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Abstract
A variety of data is of geographic interest but is not available at a small area level from 
large-scale national sample surveys. Small area estimation can be used to estimate param-
eters of target variables to detailed geographical scales based on relationships between the 
target variables and relevant auxiliary information. Small area estimation of proportions 
is a topic of great interest in many fields of study, where binary variables are diffused, 
such as in labour force, business, and social exclusion surveys. The univariate generalised 
mixed model with logit link function is widely adopted in this context. The small area 
estimation literature has shown that multivariate small area estimators, where correlations 
among response variables are taken into account, provide more efficient estimates than the 
traditional univariate approaches. However, the estimation problem of multivariate propor-
tions has not been studied yet. In this article, we propose a bivariate small area estimator of 
proportions based on a bivariate generalised mixed model with logit link function. A simu-
lation study and an application are presented to evaluate the good properties of the bivari-
ate estimator compared to its univariate setting. We found that the extent of the improved 
efficiency of the bivariate over the univariate approach is associated with the degree of cor-
relation of the area-specific random effects and the intraclass correlation, whereas it is not 
strongly related to the area sample size.

Keywords  GLMM · Logistic regression · Design-based · Nested-errors · Prediction

1  Introduction

Large-scale national sample surveys are usually designed to produce precise and accurate 
estimates for large population domains, for example large geographical areas. However, 
many phenomena, such as poverty, well-being, and social exclusion present spatial hetero-
geneity. Thus, policy makers in charge of implementing policies at sub-national level ask 
for disaggregated estimates. Direct estimates obtained for these areas may return large vari-
ability due to small sample sizes (Rao and Molina 2015).
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In the last decade, there has been an increasing attention to the development of effi-
cient small area estimators based on different approaches. In particular, mixed models have 
become prominent in this field (Rao and Molina 2015; Rao 2003; Jiang and Lahiri 2006).

Since many social phenomena are multidimensional, thus naturally correlated, (Betti 
and Lemmi 2013) we argue, in line with the literature, that this property can be used to 
further improve the efficiency of the small area estimates. This is carried out by taking 
into account for the correlation in the data in the model estimation stage by including 
correlated random-area effects (Moretti et  al. 2020a, 2021; Benavent and Morales 2016; 
Ubaidillah et al. 2019; Fabrizi et al. 2005; Moretti et al. 2020b; Guha and Chandra 2021). 
Importantly, this problem finds also its motivation in the statistical modelling literature. 
In fact, as pointed by Klein et al. (2015), although the vast majority of regression models 
are implemented for each single response variable separately, modelling multivariate cor-
related response variables simultaneously can be extremely relevant, given that it is pos-
sible to gain detailed information on the joint stochastic behaviour of multivariate response 
vectors accounting for complex regression effects. Specifically, Klein et al. (2015) propose 
a unified Bayesian framework for multivariate structured additive distributional regression 
analysis considering a large class of continuous, discrete and latent multivariate response 
distributions. This point is also stressed in Gueorguieva (2001), where it is discussed that 
there are important advantages of estimating the multivariate model over fitting separate 
models. In particular, these include better control over the type I error rates and potential 
gains in efficiency in the parameter estimates. In addition, practitioners can answer multi-
variate questions.

The focus of this article is on the unit-level approach where we assume that the auxil-
iary variables are known for all units of the sample. Fuller and Harter (1987) introduce the 
multivariate variance components model in small area estimation, later used by Datta et al. 
(1999) to estimate small area mean vectors of multiple characteristics, and, particularly, 
use this in empirical best linear unbiased and empirical Bayes prediction. Molina (2009) 
studies a multivariate mixed model under a logarithmic transformation, and Baíllo and 
Molina (2009) focus on a particular case of the multivariate nested error regression model 
for uncorrelated random effects. Recently, Moretti et al. (2020a) investigate the multivari-
ate small area estimation problem of latent well-being indicators and Moretti et al. (2020b) 
use a parametric bootstrap to estimate the mean squared error of a multivariate Empirical 
Best Linear Unbiased Predictor (EBLUP) of small area means. However, all these articles 
focus on continuous variables only. Therefore, an important gap in the literature is how 
to deal with the multivariate small area estimation issue in presence of non-continuous 
response variables, in our case binary variables. In fact, these types of variables are widely 
diffused in social surveys. For example, there are poverty and well-being indicators that 
are based on binary variables (Betti and Lemmi 2013). Some social indicators estimated 
on Labour Force Surveys by Official Statistics are also constructed on dichotomous vari-
ables (see e.g. Chambers et al. (2016)). Therefore, there is the need to estimate small area 
proportions as target parameters.

The aim of this article is to provide a small area estimation approach to compute esti-
mates of a multidimensional characteristic depending on correlated dichotomous response 
variables. Particularly, our target characteristic is a vector of small area proportions, based 
on these binary response variables. The response is a vector of observations of K binary 
variables, taking values 0 or 1, for a unit nested in a small area. For example, from a sam-
ple survey two binary variables can be constructed, i.e., an employment indicator, and pov-
erty indicator. Hence, the goal could be estimating two proportions, i.e., the proportions of 
unemployed persons and the proportion of people living in a household with the income 



3665Estimation of small area proportions under a bivariate logistic…

1 3

below a certain poverty line. In this article, we focus on the bivariate (two response vari-
ables only) small area estimation problem only.

Our approach extends the traditional univariate Generalised Linear Mixed Model 
(GLMM) with logit link function i.e. logistic mixed model. A pioneer work on the use 
of logistic mixed models in univariate small area estimation is MacGibbon and Tomber-
lin (1987). The reason why we are focusing on an extension of this model is firstly moti-
vated by the fact that the univariate model is extensively adopted and studied in national 
statistical agencies for a variety of estimation problems in labour force and more widely 
social surveys. However, so far, there has not been attention to the multivariate extension 
in this context which shows potential from a modelling perspective. Second, the properties 
of small area predictors based on the univariate GLMM are well studied in both the small 
area estimation literature (Chandra et al. 2018; Chambers et al. 2016) and statistical model-
ling literature (Coull and Agresti 2000; Rabe-Hesketh and Skrondal 2001; Berridge and 
Crouchley 2011). Finally, it allows for taking into account for unit-level information avail-
able in the sample (auxiliary variables).

Under this framework, once the model parameters are estimated, an Empirical Plug-in 
Predictor (EPP) under a GLMM is used to provide small area estimates of proportions. 
This is widely adopted in Official Statistics (Chandra et al. 2018; Molina and Strzalkowska-
Kominiak 2020; Chandra et al. 2012; Salvati et al. 2012; Rao and Molina 2015). As pointed 
by Chandra et al. (2018), the EPP predictor is not the most efficient under the model, com-
pared to empirical best predictors. We refer to Jiang and Lahiri (2001) for a detailed study 
on the Empirical Best Predictor (EBP) that minimises the Mean Squared Error (MSE) for 
binary response variables. However, since the EBP does not have a closed-form expression 
it has to be computed via numerical approximations. This is not a straightforward exercise. 
For instance, the Office for National Statistics (in the United Kingdom) and the Australian 
Bureau of Statistics prefer the use of approximations such as the EPP (Chandra et al. 2018; 
Chambers et al. 2016). There are also other applications in Official Statistics, such as in 
the United States, where small area predictors are evaluated under the traditional univari-
ate GLMM and EPPs are used (Slud 1999, 2004). Thus, the EPP under a GLMM is used 
in practice as a good alternative to the EBP (Jiang 2003). We also refer to Molina et al. 
(2007) and López-Vizcaíno et al. (2013) for other studies that evaluate this type of small 
area predictor.

It is important to acknowledge that there are other modelling strategies that can be 
implemented in case of correlated multivariate binary variables. For example, the multi-
variate probit model is also proposed (Edwards and Allenby 2003). However, the main 
drawback here is that the computations involve high-dimensional integrals which cannot 
be solved analytically. Numerical integration methods are proposed, but the literature has 
shown that these are not very accurate in case of probit models and can be slow in case 
high dimensions. Hence, simulation-based approaches are often implemented (Cappellari 
and Jenkins 2006). To overcome these problems, the multivariate logit modelling approach 
is often used (Bel et al. 2018). This is the focus of our research. Considering other tech-
niques to treat compositional data, Aitchison (1982) developed a unified approach to the 
statistical analysis of compositional data. A range of methods are proposed in this work. 
Interestingly, Hijazi and Jernigan (2009) investigate the Dirichlet covariate model as an 
alternative to the logratio techniques. This model is of a particular interest given that it is 
possible to simultaneously assess the effects of the covariates on the relative contributions 
of the different components of a particular measure (Gueorguieva et al. 2008).

The remainder of this article is organised as follows. In Sect. 2, we describe the small 
area estimation problem and multivariate GLMM we used to provide the predictor. In 
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Sect. 3, we describe a parametric bootstrap approach to estimate the mean squared error of 
the bivariate predictor. In Sect. 4, we present a model-based simulation study and its results 
are discussed. In Sect. 5, we show an application. We conclude the article in Sect. 6 with a 
final discussion and future research directions.

2 � Small area estimation of proportions

2.1 � Notation and small area problem

We consider a target finite population U of size N partitioned in D non-overlapping small 
areas, Ud , d = 1, ...,D of size Nd such that ∪D

d=1
= U and 

∑D

d=1
Nd = N . From U we select 

a random sample s of size n, with nd denoting the sample size in small area d, such that ∑D

d=1
nd = n.

Let �di = (ydi1, ydi2)
T denotes a vector of the values of k = 1, 2 variables of interest � for 

unit i in area d. Suppose that ydik is binary, i.e., ydik = 0 or 1. Thus, the population param-
eter of interest is a vector of proportions of � for area d, and denoted by �d = (pd1, pd2) , 
where the generic element related to variable k is given as follows:

where sd denotes the sample elements and rd the out of sample elements in area d.
The direct estimator for the k th small area proportion pdk is given by:

where wdi denotes the survey weight for unit i in area d. We refer to Särndal et al. (2003) 
for details of the variance of 2. Estimator 2 is based on area-specific sample information 
only, thus, it becomes unstable when the sample size in area d is small. In particular, the 
direct estimates may return larger variability. In addition, the estimator cannot be computed 
for areas with zero sample sizes. Hence, model-based small area estimation methods that 
’borrow strength’ across areas via the use of statistical models are used to produce accurate 
and precise small area estimates of 1 (Rao and Molina 2015).

Estimator 2 is based on area-specific sample information only, thus, it becomes unstable 
when the sample size in area d is small. In particular, the direct estimates may return large 
variability. In addition, the estimator cannot be computed for areas with zero sample sizes. 
Hence, model-based small area estimation methods that ’borrow strength’ from auxiliary 
information via the use of statistical models are used to produce accurate and precise small 
area estimates of the target parameter given by 1 (Rao and Molina 2015).

2.2 � The bivariate binomial‑logit mixed model

Statistical models with random area-specific effects taking into account for between and 
within areas variability are often used to build indirect small area estimators. As we pre-
liminary stated in the Introduction, the small area EPP for proportions under a GLMM 
with logit link function is widely adopted in the literature and Official Statistics. We 

(1)pdk = N−1
d

∑
i∈Ud

ydik = N−1
d

(∑
i∈sd

ydik +
∑
i∈rd

ydik

)
,

(2)p̂DIR
dk

=

∑
i∈sd

wdiydik∑
i∈sd

wdi

,
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refer to Chandra et  al. (2012, 2018); Molina and Strzalkowska-Kominiak (2020); Rao 
(2003); Rao and Molina (2015) for detailed discussions around this topic.

In Sect. 2.1, we assumed that ydik is binary, i.e., ydik = 0 or 1. Suppose �dik denotes 
the vector of observed values of p unit-level auxiliary information (including intercept) 
for unit i in area d related to ydik , which is the observation of variable k for unit i in area 
d.

Let �dik be the probability that unit i in small area d assumes value equal to 1 related 
to variable k. We assume that the following bivariate GLMM with logistic link func-
tion relates �dik to ydik , for i = 1, ...,Nd , d = 1, ...,D and k = 1, 2 (Coull and Agresti 2000; 
Rabe-Hesketh and Skrondal 2001; Berridge and Crouchley 2011):

where �K is a p-dimensional vector of regression coefficients for response k, udk is the ran-
dom area effect for area d and response k, and it measures the difference between the aver-
age of the variable for area d and its average in the entire sample. Therefore, the random 
area effects take into account for the variability that is not explained by the fixed effects. We 
assume these following a bivariate Normal distribution, i.e. �d = (ud1, ud2)

T ∼ N(�,�u) , 
where �u denotes a 2 × 2 an unknown positive-definite variance-covariance matrix. Its off-
diagonal elements are the covariances between udv and udj with v ≠ j.

Furthermore, we assume that ydik|udk ∼ Binomial(1,�dik) with �dik = E(ydik|udk) . Thus, 
it holds that (Gueorguieva 2001; Coull and Agresti 2000; Rabe-Hesketh and Skrondal 
2001):

That is the characteristic for unit i in area d related to a specific variable k is Bernoulli dis-
tributed conditionally on the random effects (Jiang et al. 2019).

Note that when the covariances between udv and udj with v ≠ j are equal to 0, 
model 3 and 4 is equivalent to two separate GLMM models for the two response vari-
ables (Gueorguieva 2001).

Model 3 and 4 can be written for the sample elements i = 1, ..., nd without loss of gen-
erality. Hence, the model parameters are estimated on a random sample s drawn from U 
(Rao and Molina 2015).

In order to estimate the model parameters we follow the Maximum Likelihood (ML) 
approach. We refer to McCulloch (1997), McCulloch (1994) and Booth and Hobert 
(1999) for the theory and Berridge and Crouchley (2011) for its implementation. In 
addition, we also refer to Rabe-Hesketh and Skrondal (2008), Skrondal and Rabe-
Hesketh (2004) and Gueorguieva (2001) for other practical implementations.

2.3 � Small area predictor

We can now present the Empirical Plug-in Predictor of the small area proportions for 
area d under 3 and 4 introduced in Sect. 2.2. This is given as follows:

(3)

⎧⎪⎨⎪⎩

logit
�
�di1

�
= log

�
�di1

1−�di1

�
= �di1 = �T

di1
�1 + ud1

logit
�
�di2

�
= log

�
�di2

1−�di2

�
= �di2 = �T

di2
�2 + ud2

(4)
{

E(ydi1|ud1) = �di1 = exp(�di1)[1 + exp(�di1)]
−1

E(ydi2|ud2) = �di2 = exp(�di2)[1 + exp(�di2)]
−1
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with 𝜇̂dik = Ê(ydik|udk) = exp(�T
dik
�̂k + ûdk)[1 + exp(�T

dik
�̂k + ûdk)]

−1 , where �̂k and ûdk 
denote the estimates of the regression coefficients and predictions of random effects, 
respectively.

In practice, the auxiliary variables are available for the sample units and area-spe-
cific aggregates are available for the population, e.g. from the Census or administrative 
data. Thus, 5 cannot be applied and a modification is available in the literature (Rao and 
Molina 2015; Chandra et  al. 2018). In the economy of space, we write the estimator 
only for the general proportion k, that is given by, assuming small sampling fractions:

where p̂dk = n−1
d

∑
i∈sd

ydik , fd =
nd

Nd

 , and �̄dk denotes the means of the auxiliary variable 
for the population (e.g., from the Census).

3 � Mean squared error estimation via parametric bootstrap

In this section, we describe a parametric bootstrap algorithm we used to estimate 
the Mean Squared Error of p̂EPP1

dk
 , denoted by MSE(p̂EPP1

dk
) . This type of bootstrap for 

GLMM with logit link function is well-known and widely studied in the literature. The 
reader may want to refer to González-Manteiga et  al. (2007) where its properties are 
also evaluated. There are also applications of this algorithm in the literature, such as in 
Chandra et al. (2018) and Hobza et al. (2018). Moreover, the algorithm is extended in 
small area estimation under bivariate mixed models e.g. Moretti et al. (2020b) following 
the same ideas.

The parametric bootstrap algorithm steps are the following: 

1.	 Estimate the GLMM given in Sect. 2.2 on the random sample s and the following esti-
mates are obtained: �̂u and �̂k for k =, 1, 2.

2.	 Generate the bootstrap area-specific effects as follows �∗(b)
d

∼ N(�, �̂u) . ’*’ denotes the 
bootstrap quantities and b denotes the bth bootstrap replication, b = 1, ...,B.

3.	 Calculate the true proportion for variable k and small area d of the bootstrap population: 

4.	 Generate the bootstrap responses y∗(b)
dik

 according to model in Sect. 2.2 as follows: 

5.	 Estimate model in Sect. 2.2 on the responses generated at Step 4 and obtain the bootstrap 
EPP1 according to 6. This is denoted by p̂EPP1∗(b)

dk
.

6.	 Repeat steps 2-5 B times, and the bootstrap estimator for the MSE of p̂EPP1.1
dk

 is given by: 

(5)

⎧
⎪⎨⎪⎩

p̂EPP
d1

= N−1
d

�∑
i∈sd

ydi1 +
∑

i∈rd
𝜇̂di1

�

p̂EPP
d2

= N−1
d

�∑
i∈sd

ydi2 +
∑

i∈rd
𝜇̂di2

�

(6)p̂EPP1
dk

= fdp̂dk + (1 − fd) exp(�̄
T
dk
�̂k + ûdk)∕[1 + exp(�̄T

dk
�̂k + ûdk)],

(7)p̂
∗(b)

dk
= exp(�̄dk�̂k + u

∗(b)

d
)[1 + exp(�̄dk�̂k + u

∗(b)

d
)]−1

(8)
y
∗(b)

dik
|u∗(b)

dk
∼ Binomial(1,𝜋

∗(b)

dik
),

with,𝜋
∗(b)

dik
= exp(�̄T

dik
�̂k + u

∗(b)

d
)[1 + exp(�̄T

dik
�̂k + u

∗(b)

d
)]−1, i ∈ sd.
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 for d = 1, ...,D and k = 1, 2.
In this article we choose B = 500 (Hobza et al. 2018).

There are other bootstrap algorithms that are helpful in case of dependent data. This 
is an area of ongoing research in small area estimation. We can find some applications 
of block bootstrap in (Mokhtarian and Chambers 2013). Wild bootstrap is also study in 
(Rojas-Perilla et al. 2020) in case there are some mild model failures such as non-normal-
ity after using transformations (see also Feng et al. (2011)).

4 � Model‑based simulation study

In this section, we present the results of a model-based simulation study designed to evalu-
ate the performances of the bivariate predictor of small area proportions compared to the 
univariate case under different scenarios. In addition, we also evaluate the performance of 
the MSE bootstrap estimator described in Sect. 3. Given the computational burdens, this 
has been carried out for some scenarios only.

In order to choose the setting of this simulation, we follow model-based simulation 
studies in small area estimation (see Chambers et al. (2016) and González-Manteiga et al. 
(2007)).

All the computations in this section are produced in R. The mixed models parameter 
estimates are computed using the software developed by Crouchley and Crouchley (2012).

4.1 � Simulation parameters

In this section, we show all the parameters used to generate the population in Sect. 4.2 (first 
bullet point) so that the experiment can be replicated by users.

Two binary response variables are generated in the population according to the GLMM 
model introduced in  3 and 4 with the following parameters:

•	 regression coefficients, �
1
= (0.05, 1) , and �

2
= (0.05, 2) . The first element of each vec-

tor is related to the intercept.
•	 area-specific random effect are generated from a bivariate Normal distribution (accord-

ing to assumption in model 3 and 4 ): �d ∼ N(�,�u) , with variance-covariance matrix: 

�u =

⎡⎢⎢⎣
�2
u1

�u ⋅

�
�2
u1
⋅ �2

u2

�u ⋅

�
�2
u2
⋅ �2

u1
�2
u2

⎤⎥⎥⎦
.

�2
u1

 and �2
u2

 denote the variances of the random effects related to responses 1 and 2, respec-
tively. �u denotes the correlation coefficient. We choose two realistic levels of correlation in 
�u (small and large correlation) i.e. �u = {0.09, 0.40}.

Regarding the values of the variances �2
u1

 and �2
u2

 , these are chosen as a function of 
the intraclass correlation. This is practice in model-based simulation studies in small area 
estimation (see e.g. Moretti and Whitworth (2020), Moretti et al. (2020a) and Burgard and 
Münnich (2014)). Indeed, the variability of small area estimators depends on this coef-
ficient (Moretti and Whitworth 2020; Moretti et al. 2020a) and it affects the accuracy of 
mixed models parameter estimates (see Goldstein (2011)).

(9)̂MSEboot(p̂
MEPP1
dk

) = B−1

B∑
b=1

(
p̂
EPP1∗(b)

dk
− p̂

∗(b)

dk

)2

,
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The intraclass correlation coefficient, denoted by ICCk for variables k = 1, 2 , gives 
information on the partition of the total variance which is between-areas and within-areas. 
In particular, it measures the degree of homogeneity of the units belonging to the same 
areas and is between 0 and 1.

The intraclass correlation of variable k = 1, 2 in case of generalised mixed models with 
logit link function is given as follows (Guo and Zhao 2000):

As outlined in Table 1 below, we chose a wide range of ICC values. For example, for a 
fixed ICC equal to 0.18, one can obtain the variance �2

uk
 by solving this for �2

uk
 : 

0.18 =
�2
uk

�2
uk
+

�3

3

.

As pointed in Moretti and Whitworth (2020), in the social sciences, the intraclass cor-
relation does not often assume very large values. For example, in economic wellbeing indi-
cators Moretti et al. (2021) note an ICC close to 0.20. Whereas, in medical or agricultural 
applications, the intraclass correlation coefficient can reach large values (Koo and Li 2016; 
Pleil et al. 2018). Regarding ICC in health indicators we refer also to (Castelli et al. 2013), 
where large ICCs e.g. about 0.40 are noted.

The population size in each small area d is Nd = 100 , and the number of areas is equal 
to D = 50 . We keep this in small scale for computational reasons. The auxiliary variable is 
generated from a Uniform distribution i.e. xdi ∼ Unif(−1, 20) , and it is kept fixed over the 
simulations.

Table 1 shows the scenarios that we consider in this simulation study.

4.2 � Simulation steps

The simulation consists in the following steps, where l = 1, ...,L , with L = 500 denotes the 
repetitions: 

1.	 Generate the population values Ul = ∪D
d=1

U
(l)

d
 where U(l)

d
= {(y

(l)

di1
, y

(l)

di2
, xdi), i = 1, ...,Nd} 

y
(l)

di1
 and y(l)

di2
 are generated according to the bivariate model given in 3 and 4 with param-

eters presented in Sect. 4.1.
2.	 Sampling: select a random sample s(l)

d
 without replacement of size nd = 5 from U(l)

d
 for 

d = 1, ...,D . We also evaluate an additional scenario where nd varies across small areas, 

(10)ICCk =
�2
uk

�2
uk
+

�3

3

.

Table 1   Scenarios investigated in 
the simulation study

Scenario

A B C D E F

ICC1 0.18 0.18 0.33 0.50 0.03 0.33
ICC2 0.13 0.13 0.60 0.50 0.02 0.60
�2

u1
0.72 0.72 1.62 3.29 0.10 1.62

�2

u2
0.50 0.50 4.93 3.29 0.07 4.93

�u 0.09 0.40 0.40 0.40 0.40 0.40
nd 5 5 5 5 5 nd ∼ Unif (1, 10)
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and in this case nd ∼ Unif(1, 10) (values are rounded). This is to evaluate the impact of 
the sample size in area d onto the estimators.

3.	 Estimate the bivariate model given in 3 and 4 and its univariate version in each sample 
s
(l)

d
 and obtain the univariate and bivariate predictors for both small area proportion 

using 6. These are denoted, for variable k = 1, 2 , by ̂̄yMEPP1(l)

d1
 , ̂̄yMEPP1(l)

d2
 and ̂̄yUEPP1(l)

d1
 , 

̂̄y
UEPP1(l)

d2
 , for the bivariate and univariate case, respectively. The direct estimates are also 

calculated and denoted by ̂̄yDIR(l)
d1

 , ̂̄yDIR(l)
d2

	   For some scenarios only (A, C, F, see Table 1 for the details) we evaluate the bootstrap 
MSE estimator described in Sect. 3.

4.	 The following measures of performance are also calculated in order to evaluate the 
estimators for k = 1, 2 in both the univariate and bivariate case (here, ȳ(l)

dk
 denotes any 

estimator for ȳdk , for proportion k and area d):
	   Absolute Relative Bias (ARB) 

Root Mean Squared Error (RMSE) 

Relative Root Mean Squared Error (RRMSE) 

 where ȳ(l)
dk

= N−1
d

∑D

i=1
y
(l)

dik
.

	   % Relative Reduction in Terms of RMSE (RelRed%) 

Equation  14 can be seen as a measure of efficiency, since our hypothesis is that the 
RMSE of the bivariate small area estimator is smaller than its univariate setting (Moretti 
et al. 2020a). In order to present summary statistics, the median across the small areas D 
is shown as a robust central tendency measure that avoids the impact of extreme values 
in some small areas (Giusti et al. 2014). The mean values across the small areas are also 
presented in parenthesis in the outputs. In this case, the same notation as above is used 
but the index ’d’ is dropped.

4.3 � Results

In this section, we present the results of the simulation study. In order to present results 
relevant to users, we split this section according to the focus of the discussion.
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In particular, we are investigating how the correlation in the variance-covariance matrix 
of the random effects, intraclass correlation and sample size impact on the the quality 
measures.

4.3.1 � Summary of model parameter estimates

Table 2 shows the evaluation of the bivariate model parameter estimates of � and �u . In 
order to evaluate their quality we show the averages of the estimates of those across the 
simulations S. The biases were negligible, i.e. very close to zero, hence they have been 
omitted. 𝜎̂2

1
 , 𝜎̂2

2
 and 𝜌̂ are the averages across the simulations of the elements in �u . These 

results can be compared to the true values that are used to generate the population and 
given in Table 1 above.

4.3.2 � Role of correlation �u
 (Scenarios A and B)

In this section, we present the results of the impact of the correlation coefficients �u 
between random effects on the quality measures. In particular, we are focusing in scenarios 
A and B (Table 1), with �u = {0.09, 0.40}.

Table  3 shows the median across the small areas of the RRMSE and Table 4 shows 
the median across the small areas of the absolute relative bias of the estimators for both 
�u = 0.09 and �u = 0.40 cases. Mean values are shown in parenthesis.

Overall, looking at Table 3, in line with the literature, we can see smaller RRMSE when 
model-based small area estimates are used compared to direct estimates. We can also see 
that the bivariate predictor provides estimates with smaller RRMSE than the univariate 

Table 2   Multivariate model parameters evaluation (average values across the samples S)

Scenarios

A B C D E F

𝛽 (1.001, 2.140)� (1.001, 2.140)� (1.007, 2.100)� (1.071, 2.190)� (1.021, 2.143)� (1.001, 2.140)�

𝜎̂2

1
0.723 0.731 1.622 3.286 0.102 1.626

𝜎̂2

2
0.492 0.498 4.950 3.284 0.069 4.944

𝜌̂ 0.093 0.410 0.408 0.405 0.403 0.408

Table 3   Median values (and 
mean values in parenthesis) of 
RRMSE across the small areas 
�u = {0.09, 0.40} (Scenarios A 
and B)

RRMSE

Estimator �u = 0.09 �u = 0.40

̂̄yDIR
1

0.091 (0.090) 0.092 (0.090)
̂̄yUEPP1
1

0.074 (0.074) 0.077 (0.078)
̂̄yMEPP1
1

0.068 (0.069) 0.070 (0.070)
̂̄yDIR
2

0.081 (0.081) 0.079 (0.078)
̂̄yUEPP1
2

0.055 (0.056) 0.062 (0.063)
̂̄yMEPP1
2

0.053 (0.054) 0.053 (0.054)
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case, and this is in line with the bivariate small area estimation literature of continuous 
response variables (see e.g. Datta et al. (1999) and Moretti et al. (2020a)).

In addition, it can be seen from Table 4 that both the predictors provide small area esti-
mates with a negligible ARB; both the bivariate and univariate predictors produce esti-
mates with a very small bias. We also calculated the relative bias, however, these are also 
close to zero, hence, negligible. Thus, we present the ARB only.

Table  5 shows the median values of the percentage relative reductions in terms of 
root mean squared error of the small area estimates across the areas varying �u i.e. 
�u = {0.09, 0.40} . Mean values are shown in parenthesis. For example, in Table  5 
RelRed( ̂̄y1) relates to the % relative difference in terms of RMSE of the bivariate predictor 
over the univariate predictor for k = 1 proportion. Larger gains in efficiency are obtained 
when �u = 0.40 . When �u becomes smaller, �u = 0.09 , there are still good performances 
in terms of efficiency of the bivariate estimator over the univariate estimator. If �u = 0 , the 
bivariate case corresponds to the univariate case and the performances of the estimators 
would be the same (see e.g. Datta et al. (1999)).

4.3.3 � Role of intraclass correlation ICCk (Scenarios B, C, D, E)

In this section, we present the results of the impact of the intraclass correlation on the qual-
ity measures of the estimators. Particularly, we are considering scenarios B, C, D and E of 
Table 1 where different levels of intraclass correlations are selected.

We show in Table  6 the % relative reductions in terms of RMSE of the small area esti-
mators under different level of ICC, indicated again in the table to compare the results 
easily.

It can be seen that, the largest gains in efficiency of using the bivariate predictor over 
the univariate predictor are obtained when the intraclass correlation is large. In this case, 
the variables borrow more strength from each other, achieving larger reduction in terms of 
RMSE. The smaller the intraclass correlation, the higher is the improvement of the model-
based estimates over the direct estimates. Thus, we expect that the univariate estimates 

Table 4   Median values (and 
mean values in parenthesis) 
of ARB across the small areas 
�u = {0.09, 0.40} (Scenarios A 
and B)

ARB

Estimator �u = 0.09 �u = 0.40

̂̄yDIR
1

0.009 (0.009) 0.001 (0.001)
̂̄yUEPP1
1

0.054 (0.053) 0.053 (0.053)
̂̄yMEPP1
1

0.053 (0.051) 0.056 (0.054)
̂̄yDIR
2

0.008 (0.007) 0.001 (0.001)
̂̄yUEPP1
2

0.045 (0.043) 0.040 (0.041)
̂̄yMEPP1
2

0.042 (0.045) 0.043 (0.042)

Table 5   Median values (and 
mean values in parenthesis) of 
% Relative Reductions in terms 
of RMSE (RelRed%) across the 
small areas for �u = {0.09, 0.40} 
(Scenarios A and B)

RelRed%

RelRed( ̂̄yk) �u = 0.09 �u = 0.40

RelRed( ̂̄y1) − 5.382 (− 5.522) − 13.001 (− 13.211)
RelRed( ̂̄y2) − 4.633 (− 4.724) − 14.002 (− 14.059)
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return a large efficiency already, compared to the direct estimates. Therefore, the reduc-
tions in terms of RMSE of the bivariate estimates compared to their univariate setting are 
modest here. Although, as shows in Table 6 there are still gains in efficiency of using the 
bivariate estimator over its univariate setting in case of smaller ICC (see scenario E).

We present in Table 7 the ARB of the small area estimators under different level of ICC. 
We still can see that the small area estimates produced by the model-based estimators show 
a negligible small ARB. Smaller biases can be observed in case of larger ICC.

4.3.4 � Role of the area sample size nd (Scenario F)

We present now the results of scenario F, which we reminder to the reader, is the scenario 
where the sample size in area d, nd , varies across areas i.e. between 1 and 10. This is to 
evaluate the impact of the nd onto the small area estimates. As exercise, we also run a small 
scale simulation study where nd varied between 20 and 50, and we observed similar pat-
terns to what we found here under scenario F. In the economy of space, those results are 
omitted.

We found that there is a moderate relationship between the percentage relative reduc-
tions in terms of RMSE and the small area sample size. In fact, the estimates of Pear-
son correlation coefficient between nd and RelRed( ̂̄y1) and RelRed( ̂̄y2) are modest and 
equal to − 0.163 and − 0.129, respectively. This means that when the area sample size 

Table 6   Median values (and mean values in parenthesis) of RelRed( ̂̄yk) across the small area in case of dif-
ferent level of intra-class correlation (scenarios B,C,D,E)

RelRed( ̂̄yk)

Scenario

B C D E

ICC1 0.18 0.33 0.50 0.03
ICC2 0.13 0.60 0.50 0.02
RelRed( ̂̄y1) − 13.001 (− 13.211) − 26.941 (− 26.855) − 41.820 (− 41.988) − 9.115 (− 9.511)
RelRed( ̂̄y2) − 14.002 (− 14.059) − 56.288 (− 56.150) − 26.551 (− 26.299) − 2.005 (− 2.333)

Table 7   Median values (and mean values in parenthesis) of ARB across small areas of estimators in case of 
different level of intra-class correlation (scenarios B,C,D,E)

Estimator ARB

Scenario

B C D E

ICC1 0.18 0.33 0.50 0.03
ICC2 0.13 0.60 0.50 0.02
̂̄yUEPP1
1

0.053 (0.053) 0.023 (0.021) 0.010 (0.011) 0.054 (0.055)
̂̄yMEPP1
1

0.056 (0.054) 0.028 (0.029) 0.017 (0.019) 0.057 (0.059)
̂̄yUEPP1
2

0.040 (0.041) 0.061 (0.069) 0.018 (0.020) 0.047 (0.048)
̂̄yMEPP1
2

0.043 (0.042) 0.062 (0.059) 0.014 (0.019) 0.045 (0.047)
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becomes larger, the percentage relative reductions in terms of RMSE of using the bivar-
iate predictor over the univariate predictor become smaller. However, this relationship 
is not large. The median values across the areas of the % Relative Reductions are equal 
to − 11.607% and − 41.959% for k = 1 and k = 2 , respectively. We present the ARB and 
RRMSE of the model-based small area estimators in Table 8. This shows that the esti-
mates present a negligible bias and that there is a gain in efficiency by using the bivari-
ate estimator over the univariate predictor. This is consistent to our previous results of 
the sections above.

We also depict in Figs. 1 and 2 the RRMSE of the model-based estimators, univariate 
versus bivariate case, for the small area means of the responses k = 1, 2 , respectively. The 
estimates are ordered by growing sample size in area d. The dotted line shows the RRMSE 
for the bivariate estimator, whereas the continuous line shows the RRMSE of the univari-
ate estimator. As noted above, we can see gains in efficiency when the bivariate predictor is 
used, and these are larger for the second response, given that its ICC is larger than the one 
of reponse k = 1 (Fig. 2).

Table 8   Median values (and 
mean values in parenthesis) of 
ARB and RRMSE across the 
small areas for scenario F

Quality Measure

Estimator ARB RRMSE

̂̄yUEPP1
1

0.043 (0.041) 0.085 (0.084)
̂̄yMEPP1
1

0.041 (0.040) 0.075 (0.075)
̂̄yUEPP1
2

0.021 (0.019) 0.110 (0.113)
̂̄yMEPP1
2

0.020 (0.021) 0.065 (0.063)

Fig. 1   RRMSE of Small Area Estimates for univariate (continuous line) and multivariate (dotted line) esti-
mators k=1, ordered by growing sample size
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4.3.5 � Evaluations of the bootstrap MSE

In this section, we present the evaluation of the bootstrap MSE estimator. Since simulation 
studies to evaluate bootstrap MSE estimators are computationally heavy, we focus on some 
of the scenarios only, i.e. A, C, and F. Table  9 shows the Empirical MSE (EMSE), the 
average values of the bootstrap MSE across the simulations and their ARB. Median (and 
average) values across the small area are presented as summary statistics, as in the tables 
above.

By looking at Table 9 it can be seen that, the bootstrap algorithm presented in this article 
provides good estimates of the EMSE of the bivariate small area estimators. In fact, the aver-
age of the bootstrap MSE across the simulation approximates well the EMSE. In addition, 
the ARB are negligible (i.e., very close to zero). This is in line with other studies in bivariate 
small area estimation on the bootstrap MSE estimation (see, Moretti et al. (2020b)).

Fig. 2   RRMSE of Small Area Estimates for univariate (continuous line) and multivariate (dotted line) esti-
mators k=2, ordered by growing sample size

Table 9   Quality measures 
(median values across the 
small areas) for evaluating the 
bootstrap MSE estimator for 
scenarios A, C, and F

Scenarios

A C F

EMSE( ̂̄yMEPP1
1

) 0.005 0.007 0.008

EMSE( ̂̄yMEPP1
2

) 0.002 0.006 0.007
̂MSE( ̂̄yMEPP1

1
)Boot 0.005 0.007 0.007

̂MSE( ̂̄yMEPP1
2

)Boot 0.002 0.005 0.006

ARB( ̂MSE( ̂̄yMEPP1
1

)Boot) 0.052 0.059 0.060

ARB( ̂MSE( ̂̄yMEPP1
2

)Boot) 0.048 0.046 0.047
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4.4 � Final remarks on the simulation study

This simulation study shows good performances of the bivariate small area predictor under 
all the scenarios considered. By good performance, we mean that the bivariate approach 
does not introduce bias in the estimates, thus, it provides estimates with smaller variance. 
This shows that the bivariate small area estimates are more efficient than the univariate 
small area estimates. Larger gains in efficiency are obtained when the correlation in �u 
( �u ) is larger. Even when the correlation is smaller, equal to 0.09, we can see good gains in 
efficiency, i.e. the mean squared error is smaller, thus the efficiency improves. The bivari-
ate predictor provides more efficient estimates when the intraclass correlation increases. 
When this is small instead, we notice a smaller gain, but the results are still satisfactory. 
We do not find a strong relationship between small area sample size and gains in efficiency, 
indeed, the relationship was moderate under the scenarios considered.

5 � Application

In this section, we present an application where the performances of the univariate EPP are 
compared to the bivariate EPP. For the estimators i.e. EPP and bootstrap MSE related to 
the univariate case we refer to Chandra et al. (2018), Molina and Strzalkowska-Kominiak 
(2020), and Rao and Molina (2015).

5.1 � Data

Data from Lehtonen and Veijanen (2016) is used and this is available from Pratesi (2016). 
The data was derived from AMELIA data (see Burgard et  al. (2017) and Lehtonen and 
Veijanen (2016) for the details). AMELIA is a synthetic dataset that allows for comparative 
and reproducible research. The aim of the project was to generate a synthetic and realis-
tic data based on European Union Statistics for Income and Living Conditions (EU-SILC) 
variables. Although the data is not a real dataset, it mimics the statistical properties of the 
real data behind (Burgard et al. 2017).

In particular, the sample size is equal to n = 2000 and we use the “Districts” ( D = 40 ) as small 
areas with sample sizes ranging between 25 and 84 and average sampling fraction f̄d = 0.002.

We create two binary variables and their proportions are the target parameters for which 
we produce the small area estimates. Based on the variable RB210 (Basic activity status) 
we create a binary variables called ’Employed’, Y1 , taking value 1 if the unit is employed 
and 0 otherwise. We also create another variable, Y2 which is called ’Poor’. This variable 
takes value 1, denoting that the unit is poor, if the value of the income of the unit is below 
the poverty line calculated as 60% of the median of the income (Chatterjee 2011).

5.2 � Small area estimates

The target parameters are the proportion of employed people and people with an income 
below the poverty line. We compute the direct estimates and their standard deviations 
using the survey weights according to (2); these are denoted by p̂Employed,DIR

d
 and p̂Poor,DIR

d
 , 

respectively, for d = 1, ..., 40 . In addition, model-based small area estimates are computed 
under the univariate GLMM and bivariate GLMM for both proportions. The following 
auxiliary variables are used: Age, Sex, Education level (Highest ISCED level attained) and 
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Degree of urbanisation. These are available for the sample and aggregates are available for 
the population. The estimates of the variance components of the models are 
𝜎̂
2Employed
u = 0.195 and 𝜎̂2Poor

u
= 0.040 for the univariate GLMMs and 

�̂u =

[
0.195 − 0.010

−0.010 0.040

]
 , for the bivariate GLMM.

We also check the normality of the random effects estimated from both univariate and 
bivariate models and the Kolmogorov-Smirnov test (with � = 0.05 ) is performed to investi-
gate the normality of the area-specific random effects predicted for both the univariate and 
bivariate GLMMs. The null hypothesis of the test is that the data is normally distributed. 
The results, with p-value in parenthesis, for the univariate case are 0.161 (0.224) and 0.091 
(0.864) for employed and poor, respectively; and for the bivariate case 0.068 (0.986) and 
0.103 (0.755) for employed and poor, respectively. Given that the p-value are larger than 
� = 0.05 , we cannot reject the null hypothesis and we can say that the distributions of the 
random effects are not statistically different from the normal distribution.

Figures 3 and  4 show the Relative Root Mean Squared Error (RRMSE) % of the small 
area estimates for employed and poor proportions, respectively. These are ordered by grow-
ing sample size. The RRMSE of the direct estimates can be approximated by the coef-
ficient of variation (standard deviation divided by direct estimate) (Rao and Molina 2015).

It can be seen that, in line with the simulation study, the use of the bivariate GLMM 
provides more efficient estimates that the univariate model for both small area proportions. 
The median percentage relative reductions in terms of RMSE across the areas is 48.8% 
for employment and 26.4% for poor, showing important gains in efficiency. We can also 
see that the RRMSE% estimates of the small area proportions obtained via the bivariate 
predictors are all below 20%, thus, reliable for many statistical agencies, see for example 
Commonwealth Department of Social Services (2015).

Fig. 3   Relative Root Mean Squared Error % of Small Area Estimates for Employed Proportion, ordered by 
growing sample size
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6 � Conclusion

In this article, we studied the bivariate small area estimation problem of proportions. This 
is an important problem in applications, since many variables present a binary nature. For 
example, many variables related to labour force, deprivation, poverty, health are binary. 
Here, we focus on the problem of providing small area estimates based on sample sur-
veys that are not representative for small domains. We recognise that the use of geo-ref-
erenced administrative data is still important to study social phenomena. However, there 
might some privacy and confidentiality issues regarding their access at small area level. 
In addition, the availability of administrative data varies depending on the country. Future 
research will take into account for it. Sample surveys, such as the European Statistics on 
Income and Living Conditions (EU-SILC), are still very much important to study social 
phenomena, since they contain crucial information on poverty and social exclusion vari-
ables, and they can be used to estimate a large variety of poverty indicators, such as the 
Laeken indicators (see also Betti and Lemmi (2013)).

In this work, we compared the univariate empirical plug-in predictor i.e. EPP under a 
unit-level generalised linear mixed model (GLMM) with logit link function to its bivariate 
extension. As mentioned in the Introduction, the univariate predictor is used by statistical 
agencies given its good properties and simplicity. The performances of the small area esti-
mators are compared via a model-based simulation study and an application. Our results 
show that the use of the bivariate generalised mixed model provides more efficient small 
area estimates of proportions compared to the use of its univariate setting in all scenarios 
considered. We found that good gains in efficiency can also be seen when the correlation 
of the area-specific random effects is small e.g. � = 0.09 . This is an important result, since 
in applications correlations may be small. Of course, as expected, larger gains are obtained 
when the correlation is large. It is however important to stress that the performances of the 

Fig. 4   Relative Root Mean Squared Error % of Small Area Estimates for Poor Proportion, ordered by grow-
ing sample size
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multivariate estimator depend also on the intraclass correlation coefficient. In fact, these 
gains in efficiency become larger when the intraclass correlation increases. Thus, larger 
correlation between random effects does not always guarantee a large reduction in the 
mean squared error. We did not find a large effect of the area sample size on the quality 
measures considered. In fact, the relationship is rather modest. We can also see that the 
RRMSE% values of the small area proportions obtained via the bivariate predictors are 
all below 20%, thus, reliable for many statistical agencies for example Statistics Canada 
(Spagnolo et al. 2018).

Our findings are in line with those from the multivariate small area estimation for con-
tinuous outcome variables (Moretti et al. 2020a, b), these results have been studied theoret-
ically in Datta et al. (1999) for the Normal case. However, (Normal) continuous variables 
are rarely present in real data, especially, in poverty and well-being field. Our results pose 
the basis for extending the use of bivariate generalised mixed models in small area estima-
tion of social indicators, given the different types of variables that are available in social 
surveys (e.g., binary, count, ordinal etc.).

In practice, when multivariate regression models are applied, users need to consider 
model selection issues, taking into account for the choice of a response distribution and 
predictors. The reader may want to refer to Klein et al. (2015), where the authors discuss 
guidelines that facilitate the model choice in presence of multivariate models. In summary, 
regarding model choice in multivariate distributional regression, the Deviance Information 
Criterion (DIC) (Spiegelhalter et al. 2002), normalized quantile residuals (Dunn and Smyth 
1996), and proper scoring rules (Gneiting and Raftery 2007) are studied in the literature. 
In order to evaluate sensitivity against distributional choices, we also recommend to per-
form simulation studies, which can be based on real data that users aim to use in their 
applications.

The object of this article was the bivariate case. However, extensions to more than two 
outcomes can be derived. Here, computational problems need to be considered. In the 
multivariate small area estimation literature (Moretti et al. 2020a) consider four responses 
for the continuous case, and show good performances (in terms of bias and mean squared 
error) of the multivariate approach compared to the univariate approach. To overcome 
issues where the aim is to estimate many single indicators, they propose the use of data 
dimensionality reduction techniques, such as factor analysis. Thus, the multivariate small 
area estimation problem can be reduced to a small number of variables (in their application 
on well-being two variables). Their work can be interestingly extended to the binary vari-
ables scenario.

In case one is interested in estimating one indicator only, other small area estimation 
techniques can be used to improve the small area estimates obtained via traditional meth-
ods. For example, the use of spatial models where borrowing strength from related small 
area can produce more reliable estimates (Pratesi and Salvati 2008).

We argue that the use of bivariate small area estimators is very useful for data users. 
In fact, auxiliary variables may not be good enough to explain the between areas varia-
tion. Users might be restricted to the use of these variables for privacy and confidential-
ity reasons, thus they need to rely on covariates that suffer from that issue. As pointed in 
Benavent and Morales (2016) the use of complex statistical modelling, taking into account 
for additional relationships between variables can produce small area estimates with higher 
quality i.e. in terms of precision, than simpler models such as univariate models.

Since multivariate small area estimation of proportions is a field under investigation, 
there are still areas that need to be explored. In particular, in this article we considered 
a parametric bootstrap approach to estimate the mean squared error of the small area 
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predictors. This is a well-known algorithm applied in small area estimation (see Rao and 
Molina (2015)). However, analytical methods based on a linearization techniques need to 
be studied in small area estimation under multivariate GLMM. Thus, comparisons to the 
boostrap mean squared error can be carried out, as it is practice in small area estimation. 
This topic is highly challenging in under multivariate GLMM. Model-robust approaches 
related to parametric bootstrap methods under GLMM in the multivariate setting are also 
interesting future areas of research. Future research will also consider other bootstrap 
approaches under this model, e.g., wild and block bootstraps, these are studied in the litera-
ture for other types of models (see Mokhtarian and Chambers (2013); Rojas-Perilla et al. 
(2020)). The use of generalised models using other link functions in small area estimation 
is another interesting topic of further work. Spatial extensions of this model need also to 
be considered where random area effects depend on a spatial process which may improve 
the small area estimates. In the multivariate small area estimation literature, there is some 
work on the use of spatial models, however, this is for the area-level case (see for example 
Porter et al. (2015)). There is potential to use these models in the context of unit-level mul-
tivariate small area estimation as well.
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