ensure TX = TY = T .
Here dke denotes the ceiling of the decimal representation,
in other words we take the next positive integer. In our im-
plementation, we ensure that the value of k = 2 for it to
be coherent with the implemented network architecture. In
case of other datasets, where k 6= 2, the model definition
needs to be slightly modified in terms of input dimension of
the GRU in the decoder.

A.3. Data Pre-process

Algorithm 2 represents the dataset pre-processing proce-
dure. This step is a prerequisite to train the proposed model
effectively. The vertex data in BIWI dataset is not normal-
ized. Without scaling the data to a certain uniform range,
the network does not train well. Although this is not the
only way to normalize the data, we highly recommend nor-
malizing the dataset so that all three coordinates (i.e. 3D
coordinates- X, Y, Z) have the same range of values (e.g.
[-0.5,0.5], [-1,1] or [0,1]) before starting training. Appro-
priate step-by-step guide together with code to prepare and
pre-process the dataset are available in the project’s GitHub
repository provided with the supplementary material to fa-
cilitate reproducibility of our work.

Algorithm 2 Data Pre-process

Neutral = [ArrayOfSubjectsWithNeutralFaces]
Templates = [EmptyArray]
while There is Subject to process do

S ← Neutral[Subject]
X ← S[:, 0]; Y ← S[:, 1]; Z ← S[:, 2]
S[:, 0]← (X −mean(X))÷ (max(X)−min(X))
S[:, 1]← (Y −mean(Y ))÷ (max(Y )−min(Y ))
S[:, 2]← (Z −mean(Z))÷ (max(Z)−min(Z))
Templates.append(S)
while There is sequence to process do

while There is frame to process do
X̃ ← (sequence[frame,:,0]−mean(X))

(max(X)−min(X))

Ỹ ← (sequence[frame,:,1]−mean(Y ))
(max(Y )−min(Y ))

Z̃ ← (sequence[frame,:,2]−mean(Z))
(max(Z)−min(Z))

sequence[frame, :, 0]← X̃
sequence[frame, :, 1]← Ỹ
sequence[frame, :, 2]← Z̃

end while
SaveProcessedSequence(sequence)

end while
end while

A.4. User studies

For perceptual evaluation described in section Sec. 6.2,
three similar user study experiments were conducted. In all
three experiments, the participants were randomly shown
12 pairs (to ensure a good duration of the study) of facial
animation videos and asked to choose the one that is real-
istic and more expressive than the other in accordance with
the audio. Fig. 6 is the introduction message that the par-
ticipants were shown. Fig. 7 shows the user interface of the
survey related to the user study experiments. In total, we
were able to recruit 147 participants from different demo-
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Figure 5. Attention check warning message.

graphic backgrounds for the experiments ensuring a good
sample representation of the population. Among this 147
participants, 51 participated in Experiment I, 31 in Experi-
ment II and 65 in Experiment III.

Figure 6. Introduction page of the user study surveys.

Figure 7. User interface of user study surveys.

Additionally, the participants were shown attention
check question items, where one of the videos was fa-
cial animation that was generated by a model trained on
MFCC (Mel-frequency cepstral coefficients) features in-
stead of FaceXHuBERT Encoder and the other is either
ground-truth or generated by our approach. The animations
generated by MFCC based model do not produce coherent
animations where the lip-sync is incongruous to the accom-
panied audio. If the participants had chosen the animation
video generated by MFCC based model, there were shown
the warning message depicted in Fig. 5. Those participants’
responses are then manually reviewed for inconsistency in
the user study data.
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