
A Systematic Mapping Study of CodeQuality in Education –
with Complete Bibliography

Hieke Keuning

Utrecht University

The Netherlands

h.w.keuning@uu.nl

Johan Jeuring

Utrecht University

The Netherlands

j.t.jeuring@uu.nl

Bastiaan Heeren

Open University of the Netherlands

The Netherlands

bastiaan.heeren@ou.nl

ABSTRACT
While functionality and correctness of code has traditionally been

the main focus of computing educators, quality aspects of code are

getting increasingly more attention. High-quality code contributes

to the maintainability of software systems, and should therefore

be a central aspect of computing education. We have conducted a

systematic mapping study to give a broad overview of the research

conducted in the field of code quality in an educational context. The

study investigates paper characteristics, topics, research methods,

and the targeted programming languages. We found 195 publica-

tions (1976–2022) on the topic in multiple databases, which we

systematically coded to answer the research questions. This paper

reports on the results and identifies developments, trends, and new

opportunities for research in the field of code quality in computing

education.

CCS CONCEPTS
• Social and professional topics → Computer science educa-
tion; Software engineering education.

KEYWORDS
programming education, software engineering education, code qual-

ity, refactoring, code smells, systematic mapping study

1 INTRODUCTION
Software quality is an important subject that Computer Science

students need to learn during their studies. The quality of code,

considering aspects such as naming, documentation, layout, control

flow and structure, contributes to the readability, comprehensibility,

and maintainability of software. Code style and quality is often dis-

cussed in the context of other software engineering topics, such as

testing, code reviewing, and quality assurance (QA) in general. Au-

tomated assessment tools and tutoring systems might give feedback

on code style, besides the correctness of solutions. Code quality has

historically not been the main focus of educators [20, 102], possibly

due to time, workload, lack of knowledge, and perceived lower

importance. However, we have noticed an increase in interest in

this topic, which we may (or may not) confirm with this study.

The goal of this Systematic Mapping Study [148] is to identify

the landscape of studies that have been conducted on code quality

in education. To our knowledge, this is the first overarching study

on this topic. We first identify publication characteristics such as

year, venue (journal/conference), followed by the topics, methods,

languages, and relevant technical aspects. This paper makes the

following contributions: (1) a large and complete list of papers on

the topic, (2) a broad overview of the research area, and (3) an

identification of research trends and new research opportunities.

This paper is an extension of a conference paper [100], and includes
the complete reference list and coding.

2 BACKGROUND
In this section we give our definition of code quality for this study,

and describe several relevant terms and aspects. We also briefly

discuss other mapping studies related to computing education.

2.1 Terms and definitions
Software quality and code quality are sometimes intertwined, how-

ever, we consider code quality to be a more specific aspect of soft-

ware quality. The ISO/IEC 25010 standard for software product qual-

ity comprises eight quality characteristics, among which functional

suitability, usability, reliability, and maintainability. The last charac-

teristic can be subdivided into modularity, reusability, analysability,

modifiability, and testability. High-quality code can contribute to

these characteristics.

Code quality is a term without a clear meaning and with various

interpretations.We choose to focus on code quality as an aspect that

appears after writing the initial program, dealing with analysing,

reflecting on, and improving the program’s static characteristics.

We are interested in properties of source code that can be observed

directly. As such, we focus on the static properties of code, as op-
posed to the dynamic properties such as correctness, test coverage,

and runtime performance. We focus on the categories from the

rubric designed by Stegeman et al. [177] to assess the quality of

student code. These categories are documentation, layout, naming,

flow, expressions, idiom, decomposition, and modularization.

Problems with these aspects are often denoted as code smells, a
term introduced by Fowler [54]. Code smells may indicate a problem

with the design of functionally correct code, affecting quality at-

tributes of the software. Examples are duplication, dead code, overly

complex code, and code with low cohesion and high coupling.

Refactoring is improving code step by step, while its function-

ality stays the same. Fowler’s [54] well-known book describes a

collection of refactorings, such as extracting a class or method,

introducing an explaining variable, pull up a field or method, and

replacing a magic number with a symbolic constant. Design patterns
are reusable solutions to common problems in code [59], and can

be used when refactoring.

To support developers with analysing and improving their code,

many tools and systems are available. Tools such as PMD, Check-

style, SonarQube, Resharper, and linters can automatically detect

and report quality issues and code smells in a program. These tools

often employ static analysis techniques to analyse code, although

ar
X

iv
:2

30
4.

13
45

1v
1

 [
cs

.S
E

]
 2

6
A

pr
 2

02
3

static analysis has a broader application and can also be used to

identify bugs and errors. There are also many tools to support the

refactoring of code, often integrated in modern IDEs.

2.2 Related work
Systematic literature reviews, which dive deep into the literature

on some topic, are increasingly being conducted for Computing

Education (CEd) topics (see section 4.5 for examples related to our

topic). A systematic mapping study aims to give a broad overview of

a particular research area, usually by categorising its publications.

While mapping studies are common in medicine, they are less

common in other fields, such as software engineering [148] and CEd.

A systematic mapping study on software testing in introductory

programming courses by Scatalon et al. [168] is the most relevant

to our study, because they also investigate a software quality aspect

in an educational context. The authors selected 293 papers and

categorised them on their topic and evaluation method.

Numerous mapping studies and literature reviews have been

conducted on topics related to code quality, such as a mapping

study on source code metrics [136], and a tertiary review on smells

and refactoring [107]. However, these studies are not aimed at code

quality in the context of education, the topic of our study.

3 METHOD
We generally follow the process from Petersen et al. [148] for doing

systematic mapping studies in software engineering. We employ a

different approach to classifying studies, as described in section 3.3.

3.1 Scope and research questions
The scope of this mapping study is:

Research on educational activities and support concern-
ing code quality (as defined in 2.1), such as: instruction,
analysis, assessment, tool support, tasks, and feedback.

Within this scope we address the following research questions:

RQ1 Where are the papers published?

RQ2 Which topics have been addressed?

RQ3 Which types of studies have been conducted?

RQ4 For which programming language is the intervention?

RQ5 What are the trends over time?

RQ6 Which other topics are closely related to code quality?

3.2 Search process
The inclusion and exclusion criteria are defined in table 1. We have

first assembled a base list of 40 papers that have been collected by

ourselves over the years and meet the criteria. Two authors have

verified that all publications on the list should be included.

3.2.1 Database search. We collected the keywords from the base

papers, removing very general terms such as ‘university’ and ‘exam-

ples’, very specific terms such as names of tools and programming

languages, and terms indicating the type of study. Based on these

keywords we experimented with various search strings, checking

whether the papers would end up in the search results. Because code

quality is defined and named in various ways, we have used several

specific terms in the search string to be as inclusive as possible.

During the process we have made the scope more clear by explicitly

defining the edge topics for RQ6, as discussed in section 4.5.

We chose three databases, Scopus, ACM and IEEE, which cover

a wide range of publications and allow searching with a complex

search string. The search includes papers up to and including 2022.

Because the final searches were conducted in December 2022, a few

papers from 2022 could be missing. The final search string is shown

below. We applied the search string to title, abstract, and keywords,

and made some adjustments to match the database requirements.

From our base list of 40 papers, 36 were found by this search.

(programm* OR code OR coding OR software)
AND ("code quality" OR "software quality"

OR "design quality" OR refactoring
OR "static analysis" OR "software metrics"
OR smell OR readability
OR "code style" OR "coding style"
OR "programming style")

AND (student OR teach* OR educat* OR curriculum OR novice)

Next, we elaborate on the process steps (summarised in figure 1).

Cleaning. One author combined the results from the three data-

bases, and removed entries that are not papers, or are too short,

and deleted duplicates based on title automatically using a script.

Pre-selection. One author filtered the list for exclusion based on

title, and/or publication source, which were obviously out of scope

because they are not about code quality and/or educational setting.

Selection. Two authors assessed a subset of the remaining list by

reading title/abstract/keywords and selecting yes/no/maybe. Both

‘yes’ and ‘maybe’ indicated that we will consult the fulltext. If only

one of the authors selected ‘no’, we discussed whether or not the

fulltext should be consulted. We had three rounds of around 100

papers each, with an agreement of 77%, 78%, and 89%, respectively.

One author assessed the remaining papers. For the fulltext selection

we also checked and discussed several papers with two authors,

after which one author selected the remaining papers. After this

step, we had a selection of 168 papers for inclusion in our study.

3.2.2 Snowballing. The ambiguity surrounding the definition of

code quality prevents constructing a search string that finds all rel-

evant research. To find additional publications, we have performed

snowballing: identifying relevant references from (backwards) and

to (forwards) a set of papers [203]. For all 168 papers found in the

previous steps, one author inspected all references from and to the

paper (the latter using Google Scholar), and selected those within

the scope. This inspection of thousands of references led to 27 ad-

ditional papers. We stopped after one round of snowballing; we

believe a second round would unlikely yield more relevant papers,

because these papers would not have cited any of the papers from

the database search. To answer RQ6, we kept a record of topics and

papers referred to during snowballing that were outside our scope.

3.3 Coding
To answer RQs 2–4, we coded each paper in four categories: topic,

aspect, method, and language. Codes are shown in a box . We use

the topics from the mapping study on testing in programming

courses by Scatalon et al. [168] as our base for RQ2 (topic), with

some small adjustments to fit our scope. We assigned one topic to

each paper, representing its main focus or goal.

2

ACM DL (687)

IEEE Xplore (588)

Scopus (2297) DB Searches
(3572)

Cleaned
(2209)

Pre-selection
(1751)

General criteria
Scope:

Title/topic/source

1st selection
(72/299)

Abstract

Final selection
(10/21)

Subtotal
(168)

Fulltext

1st selection
(211/1416)

Abstract

Final selection
(118/262)

Fulltext

Also in base (36)

From base (4)

Total 1st (283) Snowballing
(27)

Total include
(195)

References to/from

Figure 1: Paper selection process; person icon denotes one/two author(s); cog icon denotes an automated step.

Table 1: Inclusion and exclusion criteria.

Include Exclude

General Scientific publications (journal papers and conference papers) in Eng-
lish.

Posters, papers shorter than four pages, theses, technical reports, books. Papers
we cannot find. Papers preceding an extended version of a paper.

Topic Publications that describe interventions in a formal educational context
(high school/K-12, higher education).

Educational contexts aimed at professionals working in practice. Publications
on automated feedback tools that provide style feedback alongside other error
feedback, with no particular focus on code quality. Studies in which students are
(among) the participants, but with no particular focus on education. Plagiarism.
Static analysis tools used for assessing correctness etc.

Language Code and design of general-purpose programming languages, teaching
languages (e.g. Scratch).

Domain-specific languages such as SQL, low-level programming, very specific
contexts (e.g. shader programming, or block-based robot programming).

Focus A substantial part of the paper should be on code quality. Interventions that only lead to improved code quality (among others), but are
not specifically about code quality (further discussed in 4.5).

Quality Publications should be indexed in Scopus, the ACM library, or IEEE
library. Exceptions can be made for highly cited papers.

• Curriculum The integration of code quality in the computing

curriculum as a whole or in individual programming courses.

• Instruction:

– Course materials
– Programming assignments In addition, guidelines to conduct

assignments related to code quality.

– Programming process

– Digital tools, either an external tool or selfmade tool .
– Teaching methods Used when a paper addresses multiple of

the instruction elements above.

• Learning outcome:

– Program quality Assessment of students’ submitted code.

– Perceptions Students’ (or teachers’) attitudes towards code

quality.

– Behaviours Programming/refactoring behaviour. Broader than

just program quality, but may include it.

– Concept understanding Assessment of students’ knowledge of

code quality concepts.

For RQ2 we also identified for each paper whether it deals with

one or more of the following domain-specific subtopics, attached

when a topic is present in the title, abstract, or keywords of the pa-

per: design patterns , refactoring , code/design smells , static analysis ,

readability , and metrics . These terms were taken from the keyword

analysis, and the term ‘readability’ was most often used to refer to

code quality by developers, educators, and students [20].

For the method (RQ3) we used categories from a recent Com-

puting Education conference (Koli Calling 2021), shown below. A

paper will only be coded by its main method.

Literature review Qualitative Case study

Descriptive/correlational Survey Quantative/other

System/Tool report Theory paper Experience report

(Quasi-)experimental Mixed methods Discussion paper

A subset of 11 papers were individually coded in all four cate-

gories by two authors, after which differences were discussed and

resolved. One author coded the remaining papers.

4 RESULTS AND DISCUSSION
The full list and coding of the 195 papers can be found online in a

searchable table
1
and in table 3. This section aggregates the findings

and highlights examples from each category.

4.1 Paper characteristics (RQ1)
Figure 2 shows the publication years of the papers. The first publica-

tion appeared in 1976, but publications were rare in the 70s and 80s.

After increasing only slightly in the 90s and 2000s, the attention for

code quality in education clearly has been rising in the last decade.

Table 2 shows the main journals (33 papers) and conference pro-

ceedings (161 papers) in which the papers were published. The most

1
www.hkeuning.nl/code-quality-mapping

3

www.hkeuning.nl/code-quality-mapping

Table 2: Publication venues (conference/journal) with at
least 3 publications.

Name C/J Type #
Special Interest Group on CS Ed. (SIGCSE) C Computing Education 21
Innovation and Technology in CS Ed. (ITiCSE) C Computing Education 11
Frontiers in Education (FIE) C Engineering Education 11
Koli Calling C Computing Education 7
Australasian Computing Education (ACE) C Computing Education 7
Computer-supported education (CSEDU) C Educational Technology 5
Computing Sciences in Colleges J Computing Education 4
Visual Languages and Human-Centric Computing C Human-Centric Comp. 4
IEEE Blocks & Beyond C Block programming 3
Systems and Software J Software Engineering 3
IEEE Access J General computing 3
Learning @ Scale C Educational Technology 3

0

5

10

15

20

25

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

Figure 2: Number of publications per year.

common venues are, as expected, related to Computing Education,

however, the diversity of the remaining venues is broad. Papers on

the topic have been published in venues on human-centric comput-

ing, software engineering, games, educational technology, program

comprehension, and others.

4.2 Topics (RQ2) and methods (RQ3)
Figure 3 shows the correlation matrix of the topics and the methods.

We did not find any literature reviews or theory papers, therefore

these categories were omitted. We notice twomajor topics: program

quality (41 papers) and tools (70 papers). We havemade a distinction

between tools created by the authors (59), and the use of an external

tool (11). Figure 4 shows the correlation matrix of the topics and

code quality aspects. All aspects clearly appear in multiple papers.

4.2.1 Curriculum. We have found only eight papers that revolve

around integrating code quality into the curriculum . As an example,

Kirk et al. [102] study the prevalence of code quality in introductory

programming courses. Techapalokul and Tilevich [181] advocate

for the importance of integrating code quality in the teaching of pro-

gramming in block-based environments, even though this code is

usually not intended for practical use. Haendler and Neumann [71]

present a framework for the assessment and training of refactoring.

4.2.2 Instruction. Overall, we observe that code quality in educa-

tion revolves for a large part around digital tools . Looking at the
code quality aspects, we notice that those tools focus on several of

them, such as identifying code smells and refactoring code, often

using static analysis techniques. AutoStyle [34] gives data-driven

feedback on how to improve the style of correct programs step by

step. Other recent tools are CompareCFG [89], and a Java critiquer

for antipatterns [192]. RefacTutor [73] is a tutoring system to

learn refactoring in Java. Keuning et al. [99] present a tutoring sys-

tem in which students practice with improving functionally correct

code, with the help of automated feedback and hints.

In some tools a ‘gamification’ approach was taken. Zsigmond et

al. [208] present a system in which badges are awarded to students

who adhere to good coding standards, using SonarQube for static

analysis. Examples of badges are ‘doc ace’, ‘complexity guru’, and

‘stylish coder’. Pirate Plunder [161] is a game in which children

learn to investigate and fix code smells in a Scratch environment.

We have also found papers on tools that focus on very specific

aspects of code quality. For example, the Earthworm tool gives au-

tomated suggestions of decomposition of Python code [61]. Foobaz

gives feedback on variable names [63]. Charitsis et al. [29] present a

system based on machine learning techniques that can detect poor

function names and suggest improvements.

Examples of external (professional) tools that are used in ed-

ucation are PMD [137] and CppCheck [44]. These tools can also

be integrated in Continuous Integration practices, such as Sonar-

Qube [39]. We also noticed that selfmade tools often make use of

external tools for specific tasks. For example, PyTA is a wrapper

for pylint [110], adding custom code checks and improved error

messages targeted at students. Hyperstyle [17] uses static analy-

sers for different languages (PMD for Java, Detekt for Kotlin, and

linters for JavaScript and Python), from which checks suitable for

students are selected, categorized, and presented together with a

grade.

Tools can be used to analyse large collections of student code

(papers focussing on analysing program quality), and to support

students in learning (papers focussing on a tool for instruction),

and in some papers tools have a dual role: the authors conclude

that student programs contain many flaws (identified by some tool),

and therefore that tool could be used as an instructional aid [44].

However, it remains unclear whether these tools are suitable for

educating novices, which is addressed by several papers. Nutbrown

and Higgins [137] analyse differences between tool assessment and

human assessment, and investigate the usefulness of such tools.

We have found only six papers that discuss course materials .
Refactory [70] is a non-digital card game to learn the principles

of refactoring by resolving code smells. Other work analyses the

readability of example programs in programming books [19].

Several papers discuss programming assignments , for example, by

presenting coding guidelines [206] and code readability best prac-

tices for students [164]. Stegeman et al. have developed a rubric

for assessing the code quality of student code [177], which we

described in more detail in section 2.1. Nandigam et al. [132] de-

scribe assignments in which students are instructed to explore and

improve open source projects by measuring quality and applying

refactorings where needed. Tempero and Tu [185] use code re-

view assignments to asses how students understand the concept of

‘maintainability’.

Nine papers discuss teaching about the programming process .
Stoecklin et al. [178] describe an approach for teaching refactoring

through a series of incremental lessons. Abid et al. [2] present an

experiment about the timing of refactoring in a student project. Lu

et al. [115] introduce ‘Continuous Inspection’ of code quality in an

4

Figure 3: Correlation matrix of topics and methods.

Figure 4: Correlation matrix of topics and code quality as-
pects (a paper can have more than one aspect).

educational setting. Passier et al. [145] describe how students can

build an elegant JavaScript application step by step.

Papers labelled with teaching method address multiple instruc-

tional elements. Izu et al. [86] present a teaching resource, consist-

ing of a textual explanation, a set of refactoring rules, and exercises,

to help students with identifying code smells in conditional state-

ments, and refactoring this code. Crespo et al. [37] focus on the

concept of ‘technical debt’, and compare two different teaching

methods: a penalisation (based on SonarQube metrics) and a re-

warding strategy (with the metrics shown in a leaderbord).

4.2.3 Learning outcome. Program quality is a major category in

papers, studying the programs that students write with respect

to quality characteristics. These programs are mostly analysed

automatically by a tool to identify code smells and calculate qual-

ity metrics. Examples of such large-scale studies, often analysing

thousands of programs, are a study of PMD rule violations in Java

programs [96], smells in Scratch programs [4], and indicators of

semantic style differences [43]. Cristea et al. [38] combine Formal

Concept Analysis with Pylint, to detect issues with object-oriented

design and too complex code. Groeneveld et al. [67] analyse the

correlation between code quality and creativity, finding preliminary

evidence for a larger number of issues in projects with high cre-

ativity. Grotov et al. [68] compare the coding style and complexity

of Python programs written as regular scripts to code written in

Jupyter computational notebooks. Ma and Tilevich [119] describe a

set of anti-patterns that may arise when students move from Java

to Python, but still write code in the much more verbose Java-style.

The majority of program quality studies employ quantitative,

descriptive methods, but others take a qualitative approach. Some

studies administer a survey to let teachers or students assess exam-

ple code, for example to collect suggestions from expert program-

mers [83]. Andrade and Brunet [7] studied whether students were

able to give useful feedback on the quality of other students’ code.

A few papers study a specific phenomenon related to code quality,

such as the ‘unencapsulated collection’ design smell [42]. Studies

that assess student code quality by hand are more rare. Some papers

compare code assessment by experts with code analysed by tools.

Thirteen papers focus on student behaviours with regards to

code quality. Gilson et al. [62] observed how student Scrum teams

deal with quality issues during a one-year project. Sripada and

Reddy [175] also study student activities related to quality in multi-

ple iterations of a development process. Senger et al. [171] replicate

an earlier study with more and larger student programs, in which

they run the static analyser FindBugs and study the correlation

between the warnings found and correctness or struggling.

Eleven studies are on perceptions of teachers and students, of

which five mention the term ‘readability’. Kirk et al. [104] study

high-school teachers’ ideas and needs regarding code style and

quality through interviews. Wiese et al. [199] investigate how be-

ginner programmers assess the style of example programs, which

they later replicate with a different student population [200]. Note

that this is one of two replication studies we identified in our set

of papers. An ITiCSE working group studied the differences in

perceptions of code quality between developers, teachers, and stu-

dents [20]. Fleury [53] conducted interviews with students asking

them to evaluate and compare the style of several Java programs.

All three studies about concept understanding use a (quasi-) ex-

perimental approach. Hermans and Aivaloglou [77] study the effect

of smells in Scratch code when students do comprehension tasks.

A few methods were not in our main list, such as ‘educational

design research’ for iteratively designing a code quality rubric [177].

Recently, we observed the use of machine learning techniques [101].

4.3 Languages (RQ4)
Figure 5 shows a treemapwith the languages that are targeted in the

publications. Java and Python, popular general-purpose languages

often used in teaching, are the most prevalent text-based languages

in this study. Less expected might be the substantial number of

papers dealing with programming in a block-based editor, such

as Scratch [4, 161] and Snap! [88]. These papers investigate code

smells or present learning tools. Other paradigms, such as functional

programming, hardly appear.

5

Figure 5: Treemap of targeted programming languages. Lan-
guages with less than 5 papers are omitted.

Figure 6: Paper count per topic for the last 20 years, omitting
topics with less than 8 papers.

4.4 Trends (RQ5)
Figure 6 shows the trends with respect to paper topics. We focus

on the last twenty years, because we only have a small number of

papers before that. We notice that much of the program quality

research appeared in the last decade. The number of papers on tools

has grown significantly, and the use of external tools is mostly a

development from the last ten years. Studying perceptions is very

much a recent development.

4.5 Related fields (RQ6)
As discussed before, the term code quality has no crystal clear

definition. During our search for relevant publications, we regularly

came across papers with a topic on the edges of our scope, as defined

in section 3.1. In this section we list these topics, which are also

relevant for learning and teaching about code quality, and refer to

literature reviews on these topics, if available.

Software design education. While much of the research found in

this study could be related to designing software, and in our defini-

tion we mention aspects such as decomposition and encapsulation,

our mapping does not cover the broad field of teaching software

design upfront. Instead, we focus on assessing the characteristics

of the code after it has been written.

Design patterns education. We included some papers dealing

with design patterns, because they were used as a means to refactor

existing code. There are several other papers that focus on teaching

and learning of design patterns in general.

Object-orientated programming. Abstraction, decomposition, and

encapsulation are prominent topics in learning object-orientation,

and contribute greatly to the quality of design and code.

Interventions leading to improved code quality. Some interven-

tions may lead to improved code quality, but are not specifically

about code quality. Examples are pair programming, test-driven

development [168], and peer review [84].

Computational thinking. Abstraction, decomposition, and modu-

larization are important aspects of computational thinking [80].

Code similarity and plagiarism. Rather the reverse of assessing
the various ways a program can be written, several studies focus

on code similarity, code clustering, and detecting plagiarism [135].

Program comprehension. This topic deals with the cognitive pro-

cesses that programmers apply when trying to understand pro-

grams [169].

Automated assessment. Many systems for automated assessment

of student programs incorporate some kind of style feedback [143].

4.6 Threats to validity
It is non-trivial to categorise a paper by its main method and topic.

By only assigning one label, we might miss some additional topics

and methods. Aspects were identified by looking for specific terms

in the title and abstract; this simplified method might not correctly

represent an article’s main focus.

Although we performed an extensive database search followed

by snowballing, we might have discarded relevant work based on

an unclear title or abstract. Also, we have only included papers with

code quality topics as their main focus. Because code quality can

be integrated in software engineering courses, and is an element of

overall software quality, we might miss some relevant research.

5 CONCLUSION
One of the earliest papers identified in this study on teaching pro-

gramming style concludes with ‘Perhaps the more recent structured

languages such as PASCAL and C will make some of this empha-

sis less critical’ [163]. Although tools and new languages simplify

implementing good coding style, the author has not foreseen the

ongoing issue with writing high-quality code.

We have conducted a systematic mapping study of code quality

in education, which is the first overarching study on this topic. We

identified and categorised 195 papers, studying paper character-

istics, topics, domain-specific aspects, methods, and trends. Code

quality is an upcoming topic with an increasing number of stud-

ies. Papers are published in a wide variety of venues on various

topics. Its main focus has been on developing and evaluating tools

for feedback on code smells, and suggestions for improvements

and refactorings. Professional quality tools are increasingly being

used in (and adapted for) education. Another major area is quality

analysis of student code. We also observe that a growing number

of studies target block-based programming environments, empha-

sising the need to start early with this topic. We have given several

examples of the diversity in research, and shown related fields.

Because the goal of a mapping study is to give a broad overview,

a possible direction for future work is to conduct a more in-depth

literature study of a specific topic or aspect identified in this study.

We would also encourage researchers to perform studies on the top-

ics that have received little attention so far, such as integrating code

quality into the computing curricula, developing and evaluating

course materials, and studying student perceptions and behaviours.

6

REFERENCES
[1] Mohammad Abdallah and Mustafa Alrifaee. 2022. A Heuristic Tool for Measuring

Software Quality Using Program Language Standards. International Arab Journal
of Information Technology 19, 3 (2022), 314 – 322. DOI:https://doi.org/10.34028/
iajit/19/3/4

[2] S. Abid, H.A. Basit, and N. Arshad. 2015. Reflections on teaching refactoring: A

tale of two projects. Proc. of ITiCSE (2015). DOI:https://doi.org/10.1145/2729094.
2742617

[3] Felix Adler, Gordon Fraser, Eva Grundinger, Nina Korber, Simon Labrenz, Jonas

Lerchenberger, Stephan Lukasczyk, and Sebastian Schweikl. 2021. Improving

Readability of Scratch Programswith Search-based Refactoring. Proceedings - IEEE
21st International Working Conference on Source Code Analysis and Manipulation,
SCAM 2021 (2021), 120 – 130. DOI:https://doi.org/10.1109/SCAM52516.2021.

00023

[4] E. Aivaloglou and F. Hermans. 2016. How kids code and how we know: An

exploratory study on the scratch repository. Proc. of ICER (2016). DOI:https:
//doi.org/10.1145/2960310.2960325

[5] K. Ala-Mutka, T. Uimonen, and H.-M. Jarvinen. 2004. Supporting students in

C++ programming courses with automatic program style assessment. Journal of
Information Technology Education: Research 3, 1 (2004). DOI:https://doi.org/10.
28945/300

[6] Francisco Alfredo, André L Santos, and Nuno Garrido. 2022. Sprinter: A Didactic

Linter for Structured Programming. In Third International Computer Program-
ming Education Conference (ICPEC 2022). Schloss Dagstuhl-Leibniz-Zentrum für

Informatik.

[7] R. Andrade and J. Brunet. 2018. Can students help themselves? An investigation

of students’ feedback on the quality of the source code. Proc. of FIE (2018). DOI:
https://doi.org/10.1109/fie.2018.8658503

[8] E. Araujo, D. Serey, and J. Figueiredo. 2016. Qualitative aspects of students’

programs: Can we make them measurable? Proc. of FIE 2016-November (2016).

DOI:https://doi.org/10.1109/FIE.2016.7757725
[9] Pasquale Ardimento, Mario Luca Bernardi, and Marta Cimitile. 2020. Software

analytics to support students in object-oriented programming tasks: an empirical

study. IEEE Access 8 (2020), 132171–132187. DOI:https://doi.org/10.1109/access.
2020.3010172

[10] Daniel Avila, Edison Báez, Mireya Zapata, David López, Diego Zurita, and Danilo

Martínez. 2021. Unreadable code in novice developers. InWorld Conference on
Information Systems and Technologies. Springer, 46–51. DOI:https://doi.org/10.
1007/978-3-030-72654-6_5

[11] Y. Bai, T. Wang, and H. Wang. 2019. Amelioration of Teaching Strategies by

Exploring Code Quality and Submission Behavior. IEEE Access 7 (2019), 152744–
152754. DOI:https://doi.org/10.1109/access.2019.2948640

[12] G. Balogh. 2015. Comparison of software quality in the work of children and

professional developers based on their classroom exercises. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics) 9159 (2015), 36–46. DOI:https://doi.org/10.1007/
978-3-319-21413-9_3

[13] E. Baniassad, I. Beschastnikh, R. Holmes, G. Kiczales, andM. Allen. 2019. Learning

to Listen for Design. In Onward! 2019. DOI:https://doi.org/10.1145/3359591.
3359738

[14] D.J. Barnes and D. Shinners-Kennedy. 2011. A study of loop style and abstrac-

tion in pedagogic practice. Conferences in Research and Practice in Information
Technology Series 114 (2011), 29–36.

[15] Tommaso Battistini, Nicolò Isaia, Andrea Sterbini, and Marco Temperini. 2022.

DrPython-WEB: A Tool to Help TeachingWell-Written Python Programs. Lecture
Notes in Computer Science 13230 LNCS (2022), 277 – 286. DOI:https://doi.org/10.
1007/978-3-031-12429-7_20

[16] A.C. Benander and B.A. Benander. 1989. An empirical study of COBOL programs

via a style analyzer: The benefits of good programming style. The Journal of
Systems and Software 10, 4 (1989), 271–279. DOI:https://doi.org/10.1016/0164-
1212(89)90074-5

[17] A. Birillo, I. Vlasov, A. Burylov, V. Selishchev, A. Goncharov, E. Tikhomirova, N.

Vyahhi, and T. Bryksin. 2022. Hyperstyle: A Tool for Assessing the Code Quality

of Solutions to Programming Assignments. Proc. of SIGCSE (2022), 307–313. DOI:
https://doi.org/10.1145/3478431.3499294

[18] H. Blau and J.E.B. Moss. 2015. FrenchPress gives students automated feedback

on Java program flaws. Proc. of ITiCSE 2015-June (2015), 15–20. DOI:https:
//doi.org/10.1145/2729094.2742622

[19] J. Börstler, M.E. Caspersen, and M. Nordström. 2016. Beauty and the Beast: on

the readability of object-oriented example programs. Software Quality Journal
24, 2 (2016), 231–246.

[20] J. Börstler, H. Störrle, D. Toll, J. van Assema, R. Duran, S. Hooshangi, J. Jeuring,

H. Keuning, C. Kleiner, and B. MacKellar. 2018. "I Know It When I See It"

Perceptions of Code Quality. In ITiCSE Conference Working Group Reports. 70–85.
DOI:https://doi.org/10.1145/3174781.3174785

[21] B.J. Bowman and W.A. Newman. 1990. Software metrics as a programming

training tool. The Journal of Systems and Software 13, 2 (1990), 139–147. DOI:

https://doi.org/10.1016/0164-1212(90)90119-7

[22] V. Bozhikova, M. Stoeva, B. Georgiev, and D. Nikolaeva. 2017. Improving the

software quality - An educational approach. International Scientific Conference
Electronics, ET 2017 - Proceedings 2017-January (2017), 1–4. DOI:https://doi.org/
10.1109/ET.2017.8124337

[23] D.M. Breuker, J. Derriks, and J. Brunekreef. 2011. Measuring static quality of

student code. ITiCSE’11 - Proceedings of the 16th Annual Conference on Innovation
and Technology in Computer Science (2011), 13–17. DOI:https://doi.org/10.1145/
1999747.1999754

[24] R.K. Brewer. 1976. Documentation Standards for Beginning Students. In SIGCSE.
DOI:https://doi.org/10.1145/953026.803450

[25] Aline Brito, Andre Hora, and Marco Tulio Valente. 2022. Understanding

Refactoring Tasks over Time: A Study Using Refactoring Graphs. CIbSE 2022
- XXV Ibero-American Conference on Software Engineering (2022). DOI:https:
//doi.org/10.5753/cibse.2022.20982

[26] B. Carlson. 2008. An Agile classroom experience: Teaching TDD and refactoring.

Proceedings - Agile 2008 Conference (2008), 465–469. DOI:https://doi.org/10.1109/
Agile.2008.39

[27] S. Celosmanovic and V. Ljubovic. 2022. JMetricGrader: A software for eval-

uating student projects using design object-oriented metrics and neural net-

works. Jubilee International Convention on Information, Communication and
Electronic Technology, MIPRO 2022 - Proceedings (2022), 532 – 537. DOI:https:
//doi.org/10.23919/MIPRO55190.2022.9803776

[28] Laura Diana Cernau, Laura Silvia Dioşan, and Camelia Serban. 2022. A pedagogi-

cal approach in interleaving software quality concerns at an artificial intelligence

course. EASEAI 2022 - Proceedings of the 4th International Workshop on Education
through Advanced Software Engineering and Artificial Intelligence, co-located with
ESEC/FSE 2022 (2022), 18 – 24. DOI:https://doi.org/10.1145/3548660.3561332

[29] C. Charitsis, C. Piech, and J. C. Mitchell. 2022. Function Names: Quantifying the

Relationship Between Identifiers and Their Functionality to Improve Them. In

Proc. of Learning @ Scale. 93–101. DOI:https://doi.org/10.1145/3491140.3528269
[30] A. Chatzigeorgiou, N. Tsantalis, and I. Deligiannis. 2008. An empirical study on

students’ ability to comprehend design patterns. Computers and Education 51, 3

(2008), 1007–1016. DOI:https://doi.org/10.1016/j.compedu.2007.10.003

[31] H.-M. Chen, W.-H. Chen, and C.-C. Lee. 2018. An automated assessment system

for analysis of coding convention violations in Java programming assignments*.

Journal of Information Science and Engineering 34, 5 (2018), 1203–1221. DOI:
https://doi.org/10.6688/JISE.201809_34(5).0006

[32] H. M. Chen, B. A. Nguyen, Y. X. Yan, and C. R. Dow. 2020. Analysis of Learning

Behavior in an Automated Programming Assessment Environment: A Code

Quality Perspective. IEEE Access 8 (2020), 167341–167354. DOI:https://doi.org/
10.1109/ACCESS.2020.3024102

[33] Alexandru Chirvase, Laura Ruse, Mihnea Muraru, Mariana Mocanu, and Vlad

Ciobanu. 2021. Clean Code - Delivering A Lightweight Course. Proceedings
- 2021 23rd International Conference on Control Systems and Computer Science
Technologies, CSCS 2021 (2021), 420 – 423. DOI:https://doi.org/10.1109/CSCS52396.
2021.00075

[34] R.R. Choudhury, H. Yin, and A. Fox. 2016. Scale-driven automatic hint generation

for coding style. Proc. of Intelligent Tutoring Systems (2016). DOI:https://doi.org/
10.1007/978-3-319-39583-8_12

[35] R.R. Choudhury, H. Yin, J. Moghadam, and A. Fox. 2016. AutoStyle: Toward

coding style feedback at scale. Proceedings of the ACM Conference on Computer
Supported Cooperative Work, CSCW 26-February-2016 (2016), 21–24. DOI:https:
//doi.org/10.1145/2818052.2874315

[36] Stanislav Chren, Martin Macák, Bruno Rossi, and Barbora Buhnova. 2022. Evalu-

ating Code Improvements in Software Quality Course Projects. EASE ’22: Pro-
ceedings of the International Conference on Evaluation and Assessment in Software
Engineering (2022), 160 – 169. DOI:https://doi.org/10.1145/3530019.3530036

[37] Y. Crespo, A. Gonzalez-Escribano, and M. Piattini. 2021. Carrot and Stick ap-

proaches revisited when managing Technical Debt in an educational context. In

Proc. of Technical Debt. 99–108. DOI:https://doi.org/10.1109/techdebt52882.2021.
00020

[38] D. Cristea, D. Şotropa, A. Molnar, and S. Motogna. 2021. On the Use of FCA

Models in Static Analysis Tools to Detect Common Errors in Programming.

Lecture Notes in Computer Science (2021), 3–18. DOI:https://doi.org/10.1007/978-
3-030-86982-3_1

[39] P. H. de Andrade Gomes, R. E. Garcia, G. Spadon, D. M. Eler, C. Olivete, and R. C.

Messias Correia. 2017. Teaching software quality via source code inspection tool.

In Proc. of FIE. DOI:https://doi.org/10.1109/fie.2017.8190658
[40] D.M.N. de Araújo, D.M. Eler, and R.E. Garcia. 2020. Teacher Mate: A Support

Tool for Teaching Code Quality. Advances in Intelligent Systems and Computing
1134 (2020), 407–413. DOI:https://doi.org/10.1007/978-3-030-43020-7_54

[41] E.S.J. De Faria, J.M. Adán-Coello, and K. Yamanaka. 2006. Forming groups for

collaborative learning in introductory computer programming courses based

on students’ programming styles: An empirical study. Proc. of FIE (2006). DOI:
https://doi.org/10.1109/FIE.2006.322313

[42] G. De Ruvo, E. Tempero, A. Luxton-Reilly, andN. Giacaman. 2018. Unencapsulated

collection - A teachable design smell. Proc. of SIGCSE (2018). DOI:https://doi.org/

7

https://doi.org/10.34028/iajit/19/3/4
https://doi.org/10.34028/iajit/19/3/4
https://doi.org/10.1145/2729094.2742617
https://doi.org/10.1145/2729094.2742617
https://doi.org/10.1109/SCAM52516.2021.00023
https://doi.org/10.1109/SCAM52516.2021.00023
https://doi.org/10.1145/2960310.2960325
https://doi.org/10.1145/2960310.2960325
https://doi.org/10.28945/300
https://doi.org/10.28945/300
https://doi.org/10.1109/fie.2018.8658503
https://doi.org/10.1109/FIE.2016.7757725
https://doi.org/10.1109/access.2020.3010172
https://doi.org/10.1109/access.2020.3010172
https://doi.org/10.1007/978-3-030-72654-6_5
https://doi.org/10.1007/978-3-030-72654-6_5
https://doi.org/10.1109/access.2019.2948640
https://doi.org/10.1007/978-3-319-21413-9_3
https://doi.org/10.1007/978-3-319-21413-9_3
https://doi.org/10.1145/3359591.3359738
https://doi.org/10.1145/3359591.3359738
https://doi.org/10.1007/978-3-031-12429-7_20
https://doi.org/10.1007/978-3-031-12429-7_20
https://doi.org/10.1016/0164-1212(89)90074-5
https://doi.org/10.1016/0164-1212(89)90074-5
https://doi.org/10.1145/3478431.3499294
https://doi.org/10.1145/2729094.2742622
https://doi.org/10.1145/2729094.2742622
https://doi.org/10.1145/3174781.3174785
https://doi.org/10.1016/0164-1212(90)90119-7
https://doi.org/10.1109/ET.2017.8124337
https://doi.org/10.1109/ET.2017.8124337
https://doi.org/10.1145/1999747.1999754
https://doi.org/10.1145/1999747.1999754
https://doi.org/10.1145/953026.803450
https://doi.org/10.5753/cibse.2022.20982
https://doi.org/10.5753/cibse.2022.20982
https://doi.org/10.1109/Agile.2008.39
https://doi.org/10.1109/Agile.2008.39
https://doi.org/10.23919/MIPRO55190.2022.9803776
https://doi.org/10.23919/MIPRO55190.2022.9803776
https://doi.org/10.1145/3548660.3561332
https://doi.org/10.1145/3491140.3528269
https://doi.org/10.1016/j.compedu.2007.10.003
https://doi.org/10.6688/JISE.201809_34(5).0006
https://doi.org/10.1109/ACCESS.2020.3024102
https://doi.org/10.1109/ACCESS.2020.3024102
https://doi.org/10.1109/CSCS52396.2021.00075
https://doi.org/10.1109/CSCS52396.2021.00075
https://doi.org/10.1007/978-3-319-39583-8_12
https://doi.org/10.1007/978-3-319-39583-8_12
https://doi.org/10.1145/2818052.2874315
https://doi.org/10.1145/2818052.2874315
https://doi.org/10.1145/3530019.3530036
https://doi.org/10.1109/techdebt52882.2021.00020
https://doi.org/10.1109/techdebt52882.2021.00020
https://doi.org/10.1007/978-3-030-86982-3_1
https://doi.org/10.1007/978-3-030-86982-3_1
https://doi.org/10.1109/fie.2017.8190658
https://doi.org/10.1007/978-3-030-43020-7_54
https://doi.org/10.1109/FIE.2006.322313
https://doi.org/10.1145/3159450.3159469

10.1145/3159450.3159469

[43] G. De Ruvo, E. Tempero, G.B. Rowe, and N. Giacaman. 2018. Understanding

Semantic Style by Analysing Student Code. Proc. of ACE (2018). DOI:https:
//doi.org/10.1145/3160489.3160500

[44] T. Delev and D. Gjorgjevikj. 2017. Static analysis of source code written by novice

programmers. Proc. of EDUCON (2017). DOI:https://doi.org/10.1109/educon.2017.
7942942

[45] S. Demeyer, F. Van Rysselberghe, T. Gîrba, J. Ratzinger, R. Marinescu, T. Mens,

B. Du Bois, D. Janssens, S. Ducasse, M. Lanza, M. Rieger, H. Gall, and M. El-

Ramly. 2005. The LAN-simulation: A refactoring teaching example. International
Workshop on Principles of Software Evolution (IWPSE) 2005 (2005), 123–131. DOI:
https://doi.org/10.1109/IWPSE.2005.30

[46] Steffen Dick, Stefan Schulz, and Christoph Bockisch. 2022. A study on the

quality mindedness of students. Lecture Notes in Informatics (LNI), Proceedings
- Series of the Gesellschaft fur Informatik (GI) P-321 (2022), 119 – 124. DOI:
https://doi.org/10.18420/SEUH2022_12

[47] H.M. Dos Santos, E. Figueiredo, V.H.S. Durelli, L.T. Da Silva, M. Souza, and R.S.

Durelli. 2019. Cleangame: Gamifying the identification of code smells. SBES ’19:
Proceedings of the XXXIII Brazilian Symposium on Software Engineering (2019),

437–446. DOI:https://doi.org/10.1145/3350768.3352490
[48] S.H. Edwards, N. Kandru, and M.B.M. Rajagopal. 2017. Investigating static anal-

ysis errors in student Java programs. ICER 2017 - Proceedings of the 2017 ACM
Conference on International Computing Education Research (2017), 65–73. DOI:
https://doi.org/10.1145/3105726.3106182

[49] T. Effenberger and R. Pelánek. 2022. Code Quality Defects Across Introductory

Programming Topics. SIGCSE (2022), 941 – 947. DOI:https://doi.org/10.1145/
3478431.3499415

[50] Davide Falessi and Philippe Kruchten. 2015. Five reasons for including technical

debt in the software engineering curriculum. In Proceedings of the 2015 European
Conference on Software Architecture Workshops. 1–4. DOI:https://doi.org/10.1145/
2797433.2797462

[51] A. Fehnker and R. de Man. 2019. Detecting and Addressing Design Smells in

Novice Processing Programs. Comm. in Computer and Information Science (2019).
DOI:https://doi.org/10.1007/978-3-030-21151-6_24

[52] Gerhard Fischer. 1987. A critic for LISP. Technical Report. COLORADO UNIV

AT BOULDER DEPT OF COMPUTER SCIENCE. DOI:https://doi.org/10.21236/
ada446617

[53] A. Fleury. 2001. Encapsulation and reuse as viewed by java students. Proc. of
SIGCSE (2001). DOI:https://doi.org/10.1145/366413.364582

[54] M. Fowler. 1999. Refactoring: improving the design of existing code. Addison-

Wesley Professional. DOI:https://doi.org/10.1007/3-540-45672-4_31
[55] Gordon Fraser, Ute Heuer, Nina Körber, Florian Obermüller, and Ewald Wasmeier.

2021. Litterbox: A linter for scratch programs. In IEEE/ACM International Confer-
ence on Software Engineering: Software Engineering Education and Training (ICSE-
SEET). IEEE, 183–188. DOI:https://doi.org/10.1109/icse-seet52601.2021.00028

[56] N. Funabiki, T. Ogawa, N. Ishihara, M. Kuribayashi, and W. Kao. 2016. A Proposal

of Coding Rule Learning Function in Java Programming Learning Assistant

System. In International Conference on Complex, Intelligent, and Software Intensive
Systems (CISIS). 561–566. DOI:https://doi.org/10.1109/CISIS.2016.94

[57] Iris Gaber and Amir Kirsh. 2018. The Effect of Reporting Known Issues on

Students’ Work. In SIGCSE. DOI:https://doi.org/10.1145/3159450.3159456
[58] Iris Gaber and Amir Kirsh. 2021. Using examples as guideposts for programming

exercises: Providing support while preserving the challenge. ICCSE 2021 - IEEE
16th International Conference on Computer Science and Education (2021), 391 –

397. DOI:https://doi.org/10.1109/ICCSE51940.2021.9569541
[59] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides. 1994. Design Patterns: Elements

of Reusable Object-Oriented Software. Addison-Wesley Professional.

[60] H. Gardner. 2004. Design patterns in scientific software. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics) 3045 (2004), 776–785. DOI:https://doi.org/10.1007/978-3-540-
24767-8_82

[61] N. Garg andA.W. Keen. 2018. Earthworm: AutomatedDecomposition Suggestions.

In Proc. of Koli Calling. DOI:https://doi.org/10.1145/3279720.3279736
[62] F. Gilson, M. Morales-Trujillo, and M. Mathews. 2020. How junior developers

deal with their technical debt? Proc. of Technical Debt (2020). DOI:https://doi.
org/10.1145/3387906.3388624

[63] E.L. Glassman, L. Fischer, J. Scott, and R.C. Miller. 2015. Foobaz: Variable Name

Feedback for Student Code at Scale. In Proc. of User Interface Software & Techn.
DOI:https://doi.org/10.1145/2807442.2807495

[64] Pedro Henrique Gomes, Rogerio Eduardo Garcia, Danilo Medeiros Eler,

Ronaldo Celso Correia, and Celso Olivete Junior. 2021. Software Quality as

a Subsidy for Teaching Programming. Proc. of FIE 2021-October (2021). DOI:
https://doi.org/10.1109/FIE49875.2021.9637475

[65] M.A. Gómez-Martín, G. Jiménez-Díaz, and J. Arroyo. 2009. Teaching design

patterns using a family of games. Proceedings of the Conference on Integrating
Technology into Computer Science Education, ITiCSE (2009), 268–272. DOI:https:
//doi.org/10.1145/1562877.1562960

[66] G. Grigas. 1995. Investigation of the relationship between program correctness

and programming style. Informatica (Netherlands) 6, 3 (1995), 265–276. DOI:
https://doi.org/10.3233/INF-1995-6302

[67] W. Groeneveld, D. Martin, T. Poncelet, and K. Aerts. 2022. Are Undergraduate

Creative Coders Clean Coders? A Correlation Study. SIGCSE (2022), 314–320.

DOI:https://doi.org/10.1145/3478431.3499345
[68] K. Grotov, S. Titov, V. Sotnikov, Y. Golubev, and T. Bryksin. 2022. A Large-Scale

Comparison of Python Code in Jupyter Notebooks and Scripts. Proc. of Mining
Software Repositories Conference (MSR) (2022), 353–364. DOI:https://doi.org/10.
1145/3524842.3528447

[69] H. Gu and S. K. Dubey. 2014. Academic coding guideline model - OCG. In

Conference on Computing for Sustainable Global Development (INDIACom). DOI:
https://doi.org/10.1109/indiacom.2014.6828032

[70] T. Haendler. 2019. A card game for learning software-refactoring principles. Proc.
of GamiLearn (2019).

[71] T. Haendler and G. Neumann. 2019. A framework for the assessment and training

of software refactoring competences. In Proc. of KMIS. DOI:https://doi.org/10.
5220/0008350803070316

[72] Thorsten Haendler and Gustaf Neumann. 2019. Serious refactoring games. In

Proceedings of the 52nd Hawaii International Conference on System Sciences. DOI:
https://doi.org/10.24251/hicss.2019.927

[73] T. Haendler, G. Neumann, and F. Smirnov. 2020. RefacTutor: An Interactive

Tutoring System for Software Refactoring. Communications in Computer and
Information Science (2020). DOI:https://doi.org/10.1007/978-3-030-58459-7_12

[74] Sivana Hamer, Christian Quesada-L´ opez, and Marcelo Jenkins. 2021. Students

Projects’ Source Code Changes Impact on Software Quality Through Static

Analysis. Communications in Computer and Information Science 1439 CCIS (2021),
553 – 564. DOI:https://doi.org/10.1007/978-3-030-85347-1_39

[75] Sivana Hamer, Christian Quesada-López, Alexandra Martínez, and Marcelo Jenk-

ins. 2021. Measuring students’ source code quality in software development

projects through commit-impact analysis. In International Conference on Informa-
tion Technology & Systems. Springer, 100–109. DOI:https://doi.org/10.1007/978-
3-030-68418-1_11

[76] H. Hashiura, S. Matsuura, and S. Komiya. 2010. A tool for diagnosing the quality of

java program and a method for its effective utilization in education. Proceedings of
the 9th WSEAS International Conference on Applications of Computer Engineering,
ACE ’10 (2010), 276–282. https://www.scopus.com/inward/record.uri?eid=2-s2.0-

79952590241&partnerID=40&md5=9c56b08bc904d200bed0bf2ee2465b3f

[77] F. Hermans and E. Aivaloglou. 2016. Do code smells hamper novice programming?

A controlled experiment on Scratch programs. Proc. of ICPC (2016). DOI:https:
//doi.org/10.1109/icpc.2016.7503706

[78] F. Hermans, K.T. Stolee, and D. Hoepelman. 2016. Smells in block-based program-

ming languages. VL/HCC (2016). DOI:https://doi.org/10.1109/vlhcc.2016.7739666
[79] S. Hooshangi and S. Dasgupta. 2017. Code quality: Examining the

efficacy of automated tools. AMCIS 2017 - America’s Conference on
Information Systems: A Tradition of Innovation 2017-August (2017).

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048410727&

partnerID=40&md5=38e1128a67cb6f7dccb9926ddc5b0d57

[80] T. Hsu, S. Chang, and Y. Hung. 2018. How to learn and how to teach computational

thinking: Suggestions based on a review of the literature. Computers & Education
126 (2018), 296–310. DOI:https://doi.org/10.1016/j.compedu.2018.07.004

[81] Z. Hu and E.F. Gehringer. 2019. Improving Feedback on GitHub Pull Requests:

A Bots Approach. Proc. of FIE 2019-October (2019). DOI:https://doi.org/10.1109/
FIE43999.2019.9028685

[82] S.-L. Hung, I.-F. Kwok, and R. Chan. 1993. Automatic programming assessment.

Computers and Education 20, 2 (1993), 183–190. DOI:https://doi.org/10.1016/0360-
1315(93)90086-X

[83] M. Ichinco, A. Zemach, and C. Kelleher. 2013. Towards generalizing expert

programmers’ suggestions for novice programmers. VL/HCC (2013). DOI:https:
//doi.org/10.1109/vlhcc.2013.6645259

[84] T. Indriasari, A. Luxton-Reilly, and P. Denny. 2020. A review of peer code review

in higher education. ACM Trans. on Computing Education (TOCE) (2020), 1–25.
DOI:https://doi.org/10.1145/3403935

[85] Y. Ito, A. Hazeyama, Y. Morimoto, H. Kaminaga, S. Nakamura, and Y. Miyadera.

2014. A Method for Detecting Bad Smells and ITS Application to Software

Engineering Education. In Proc. of International Conference on Advanced Applied
Informatics (IIAI). 670–675. DOI:https://doi.org/10.1109/IIAI-AAI.2014.139

[86] C. Izu, P. Denny, and S. Roy. 2022. A Resource to Support Novices Refactoring

Conditional Statements. Proc. of ITiCSE (2022), 344–350. DOI:https://doi.org/10.
1145/3502718.3524810

[87] J. Jansen, A. Oprescu, and M. Bruntink. 2017. The impact of automated code

quality feedback in programming education. SATToSE (2017).

[88] S. Jatzlau, S. Seegerer, and R. Romeike. 2019. The Five Million Piece Puzzle:

Finding Answers in 500,000 Snap!-Projects. In IEEE Blocks and Beyond Workshop.
DOI:https://doi.org/10.1109/bb48857.2019.8941206

[89] L. Jiang, R. Rewcastle, P. Denny, and E. Tempero. 2020. CompareCFG: Providing

Visual Feedback on Code Quality Using Control Flow Graphs. In ITiCSE. DOI:
https://doi.org/10.1145/3341525.3387362

8

https://doi.org/10.1145/3159450.3159469
https://doi.org/10.1145/3160489.3160500
https://doi.org/10.1145/3160489.3160500
https://doi.org/10.1109/educon.2017.7942942
https://doi.org/10.1109/educon.2017.7942942
https://doi.org/10.1109/IWPSE.2005.30
https://doi.org/10.18420/SEUH2022_12
https://doi.org/10.1145/3350768.3352490
https://doi.org/10.1145/3105726.3106182
https://doi.org/10.1145/3478431.3499415
https://doi.org/10.1145/3478431.3499415
https://doi.org/10.1145/2797433.2797462
https://doi.org/10.1145/2797433.2797462
https://doi.org/10.1007/978-3-030-21151-6_24
https://doi.org/10.21236/ada446617
https://doi.org/10.21236/ada446617
https://doi.org/10.1145/366413.364582
https://doi.org/10.1007/3-540-45672-4_31
https://doi.org/10.1109/icse-seet52601.2021.00028
https://doi.org/10.1109/CISIS.2016.94
https://doi.org/10.1145/3159450.3159456
https://doi.org/10.1109/ICCSE51940.2021.9569541
https://doi.org/10.1007/978-3-540-24767-8_82
https://doi.org/10.1007/978-3-540-24767-8_82
https://doi.org/10.1145/3279720.3279736
https://doi.org/10.1145/3387906.3388624
https://doi.org/10.1145/3387906.3388624
https://doi.org/10.1145/2807442.2807495
https://doi.org/10.1109/FIE49875.2021.9637475
https://doi.org/10.1145/1562877.1562960
https://doi.org/10.1145/1562877.1562960
https://doi.org/10.3233/INF-1995-6302
https://doi.org/10.1145/3478431.3499345
https://doi.org/10.1145/3524842.3528447
https://doi.org/10.1145/3524842.3528447
https://doi.org/10.1109/indiacom.2014.6828032
https://doi.org/10.5220/0008350803070316
https://doi.org/10.5220/0008350803070316
https://doi.org/10.24251/hicss.2019.927
https://doi.org/10.1007/978-3-030-58459-7_12
https://doi.org/10.1007/978-3-030-85347-1_39
https://doi.org/10.1007/978-3-030-68418-1_11
https://doi.org/10.1007/978-3-030-68418-1_11
https://www.scopus.com/inward/record.uri?eid=2-s2.0-79952590241&partnerID=40&md5=9c56b08bc904d200bed0bf2ee2465b3f
https://www.scopus.com/inward/record.uri?eid=2-s2.0-79952590241&partnerID=40&md5=9c56b08bc904d200bed0bf2ee2465b3f
https://doi.org/10.1109/icpc.2016.7503706
https://doi.org/10.1109/icpc.2016.7503706
https://doi.org/10.1109/vlhcc.2016.7739666
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048410727&partnerID=40&md5=38e1128a67cb6f7dccb9926ddc5b0d57
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048410727&partnerID=40&md5=38e1128a67cb6f7dccb9926ddc5b0d57
https://doi.org/10.1016/j.compedu.2018.07.004
https://doi.org/10.1109/FIE43999.2019.9028685
https://doi.org/10.1109/FIE43999.2019.9028685
https://doi.org/10.1016/0360-1315(93)90086-X
https://doi.org/10.1016/0360-1315(93)90086-X
https://doi.org/10.1109/vlhcc.2013.6645259
https://doi.org/10.1109/vlhcc.2013.6645259
https://doi.org/10.1145/3403935
https://doi.org/10.1109/IIAI-AAI.2014.139
https://doi.org/10.1145/3502718.3524810
https://doi.org/10.1145/3502718.3524810
https://doi.org/10.1109/bb48857.2019.8941206
https://doi.org/10.1145/3341525.3387362

[90] Saj-Nicole A Joni and Elliot Soloway. 1986. But my program runs! Discourse

rules for novice programmers. Journal of Educational Computing Research 2, 1

(1986), 95–125. DOI:https://doi.org/10.2190/6e5w-ar7c-nx76-hut2
[91] Oscar Karnalim and Simon. 2021. Promoting Code Quality via Automated

Feedback on Student Submissions. Proc. of FIE 2021-October (2021). DOI:
https://doi.org/10.1109/FIE49875.2021.9637193

[92] Sai Anirudh Karre, Lalit Mohan Sanagavarapu, and Y. Raghu Reddy. 2021. Using

project-based approach to teach design patterns: An Experience Report. ISEC
2021: 14th Innovations in Software Engineering Conference (formerly known as India
Software Engineering Conference) (2021). DOI:https://doi.org/10.1145/3452383.
3452399

[93] R. Kasahara, K. Sakamoto, H. Washizaki, and Y. Fukazawa. 2019. Applying

gamification to motivate students to write high-quality code in programming

assignments. Proc. of ITiCSE (2019), 92–98. DOI:https://doi.org/10.1145/3304221.
3319792

[94] M. Katić, I. Botički, and K. Fertalj. 2013. Impact of aspect-oriented

programming on the quality of novices’ programs: A comparative study.

Journal of Information and Organizational Sciences 37, 1 (2013), 45–

61. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84879267673&

partnerID=40&md5=1bf982f83582bb2be46e3d6b567edf7e

[95] A. Keen and K. Mammen. 2015. Program decomposition and complexity in CS1.

SIGCSE (2015), 48–53. DOI:https://doi.org/10.1145/2676723.2677219
[96] H. Keuning, B. Heeren, and J. Jeuring. 2017. Code quality issues in student

programs. Proc. of ITiCSE (2017). DOI:https://doi.org/10.1145/3059009.3059061
[97] H. Keuning, B. Heeren, and J. Jeuring. 2019. How teachers would help students to

improve their code. ITiCSE (2019). DOI:https://doi.org/10.1145/3304221.3319780
[98] H. Keuning, B. Heeren, and J. Jeuring. 2020. Student Refactoring Behaviour in

a Programming Tutor. Proc. of Koli Calling (2020). DOI:https://doi.org/10.1145/
3428029.3428043

[99] H. Keuning, B. Heeren, and J. Jeuring. 2021. A Tutoring System to Learn Code

Refactoring. Proc. of SIGCSE (2021), 562–568. DOI:https://doi.org/10.1145/3408877.
3432526

[100] H. Keuning, J. Jeuring, and B. Heeren. 2023. A Systematic Mapping Study of

Code Quality in Education. In Proceedings of the 2023 Conference on Innovation
and Technology in Computer Science Education (ITiCSE). DOI:https://doi.org/10.
1145/3587102.3588777

[101] W. Kim, S. Rhim, J. Choi, and K. Han. 2020. Modeling Learners’ Programming

Skills and Question Levels Through Machine Learning. In Proc. of HCI. 281–288.
DOI:https://doi.org/10.1007/978-3-030-60703-6_36

[102] D. Kirk, T. Crow, A. Luxton-Reilly, and E. Tempero. 2020. On assuring learning

about code quality. Proc. of ACE (2020). DOI:https://doi.org/10.1145/3373165.
3373175

[103] Diana Kirk, Tyne Crow, Andrew Luxton-Reilly, and Ewan Tempero. 2021. Mind

the Gap: Searching for Clarity in NCEA. Proc. of ITiCSE (2021), 192 – 198. DOI:
https://doi.org/10.1145/3430665.3456318

[104] D. Kirk, T. Crow, A. Luxton-Reilly, and E. Tempero. 2022. Teaching code quality

in high school programming courses - Understanding teachers’ needs. Proc. of
ACE (2022), 36–45. DOI:https://doi.org/10.1145/3511861.3511866

[105] D. Kirk, E. Tempero, A. Luxton-Reilly, and T. Crow. 2020. High School Teachers’

Understanding of Code Style. Koli Calling (2020). DOI:https://doi.org/10.1145/
3428029.3428047

[106] F. Koetter, M. Kochanowski, M. Kintz, B. Kersjes, I. Bogicevic, and S. Wagner.

2019. Assessing software quality of agile student projects by data-mining software

repositories. CSEDU 2019 - Proceedings of the 11th International Conference on
Computer Supported Education 2 (2019), 244–251. DOI:https://doi.org/10.5220/
0007688602440251

[107] G. Lacerda, F. Petrillo, M. Pimenta, and Y. Guéhéneuc. 2020. Code smells and

refactoring: A tertiary systematic review of challenges and observations. J. of
Systems and Software (2020). DOI:https://doi.org/10.1016/j.jss.2020.110610

[108] J.W. Lartigue and R. Chapman. 2018. Comprehension and application of design

patterns by novice software engineers. Proceedings of the ACMSE 2018 Conference
2018-January (2018). DOI:https://doi.org/10.1145/3190645.3190686

[109] Xiaosong Li and Christine Prasad. 2005. Effectively teaching coding standards

in programming. In Proceedings of the 6th conference on Information technology
education. 239–244. DOI:https://doi.org/10.1145/1095714.1095770

[110] D. Liu and A. Petersen. 2019. Static analyses in python programming courses.

Proc. of SIGCSE (2019). DOI:https://doi.org/10.1145/3287324.3287503
[111] X. Liu and G. Woo. 2020. Applying Code Quality Detection in Online Program-

ming Judge. Proceedings of the 2020 5th International Conference on Intelligent Infor-
mation Technology (2020), 56–60. DOI:https://doi.org/10.1145/3385209.3385226

[112] Yi Liu, Jenq-Foung Yao, Gita Williams, and Gerald Adkins. 2007. Studying

Software Metrics Based on Real-World Software Systems. J. Comput. Sci. Coll. 22,
5 (2007), 55–61.

[113] C. Lopez, J.M. Alonso, R. Marticorena, and J.M. Maudes. 2014. Design of e-

activities for the learning of code refactoring tasks. International Symposium on
Computers in Education, SIIE (2014), 35–40. DOI:https://doi.org/10.1109/siie.2014.
7017701

[114] Shaoxiao Lu, Xu Wang, Haici Zhou, Qing Sun, Wenge Rong, and Ji Wu. 2021.

Anomaly Detection for Early Warning in Object-oriented Programming Course.

TALE 2021 - IEEE International Conference on Engineering, Technology and Educa-
tion, Proceedings (2021), 204 – 211. DOI:https://doi.org/10.1109/TALE52509.2021.
9678677

[115] Y. Lu, X. Mao, T.Wang, G. Yin, and Z. Li. 2019. Improving students’ programming

quality with the continuous inspection process: a social coding perspective.

Frontiers of Computer Science 14, 5 (2019). DOI:https://doi.org/10.1007/s11704-
019-9023-2

[116] Nikola Luburić, Dragan Vidaković, Jelena Slivka, Simona Prokić, Katarina-

Glorija Grujić, Aleksandar Kovac̆ević, and Goran Sladić. 2022. Clean Code Tutor-

ing: Makings of a Foundation. International Conference on Computer Supported
Education, CSEDU - Proceedings 1 (2022), 137 – 148. DOI:https://doi.org/10.5220/
0010800900003182

[117] Nikola Luburic, Balša Šarenac, Luka Doric, Dragan Vidakovic, Katarina-Glorija

Grujic, Aleksandar Kovacevic, and Simona Prokic. 2022. Challenges of knowledge

componentmodeling: A software engineering case study. International Conference
on Higher Education Advances 2022-June (2022), 901 – 908. DOI:https://doi.org/
10.4995/HEAd22.2022.14217

[118] Roope Luukkainen, Jussi Kasurinen, Uolevi Nikula, and Valentina Lenarduzzi.

2022. ASPA: A Static Analyser to Support Learning and Continuous Feedback

on Programming Courses. An Empirical Validation. Proceedings - International
Conference on Software Engineering (2022), 29 – 39. DOI:https://doi.org/10.1109/
ICSE-SEET55299.2022.9794188

[119] Y. Ma and E. Tilevich. 2021. You have said too much : Java-like verbosity anti-

patterns in python codebases. Proc. of the SPLASH-E Symposium (2021), 13–18.

DOI:https://doi.org/10.1145/3484272.3484960
[120] Terumasa Maeta and Shimpei Matsumoto. 2022. An Applicability Study on

Refactoring Principles in Reading-Based Programming Learning. Proceedings -
2022 12th International Congress on Advanced Applied Informatics, IIAI-AAI 2022
(2022), 264 – 267. DOI:https://doi.org/10.1109/IIAIAAI55812.2022.00060

[121] Sami Mäkelä and Ville Leppänen. 2004. Japroch: A tool for checking program-

ming style. Koli Calling (2004), 151.

[122] Andrew D. Marshall, Michael J. Katchabaw, and Michael A. Bauer. 1996. Using

software metrics tools for maintenance decisions: a classroom exercise. Pro-
ceedings of the International Symposium on Assessment of Software Tools (1996),
47–58. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029703728&

partnerID=40&md5=aac51a49622a5174db9a6af0e9dd2302

[123] K. McMaster, S. Sambasivam, and S. Wolthuis. 2013. Teaching programming

style with ugly code. ISECON (2013).

[124] S.A. Mengel and V. Yerramilli. 1999. A case study of the static analysis of the

quality of novice student programs. SIGCSE Bulletin (Association for Computing
Machinery, Special Interest Group on Computer Science Education) 31, 1 (1999),
78–82. DOI:https://doi.org/10.1145/384266.299689

[125] Susan A. Mengel and Joseph Ulans. 1998. Using Verilog LOGIS-

COPE to analyze student programs. Proc. of FIE 3 (1998), 1213–1218.

https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032308219&

partnerID=40&md5=b6bad2060c27c827312708ece3541ab5

[126] S. A. Mengel and J. V. Ulans. 1999. A case study of the analysis of novice student

programs. In Proc. of Conference on Software Engineering Education and Training.
40–49. DOI:https://doi.org/10.1109/CSEE.1999.755178

[127] Greg Michaelson. 1996. Automatic analysis of functional program style. In

Software Engineering Conference, Australian. IEEE Computer Society, 38–38.

[128] K. Mierle, S. Roweis, and G. Wilson. 2005. Mining student CVS repositories for

performance indicators. Proceedings of the 2005 International Workshop on Mining
Software Repositories, MSR 2005 (2005). DOI:https://doi.org/10.1145/1083142.
1083150

[129] A.-J. Molnar, S. Motogna, and C. Vlad. 2020. Using static analysis tools to assist

student project evaluation. EASEAI 2020 - Proceedings of the 2nd ACM SIGSOFT
International Workshop on Education through Advanced Software Engineering
and Artificial Intelligence, Co-located with ESEC/FSE 2020 (2020), 7–12. DOI:
https://doi.org/10.1145/3412453.3423195

[130] Jesús Moreno and Gregorio Robles. 2014. Automatic detection of bad program-

ming habits in scratch: A preliminary study. In Proc. of FIE. IEEE, 1–4. DOI:
https://doi.org/10.1109/fie.2014.7044055

[131] Jesús Moreno-León, Gregorio Robles, and Marcos Román-González. 2015. Dr.

Scratch: Automatic analysis of scratch projects to assess and foster computational

thinking. RED. Revista de Educación a Distancia 46 (2015), 1–23.
[132] J. Nandigam, V. N. Gudivada, and A. Hamou-Lhadj. 2008. Learning software

engineering principles using open source software. In Proc. of FiE. DOI:https:
//doi.org/10.1109/fie.2008.4720643

[133] M. Nascimento, E. Araújo, D. Serey, and J. Figueiredo. 2020. The Role of Source

Code Vocabulary in Programming Teaching and Learning. In Proc. of FIE. 1–8.
DOI:https://doi.org/10.1109/fie44824.2020.9274137

[134] Huy Nguyen, Michelle Lim, Steven Moore, Eric Nyberg, Majd Sakr, and John

Stamper. 2021. ExploringMetrics for the Analysis of Code Submissions in an Intro-

ductory Data Science Course. In LAK21: 11th International Learning Analytics and
Knowledge Conference. 632–638. DOI:https://doi.org/10.1145/3448139.3448209

9

https://doi.org/10.2190/6e5w-ar7c-nx76-hut2
https://doi.org/10.1109/FIE49875.2021.9637193
https://doi.org/10.1145/3452383.3452399
https://doi.org/10.1145/3452383.3452399
https://doi.org/10.1145/3304221.3319792
https://doi.org/10.1145/3304221.3319792
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84879267673&partnerID=40&md5=1bf982f83582bb2be46e3d6b567edf7e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84879267673&partnerID=40&md5=1bf982f83582bb2be46e3d6b567edf7e
https://doi.org/10.1145/2676723.2677219
https://doi.org/10.1145/3059009.3059061
https://doi.org/10.1145/3304221.3319780
https://doi.org/10.1145/3428029.3428043
https://doi.org/10.1145/3428029.3428043
https://doi.org/10.1145/3408877.3432526
https://doi.org/10.1145/3408877.3432526
https://doi.org/10.1145/3587102.3588777
https://doi.org/10.1145/3587102.3588777
https://doi.org/10.1007/978-3-030-60703-6_36
https://doi.org/10.1145/3373165.3373175
https://doi.org/10.1145/3373165.3373175
https://doi.org/10.1145/3430665.3456318
https://doi.org/10.1145/3511861.3511866
https://doi.org/10.1145/3428029.3428047
https://doi.org/10.1145/3428029.3428047
https://doi.org/10.5220/0007688602440251
https://doi.org/10.5220/0007688602440251
https://doi.org/10.1016/j.jss.2020.110610
https://doi.org/10.1145/3190645.3190686
https://doi.org/10.1145/1095714.1095770
https://doi.org/10.1145/3287324.3287503
https://doi.org/10.1145/3385209.3385226
https://doi.org/10.1109/siie.2014.7017701
https://doi.org/10.1109/siie.2014.7017701
https://doi.org/10.1109/TALE52509.2021.9678677
https://doi.org/10.1109/TALE52509.2021.9678677
https://doi.org/10.1007/s11704-019-9023-2
https://doi.org/10.1007/s11704-019-9023-2
https://doi.org/10.5220/0010800900003182
https://doi.org/10.5220/0010800900003182
https://doi.org/10.4995/HEAd22.2022.14217
https://doi.org/10.4995/HEAd22.2022.14217
https://doi.org/10.1109/ICSE-SEET55299.2022.9794188
https://doi.org/10.1109/ICSE-SEET55299.2022.9794188
https://doi.org/10.1145/3484272.3484960
https://doi.org/10.1109/IIAIAAI55812.2022.00060
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029703728&partnerID=40&md5=aac51a49622a5174db9a6af0e9dd2302
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029703728&partnerID=40&md5=aac51a49622a5174db9a6af0e9dd2302
https://doi.org/10.1145/384266.299689
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032308219&partnerID=40&md5=b6bad2060c27c827312708ece3541ab5
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032308219&partnerID=40&md5=b6bad2060c27c827312708ece3541ab5
https://doi.org/10.1109/CSEE.1999.755178
https://doi.org/10.1145/1083142.1083150
https://doi.org/10.1145/1083142.1083150
https://doi.org/10.1145/3412453.3423195
https://doi.org/10.1109/fie.2014.7044055
https://doi.org/10.1109/fie.2008.4720643
https://doi.org/10.1109/fie.2008.4720643
https://doi.org/10.1109/fie44824.2020.9274137
https://doi.org/10.1145/3448139.3448209

[135] M. Novak, M. Joy, and D. Kermek. 2019. Source-code similarity detection and

detection tools used in academia: a systematic review. ACM Transactions on
Computing Education (TOCE) 19, 3 (2019), 1–37. DOI:https://doi.org/10.1145/
3313290

[136] A. S. Nuñez-Varela, H. G. Pérez-Gonzalez, F. E. Martínez-Perez, and C.

Soubervielle-Montalvo. 2017. Source code metrics: A systematic mapping study.

J. Syst. and Softw. (2017). DOI:https://doi.org/10.1016/j.jss.2017.03.044
[137] S. Nutbrown and C. Higgins. 2016. Static analysis of programming exercises:

Fairness, usefulness and a method for application. Computer Science Ed. (2016).
DOI:https://doi.org/10.1080/08993408.2016.1179865

[138] Florian Obermüller, Lena Bloch, Luisa Greifenstein, Ute Heuer, and Gordon

Fraser. 2021. Code Perfumes: Reporting Good Code to Encourage Learners.

WiPSCE ’21: The 16th Workshop in Primary and Secondary Computing Education
(2021). DOI:https://doi.org/10.1145/3481312.3481346

[139] M. Ohtsuki and T. Kakeshita. 2019. Utilizing software engineering educa-

tion support system ALECSS at an actual software development experiment:

A case study. CSEDU 2019 - Proceedings of the 11th International Conference on
Computer Supported Education 2 (2019), 367–375. DOI:https://doi.org/10.5220/
0007723203670375

[140] M. Ohtsuki, K. Ohta, and T. Kakeshita. 2016. Software engineer education

support system ALECSS utilizing devOps tools. iiWAS ’16: Proceedings of the 18th
International Conference on Information Integration and Web-based Applications
and Services (2016), 209–213. DOI:https://doi.org/10.1145/3011141.3011200

[141] P.W. Oman and C.R. Cook. 1991. A programming style taxonomy. The Journal
of Systems and Software 15, 3 (1991). DOI:https://doi.org/10.1016/0164-1212(91)
90044-7

[142] J. Walker Orr. 2022. Automatic Assessment of the Design Quality of Student

Python and Java Programs. J. Comput. Sci. Coll. 38, 1 (dec 2022), 27–36.
[143] J. C. Paiva, J. P. Leal, and Á. Figueira. 2022. Automated Assessment in Com-

puter Science Education: A State-of-the-Art Review. ACM Trans. on Computing
Education (TOCE) (2022), 1–40. DOI:https://doi.org/10.1145/3513140

[144] B. Park, H. Tak, and H. G. Cho. 2014. Structural Analysis of Source Code Col-

lected from Programming Contests. In Conference on Computer and Information
Technology. DOI:https://doi.org/10.1109/cit.2014.171

[145] H. Passier, S. Stuurman, and H. Pootjes. 2014. Beautiful JavaScript: How to

Guide Students to Create Good and Elegant Code. In Proc. of CSERC. DOI:https:
//doi.org/10.1145/2691352.2691358

[146] Evan W Patton, Audrey Seo, and Franklyn Turbak. 2019. Enhancing Abstrac-

tion in App Inventor with Generic Event Handlers. In IEEE Blocks and Beyond
Workshop (B&B). IEEE, 63–71. DOI:https://doi.org/10.1109/bb48857.2019.8941193

[147] J. Perretta, W. Weimer, and A. DeOrio. 2019. Human vs. Automated coding

style grading in computing education. ASEE Annual Conference and Exposition,
Conference Proceedings (2019). https://www.scopus.com/inward/record.uri?eid=2-

s2.0-85078787387&partnerID=40&md5=3b3eb8ad58b650fb6e0546d89c60fd2f

[148] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson. 2008. Systematic mapping

studies in software engineering. In Proc. of Evaluation and Assessment in SE. DOI:
https://doi.org/10.14236/ewic/ease2008.8

[149] R. Pettit, J. Homer, R. Gee, A. Starbuck, and S. Mengel. 2015. An empirical

study of iterative improvement in programming assignments. SIGCSE 2015 -
Proceedings of the 46th ACM Technical Symposium on Computer Science Education
(2015), 410–415. DOI:https://doi.org/10.1145/2676723.2677279

[150] Reinhold Plösch and Cornelia Neumüller. 2020. Does Static Analysis Help

Software Engineering Students?. In Proceedings of the 2020 9th International
Conference on Educational and Information Technology (ICEIT 2020). Association
for Computing Machinery, New York, NY, USA, 247–253. DOI:https://doi.org/10.
1145/3383923.3383957

[151] Bernard John Poole and Timothy SMeyer. 1996. Implementing a set of guidelines

for CS majors in the production of program code. ACM SIGCSE Bulletin 28, 2

(1996), 43–48. DOI:https://doi.org/10.1145/228296.228304
[152] Simona Prokic, Katarina-Glorija Grujic, Nikola Luburic, Jelena Slivka, Alek-

sandar Kovacevic, Dragan Vidakovic, and Goran Sladic. 2021. Clean Code and

Design Educational Tool. International Convention on Information, Communica-
tion and Electronic Technology, MIPRO 2021 - Proceedings (2021), 1601 – 1606. DOI:
https://doi.org/10.23919/MIPRO52101.2021.9597196

[153] Lin Qiu and Christopher Riesbeck. 2008. An incremental model for developing

educational critiquing systems: experiences with the Java Critiquer. Journal of
Interactive Learning Research 19, 1 (2008), 119–145.

[154] Sarnath Ramnath and Brahma Dathan. 2008. Evolving an integrated curriculum

for object-oriented analysis and design. In Proc. of SIGCSE. 337–341. DOI:https:
//doi.org/10.1145/1352322.1352252

[155] Michael J Rees. 1982. Automatic assessment aids for Pascal programs. ACM
Sigplan Notices 17, 10 (1982), 33–42. DOI:https://doi.org/10.1145/948086.948088

[156] P. A. Relf. 2005. Tool assisted identifier naming for improved software readability:

an empirical study. In Symposium on Empirical Software Engineering.
[157] S.S. Robinson and M.L. Soffa. 1980. An instructional aid for student programs.

ACM SIGCSE Bulletin 12, 1 (1980), 118–129. DOI:https://doi.org/10.1145/953032.
804623

[158] Gregorio Robles, Jesús Moreno-León, Efthimia Aivaloglou, and Felienne Her-

mans. 2017. Software clones in scratch projects: On the presence of copy-and-

paste in computational thinking learning. In IEEE 11th International Workshop
on Software Clones (IWSC). IEEE, 1–7. DOI:https://doi.org/10.1109/iwsc.2017.
7880506

[159] Jason Rogers and Chuck Pheatt. 2009. Integrating Antipatterns into the Com-

puter Science Curriculum. J. Comput. Sci. Coll. 24, 5 (2009), 183–189.
[160] S. Rose, J. Habgood, and T. Jay. 2018. Pirate plunder: Game-based computational

thinking using scratch blocks. European Conference on Games-based Learning
(2018).

[161] S. Rose, J. Habgood, and T. Jay. 2019. Using Pirate Plunder to Develop Children’

s Abstraction Skills in Scratch. In Proc. of Human Factors in Comp. Sys. (CHI).
DOI:https://doi.org/10.1145/3290607.3312871

[162] S.P. Rose, M.P.J. Habgood, and T. Jay. 2020. Designing a Programming Game

to Improve Children’ s Procedural Abstraction Skills in Scratch. Journal of
Educational Computing Research 58, 7 (2020), 1372–1411. DOI:https://doi.org/10.
1177/0735633120932871

[163] R.W. Roth. 1980. The teaching of documentation and good programming style

in a liberal arts computer science program. Proc. of SIGCSE (1980). DOI:https:
//doi.org/10.1145/953032.804626

[164] I. B. Sampaio and L. Barbosa. 2016. Software readability practices and the

importance of their teaching. In Proc. of Information and Commun. Sys. (ICICS).
DOI:https://doi.org/10.1109/iacs.2016.7476069

[165] Mincho Sandalski, Asya Stoyanova-Doycheva, Ivan Popchev, and Stanimir

Stoyanov. 2011. Development of a refactoring learning environment. Cybernetics
and Information Technologies (CIT) 11, 2 (2011).

[166] Dean Sanders and Janet Hartman. 1987. Assessing the quality of programs:

A topic for the CS2 course. In Proceedings of the eighteenth SIGCSE technical
symposium on Computer science education. 92–96. DOI:https://doi.org/10.1145/
31726.31741

[167] Francisco Alan de O. Santos, Alana Oliveira, Carlos S. Soares Neto, and

Mario Meireles Teixeira. 2021. Quality Assessment of Learners’ Programs by

Grouping Source Code Metrics. International Conference on Computer Supported
Education, CSEDU - Proceedings 1 (2021), 339 – 346. DOI:https://doi.org/10.5220/
0010457003390346

[168] L.P. Scatalon, J.C. Carver, R.E. Garcia, and E.F. Barbosa. 2019. Software testing

in introductory programming courses: A systematic mapping study. In SIGCSE.
DOI:https://doi.org/10.1145/3287324.3287384

[169] C. Schulte, T. Clear, A. Taherkhani, T. Busjahn, and J. H.wohli Paterson. 2010. An

introduction to program comprehension for computer science educators. ITiCSE
working group reports (2010), 65–86. DOI:https://doi.org/10.1145/1971681.1971687

[170] R. Sekimotot and K. Kaijirlt. 2000. A diagnosis system of programming styles

using program patterns. IEICE Transactions on Information and Systems E83-
D, 4 (2000), 722–728. https://www.scopus.com/inward/record.uri?eid=2-s2.0-

0033686202&partnerID=40&md5=53746e00c4515ce4fbbe353f773029f7

[171] A. Senger, S. H. Edwards, and M. Ellis. 2022. Helping Student Programmers

Through Industrial-Strength Static Analysis: A Replication Study. Proc. of SIGCSE
(2022), 8–14. DOI:https://doi.org/10.1145/3478431.3499310

[172] D. Silva, I. Nunes, and R. Terra. 2017. Investigating code quality tools in the

context of software engineering education. Computer Applications in Engineering
Education 25, 2 (2017), 230–241. DOI:https://doi.org/10.1002/cae.21793

[173] Dale Skrien. 2003. Learning appreciation for design patterns by doing it the

hard way first. Computer Science Education 13, 4 (2003), 305–313. DOI:https:
//doi.org/10.1076/csed.13.4.305.17491

[174] S. Smith, S. Stoecklin, and C. Serino. 2007. An innovative approach to teaching

refactoring. SIGCSE (2007).

[175] S.K. Sripada and Y.R. Reddy. 2015. Code Comprehension Activities in Under-

graduate Software Engineering Course - A Case Study. In Proc. of ASE. DOI:
https://doi.org/10.1109/aswec.2015.18

[176] M. Stegeman, E. Barendsen, and S. Smetsers. 2014. Towards an empirically

validated model for assessment of code quality. Koli Calling (2014). DOI:https:
//doi.org/10.1145/2674683.2674702

[177] M. Stegeman, E. Barendsen, and S. Smetsers. 2016. Designing a rubric for

feedback on code quality in programming courses. Proc. of Koli Calling (2016).

DOI:https://doi.org/10.1145/2999541.2999555
[178] S. Stoecklin, S. Smith, and C. Serino. 2007. Teaching students to build well

formed object-oriented methods through refactoring. Proc. of SIGCSE (2007). DOI:
https://doi.org/10.1145/1227504.1227364

[179] S. Stoyanov, A. Stoyanova-Doycheva, I. Popchev, and M. Sandalski. 2011. ReLE -

a refactoring supporting tool. Comptes Rendus de L’Academie Bulgare des Sciences
64, 7 (2011), 1017–1026. https://www.scopus.com/inward/record.uri?eid=2-s2.0-

80052055171&partnerID=40&md5=073154e28cfc7142506ac67d4e668504

[180] S. Stuurman, H. Passier, and E. Barendsen. 2016. Analyzing students’ software

redesign strategies. Koli Calling (2016), 110–119. DOI:https://doi.org/10.1145/
2999541.2999559

[181] P. Techapalokul and E. Tilevich. 2017. Enhancing block-based programming

pedagogy to promote the culture of quality from the ground up a position paper.

Blocks and Beyond Workshop (2017). DOI:https://doi.org/10.1109/blocks.2017.

10

https://doi.org/10.1145/3313290
https://doi.org/10.1145/3313290
https://doi.org/10.1016/j.jss.2017.03.044
https://doi.org/10.1080/08993408.2016.1179865
https://doi.org/10.1145/3481312.3481346
https://doi.org/10.5220/0007723203670375
https://doi.org/10.5220/0007723203670375
https://doi.org/10.1145/3011141.3011200
https://doi.org/10.1016/0164-1212(91)90044-7
https://doi.org/10.1016/0164-1212(91)90044-7
https://doi.org/10.1145/3513140
https://doi.org/10.1109/cit.2014.171
https://doi.org/10.1145/2691352.2691358
https://doi.org/10.1145/2691352.2691358
https://doi.org/10.1109/bb48857.2019.8941193
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078787387&partnerID=40&md5=3b3eb8ad58b650fb6e0546d89c60fd2f
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078787387&partnerID=40&md5=3b3eb8ad58b650fb6e0546d89c60fd2f
https://doi.org/10.14236/ewic/ease2008.8
https://doi.org/10.1145/2676723.2677279
https://doi.org/10.1145/3383923.3383957
https://doi.org/10.1145/3383923.3383957
https://doi.org/10.1145/228296.228304
https://doi.org/10.23919/MIPRO52101.2021.9597196
https://doi.org/10.1145/1352322.1352252
https://doi.org/10.1145/1352322.1352252
https://doi.org/10.1145/948086.948088
https://doi.org/10.1145/953032.804623
https://doi.org/10.1145/953032.804623
https://doi.org/10.1109/iwsc.2017.7880506
https://doi.org/10.1109/iwsc.2017.7880506
https://doi.org/10.1145/3290607.3312871
https://doi.org/10.1177/0735633120932871
https://doi.org/10.1177/0735633120932871
https://doi.org/10.1145/953032.804626
https://doi.org/10.1145/953032.804626
https://doi.org/10.1109/iacs.2016.7476069
https://doi.org/10.1145/31726.31741
https://doi.org/10.1145/31726.31741
https://doi.org/10.5220/0010457003390346
https://doi.org/10.5220/0010457003390346
https://doi.org/10.1145/3287324.3287384
https://doi.org/10.1145/1971681.1971687
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033686202&partnerID=40&md5=53746e00c4515ce4fbbe353f773029f7
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033686202&partnerID=40&md5=53746e00c4515ce4fbbe353f773029f7
https://doi.org/10.1145/3478431.3499310
https://doi.org/10.1002/cae.21793
https://doi.org/10.1076/csed.13.4.305.17491
https://doi.org/10.1076/csed.13.4.305.17491
https://doi.org/10.1109/aswec.2015.18
https://doi.org/10.1145/2674683.2674702
https://doi.org/10.1145/2674683.2674702
https://doi.org/10.1145/2999541.2999555
https://doi.org/10.1145/1227504.1227364
https://www.scopus.com/inward/record.uri?eid=2-s2.0-80052055171&partnerID=40&md5=073154e28cfc7142506ac67d4e668504
https://www.scopus.com/inward/record.uri?eid=2-s2.0-80052055171&partnerID=40&md5=073154e28cfc7142506ac67d4e668504
https://doi.org/10.1145/2999541.2999559
https://doi.org/10.1145/2999541.2999559
https://doi.org/10.1109/blocks.2017.8120420

8120420

[182] P. Techapalokul and E. Tilevich. 2017. Novice Programmers and Software

Quality: Trends and Implications. CSEET (2017). DOI:https://doi.org/10.1109/
cseet.2017.47

[183] P. Techapalokul and E. Tilevich. 2017. Understanding recurring quality problems

and their impact on code sharing in block-based software. In VL/HCC. DOI:
https://doi.org/10.1109/vlhcc.2017.8103449

[184] P. Techapalokul and E. Tilevich. 2019. Code Quality Improvement for All:

Automated Refactoring for Scratch. Proceedings of IEEE Symposium on Visual
Languages and Human-Centric Computing, VL/HCC 2019-October (2019), 117–125.

DOI:https://doi.org/10.1109/VLHCC.2019.8818950
[185] E. Tempero and Y. Tu. 2021. Assessing Understanding of Maintainability using

Code Review. Proc. of ACE (2021), 40–47. DOI:https://doi.org/10.1145/3441636.
3442303

[186] T.K. Teodosiev and A.M. Nachev. 2015. Programming style in introductory

programming courses. International Journal of Applied Engineering Research 10,

10 (2015), 26103–26114. https://www.scopus.com/inward/record.uri?eid=2-s2.0-

84932106986&partnerID=40&md5=ceec3aa75bea4ec5b6e9d2ca297ee3b4

[187] Veronika Thurner. 2019. Fostering the comprehension of the object-oriented

programming paradigm by a virtual lab exercise. In Experiment International
Conference. IEEE, 137–142. DOI:https://doi.org/10.1109/expat.2019.8876484

[188] Eli Tilevich, Peeratham Techapalokul, and Simin Hall. 2020. Teaching the

culture of quality from the ground up: Novice-tailored quality improvement for

scratch programmers.. In In 2020 ASEE Annual Conference & Exposition. ASEE
Conferences.

[189] S. M. Tisha, R. A. Oregon, G. Baumgartner, F. Alegre, and J. Moreno. 2022. An

Automatic Grading System for a High School-level Computational Thinking

Course. Proc. of the Workshop on Software Engineering Education for the Next
Generation, SEENG (2022), 20–27. DOI:https://doi.org/10.1145/3528231.3528357

[190] Graziela Simone Tonin, Alfredo Goldman, Carolyn Seaman, and Diogo Pina.

2017. Effects of technical debt awareness: A classroom study. In International
Conference on Agile Software Development. Springer, Cham, 84–100. DOI:https:
//doi.org/10.1007/978-3-319-57633-6_6

[191] Nghi Truong, Paul Roe, and Peter Bancroft. 2004. Static Analysis of Students’

Java Programs. In Proceedings of the Sixth Australasian Conference on Computing
Education (ACE ’04). 317–325.

[192] L. C. Ureel II and C. Wallace. 2019. Automated Critique of Early Programming

Antipatterns. In Proc. of SIGCSE. DOI:https://doi.org/10.1145/3287324.3287463
[193] Ángela Vargas-Alba, Giovanni Maria Troiano, Quinyu Chen, Casper Harteveld,

and Gregorio Robles. 2019. Bad Smells in Scratch Projects: A Preliminary Analy-

sis.. In TACKLE@ EC-TEL.
[194] A. Vasileva and D. Schmedding. 2017. How to improve code quality by mea-

surement and refactoring. Proceedings - 2016 10th International Conference on
the Quality of Information and Communications Technology, QUATIC 2016 (2017),
131–136. DOI:https://doi.org/10.1109/QUATIC.2016.034

[195] L.J. Waguespack. 2012. A design quality learning unit in relational data modeling

based on thriving systems properties. ISECON 29 (2012).

[196] T. Wakabayashi, S. Ogata, and S. Matsuura. 2011. Dependency analysis for

learning class structure for novice Java programmer. IEEE 2nd International
Conference on Software Engineering and Service Science (2011), 532–535. DOI:
https://doi.org/10.1109/ICSESS.2011.5982370

[197] Y.-Q. Wang, Z.-Y. Qi, L.-J. Zhang, and M.-J. Song. 2011. Research and practice on

education of SQA at source code level. International Journal of Engineering Educa-
tion 27, 1 PART 1 (2011), 70–76. https://www.scopus.com/inward/record.uri?eid=

2-s2.0-79958804896&partnerID=40&md5=9bf92b1f075c79d5892b68d22eebbad5

[198] J. Whalley, T. Clear, P. Robbins, and E. Thompson. 2011. Salient

elements in novice solutions to code writing problems. Conferences in
Research and Practice in Information Technology Series 114 (2011), 37–

45. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84872811419&

partnerID=40&md5=34916932876877ba37667cb8a801f847

[199] E.S. Wiese, A.N. Rafferty, and A. Fox. 2019. Linking Code Readability, Structure,

and Comprehension among Novices: It’s Complicated. In Proc. of ICSE-SEET. DOI:
https://doi.org/10.1109/icse-seet.2019.00017

[200] E.S. Wiese, A.N. Rafferty, D.M. Kopta, and J.M. Anderson. 2019. Replicating

novices’ struggles with coding style. Proc. of ICPC (2019). DOI:https://doi.org/10.
1109/icpc.2019.00015

[201] Eliane Wiese, Anna N. Rafferty, and Jordan Pyper. 2022. Readable vs. Writable

Code: A Survey of Intermediate Students’ Structure Choices. In Proceedings of
the 53rd ACM Technical Symposium on Computer Science Education V. 1 (SIGCSE
2022). Association for Computing Machinery, New York, NY, USA, 321–327. DOI:
https://doi.org/10.1145/3478431.3499413

[202] E.S. Wiese, M. Yen, A. Chen, L.A. Santos, and A. Fox. 2017. Teaching students

to recognize and implement good coding style. L@S 2017 - Proceedings of the 4th
(2017) ACM Conference on Learning at Scale (2017), 41–50. DOI:https://doi.org/10.
1145/3051457.3051469

[203] C. Wohlin. 2014. Guidelines for snowballing in systematic literature studies and

a replication in software engineering. In Proc. of Evaluation and Assessment in

software engineering (EASE)s. 1–10. DOI:https://doi.org/10.1145/2601248.2601268
[204] Wei Xu, ChaoWu, and Jianliang Lu. 2021. Exploration of Experimental Teaching

Reforms on C Programming Design Course. Proceedings - 2021 International
Symposium on Advances in Informatics, Electronics and Education, ISAIEE 2021
(2021), 330 – 333. DOI:https://doi.org/10.1109/ISAIEE55071.2021.00086

[205] S. V. Yulianto and I. Liem. 2014. Automatic grader for programming assignment

using source code analyzer. In 2014 International Conference on Data and Software
Engineering (ICODSE). 1–4. DOI:https://doi.org/10.1109/ICODSE.2014.7062687

[206] M. Zaidman. 2004. Teaching Defensive Programming in Java. J. Comput. Sci.
Coll. 19, 3 (2004).

[207] K. K. Zaw, H. W. Hnin, K. Y. Kyaw, and N. Funabiki. 2020. Software Quality

Metrics Calculations for Java Programming Learning Assistant System. In IEEE
Conference on Computer Applications(ICCA). 1–6. DOI:https://doi.org/10.1109/
ICCA49400.2020.9022823

[208] I. Zsigmond, M.I. Bocicor, and A.-J. Molnar. 2020. Gamification based learn-

ing environment for computer science students. Proc. of Evaluation of Novel
Approaches to SE (ENASE) (2020). DOI:https://doi.org/10.5220/0009579305560563

11

https://doi.org/10.1109/blocks.2017.8120420
https://doi.org/10.1109/cseet.2017.47
https://doi.org/10.1109/cseet.2017.47
https://doi.org/10.1109/vlhcc.2017.8103449
https://doi.org/10.1109/VLHCC.2019.8818950
https://doi.org/10.1145/3441636.3442303
https://doi.org/10.1145/3441636.3442303
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84932106986&partnerID=40&md5=ceec3aa75bea4ec5b6e9d2ca297ee3b4
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84932106986&partnerID=40&md5=ceec3aa75bea4ec5b6e9d2ca297ee3b4
https://doi.org/10.1109/expat.2019.8876484
https://doi.org/10.1145/3528231.3528357
https://doi.org/10.1007/978-3-319-57633-6_6
https://doi.org/10.1007/978-3-319-57633-6_6
https://doi.org/10.1145/3287324.3287463
https://doi.org/10.1109/QUATIC.2016.034
https://doi.org/10.1109/ICSESS.2011.5982370
https://www.scopus.com/inward/record.uri?eid=2-s2.0-79958804896&partnerID=40&md5=9bf92b1f075c79d5892b68d22eebbad5
https://www.scopus.com/inward/record.uri?eid=2-s2.0-79958804896&partnerID=40&md5=9bf92b1f075c79d5892b68d22eebbad5
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84872811419&partnerID=40&md5=34916932876877ba37667cb8a801f847
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84872811419&partnerID=40&md5=34916932876877ba37667cb8a801f847
https://doi.org/10.1109/icse-seet.2019.00017
https://doi.org/10.1109/icpc.2019.00015
https://doi.org/10.1109/icpc.2019.00015
https://doi.org/10.1145/3478431.3499413
https://doi.org/10.1145/3051457.3051469
https://doi.org/10.1145/3051457.3051469
https://doi.org/10.1145/2601248.2601268
https://doi.org/10.1109/ISAIEE55071.2021.00086
https://doi.org/10.1109/ICODSE.2014.7062687
https://doi.org/10.1109/ICCA49400.2020.9022823
https://doi.org/10.1109/ICCA49400.2020.9022823
https://doi.org/10.5220/0009579305560563

Table 3: Complete list of papers and coding.
CS=code smells, DP=design patterns, MT=metrics, RD=readability, RF=refactoring, SA=static analysis

Title Year Topic Method Language CS DP MT RD RF SA

"I know it when i see it" - Perceptions of code quality, Börstler et al. [20] 2018 Perceptions DescrCorr generic rd

A card game for learning software-refactoring principles, Haendler [70] 2019 Materials Survey generic-OO cs rf

A case study of the analysis of novice student programs, Mengel and Ulans [126] 1999 ProgramQuality DescrCorr C++ mt sa

A case study of the static analysis of the quality of novice student programs,
Mengel and Yerramilli [124]

1999 ProgramQuality DescrCorr C++ mt sa

A critic for LISP, Fischer [52] 1987 SelfmadeTool Tool Lisp

A design quality learning unit in OO modeling bridging the engineer and the
artist, Waguespack [195]

2011 Curriculum NoneUnclear generic-OO mt

A diagnosis system of programming styles using program patterns, Sekimotot
and Kaijirlt [170]

2000 SelfmadeTool (Q)Experim C rd

A framework for the assessment and training of software refactoring competences,
Haendler and Neumann [71]

2019 Curriculum CaseStudy generic rf

A Heuristic Tool for Measuring Software Quality Using Program Language Stan-
dards, Abdallah and Alrifaee [1]

2022 SelfmadeTool Tool Java

A Large-Scale Comparison of Python Code in Jupyter Notebooks and Scripts,
Grotov et al. [68]

2022 ProgramQuality DescrCorr Python

A method for detecting bad smells and ITS application to software engineering
education, Ito et al. [85]

2014 SelfmadeTool Tool Java cs rf

A pedagogical approach in interleaving software quality concerns at an artificial
intelligence course, Cernau et al. [28]

2022 TeachingMethod NoneUnclear Java mt

A programming style taxonomy, Oman and Cook [141] 1991 Assignments Other generic

A Proposal of Coding Rule Learning Function in Java Programming Learning
Assistant System, Funabiki et al. [56]

2016 SelfmadeTool Survey Java rd sa

A Resource to Support Novices Refactoring Conditional Statements, Izu et al.
[86]

2022 TeachingMethod (Q)Experim C cs rd rf

A study of loop style and abstraction in pedagogic practice, Barnes and Shinners-
Kennedy [14]

2011 ProgramQuality Qualitative mutiple

A study on the quality mindedness of students, Dick et al. [46] 2022 Perceptions Survey generic

A tool for diagnosing the quality of java program and a method for its effective
utilization in education, Hashiura et al. [76]

2010 ExternalTool (Q)Experim Java rd

A Tutoring System to Learn Code Refactoring, Keuning et al. [99] 2021 SelfmadeTool Tool Java rf

Academic coding guideline model - OCG, Gu and Dubey [69] 2014 Assignments Discussion C rd

Amelioration of Teaching Strategies by Exploring CodeQuality and Submission
Behavior, Bai et al. [11]

2019 Behaviour DescrCorr C++ cs

An Agile classroom experience: Teaching TDD and refactoring, Carlson [26] 2008 ProgProcess Experience Java rf

An Applicability Study on Refactoring Principles in Reading-Based Programming
Learning, Maeta and Matsumoto [120]

2022 Materials (Q)Experim Java dp rf

An automated assessment system for analysis of coding convention violations in
Java programming assignments, Chen et al. [31]

2018 SelfmadeTool Tool Java rd

An Automatic Grading System for a High School-level Computational Thinking
Course, Tisha et al. [189]

2022 SelfmadeTool QuantOther Haskell

An empirical study of COBOL programs via a style analyzer: The benefits of good
programming style, Benander and Benander [16]

1989 Behaviour DescrCorr Cobol mt

An empirical study of iterative improvement in programming assignments, Pettit
et al. [149]

2015 Behaviour DescrCorr C++ mt

An empirical study on students’ ability to comprehend design patterns, Chatzi-
georgiou et al. [30]

2008 ConceptUnd (Q)Experim mutiple dp mt

An Incremental Model for Developing Educational Critiquing Systems: Experi-
ences with the Java Critiquer, Qiu and Riesbeck [153]

2008 SelfmadeTool DescrCorr Java

12

Table 3: Complete list of papers and coding.
CS=code smells, DP=design patterns, MT=metrics, RD=readability, RF=refactoring, SA=static analysis

Title Year Topic Method Language CS DP MT RD RF SA

An innovative approach to teaching refactoring, Smith et al. [174] 2006 ProgProcess NoneUnclear generic-OO rf

An instructional aid for student programs, Robinson and Soffa [157] 1980 SelfmadeTool DescrCorr Fortran

Analysis of Learning Behavior in an Automated Programming Assessment Envi-
ronment: A CodeQuality Perspective, Chen et al. [32]

2020 Behaviour QuantOther Java

Analyzing students’ software redesign strategies, Stuurman et al. [180] 2016 Behaviour Qualitative Java dp rf

Anomaly Detection for Early Warning in Object-oriented Programming Course,
Lu et al. [114]

2021 SelfmadeTool Tool Java sa

Applying CodeQuality Detection in Online Programming Judge, Liu and Woo
[111]

2020 ExternalTool DescrCorr Python

Applying gamification to motivate students to write high-quality code in pro-
gramming assignments, Kasahara et al. [93]

2019 TeachingMethod (Q)Experim C mt

Are Undergraduate Creative Coders Clean Coders? A Correlation Study, Groen-
eveld et al. [67]

2022 ProgramQuality DescrCorr Java

ASPA: A Static Analyser to Support Learning and Continuous Feedback on Pro-
gramming Courses. An Empirical Validation, Luukkainen et al. [118]

2022 SelfmadeTool Survey Python sa

Assessing software quality of agile student projects by data-mining software
repositories, Koetter et al. [106]

2019 ProgramQuality DescrCorr unknown mt

Assessing the quality of programs: A topic for the CS2 course, Sanders and
Hartman [166]

1987 ProgramQuality Discussion generic

Assessing Understanding of Maintainability using Code Review, Tempero and Tu
[185]

2021 Assignments (Q)Experim generic

Automated critique of early programming antipatterns, Ureel II andWallace [192] 2019 SelfmadeTool Tool Java sa

Automatic analysis of functional program style, Michaelson [127] 1996 SelfmadeTool Tool SML

Automatic assessment aids for Pascal programs, Rees [155] 1982 SelfmadeTool DescrCorr Pascal

Automatic Assessment of the Design Quality of Student Python and Java Pro-
grams, Orr [142]

2022 SelfmadeTool (Q)Experim mutiple rd

Automatic detection of bad programming habits in scratch, Moreno and Robles
[130]

2014 ProgramQuality DescrCorr Scratch

Automatic grader for programming assignment using source code analyzer, Yu-
lianto and Liem [205]

2014 SelfmadeTool DescrCorr mutiple

Automatic programming assessment, Hung et al. [82] 1993 ProgramQuality DescrCorr Pascal mt

AutoStyle: Toward coding style feedback at scale, Choudhury et al. [35] 2015 SelfmadeTool Tool mutiple

Bad Smells in Scratch Projects: A Preliminary Analysis, Vargas-Alba et al. [193] 2019 ProgramQuality DescrCorr Scratch cs

Beautiful JavaScript: How to guide students to create good and elegant code,
Passier et al. [145]

2014 ProgProcess NoneUnclear JavaScript rf

Beauty and the Beast: on the readability of object-oriented example programs,
Börstler et al. [19]

2016 Materials DescrCorr Java rd

But my program runs! Discourse rules for novice programmers, Joni and Soloway
[90]

1986 Assignments NoneUnclear Pascal

Can students help themselves? An investigation of students’ feedback on the
quality of the source code, Andrade and Brunet [7]

2019 ProgramQuality Survey Python

Carrot and Stick approaches revisited when managing Technical Debt in an
educational context, Crespo et al. [37]

2021 TeachingMethod (Q)Experim Java mt

Challenges of knowledge component modeling: A software engineering case
study, Luburic et al. [117]

2022 Materials CaseStudy generic rf

Clean Code - Delivering A Lightweight Course, Chirvase et al. [33] 2021 TeachingMethod NoneUnclear Java

Clean Code and Design Educational Tool, Prokic et al. [152] 2021 SelfmadeTool Tool C# cs rd

Clean Code Tutoring: Makings of a Foundation, Luburić et al. [116] 2022 SelfmadeTool (Q)Experim C# rd rf

13

Table 3: Complete list of papers and coding.
CS=code smells, DP=design patterns, MT=metrics, RD=readability, RF=refactoring, SA=static analysis

Title Year Topic Method Language CS DP MT RD RF SA

Cleangame: Gamifying the identification of code smells, Dos Santos et al. [47] 2019 SelfmadeTool (Q)Experim Java cs rf

Code Comprehension Activities in Undergraduate Software Engineering Course -
A Case Study, Sripada and Reddy [175]

2015 Behaviour DescrCorr mutiple rf

Code Perfumes: Reporting Good Code to Encourage Learners, Obermüller et al.
[138]

2021 ProgramQuality DescrCorr Scratch cs

Code Quality Defects Across Introductory Programming Topics, Effenberger and
Pelánek [49]

2022 ProgramQuality DescrCorr Python

CodeQuality Improvement for All: Automated Refactoring for Scratch, Techa-
palokul and Tilevich [184]

2019 SelfmadeTool (Q)Experim Scratch cs mt rf

Code quality issues in student programs, Keuning et al. [96] 2017 ProgramQuality DescrCorr Java

Code quality: Examining the efficacy of automated tools, Hooshangi and Das-
gupta [79]

2017 ExternalTool DescrCorr Python mt

CompareCFG: Providing Visual Feedback on CodeQuality Using Control Flow
Graphs, Jiang et al. [89]

2020 SelfmadeTool Tool Java

Comparison of software quality in the work of children and professional develop-
ers based on their classroom exercises, Balogh [12]

2015 ProgramQuality DescrCorr Java

Comprehension and application of design patterns by novice software engineers,
Lartigue and Chapman [108]

2018 ConceptUnd (Q)Experim Java dp

Dependency Analysis for Learning Class Structure for Novice Java Programmer,
Wakabayashi et al. [196]

2011 TeachingMethod CaseStudy Java rd rf

Design of e-activities for the learning of code refactoring tasks, Lopez et al. [113] 2014 TeachingMethod Experience generic rf

Design patterns in scientific software, Gardner [60] 2004 TeachingMethod NoneUnclear Java dp rf

Designing a Programming Game to Improve Children’s Procedural Abstraction
Skills in Scratch, Rose et al. [162]

2020 SelfmadeTool (Q)Experim Scratch cs

Designing a rubric for feedback on code quality in programming courses, Stege-
man et al. [177]

2016 Assignments Other generic

Detecting and Addressing Design Smells in Novice Processing Programs, Fehnker
and de Man [51]

2019 ProgramQuality DescrCorr Processing cs rf sa

Development of a refactoring learning environment, Sandalski et al. [165] 2011 SelfmadeTool Tool Java rf

Do code smells hamper novice programming? A controlled experiment on Scratch
programs, Hermans and Aivaloglou [77]

2016 ConceptUnd (Q)Experim Scratch cs

Documentation Standards for Beginning Students, Brewer [24] 1976 Assignments NoneUnclear mutiple rd

Does Static Analysis Help Software Engineering Students?, Plösch and Neumüller
[150]

2020 ExternalTool DescrCorr Java sa

Dr. Scratch: Automatic analysis of scratch projects to assess and foster computa-
tional thinking, Moreno-León et al. [131]

2015 SelfmadeTool (Q)Experim Scratch

DrPython-WEB: A Tool to Help Teaching Well-Written Python Programs, Battis-
tini et al. [15]

2022 SelfmadeTool Tool Python

Earthworm - Automated decomposition suggestions, Garg and Keen [61] 2018 SelfmadeTool Tool Python rf sa

Effectively teaching coding standards in programming, Li and Prasad [109] 2005 Perceptions Survey generic

Effects of technical debt awareness: A classroom study, Tonin et al. [190] 2017 TeachingMethod Qualitative generic

Encapsulation and Reuse as Viewed by Java Students, Fleury [53] 2001 Perceptions Qualitative Java

Enhancing Abstraction in App Inventor with Generic Event Handlers, Patton et al.
[146]

2019 SelfmadeTool Tool APPInventor cs rf

Enhancing block-based programming pedagogy to promote the culture of quality
from the ground up - a position paper, Techapalokul and Tilevich [181]

2017 Curriculum Discussion generic-block

Evaluating Code Improvements in Software Quality Course Projects, Chren et al.
[36]

2022 TeachingMethod (Q)Experim Java sa

14

Table 3: Complete list of papers and coding.
CS=code smells, DP=design patterns, MT=metrics, RD=readability, RF=refactoring, SA=static analysis

Title Year Topic Method Language CS DP MT RD RF SA

Evolving an integrated curriculum for object-oriented analysis and design, Ram-
nath and Dathan [154]

2008 Curriculum Experience generic-OO dp rf

Exploration of Experimental Teaching Reforms on C Programming Design Course,
Xu et al. [204]

2021 TeachingMethod DescrCorr C

Exploring Metrics for the Analysis of Code Submissions in an Introductory Data
Science Course, Nguyen et al. [134]

2021 ProgramQuality DescrCorr Python mt

Five reasons for including technical debt in the software engineering curriculum,
Falessi and Kruchten [50]

2015 Curriculum NoneUnclear generic

Foobaz: Variable name feedback for student code at scale, Glassman et al. [63] 2015 SelfmadeTool Survey Python

Forming groups for collaborative learning in introductory computer programming
courses based on students’ programming styles: An empirical study, De Faria
et al. [41]

2006 ProgProcess (Q)Experim C mt

Fostering the comprehension of the object-oriented programming paradigm by a
virtual lab exercise, Thurner [187]

2019 TeachingMethod Experience Java

FrenchPress gives students automated feedback on Java program flaws, Blau and
Moss [18]

2015 SelfmadeTool Survey Java

Function Names: Quantifying the Relationship Between Identifiers and Their
Functionality to Improve Them, Charitsis et al. [29]

2022 SelfmadeTool Tool Java rd

Gamification based learning environment for computer science students, Zsig-
mond et al. [208]

2020 SelfmadeTool Tool mutiple sa

Helping Student Programmers Through Industrial-Strength Static Analysis: A
Replication Study, Senger et al. [171]

2022 Behaviour DescrCorr Java sa

High School Teachers’ Understanding of Code Style, Kirk et al. [105] 2020 Perceptions Qualitative generic

How junior developers deal with their technical debt?, Gilson et al. [62] 2020 Behaviour Mixed mutiple sa

How kids code and how we know: An exploratory study on the scratch repository,
Aivaloglou and Hermans [4]

2016 ProgramQuality DescrCorr Scratch cs

How teachers would help students to improve their code, Keuning et al. [97] 2019 ProgramQuality Survey generic

How to improve code quality by measurement and refactoring, Vasileva and
Schmedding [194]

2016 ProgProcess DescrCorr Java mt rf sa

Human vs. Automated coding style grading in computing education, Perretta
et al. [147]

2019 ProgramQuality DescrCorr C++ sa

Hyperstyle: A Tool for Assessing the Code Quality of Solutions to Programming
Assignments, Birillo et al. [17]

2022 SelfmadeTool Tool mutiple rd rf

Impact of aspect-oriented programming on the quality of novices’ programs: A
comparative study, Katić et al. [94]

2013 ProgramQuality (Q)Experim C# mt rd

Implementing a set of guidelines for CS majors in the production of program
code, Poole and Meyer [151]

1996 Assignments Survey Modula2

Improving Feedback on GitHub Pull Requests: A Bots Approach, Hu and
Gehringer [81]

2019 SelfmadeTool Mixed generic-OO cs sa

Improving Readability of Scratch Programs with Search-based Refactoring, Adler
et al. [3]

2021 SelfmadeTool Tool Scratch rd rf

Improving students programming quality with the continuous inspection process:
a social coding perspective, Lu et al. [115]

2019 ProgProcess (Q)Experim Java

Improving the software quality - An educational approach, Bozhikova et al. [22] 2017 SelfmadeTool Tool C# dp rf

Integrating Antipatterns into the Computer Science Curriculum, Rogers and
Pheatt [159]

2009 Curriculum NoneUnclear generic-OO dp rf

Investigating code quality tools in the context of software engineering education,
Silva et al. [172]

2017 ExternalTool DescrCorr Java mt rf

Investigating static analysis errors in student Java programs, Edwards et al. [48] 2017 ProgramQuality DescrCorr Java sa

15

Table 3: Complete list of papers and coding.
CS=code smells, DP=design patterns, MT=metrics, RD=readability, RF=refactoring, SA=static analysis

Title Year Topic Method Language CS DP MT RD RF SA

Investigation of the relationship between program correctness and programming
style, Grigas [66]

1999 ProgramQuality DescrCorr mutiple mt rd

Japroch: A tool for checking programming style, Mäkelä and Leppänen [121] 2004 SelfmadeTool Tool Java

JMetricGrader: A software for evaluating student projects using design object-
oriented metrics and neural networks, Celosmanovic and Ljubovic [27]

2022 ProgramQuality QuantOther Java mt

Learning appreciation for design patterns by doing it the hard way first, Skrien
[173]

2003 TeachingMethod Experience Java dp rf

Learning software engineering principles using open source software, Nandigam
et al. [132]

2008 Assignments NoneUnclear Java mt rd rf

Learning to listen for design, Baniassad et al. [13] 2019 ProgProcess Discussion generic cs dp rf

Linking code readability, structure, and comprehension among novices: It’s com-
plicated, Wiese et al. [199]

2019 Perceptions Survey mutiple rd

Litterbox: A linter for scratch programs, Fraser et al. [55] 2021 SelfmadeTool Tool Scratch cs

Measuring static quality of student code, Breuker et al. [23] 2011 ProgramQuality DescrCorr Java mt

Measuring students’ source code quality in software development projects
through commit-impact analysis, Hamer et al. [75]

2021 Behaviour DescrCorr mutiple mt

Mind the Gap: Searching for Clarity in NCEA, Kirk et al. [103] 2021 Materials Mixed generic

Mining student CVS repositories for performance indicators, Mierle et al. [128] 2005 Behaviour DescrCorr mutiple

Modeling Learners Programming Skills andQuestion Levels Through Machine
Learning, Kim et al. [101]

2020 ProgramQuality QuantOther mutiple rd

Novice Programmers and Software Quality: Trends and Implications, Techa-
palokul and Tilevich [182]

2017 ProgramQuality DescrCorr Scratch cs

On assuring learning about code quality, Kirk et al. [102] 2020 Curriculum CaseStudy generic

On the Use of FCA Models in Static Analysis Tools to Detect Common Errors in
Programming, Cristea et al. [38]

2021 ProgramQuality DescrCorr Python sa

Pirate plunder: Game-based computational thinking using scratch blocks, Rose
et al. [160]

2018 SelfmadeTool Tool Scratch cs

Program decomposition and complexity in CS1, Keen and Mammen [95] 2015 TeachingMethod (Q)Experim C mt

Programming style in introductory programming courses, Teodosiev and Nachev
[186]

2015 Curriculum NoneUnclear generic

Promoting Code Quality via Automated Feedback on Student Submissions, Kar-
nalim and Simon [91]

2021 SelfmadeTool Tool mutiple

Qualitative aspects of students’ programs: Can we make them measurable?,
Araujo et al. [8]

2016 SelfmadeTool (Q)Experim Python

Quality Assessment of Learners’ Programs by Grouping Source Code Metrics,
Santos et al. [167]

2021 ProgramQuality QuantOther Lua mt

Readable vs.Writable Code: A Survey of Intermediate Students’ Structure Choices,
Wiese et al. [201]

2022 Perceptions Survey Java rd

RefacTutor: An Interactive Tutoring System for Software Refactoring, Haendler
et al. [73]

2020 SelfmadeTool Tool Java rf

Reflections on teaching refactoring: A tale of two projects, Abid et al. [2] 2015 ProgProcess (Q)Experim Java

ReLE - a refactoring supporting tool, Stoyanov et al. [179] 2011 SelfmadeTool Tool Java rf

Replicating novices’ struggles with coding style, Wiese et al. [200] 2019 Perceptions Survey mutiple rd

Research and practice on education of SQA at source code level, Wang et al. [197] 2011 TeachingMethod CaseStudy generic

Salient elements in novice solutions to code writing problems, Whalley et al.
[198]

2011 ProgramQuality Qualitative mutiple

Scale-driven automatic hint generation for coding style, Choudhury et al. [34] 2016 SelfmadeTool (Q)Experim mutiple

16

Table 3: Complete list of papers and coding.
CS=code smells, DP=design patterns, MT=metrics, RD=readability, RF=refactoring, SA=static analysis

Title Year Topic Method Language CS DP MT RD RF SA

Serious refactoring games, Haendler and Neumann [72] 2019 Materials NoneUnclear generic-OO cs rf

Smells in block-based programming languages, Hermans et al. [78] 2016 ProgramQuality DescrCorr generic-block cs

Software analytics to support students in object-oriented programming tasks: an
empirical study, Ardimento et al. [9]

2020 ProgramQuality (Q)Experim Java

Software clones in scratch projects: On the presence of copy-and-paste in com-
putational thinking learning, Robles et al. [158]

2017 ProgramQuality DescrCorr Scratch

Software engineer education support system ALECSS utilizing devOps tools,
Ohtsuki et al. [140]

2016 SelfmadeTool DescrCorr Java sa

Software metrics as a programming training tool, Bowman and Newman [21] 1990 Assignments (Q)Experim Cobol mt

SoftwareQuality as a Subsidy for Teaching Programming, Gomes et al. [64] 2021 TeachingMethod DescrCorr Java

Software Quality Metrics Calculations for Java Programming Learning Assistant
System, Zaw et al. [207]

2020 SelfmadeTool DescrCorr Java mt

Software readability practices and the importance of their teaching, Sampaio
and Barbosa [164]

2016 Assignments Survey generic-OO cs rd

Sprinter: A Didactic Linter for Structured Programming, Alfredo et al. [6] 2022 SelfmadeTool Tool Java

Static analyses in python programming courses, Liu and Petersen [110] 2019 SelfmadeTool (Q)Experim Python sa

Static analysis of programming exercises: Fairness, usefulness and a method for
application, Nutbrown and Higgins [137]

2016 ExternalTool DescrCorr Java sa

Static analysis of source code written by novice programmers, Delev and Gjorgje-
vikj [44]

2017 ExternalTool DescrCorr C sa

Static Analysis of Students’ Java Programs, Truong et al. [191] 2004 SelfmadeTool Tool Java mt sa

Structural analysis of source code collected from programming contests, Park
et al. [144]

2014 ProgramQuality QuantOther C++

Student Refactoring Behaviour in a Programming Tutor, Keuning et al. [98] 2020 Behaviour DescrCorr Java rf

Students Projects’ Source Code Changes Impact on SoftwareQuality Through
Static Analysis, Hamer et al. [74]

2021 Behaviour DescrCorr mutiple sa

Studying Software Metrics Based on Real-World Software Systems, Liu et al.
[112]

2007 Assignments NoneUnclear generic mt

Supporting Students in C++ Programming Courses with Automatic Program
Style Assessment, Ala-Mutka et al. [5]

2004 SelfmadeTool Qualitative C++

Teacher Mate: A Support Tool for Teaching CodeQuality, de Araújo et al. [40] 2020 SelfmadeTool DescrCorr Java

Teaching code quality in high school programming courses - Understanding
teachers’ needs, Kirk et al. [104]

2022 Perceptions Qualitative generic

Teaching Defensive Programming in Java, Zaidman [206] 2004 Assignments Survey Java

Teaching design patterns using a family of games, Gómez-Martín et al. [65] 2009 Assignments Experience Java dp rf

Teaching programming style with ugly code, McMaster et al. [123] 2013 SelfmadeTool Tool Java rd

Teaching software quality via source code inspection tool, de Andrade Gomes
et al. [39]

2017 SelfmadeTool (Q)Experim mutiple

Teaching students to build well formed object-oriented methods through refac-
toring, Stoecklin et al. [178]

2007 ProgProcess NoneUnclear generic-OO rf

Teaching students to recognize and implement good coding style, Wiese et al.
[202]

2017 ProgramQuality (Q)Experim Python

Teaching the culture of quality from the ground up: Novice-tailored quality
improvement for scratch programmers, Tilevich et al. [188]

2020 SelfmadeTool Mixed Scratch rf

The effect of reporting Known issues on students’ work, Gaber and Kirsh [57] 2018 Perceptions (Q)Experim C++

The Five Million Piece Puzzle: Finding Answers in 500,000 Snap-Projects, Jatzlau
et al. [88]

2019 ProgramQuality DescrCorr Snap! cs

17

Table 3: Complete list of papers and coding.
CS=code smells, DP=design patterns, MT=metrics, RD=readability, RF=refactoring, SA=static analysis

Title Year Topic Method Language CS DP MT RD RF SA

The impact of automated code quality feedback in programming education,
Jansen et al. [87]

2017 ExternalTool (Q)Experim mutiple

The LAN-simulation: A refactoring teaching example, Demeyer et al. [45] 2005 Assignments Experience Java rf

The Role of Source Code Vocabulary in Programming Teaching and Learning,
Nascimento et al. [133]

2020 SelfmadeTool (Q)Experim Python rd

The teaching of documentation and good programming style in a liberal arts
computer science program, Roth [163]

1980 TeachingMethod NoneUnclear Basic

Tool assisted identifier naming for improved software readability: An empirical
study, Relf [156]

2005 SelfmadeTool (Q)Experim Java rd

Towards an empirically validated model for assessment of code quality, Stegeman
et al. [176]

2014 Assignments Qualitative generic

Towards generalizing expert programmers’ suggestions for novice programmers,
Ichinco et al. [83]

2013 ProgramQuality Survey Alice-LG sa

Understanding recurring quality problems and their impact on code sharing in
block-based software, Techapalokul and Tilevich [183]

2017 ProgramQuality DescrCorr Scratch cs

Understanding Refactoring Tasks over Time: A Study Using Refactoring Graphs,
Brito et al. [25]

2022 Behaviour (Q)Experim Java rf

Understanding Semantic Style by Analysing Student Code, De Ruvo et al. [43] 2018 ProgramQuality DescrCorr Java

Unencapsulated collection - A teachable design smell, De Ruvo et al. [42] 2018 ProgramQuality CaseStudy generic-OO cs rf

Unreadable code in novice developers, Avila et al. [10] 2021 Perceptions Survey generic rd

Using examples as guideposts for programming exercises: Providing support
while preserving the challenge, Gaber and Kirsh [58]

2021 Assignments CaseStudy C++ rf

Using pirate plunder to develop children’s abstraction skills in scratch, Rose et al.
[161]

2019 SelfmadeTool (Q)Experim Scratch cs

Using project-based approach to teach design patterns: An Experience Report,
Karre et al. [92]

2021 TeachingMethod (Q)Experim Java cs dp rf

Using software metrics tools for maintenance decisions: a classroom exercise,
Marshall et al. [122]

1996 ExternalTool CaseStudy unknown mt

Using static analysis tools to assist student project evaluation, Molnar et al. [129] 2020 ExternalTool DescrCorr Python sa

Using Verilog LOGISCOPE to analyze student programs, Mengel and Ulans [125] 1998 ExternalTool DescrCorr C++ sa

Utilizing software engineering education support system ALECSS at an actual
software development experiment: A case study, Ohtsuki and Kakeshita [139]

2019 SelfmadeTool DescrCorr Java

You have said too much : Java-like verbosity anti-patterns in python codebases,
Ma and Tilevich [119]

2021 ProgramQuality DescrCorr Python

18

	Abstract
	1 Introduction
	2 Background
	2.1 Terms and definitions
	2.2 Related work

	3 Method
	3.1 Scope and research questions
	3.2 Search process
	3.3 Coding

	4 Results and discussion
	4.1 Paper characteristics (RQ1)
	4.2 Topics (RQ2) and methods (RQ3)
	4.3 Languages (RQ4)
	4.4 Trends (RQ5)
	4.5 Related fields (RQ6)
	4.6 Threats to validity

	5 Conclusion
	References

