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ABSTRACT
While functionality and correctness of code has traditionally been

the main focus of computing educators, quality aspects of code are

getting increasingly more attention. High-quality code contributes

to the maintainability of software systems, and should therefore

be a central aspect of computing education. We have conducted a

systematic mapping study to give a broad overview of the research

conducted in the field of code quality in an educational context. The

study investigates paper characteristics, topics, research methods,

and the targeted programming languages. We found 195 publica-

tions (1976–2022) on the topic in multiple databases, which we

systematically coded to answer the research questions. This paper

reports on the results and identifies developments, trends, and new

opportunities for research in the field of code quality in computing

education.

CCS CONCEPTS
• Social and professional topics → Computer science educa-
tion; Software engineering education.

KEYWORDS
programming education, software engineering education, code qual-

ity, refactoring, code smells, systematic mapping study

1 INTRODUCTION
Software quality is an important subject that Computer Science

students need to learn during their studies. The quality of code,

considering aspects such as naming, documentation, layout, control

flow and structure, contributes to the readability, comprehensibility,

and maintainability of software. Code style and quality is often dis-

cussed in the context of other software engineering topics, such as

testing, code reviewing, and quality assurance (QA) in general. Au-

tomated assessment tools and tutoring systems might give feedback

on code style, besides the correctness of solutions. Code quality has

historically not been the main focus of educators [20, 102], possibly

due to time, workload, lack of knowledge, and perceived lower

importance. However, we have noticed an increase in interest in

this topic, which we may (or may not) confirm with this study.

The goal of this Systematic Mapping Study [148] is to identify

the landscape of studies that have been conducted on code quality

in education. To our knowledge, this is the first overarching study

on this topic. We first identify publication characteristics such as

year, venue (journal/conference), followed by the topics, methods,

languages, and relevant technical aspects. This paper makes the

following contributions: (1) a large and complete list of papers on

the topic, (2) a broad overview of the research area, and (3) an

identification of research trends and new research opportunities.

This paper is an extension of a conference paper [100], and includes
the complete reference list and coding.

2 BACKGROUND
In this section we give our definition of code quality for this study,

and describe several relevant terms and aspects. We also briefly

discuss other mapping studies related to computing education.

2.1 Terms and definitions
Software quality and code quality are sometimes intertwined, how-

ever, we consider code quality to be a more specific aspect of soft-

ware quality. The ISO/IEC 25010 standard for software product qual-

ity comprises eight quality characteristics, among which functional

suitability, usability, reliability, and maintainability. The last charac-

teristic can be subdivided into modularity, reusability, analysability,

modifiability, and testability. High-quality code can contribute to

these characteristics.

Code quality is a term without a clear meaning and with various

interpretations.We choose to focus on code quality as an aspect that

appears after writing the initial program, dealing with analysing,

reflecting on, and improving the program’s static characteristics.

We are interested in properties of source code that can be observed

directly. As such, we focus on the static properties of code, as op-
posed to the dynamic properties such as correctness, test coverage,

and runtime performance. We focus on the categories from the

rubric designed by Stegeman et al. [177] to assess the quality of

student code. These categories are documentation, layout, naming,

flow, expressions, idiom, decomposition, and modularization.

Problems with these aspects are often denoted as code smells, a
term introduced by Fowler [54]. Code smells may indicate a problem

with the design of functionally correct code, affecting quality at-

tributes of the software. Examples are duplication, dead code, overly

complex code, and code with low cohesion and high coupling.

Refactoring is improving code step by step, while its function-

ality stays the same. Fowler’s [54] well-known book describes a

collection of refactorings, such as extracting a class or method,

introducing an explaining variable, pull up a field or method, and

replacing a magic number with a symbolic constant. Design patterns
are reusable solutions to common problems in code [59], and can

be used when refactoring.

To support developers with analysing and improving their code,

many tools and systems are available. Tools such as PMD, Check-

style, SonarQube, Resharper, and linters can automatically detect

and report quality issues and code smells in a program. These tools

often employ static analysis techniques to analyse code, although
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static analysis has a broader application and can also be used to

identify bugs and errors. There are also many tools to support the

refactoring of code, often integrated in modern IDEs.

2.2 Related work
Systematic literature reviews, which dive deep into the literature

on some topic, are increasingly being conducted for Computing

Education (CEd) topics (see section 4.5 for examples related to our

topic). A systematic mapping study aims to give a broad overview of

a particular research area, usually by categorising its publications.

While mapping studies are common in medicine, they are less

common in other fields, such as software engineering [148] and CEd.

A systematic mapping study on software testing in introductory

programming courses by Scatalon et al. [168] is the most relevant

to our study, because they also investigate a software quality aspect

in an educational context. The authors selected 293 papers and

categorised them on their topic and evaluation method.

Numerous mapping studies and literature reviews have been

conducted on topics related to code quality, such as a mapping

study on source code metrics [136], and a tertiary review on smells

and refactoring [107]. However, these studies are not aimed at code

quality in the context of education, the topic of our study.

3 METHOD
We generally follow the process from Petersen et al. [148] for doing

systematic mapping studies in software engineering. We employ a

different approach to classifying studies, as described in section 3.3.

3.1 Scope and research questions
The scope of this mapping study is:

Research on educational activities and support concern-
ing code quality (as defined in 2.1), such as: instruction,
analysis, assessment, tool support, tasks, and feedback.

Within this scope we address the following research questions:

RQ1 Where are the papers published?

RQ2 Which topics have been addressed?

RQ3 Which types of studies have been conducted?

RQ4 For which programming language is the intervention?

RQ5 What are the trends over time?

RQ6 Which other topics are closely related to code quality?

3.2 Search process
The inclusion and exclusion criteria are defined in table 1. We have

first assembled a base list of 40 papers that have been collected by

ourselves over the years and meet the criteria. Two authors have

verified that all publications on the list should be included.

3.2.1 Database search. We collected the keywords from the base

papers, removing very general terms such as ‘university’ and ‘exam-

ples’, very specific terms such as names of tools and programming

languages, and terms indicating the type of study. Based on these

keywords we experimented with various search strings, checking

whether the papers would end up in the search results. Because code

quality is defined and named in various ways, we have used several

specific terms in the search string to be as inclusive as possible.

During the process we have made the scope more clear by explicitly

defining the edge topics for RQ6, as discussed in section 4.5.

We chose three databases, Scopus, ACM and IEEE, which cover

a wide range of publications and allow searching with a complex

search string. The search includes papers up to and including 2022.

Because the final searches were conducted in December 2022, a few

papers from 2022 could be missing. The final search string is shown

below. We applied the search string to title, abstract, and keywords,

and made some adjustments to match the database requirements.

From our base list of 40 papers, 36 were found by this search.

(programm* OR code OR coding OR software)
AND ("code quality" OR "software quality"

OR "design quality" OR refactoring
OR "static analysis" OR "software metrics"
OR smell OR readability
OR "code style" OR "coding style"
OR "programming style")

AND (student OR teach* OR educat* OR curriculum OR novice)

Next, we elaborate on the process steps (summarised in figure 1).

Cleaning. One author combined the results from the three data-

bases, and removed entries that are not papers, or are too short,

and deleted duplicates based on title automatically using a script.

Pre-selection. One author filtered the list for exclusion based on

title, and/or publication source, which were obviously out of scope

because they are not about code quality and/or educational setting.

Selection. Two authors assessed a subset of the remaining list by

reading title/abstract/keywords and selecting yes/no/maybe. Both

‘yes’ and ‘maybe’ indicated that we will consult the fulltext. If only

one of the authors selected ‘no’, we discussed whether or not the

fulltext should be consulted. We had three rounds of around 100

papers each, with an agreement of 77%, 78%, and 89%, respectively.

One author assessed the remaining papers. For the fulltext selection

we also checked and discussed several papers with two authors,

after which one author selected the remaining papers. After this

step, we had a selection of 168 papers for inclusion in our study.

3.2.2 Snowballing. The ambiguity surrounding the definition of

code quality prevents constructing a search string that finds all rel-

evant research. To find additional publications, we have performed

snowballing: identifying relevant references from (backwards) and

to (forwards) a set of papers [203]. For all 168 papers found in the

previous steps, one author inspected all references from and to the

paper (the latter using Google Scholar), and selected those within

the scope. This inspection of thousands of references led to 27 ad-

ditional papers. We stopped after one round of snowballing; we

believe a second round would unlikely yield more relevant papers,

because these papers would not have cited any of the papers from

the database search. To answer RQ6, we kept a record of topics and

papers referred to during snowballing that were outside our scope.

3.3 Coding
To answer RQs 2–4, we coded each paper in four categories: topic,

aspect, method, and language. Codes are shown in a box . We use

the topics from the mapping study on testing in programming

courses by Scatalon et al. [168] as our base for RQ2 (topic), with

some small adjustments to fit our scope. We assigned one topic to

each paper, representing its main focus or goal.
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ACM DL (687)

IEEE Xplore (588)

Scopus (2297) DB Searches
(3572)

Cleaned
(2209)

Pre-selection
(1751)

General criteria 
Scope:

Title/topic/source 

1st selection
(72/299)

Abstract

Final selection  
(10/21)

Subtotal
(168)

Fulltext

1st selection
(211/1416)

Abstract

Final selection 
(118/262)

Fulltext

Also in base (36)

From base (4)

Total 1st (283) Snowballing
(27)

Total include
(195)

References to/from

Figure 1: Paper selection process; person icon denotes one/two author(s); cog icon denotes an automated step.

Table 1: Inclusion and exclusion criteria.

Include Exclude

General Scientific publications (journal papers and conference papers) in Eng-
lish.

Posters, papers shorter than four pages, theses, technical reports, books. Papers
we cannot find. Papers preceding an extended version of a paper.

Topic Publications that describe interventions in a formal educational context
(high school/K-12, higher education).

Educational contexts aimed at professionals working in practice. Publications
on automated feedback tools that provide style feedback alongside other error
feedback, with no particular focus on code quality. Studies in which students are
(among) the participants, but with no particular focus on education. Plagiarism.
Static analysis tools used for assessing correctness etc.

Language Code and design of general-purpose programming languages, teaching
languages (e.g. Scratch).

Domain-specific languages such as SQL, low-level programming, very specific
contexts (e.g. shader programming, or block-based robot programming).

Focus A substantial part of the paper should be on code quality. Interventions that only lead to improved code quality (among others), but are
not specifically about code quality (further discussed in 4.5).

Quality Publications should be indexed in Scopus, the ACM library, or IEEE
library. Exceptions can be made for highly cited papers.

• Curriculum The integration of code quality in the computing

curriculum as a whole or in individual programming courses.

• Instruction:

– Course materials
– Programming assignments In addition, guidelines to conduct

assignments related to code quality.

– Programming process

– Digital tools, either an external tool or selfmade tool .
– Teaching methods Used when a paper addresses multiple of

the instruction elements above.

• Learning outcome:

– Program quality Assessment of students’ submitted code.

– Perceptions Students’ (or teachers’) attitudes towards code

quality.

– Behaviours Programming/refactoring behaviour. Broader than

just program quality, but may include it.

– Concept understanding Assessment of students’ knowledge of

code quality concepts.

For RQ2 we also identified for each paper whether it deals with

one or more of the following domain-specific subtopics, attached

when a topic is present in the title, abstract, or keywords of the pa-

per: design patterns , refactoring , code/design smells , static analysis ,

readability , and metrics . These terms were taken from the keyword

analysis, and the term ‘readability’ was most often used to refer to

code quality by developers, educators, and students [20].

For the method (RQ3) we used categories from a recent Com-

puting Education conference (Koli Calling 2021), shown below. A

paper will only be coded by its main method.

Literature review Qualitative Case study

Descriptive/correlational Survey Quantative/other

System/Tool report Theory paper Experience report

(Quasi-)experimental Mixed methods Discussion paper

A subset of 11 papers were individually coded in all four cate-

gories by two authors, after which differences were discussed and

resolved. One author coded the remaining papers.

4 RESULTS AND DISCUSSION
The full list and coding of the 195 papers can be found online in a

searchable table
1
and in table 3. This section aggregates the findings

and highlights examples from each category.

4.1 Paper characteristics (RQ1)
Figure 2 shows the publication years of the papers. The first publica-

tion appeared in 1976, but publications were rare in the 70s and 80s.

After increasing only slightly in the 90s and 2000s, the attention for

code quality in education clearly has been rising in the last decade.

Table 2 shows the main journals (33 papers) and conference pro-

ceedings (161 papers) in which the papers were published. The most

1
www.hkeuning.nl/code-quality-mapping
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Table 2: Publication venues (conference/journal) with at
least 3 publications.

Name C/J Type #
Special Interest Group on CS Ed. (SIGCSE) C Computing Education 21
Innovation and Technology in CS Ed. (ITiCSE) C Computing Education 11
Frontiers in Education (FIE) C Engineering Education 11
Koli Calling C Computing Education 7
Australasian Computing Education (ACE) C Computing Education 7
Computer-supported education (CSEDU) C Educational Technology 5
Computing Sciences in Colleges J Computing Education 4
Visual Languages and Human-Centric Computing C Human-Centric Comp. 4
IEEE Blocks & Beyond C Block programming 3
Systems and Software J Software Engineering 3
IEEE Access J General computing 3
Learning @ Scale C Educational Technology 3

0

5

10

15

20

25

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

Figure 2: Number of publications per year.

common venues are, as expected, related to Computing Education,

however, the diversity of the remaining venues is broad. Papers on

the topic have been published in venues on human-centric comput-

ing, software engineering, games, educational technology, program

comprehension, and others.

4.2 Topics (RQ2) and methods (RQ3)
Figure 3 shows the correlation matrix of the topics and the methods.

We did not find any literature reviews or theory papers, therefore

these categories were omitted. We notice twomajor topics: program

quality (41 papers) and tools (70 papers). We havemade a distinction

between tools created by the authors (59), and the use of an external

tool (11). Figure 4 shows the correlation matrix of the topics and

code quality aspects. All aspects clearly appear in multiple papers.

4.2.1 Curriculum. We have found only eight papers that revolve

around integrating code quality into the curriculum . As an example,

Kirk et al. [102] study the prevalence of code quality in introductory

programming courses. Techapalokul and Tilevich [181] advocate

for the importance of integrating code quality in the teaching of pro-

gramming in block-based environments, even though this code is

usually not intended for practical use. Haendler and Neumann [71]

present a framework for the assessment and training of refactoring.

4.2.2 Instruction. Overall, we observe that code quality in educa-

tion revolves for a large part around digital tools . Looking at the
code quality aspects, we notice that those tools focus on several of

them, such as identifying code smells and refactoring code, often

using static analysis techniques. AutoStyle [34] gives data-driven

feedback on how to improve the style of correct programs step by

step. Other recent tools are CompareCFG [89], and a Java critiquer

for antipatterns [192]. RefacTutor [73] is a tutoring system to

learn refactoring in Java. Keuning et al. [99] present a tutoring sys-

tem in which students practice with improving functionally correct

code, with the help of automated feedback and hints.

In some tools a ‘gamification’ approach was taken. Zsigmond et

al. [208] present a system in which badges are awarded to students

who adhere to good coding standards, using SonarQube for static

analysis. Examples of badges are ‘doc ace’, ‘complexity guru’, and

‘stylish coder’. Pirate Plunder [161] is a game in which children

learn to investigate and fix code smells in a Scratch environment.

We have also found papers on tools that focus on very specific

aspects of code quality. For example, the Earthworm tool gives au-

tomated suggestions of decomposition of Python code [61]. Foobaz

gives feedback on variable names [63]. Charitsis et al. [29] present a

system based on machine learning techniques that can detect poor

function names and suggest improvements.

Examples of external (professional) tools that are used in ed-

ucation are PMD [137] and CppCheck [44]. These tools can also

be integrated in Continuous Integration practices, such as Sonar-

Qube [39]. We also noticed that selfmade tools often make use of

external tools for specific tasks. For example, PyTA is a wrapper

for pylint [110], adding custom code checks and improved error

messages targeted at students. Hyperstyle [17] uses static analy-

sers for different languages (PMD for Java, Detekt for Kotlin, and

linters for JavaScript and Python), from which checks suitable for

students are selected, categorized, and presented together with a

grade.

Tools can be used to analyse large collections of student code

(papers focussing on analysing program quality), and to support

students in learning (papers focussing on a tool for instruction),

and in some papers tools have a dual role: the authors conclude

that student programs contain many flaws (identified by some tool),

and therefore that tool could be used as an instructional aid [44].

However, it remains unclear whether these tools are suitable for

educating novices, which is addressed by several papers. Nutbrown

and Higgins [137] analyse differences between tool assessment and

human assessment, and investigate the usefulness of such tools.

We have found only six papers that discuss course materials .
Refactory [70] is a non-digital card game to learn the principles

of refactoring by resolving code smells. Other work analyses the

readability of example programs in programming books [19].

Several papers discuss programming assignments , for example, by

presenting coding guidelines [206] and code readability best prac-

tices for students [164]. Stegeman et al. have developed a rubric

for assessing the code quality of student code [177], which we

described in more detail in section 2.1. Nandigam et al. [132] de-

scribe assignments in which students are instructed to explore and

improve open source projects by measuring quality and applying

refactorings where needed. Tempero and Tu [185] use code re-

view assignments to asses how students understand the concept of

‘maintainability’.

Nine papers discuss teaching about the programming process .
Stoecklin et al. [178] describe an approach for teaching refactoring

through a series of incremental lessons. Abid et al. [2] present an

experiment about the timing of refactoring in a student project. Lu

et al. [115] introduce ‘Continuous Inspection’ of code quality in an
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Figure 3: Correlation matrix of topics and methods.

Figure 4: Correlation matrix of topics and code quality as-
pects (a paper can have more than one aspect).

educational setting. Passier et al. [145] describe how students can

build an elegant JavaScript application step by step.

Papers labelled with teaching method address multiple instruc-

tional elements. Izu et al. [86] present a teaching resource, consist-

ing of a textual explanation, a set of refactoring rules, and exercises,

to help students with identifying code smells in conditional state-

ments, and refactoring this code. Crespo et al. [37] focus on the

concept of ‘technical debt’, and compare two different teaching

methods: a penalisation (based on SonarQube metrics) and a re-

warding strategy (with the metrics shown in a leaderbord).

4.2.3 Learning outcome. Program quality is a major category in

papers, studying the programs that students write with respect

to quality characteristics. These programs are mostly analysed

automatically by a tool to identify code smells and calculate qual-

ity metrics. Examples of such large-scale studies, often analysing

thousands of programs, are a study of PMD rule violations in Java

programs [96], smells in Scratch programs [4], and indicators of

semantic style differences [43]. Cristea et al. [38] combine Formal

Concept Analysis with Pylint, to detect issues with object-oriented

design and too complex code. Groeneveld et al. [67] analyse the

correlation between code quality and creativity, finding preliminary

evidence for a larger number of issues in projects with high cre-

ativity. Grotov et al. [68] compare the coding style and complexity

of Python programs written as regular scripts to code written in

Jupyter computational notebooks. Ma and Tilevich [119] describe a

set of anti-patterns that may arise when students move from Java

to Python, but still write code in the much more verbose Java-style.

The majority of program quality studies employ quantitative,

descriptive methods, but others take a qualitative approach. Some

studies administer a survey to let teachers or students assess exam-

ple code, for example to collect suggestions from expert program-

mers [83]. Andrade and Brunet [7] studied whether students were

able to give useful feedback on the quality of other students’ code.

A few papers study a specific phenomenon related to code quality,

such as the ‘unencapsulated collection’ design smell [42]. Studies

that assess student code quality by hand are more rare. Some papers

compare code assessment by experts with code analysed by tools.

Thirteen papers focus on student behaviours with regards to

code quality. Gilson et al. [62] observed how student Scrum teams

deal with quality issues during a one-year project. Sripada and

Reddy [175] also study student activities related to quality in multi-

ple iterations of a development process. Senger et al. [171] replicate

an earlier study with more and larger student programs, in which

they run the static analyser FindBugs and study the correlation

between the warnings found and correctness or struggling.

Eleven studies are on perceptions of teachers and students, of

which five mention the term ‘readability’. Kirk et al. [104] study

high-school teachers’ ideas and needs regarding code style and

quality through interviews. Wiese et al. [199] investigate how be-

ginner programmers assess the style of example programs, which

they later replicate with a different student population [200]. Note

that this is one of two replication studies we identified in our set

of papers. An ITiCSE working group studied the differences in

perceptions of code quality between developers, teachers, and stu-

dents [20]. Fleury [53] conducted interviews with students asking

them to evaluate and compare the style of several Java programs.

All three studies about concept understanding use a (quasi-) ex-

perimental approach. Hermans and Aivaloglou [77] study the effect

of smells in Scratch code when students do comprehension tasks.

A few methods were not in our main list, such as ‘educational

design research’ for iteratively designing a code quality rubric [177].

Recently, we observed the use of machine learning techniques [101].

4.3 Languages (RQ4)
Figure 5 shows a treemapwith the languages that are targeted in the

publications. Java and Python, popular general-purpose languages

often used in teaching, are the most prevalent text-based languages

in this study. Less expected might be the substantial number of

papers dealing with programming in a block-based editor, such

as Scratch [4, 161] and Snap! [88]. These papers investigate code

smells or present learning tools. Other paradigms, such as functional

programming, hardly appear.
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Figure 5: Treemap of targeted programming languages. Lan-
guages with less than 5 papers are omitted.

Figure 6: Paper count per topic for the last 20 years, omitting
topics with less than 8 papers.

4.4 Trends (RQ5)
Figure 6 shows the trends with respect to paper topics. We focus

on the last twenty years, because we only have a small number of

papers before that. We notice that much of the program quality

research appeared in the last decade. The number of papers on tools

has grown significantly, and the use of external tools is mostly a

development from the last ten years. Studying perceptions is very

much a recent development.

4.5 Related fields (RQ6)
As discussed before, the term code quality has no crystal clear

definition. During our search for relevant publications, we regularly

came across papers with a topic on the edges of our scope, as defined

in section 3.1. In this section we list these topics, which are also

relevant for learning and teaching about code quality, and refer to

literature reviews on these topics, if available.

Software design education. While much of the research found in

this study could be related to designing software, and in our defini-

tion we mention aspects such as decomposition and encapsulation,

our mapping does not cover the broad field of teaching software

design upfront. Instead, we focus on assessing the characteristics

of the code after it has been written.

Design patterns education. We included some papers dealing

with design patterns, because they were used as a means to refactor

existing code. There are several other papers that focus on teaching

and learning of design patterns in general.

Object-orientated programming. Abstraction, decomposition, and

encapsulation are prominent topics in learning object-orientation,

and contribute greatly to the quality of design and code.

Interventions leading to improved code quality. Some interven-

tions may lead to improved code quality, but are not specifically

about code quality. Examples are pair programming, test-driven

development [168], and peer review [84].

Computational thinking. Abstraction, decomposition, and modu-

larization are important aspects of computational thinking [80].

Code similarity and plagiarism. Rather the reverse of assessing
the various ways a program can be written, several studies focus

on code similarity, code clustering, and detecting plagiarism [135].

Program comprehension. This topic deals with the cognitive pro-

cesses that programmers apply when trying to understand pro-

grams [169].

Automated assessment. Many systems for automated assessment

of student programs incorporate some kind of style feedback [143].

4.6 Threats to validity
It is non-trivial to categorise a paper by its main method and topic.

By only assigning one label, we might miss some additional topics

and methods. Aspects were identified by looking for specific terms

in the title and abstract; this simplified method might not correctly

represent an article’s main focus.

Although we performed an extensive database search followed

by snowballing, we might have discarded relevant work based on

an unclear title or abstract. Also, we have only included papers with

code quality topics as their main focus. Because code quality can

be integrated in software engineering courses, and is an element of

overall software quality, we might miss some relevant research.

5 CONCLUSION
One of the earliest papers identified in this study on teaching pro-

gramming style concludes with ‘Perhaps the more recent structured

languages such as PASCAL and C will make some of this empha-

sis less critical’ [163]. Although tools and new languages simplify

implementing good coding style, the author has not foreseen the

ongoing issue with writing high-quality code.

We have conducted a systematic mapping study of code quality

in education, which is the first overarching study on this topic. We

identified and categorised 195 papers, studying paper character-

istics, topics, domain-specific aspects, methods, and trends. Code

quality is an upcoming topic with an increasing number of stud-

ies. Papers are published in a wide variety of venues on various

topics. Its main focus has been on developing and evaluating tools

for feedback on code smells, and suggestions for improvements

and refactorings. Professional quality tools are increasingly being

used in (and adapted for) education. Another major area is quality

analysis of student code. We also observe that a growing number

of studies target block-based programming environments, empha-

sising the need to start early with this topic. We have given several

examples of the diversity in research, and shown related fields.

Because the goal of a mapping study is to give a broad overview,

a possible direction for future work is to conduct a more in-depth

literature study of a specific topic or aspect identified in this study.

We would also encourage researchers to perform studies on the top-

ics that have received little attention so far, such as integrating code

quality into the computing curricula, developing and evaluating

course materials, and studying student perceptions and behaviours.
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Table 3: Complete list of papers and coding.
CS=code smells, DP=design patterns, MT=metrics, RD=readability, RF=refactoring, SA=static analysis
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Amelioration of Teaching Strategies by Exploring CodeQuality and Submission
Behavior, Bai et al. [11]

2019 Behaviour DescrCorr C++ cs

An Agile classroom experience: Teaching TDD and refactoring, Carlson [26] 2008 ProgProcess Experience Java rf

An Applicability Study on Refactoring Principles in Reading-Based Programming
Learning, Maeta and Matsumoto [120]

2022 Materials (Q)Experim Java dp rf

An automated assessment system for analysis of coding convention violations in
Java programming assignments, Chen et al. [31]

2018 SelfmadeTool Tool Java rd

An Automatic Grading System for a High School-level Computational Thinking
Course, Tisha et al. [189]

2022 SelfmadeTool QuantOther Haskell

An empirical study of COBOL programs via a style analyzer: The benefits of good
programming style, Benander and Benander [16]

1989 Behaviour DescrCorr Cobol mt

An empirical study of iterative improvement in programming assignments, Pettit
et al. [149]

2015 Behaviour DescrCorr C++ mt

An empirical study on students’ ability to comprehend design patterns, Chatzi-
georgiou et al. [30]

2008 ConceptUnd (Q)Experim mutiple dp mt

An Incremental Model for Developing Educational Critiquing Systems: Experi-
ences with the Java Critiquer, Qiu and Riesbeck [153]

2008 SelfmadeTool DescrCorr Java
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Table 3: Complete list of papers and coding.
CS=code smells, DP=design patterns, MT=metrics, RD=readability, RF=refactoring, SA=static analysis

Title Year Topic Method Language CS DP MT RD RF SA

An innovative approach to teaching refactoring, Smith et al. [174] 2006 ProgProcess NoneUnclear generic-OO rf

An instructional aid for student programs, Robinson and Soffa [157] 1980 SelfmadeTool DescrCorr Fortran

Analysis of Learning Behavior in an Automated Programming Assessment Envi-
ronment: A CodeQuality Perspective, Chen et al. [32]

2020 Behaviour QuantOther Java

Analyzing students’ software redesign strategies, Stuurman et al. [180] 2016 Behaviour Qualitative Java dp rf

Anomaly Detection for Early Warning in Object-oriented Programming Course,
Lu et al. [114]

2021 SelfmadeTool Tool Java sa

Applying CodeQuality Detection in Online Programming Judge, Liu and Woo
[111]

2020 ExternalTool DescrCorr Python

Applying gamification to motivate students to write high-quality code in pro-
gramming assignments, Kasahara et al. [93]

2019 TeachingMethod (Q)Experim C mt

Are Undergraduate Creative Coders Clean Coders? A Correlation Study, Groen-
eveld et al. [67]

2022 ProgramQuality DescrCorr Java

ASPA: A Static Analyser to Support Learning and Continuous Feedback on Pro-
gramming Courses. An Empirical Validation, Luukkainen et al. [118]

2022 SelfmadeTool Survey Python sa

Assessing software quality of agile student projects by data-mining software
repositories, Koetter et al. [106]

2019 ProgramQuality DescrCorr unknown mt

Assessing the quality of programs: A topic for the CS2 course, Sanders and
Hartman [166]

1987 ProgramQuality Discussion generic

Assessing Understanding of Maintainability using Code Review, Tempero and Tu
[185]

2021 Assignments (Q)Experim generic

Automated critique of early programming antipatterns, Ureel II andWallace [192] 2019 SelfmadeTool Tool Java sa

Automatic analysis of functional program style, Michaelson [127] 1996 SelfmadeTool Tool SML

Automatic assessment aids for Pascal programs, Rees [155] 1982 SelfmadeTool DescrCorr Pascal

Automatic Assessment of the Design Quality of Student Python and Java Pro-
grams, Orr [142]

2022 SelfmadeTool (Q)Experim mutiple rd

Automatic detection of bad programming habits in scratch, Moreno and Robles
[130]

2014 ProgramQuality DescrCorr Scratch

Automatic grader for programming assignment using source code analyzer, Yu-
lianto and Liem [205]

2014 SelfmadeTool DescrCorr mutiple

Automatic programming assessment, Hung et al. [82] 1993 ProgramQuality DescrCorr Pascal mt

AutoStyle: Toward coding style feedback at scale, Choudhury et al. [35] 2015 SelfmadeTool Tool mutiple

Bad Smells in Scratch Projects: A Preliminary Analysis, Vargas-Alba et al. [193] 2019 ProgramQuality DescrCorr Scratch cs

Beautiful JavaScript: How to guide students to create good and elegant code,
Passier et al. [145]

2014 ProgProcess NoneUnclear JavaScript rf

Beauty and the Beast: on the readability of object-oriented example programs,
Börstler et al. [19]

2016 Materials DescrCorr Java rd

But my program runs! Discourse rules for novice programmers, Joni and Soloway
[90]

1986 Assignments NoneUnclear Pascal

Can students help themselves? An investigation of students’ feedback on the
quality of the source code, Andrade and Brunet [7]

2019 ProgramQuality Survey Python

Carrot and Stick approaches revisited when managing Technical Debt in an
educational context, Crespo et al. [37]

2021 TeachingMethod (Q)Experim Java mt

Challenges of knowledge component modeling: A software engineering case
study, Luburic et al. [117]

2022 Materials CaseStudy generic rf

Clean Code - Delivering A Lightweight Course, Chirvase et al. [33] 2021 TeachingMethod NoneUnclear Java

Clean Code and Design Educational Tool, Prokic et al. [152] 2021 SelfmadeTool Tool C# cs rd

Clean Code Tutoring: Makings of a Foundation, Luburić et al. [116] 2022 SelfmadeTool (Q)Experim C# rd rf
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Table 3: Complete list of papers and coding.
CS=code smells, DP=design patterns, MT=metrics, RD=readability, RF=refactoring, SA=static analysis

Title Year Topic Method Language CS DP MT RD RF SA

Cleangame: Gamifying the identification of code smells, Dos Santos et al. [47] 2019 SelfmadeTool (Q)Experim Java cs rf

Code Comprehension Activities in Undergraduate Software Engineering Course -
A Case Study, Sripada and Reddy [175]

2015 Behaviour DescrCorr mutiple rf

Code Perfumes: Reporting Good Code to Encourage Learners, Obermüller et al.
[138]

2021 ProgramQuality DescrCorr Scratch cs

Code Quality Defects Across Introductory Programming Topics, Effenberger and
Pelánek [49]

2022 ProgramQuality DescrCorr Python

CodeQuality Improvement for All: Automated Refactoring for Scratch, Techa-
palokul and Tilevich [184]

2019 SelfmadeTool (Q)Experim Scratch cs mt rf

Code quality issues in student programs, Keuning et al. [96] 2017 ProgramQuality DescrCorr Java

Code quality: Examining the efficacy of automated tools, Hooshangi and Das-
gupta [79]

2017 ExternalTool DescrCorr Python mt

CompareCFG: Providing Visual Feedback on CodeQuality Using Control Flow
Graphs, Jiang et al. [89]

2020 SelfmadeTool Tool Java

Comparison of software quality in the work of children and professional develop-
ers based on their classroom exercises, Balogh [12]

2015 ProgramQuality DescrCorr Java

Comprehension and application of design patterns by novice software engineers,
Lartigue and Chapman [108]

2018 ConceptUnd (Q)Experim Java dp

Dependency Analysis for Learning Class Structure for Novice Java Programmer,
Wakabayashi et al. [196]

2011 TeachingMethod CaseStudy Java rd rf

Design of e-activities for the learning of code refactoring tasks, Lopez et al. [113] 2014 TeachingMethod Experience generic rf

Design patterns in scientific software, Gardner [60] 2004 TeachingMethod NoneUnclear Java dp rf

Designing a Programming Game to Improve Children’s Procedural Abstraction
Skills in Scratch, Rose et al. [162]

2020 SelfmadeTool (Q)Experim Scratch cs

Designing a rubric for feedback on code quality in programming courses, Stege-
man et al. [177]

2016 Assignments Other generic

Detecting and Addressing Design Smells in Novice Processing Programs, Fehnker
and de Man [51]

2019 ProgramQuality DescrCorr Processing cs rf sa

Development of a refactoring learning environment, Sandalski et al. [165] 2011 SelfmadeTool Tool Java rf

Do code smells hamper novice programming? A controlled experiment on Scratch
programs, Hermans and Aivaloglou [77]

2016 ConceptUnd (Q)Experim Scratch cs

Documentation Standards for Beginning Students, Brewer [24] 1976 Assignments NoneUnclear mutiple rd

Does Static Analysis Help Software Engineering Students?, Plösch and Neumüller
[150]

2020 ExternalTool DescrCorr Java sa

Dr. Scratch: Automatic analysis of scratch projects to assess and foster computa-
tional thinking, Moreno-León et al. [131]

2015 SelfmadeTool (Q)Experim Scratch

DrPython-WEB: A Tool to Help Teaching Well-Written Python Programs, Battis-
tini et al. [15]

2022 SelfmadeTool Tool Python

Earthworm - Automated decomposition suggestions, Garg and Keen [61] 2018 SelfmadeTool Tool Python rf sa

Effectively teaching coding standards in programming, Li and Prasad [109] 2005 Perceptions Survey generic

Effects of technical debt awareness: A classroom study, Tonin et al. [190] 2017 TeachingMethod Qualitative generic

Encapsulation and Reuse as Viewed by Java Students, Fleury [53] 2001 Perceptions Qualitative Java

Enhancing Abstraction in App Inventor with Generic Event Handlers, Patton et al.
[146]

2019 SelfmadeTool Tool APPInventor cs rf

Enhancing block-based programming pedagogy to promote the culture of quality
from the ground up - a position paper, Techapalokul and Tilevich [181]

2017 Curriculum Discussion generic-block

Evaluating Code Improvements in Software Quality Course Projects, Chren et al.
[36]

2022 TeachingMethod (Q)Experim Java sa
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Table 3: Complete list of papers and coding.
CS=code smells, DP=design patterns, MT=metrics, RD=readability, RF=refactoring, SA=static analysis

Title Year Topic Method Language CS DP MT RD RF SA

Evolving an integrated curriculum for object-oriented analysis and design, Ram-
nath and Dathan [154]

2008 Curriculum Experience generic-OO dp rf

Exploration of Experimental Teaching Reforms on C Programming Design Course,
Xu et al. [204]

2021 TeachingMethod DescrCorr C

Exploring Metrics for the Analysis of Code Submissions in an Introductory Data
Science Course, Nguyen et al. [134]

2021 ProgramQuality DescrCorr Python mt

Five reasons for including technical debt in the software engineering curriculum,
Falessi and Kruchten [50]

2015 Curriculum NoneUnclear generic

Foobaz: Variable name feedback for student code at scale, Glassman et al. [63] 2015 SelfmadeTool Survey Python

Forming groups for collaborative learning in introductory computer programming
courses based on students’ programming styles: An empirical study, De Faria
et al. [41]

2006 ProgProcess (Q)Experim C mt

Fostering the comprehension of the object-oriented programming paradigm by a
virtual lab exercise, Thurner [187]

2019 TeachingMethod Experience Java

FrenchPress gives students automated feedback on Java program flaws, Blau and
Moss [18]

2015 SelfmadeTool Survey Java

Function Names: Quantifying the Relationship Between Identifiers and Their
Functionality to Improve Them, Charitsis et al. [29]

2022 SelfmadeTool Tool Java rd

Gamification based learning environment for computer science students, Zsig-
mond et al. [208]

2020 SelfmadeTool Tool mutiple sa

Helping Student Programmers Through Industrial-Strength Static Analysis: A
Replication Study, Senger et al. [171]

2022 Behaviour DescrCorr Java sa

High School Teachers’ Understanding of Code Style, Kirk et al. [105] 2020 Perceptions Qualitative generic

How junior developers deal with their technical debt?, Gilson et al. [62] 2020 Behaviour Mixed mutiple sa

How kids code and how we know: An exploratory study on the scratch repository,
Aivaloglou and Hermans [4]

2016 ProgramQuality DescrCorr Scratch cs

How teachers would help students to improve their code, Keuning et al. [97] 2019 ProgramQuality Survey generic

How to improve code quality by measurement and refactoring, Vasileva and
Schmedding [194]

2016 ProgProcess DescrCorr Java mt rf sa

Human vs. Automated coding style grading in computing education, Perretta
et al. [147]

2019 ProgramQuality DescrCorr C++ sa

Hyperstyle: A Tool for Assessing the Code Quality of Solutions to Programming
Assignments, Birillo et al. [17]

2022 SelfmadeTool Tool mutiple rd rf

Impact of aspect-oriented programming on the quality of novices’ programs: A
comparative study, Katić et al. [94]

2013 ProgramQuality (Q)Experim C# mt rd

Implementing a set of guidelines for CS majors in the production of program
code, Poole and Meyer [151]

1996 Assignments Survey Modula2

Improving Feedback on GitHub Pull Requests: A Bots Approach, Hu and
Gehringer [81]

2019 SelfmadeTool Mixed generic-OO cs sa

Improving Readability of Scratch Programs with Search-based Refactoring, Adler
et al. [3]

2021 SelfmadeTool Tool Scratch rd rf

Improving students programming quality with the continuous inspection process:
a social coding perspective, Lu et al. [115]

2019 ProgProcess (Q)Experim Java

Improving the software quality - An educational approach, Bozhikova et al. [22] 2017 SelfmadeTool Tool C# dp rf

Integrating Antipatterns into the Computer Science Curriculum, Rogers and
Pheatt [159]

2009 Curriculum NoneUnclear generic-OO dp rf

Investigating code quality tools in the context of software engineering education,
Silva et al. [172]

2017 ExternalTool DescrCorr Java mt rf

Investigating static analysis errors in student Java programs, Edwards et al. [48] 2017 ProgramQuality DescrCorr Java sa
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Table 3: Complete list of papers and coding.
CS=code smells, DP=design patterns, MT=metrics, RD=readability, RF=refactoring, SA=static analysis

Title Year Topic Method Language CS DP MT RD RF SA

Investigation of the relationship between program correctness and programming
style, Grigas [66]

1999 ProgramQuality DescrCorr mutiple mt rd

Japroch: A tool for checking programming style, Mäkelä and Leppänen [121] 2004 SelfmadeTool Tool Java

JMetricGrader: A software for evaluating student projects using design object-
oriented metrics and neural networks, Celosmanovic and Ljubovic [27]

2022 ProgramQuality QuantOther Java mt

Learning appreciation for design patterns by doing it the hard way first, Skrien
[173]

2003 TeachingMethod Experience Java dp rf

Learning software engineering principles using open source software, Nandigam
et al. [132]

2008 Assignments NoneUnclear Java mt rd rf

Learning to listen for design, Baniassad et al. [13] 2019 ProgProcess Discussion generic cs dp rf

Linking code readability, structure, and comprehension among novices: It’s com-
plicated, Wiese et al. [199]

2019 Perceptions Survey mutiple rd

Litterbox: A linter for scratch programs, Fraser et al. [55] 2021 SelfmadeTool Tool Scratch cs

Measuring static quality of student code, Breuker et al. [23] 2011 ProgramQuality DescrCorr Java mt

Measuring students’ source code quality in software development projects
through commit-impact analysis, Hamer et al. [75]

2021 Behaviour DescrCorr mutiple mt

Mind the Gap: Searching for Clarity in NCEA, Kirk et al. [103] 2021 Materials Mixed generic

Mining student CVS repositories for performance indicators, Mierle et al. [128] 2005 Behaviour DescrCorr mutiple

Modeling Learners Programming Skills andQuestion Levels Through Machine
Learning, Kim et al. [101]

2020 ProgramQuality QuantOther mutiple rd

Novice Programmers and Software Quality: Trends and Implications, Techa-
palokul and Tilevich [182]

2017 ProgramQuality DescrCorr Scratch cs

On assuring learning about code quality, Kirk et al. [102] 2020 Curriculum CaseStudy generic

On the Use of FCA Models in Static Analysis Tools to Detect Common Errors in
Programming, Cristea et al. [38]

2021 ProgramQuality DescrCorr Python sa

Pirate plunder: Game-based computational thinking using scratch blocks, Rose
et al. [160]

2018 SelfmadeTool Tool Scratch cs

Program decomposition and complexity in CS1, Keen and Mammen [95] 2015 TeachingMethod (Q)Experim C mt

Programming style in introductory programming courses, Teodosiev and Nachev
[186]

2015 Curriculum NoneUnclear generic

Promoting Code Quality via Automated Feedback on Student Submissions, Kar-
nalim and Simon [91]

2021 SelfmadeTool Tool mutiple

Qualitative aspects of students’ programs: Can we make them measurable?,
Araujo et al. [8]

2016 SelfmadeTool (Q)Experim Python

Quality Assessment of Learners’ Programs by Grouping Source Code Metrics,
Santos et al. [167]

2021 ProgramQuality QuantOther Lua mt

Readable vs.Writable Code: A Survey of Intermediate Students’ Structure Choices,
Wiese et al. [201]

2022 Perceptions Survey Java rd

RefacTutor: An Interactive Tutoring System for Software Refactoring, Haendler
et al. [73]

2020 SelfmadeTool Tool Java rf

Reflections on teaching refactoring: A tale of two projects, Abid et al. [2] 2015 ProgProcess (Q)Experim Java

ReLE - a refactoring supporting tool, Stoyanov et al. [179] 2011 SelfmadeTool Tool Java rf

Replicating novices’ struggles with coding style, Wiese et al. [200] 2019 Perceptions Survey mutiple rd

Research and practice on education of SQA at source code level, Wang et al. [197] 2011 TeachingMethod CaseStudy generic

Salient elements in novice solutions to code writing problems, Whalley et al.
[198]

2011 ProgramQuality Qualitative mutiple

Scale-driven automatic hint generation for coding style, Choudhury et al. [34] 2016 SelfmadeTool (Q)Experim mutiple
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Table 3: Complete list of papers and coding.
CS=code smells, DP=design patterns, MT=metrics, RD=readability, RF=refactoring, SA=static analysis

Title Year Topic Method Language CS DP MT RD RF SA

Serious refactoring games, Haendler and Neumann [72] 2019 Materials NoneUnclear generic-OO cs rf

Smells in block-based programming languages, Hermans et al. [78] 2016 ProgramQuality DescrCorr generic-block cs

Software analytics to support students in object-oriented programming tasks: an
empirical study, Ardimento et al. [9]

2020 ProgramQuality (Q)Experim Java

Software clones in scratch projects: On the presence of copy-and-paste in com-
putational thinking learning, Robles et al. [158]

2017 ProgramQuality DescrCorr Scratch

Software engineer education support system ALECSS utilizing devOps tools,
Ohtsuki et al. [140]

2016 SelfmadeTool DescrCorr Java sa

Software metrics as a programming training tool, Bowman and Newman [21] 1990 Assignments (Q)Experim Cobol mt

SoftwareQuality as a Subsidy for Teaching Programming, Gomes et al. [64] 2021 TeachingMethod DescrCorr Java

Software Quality Metrics Calculations for Java Programming Learning Assistant
System, Zaw et al. [207]

2020 SelfmadeTool DescrCorr Java mt

Software readability practices and the importance of their teaching, Sampaio
and Barbosa [164]

2016 Assignments Survey generic-OO cs rd

Sprinter: A Didactic Linter for Structured Programming, Alfredo et al. [6] 2022 SelfmadeTool Tool Java

Static analyses in python programming courses, Liu and Petersen [110] 2019 SelfmadeTool (Q)Experim Python sa

Static analysis of programming exercises: Fairness, usefulness and a method for
application, Nutbrown and Higgins [137]

2016 ExternalTool DescrCorr Java sa

Static analysis of source code written by novice programmers, Delev and Gjorgje-
vikj [44]

2017 ExternalTool DescrCorr C sa

Static Analysis of Students’ Java Programs, Truong et al. [191] 2004 SelfmadeTool Tool Java mt sa

Structural analysis of source code collected from programming contests, Park
et al. [144]

2014 ProgramQuality QuantOther C++

Student Refactoring Behaviour in a Programming Tutor, Keuning et al. [98] 2020 Behaviour DescrCorr Java rf

Students Projects’ Source Code Changes Impact on SoftwareQuality Through
Static Analysis, Hamer et al. [74]

2021 Behaviour DescrCorr mutiple sa

Studying Software Metrics Based on Real-World Software Systems, Liu et al.
[112]

2007 Assignments NoneUnclear generic mt

Supporting Students in C++ Programming Courses with Automatic Program
Style Assessment, Ala-Mutka et al. [5]

2004 SelfmadeTool Qualitative C++

Teacher Mate: A Support Tool for Teaching CodeQuality, de Araújo et al. [40] 2020 SelfmadeTool DescrCorr Java

Teaching code quality in high school programming courses - Understanding
teachers’ needs, Kirk et al. [104]

2022 Perceptions Qualitative generic

Teaching Defensive Programming in Java, Zaidman [206] 2004 Assignments Survey Java

Teaching design patterns using a family of games, Gómez-Martín et al. [65] 2009 Assignments Experience Java dp rf

Teaching programming style with ugly code, McMaster et al. [123] 2013 SelfmadeTool Tool Java rd

Teaching software quality via source code inspection tool, de Andrade Gomes
et al. [39]

2017 SelfmadeTool (Q)Experim mutiple

Teaching students to build well formed object-oriented methods through refac-
toring, Stoecklin et al. [178]

2007 ProgProcess NoneUnclear generic-OO rf

Teaching students to recognize and implement good coding style, Wiese et al.
[202]

2017 ProgramQuality (Q)Experim Python

Teaching the culture of quality from the ground up: Novice-tailored quality
improvement for scratch programmers, Tilevich et al. [188]

2020 SelfmadeTool Mixed Scratch rf

The effect of reporting Known issues on students’ work, Gaber and Kirsh [57] 2018 Perceptions (Q)Experim C++

The Five Million Piece Puzzle: Finding Answers in 500,000 Snap-Projects, Jatzlau
et al. [88]

2019 ProgramQuality DescrCorr Snap! cs
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Table 3: Complete list of papers and coding.
CS=code smells, DP=design patterns, MT=metrics, RD=readability, RF=refactoring, SA=static analysis

Title Year Topic Method Language CS DP MT RD RF SA

The impact of automated code quality feedback in programming education,
Jansen et al. [87]

2017 ExternalTool (Q)Experim mutiple

The LAN-simulation: A refactoring teaching example, Demeyer et al. [45] 2005 Assignments Experience Java rf

The Role of Source Code Vocabulary in Programming Teaching and Learning,
Nascimento et al. [133]

2020 SelfmadeTool (Q)Experim Python rd

The teaching of documentation and good programming style in a liberal arts
computer science program, Roth [163]

1980 TeachingMethod NoneUnclear Basic

Tool assisted identifier naming for improved software readability: An empirical
study, Relf [156]

2005 SelfmadeTool (Q)Experim Java rd

Towards an empirically validated model for assessment of code quality, Stegeman
et al. [176]

2014 Assignments Qualitative generic

Towards generalizing expert programmers’ suggestions for novice programmers,
Ichinco et al. [83]

2013 ProgramQuality Survey Alice-LG sa

Understanding recurring quality problems and their impact on code sharing in
block-based software, Techapalokul and Tilevich [183]

2017 ProgramQuality DescrCorr Scratch cs

Understanding Refactoring Tasks over Time: A Study Using Refactoring Graphs,
Brito et al. [25]

2022 Behaviour (Q)Experim Java rf

Understanding Semantic Style by Analysing Student Code, De Ruvo et al. [43] 2018 ProgramQuality DescrCorr Java

Unencapsulated collection - A teachable design smell, De Ruvo et al. [42] 2018 ProgramQuality CaseStudy generic-OO cs rf

Unreadable code in novice developers, Avila et al. [10] 2021 Perceptions Survey generic rd

Using examples as guideposts for programming exercises: Providing support
while preserving the challenge, Gaber and Kirsh [58]

2021 Assignments CaseStudy C++ rf

Using pirate plunder to develop children’s abstraction skills in scratch, Rose et al.
[161]

2019 SelfmadeTool (Q)Experim Scratch cs

Using project-based approach to teach design patterns: An Experience Report,
Karre et al. [92]

2021 TeachingMethod (Q)Experim Java cs dp rf

Using software metrics tools for maintenance decisions: a classroom exercise,
Marshall et al. [122]

1996 ExternalTool CaseStudy unknown mt

Using static analysis tools to assist student project evaluation, Molnar et al. [129] 2020 ExternalTool DescrCorr Python sa

Using Verilog LOGISCOPE to analyze student programs, Mengel and Ulans [125] 1998 ExternalTool DescrCorr C++ sa

Utilizing software engineering education support system ALECSS at an actual
software development experiment: A case study, Ohtsuki and Kakeshita [139]

2019 SelfmadeTool DescrCorr Java

You have said too much : Java-like verbosity anti-patterns in python codebases,
Ma and Tilevich [119]

2021 ProgramQuality DescrCorr Python
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