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Abstract
Historically, there has been a great deal of confusion in the literature regarding cross-cultural differences in attitudes towards
artificial agents and preferences for their physical appearance. Previous studies have almost exclusively assessed attitudes
using self-report measures (i.e., questionnaires). In the present study, we sought to expand our knowledge on the influence
of cultural background on explicit and implicit attitudes towards robots and avatars. Using the Negative Attitudes Towards
Robots Scale and the Implicit Association Test in a Japanese andDutch sample, we investigated the effect of culture and robots’
body types on explicit and implicit attitudes across two experiments (total n � 669). Partly overlapping with our hypothesis,
we found that Japanese individuals had a more positive explicit attitude towards robots compared to Dutch individuals, but
no evidence of such a difference was found at the implicit level. As predicted, the implicit preference towards humans was
moderate in both cultural groups, but in contrast to what we expected, neither culture nor robot embodiment influenced this
preference. These results suggest that only at the explicit but not implicit level, cultural differences appear in attitudes towards
robots.
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1 Introduction

When introducing artificial agents into an intimate environ-
ment, such as in households or schools, the acceptance by
the users is indispensable [1]. Over the last few decades,
human–robot interaction (HRI) research is facing signifi-
cant challenges in terms of the social acceptance of robots
and virtual agents [2]. The most plausible explanation for
this impasse lies in the interdependence between the social
acceptance of artificial agents and the users’ attitudes towards
those agents [3]. Human attitudes towards artificial agents
are influenced by several factors, including users’ cultural
background and agents’ embodiment [4], ultimately impact-
ing quality, engagement, and effectiveness of the interaction
[5, 6]. Despite the voluminous literature on cross-cultural
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differences in the attitude towards artificial agents [7], and
on the preferences towards a specific agent’s embodiment
[8], the results are substantially mixed so far. In the majority
of these experiments, attitudes are assessed using self-report
measures (i.e., questionnaires). This approach is limited as it
is not always a reliable measure of people’s actual thoughts
[9]. Therefore, the goal of this research was twofold: (i) to
offer additional insights into the effect of agents’ embod-
iment and individuals’ cultural background on the attitude
towards robots and avatars and, within this framework, (ii)
to compare implicit and explicit measures to assess human
attitudes towards artificial agents.

Perception is intimately related to attitudes. Through
perception, we can understand and organize sensations
into a meaningful experience, and this interpretation may
determine our attitudes and (future) actions towards that
experience [10]. A growing body of research on HRI sug-
gests that our perception of embodied and virtual agents
hinges on a plethora of factors: some are akin to the agent
itself, such as its physical appearance, social skills, behavior,
and context of use [11]; others, are utterly subjective human
or cognitive factors such as beliefs and prior experience that
contribute shaping our perception in general [12]. Specifi-
cally while interacting with embodied or virtual machines,
expectations seem to play a decisive role in shaping our
perception [12, 13, 14, 15]. Humans are generally proficient
at a wide-ranging batch of capabilities. In contrast, robots
and virtual avatars are conceived to be skilled at a few
limited capabilities related to a specific context, even though
humans might perceive them as more intelligent than they
actually are. This discrepancy is already enough to generate
an expectation gap, a phenomenon that occurs when humans
engage with a complex engineered system and develop
expectations that are misaligned with the system’s capabili-
ties [5, 6, 16]. From a design perspective, the aim should be
to have a neutral or positive gap, and the agent’s performance
should meet or exceed users’ expectations [17]. While high
reliability of the agent is associated with higher trust [18],
unmet expectations can lead to users’ disappointment, and
eventually distrust towards the agent [13, 19]. Not correcting
this expectation gap could result in less effective human–ma-
chine cooperation, along with less efficiency in improving
the agent behavior within its specific context of use [16].

Besides expectations, stimulus factors such as an agent’s
embodiment can underlie an overestimation of the agent’s
capabilities. For instance, if an agent has a human-like
appearance, it is easier to misattribute human mental models
to agents, overdrawing the range of tasks that they can truly
perform [5, 6, 16]. This perceptual mismatch can result in
users’ disappointment [16]. It is not yet clear whether one
particular agent’s body type is preferable to another: on the
one hand, humanoid agents could trigger more empathetic
responses based on physical similarities [20]; on the other

hand, less human-realistic agents might reduce eeriness and
increase trust [21]. Research on this subject has reported
heterogeneous outcomes. Some studies have found generic
positive attitudes towards human-like robots. Participants,
including older adults, expressed a significant social accep-
tance of humanoid robots [22, 23], considering them more
conscientious and intelligent [8]. Furthermore, human-like
robots tend to be perceived as less threatening by adults,
and they are treated more politely compared to machine-like
robots [24–26]. Comparable results have been found also
for virtual avatars, as human-realistic avatars elicited greater
affinity and preference than cartoon-like avatars [27]. On
the other hand, quite a few studies support the opposite
position. A significant preference for a small machine-like
robot, compared to humanoid and zoomorphic, has been
demonstrated also in the adult population [28]. In addition,
machine-like robots seem to be preferred in terms of initi-
ating contact, emotional connection, meeting expectations,
and appeal [29]. A study by Wood found that children per-
ceived humanoid robots as more aggressive and threatening,
while machine-like robots are considered friendlier [30].
Studies on virtual agents found distinct preferences toward
cartoon-like avatars compared to human-realistic ones [31].
It is important to mention that, along with opposite positions,
there is also a middle ground. In fact, not all studies found
significant differences between diverse shapes of robot
bodies [32] and if they did, they were not always extensible
to all domains investigated by the authors [24].

One possible explanation of these contradicting findings
lies in the variety of factors that influence that preference, in
particular the cultural background of the perceiver [33]. A
cultural lens has been widely adopted in human–robot inter-
action research (for a review, see [7]). Based on the work
by Lim and colleagues, we operationalize the cultural back-
ground as a national culture—values, norms, and practices
that are undertaken by the people born and raised in a certain
country [7]. Among all the cultures that have been com-
pared on this topic, the Japanese culture has been investigated
the most. This is likely given the decisive contribution that
Japan has made in social robotic research, along with the
large usage and promotion of social robots from the govern-
ment [34]. Today, according to the International Federation of
Robotics report (2021), Japan’smanufacturers deliver 45%of
the global robot supply and robotics represents a fundamen-
tal branch of the Japanese economy. Consequently, robots in
Japan have historically had a different media exposure, often
portrayed as heroic and righteous (

e.g., Doraemon, Astro Boy), compared to Europe. A
popular explanation of this positive view is that, in the
traditional Shintoism religion, inanimate objects are rec-
ognized as possessing a soul [35]. Some authors have
suggested that such a philosophical orientation might lead to
more willingness to accept artificial agents into society and
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this, along with the above arguments, led to the erroneous
speculation that Japanese culture has generally a positive
attitude towards artificial agents compared to other cultures,
the so-called Japanese “Robot Mania” [36]. The shreds
of evidence supporting this phenomenon are discordant.
Several studies found results in line with this assertion.
Nomura and colleagues found Japanese participants to
have a positive attitude towards robots compared to UK
participants (but there is an effect of age [37]), and Korean
participants [38], and were more inclined to accept robots
doing social activities and to have warmer feelings towards
them [34, 36, 38]. Along with the arguments pro-Japanese
“robophilia”, a considerable body of literature found results
in the opposite direction. In a cross-cultural investigation,
Bartneck and colleagues revealed that Japanese individuals
were far more concerned about the social impact of robots,
compared to US and Dutch individuals [39]. In a follow-up
study by the same authors, Japanese participants, while
not concerned about the social impact, reported concerns
about the emotional aspect of interacting with robots [40].
Other studies show a similar variety in results. Japanese
participants expressed more negative feelings towards robots
compared to participants in the UK, while at the same time,
they were also more prone to let the robots perform tasks that
required human characteristics [41]. It has also been shown
that Japanese participants have less robot acceptance and
trust compared to German participants, even though they
both showed similar levels of anxiety and perceived agency
[42]. Taken together, studies have reported both positive
and negative attitudes towards robots across dimensions of
perception and interaction. These findings harmonize well
with the considerations by Bartneck and colleagues [39].
They propose that the same over-exposure used to explain
positive attitudes towards robots in Japan can simultaneously
be the main cause of their concerns, due to a more realistic
view of the assets and limitations of this new technology.

Similar controversial results can be found while inves-
tigating cultural preference towards a specific robot body.
It has been shown that Japanese participants have a pref-
erence towards human-like robots [37, 39], and they feel
more comfortable with technology behaving like humans
compared to US participants [43, 44]. Other works found
a reversed trend: the more robots were human-like, the less
Japanese individuals liked them [45]. It is undeniable that
the human–robot interaction literature tended to focus on
Japan over other countries in cross-cultural studies. A posi-
tive fallout is the enormous amount of informationwehaveon
Japanese attitudes towards artificial agents, which is perfect
for comparisons. Nonetheless, this has also led to neglect-
ing other countries (e.g., European) in which the integration
of social robots and their social acceptance is no less urgent.
For instance, only one study has compared the Dutch popula-
tion to other countries in terms of attitudes towards artificial

agents [39], suggesting that Dutch participants have a more
negative attitude towards the impact that robots might have
on society compared to Japanese.

The main point that emerges from the research on cultural
similarities and differences in the attitude towards artificial
agents is the significant fragmentation of the literature. Com-
mon ground among all these different studies is the type
of instrument used to measure those variables. In fact, with
only a few exceptions, the majority of the studies employed
the Negative Attitude Towards Robots Scale (NARS) [46].
This questionnaire consists of three parts: attitudes toward
the interaction with robots; attitudes toward the social influ-
ence of robots; and attitudes related to emotions felt during
interaction with robots. The NARS is a self-report measure,
and unfortunately, such explicit measures of attitudes are
vulnerable to two kinds of biases. First, participants might
be unaware of attitudes influencing their behavior and, if
unsure, they might answer based on the most popular view
[36]. Second, if participants are aware of the attitudes behind
their behaviors, they could consciously decide to disguise
them. Sometimes this is the reflection of a desire to conform
with others,which could lead to self-presentational and social
desirability biases [9]. A solution to avoid these complica-
tions is tomake use of implicitmeasures. These types ofmea-
sures are more predictive of behavior than explicit ones [47].
To date, there is no recognized implicit measure of attitudes
towards artificial agents. Nevertheless, numerous attempts
have beenmade in the literature. In their recent paper,March-
esi and colleagues used the cyber ball task to investigate
cross-cultural differences in the social exclusion of social
robots [48]. In addition, some authors developed a measure
of semantic priming to evaluatewhether participants consider
humans and robots as similar or different [49]. Others used
observable behavior, such as the distance participants were
maintaining between themselves and the agents [50]. A prob-
lem with this approach is that behavior may be biased by the
context of interaction (e.g., experimental setting, task).While
incorporating the critical factor of physical embodiment
[51], cross-platform generalizability [52] is more difficult to
achieve.Amethod thatmerges the generalizability of the self-
report with the power to assess implicit attitude is the Implicit
Association Tests (IAT) [9]. The IAT measures association
between two target concepts (e.g., human and robot) along
an attribute dimension (e.g., good and bad) based on the
latency of the responses. A positive implicit attitude towards
a target is reflected in shorter latencies in associating positive
attributes to the construct. Vice versa, the more negatively a
target is perceived, the longer the latency will be in asso-
ciating the target with positive attributes. The idea is that
responding is easier when closely related items share the
same response key (e.g., robot-bad). To the best of our knowl-
edge, only two studies used a combination of explicit mea-
sures and IAT in research on attitudes towards artificial agents
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and found contrasting results across these measures. Sanders
and colleagues have found more positive implicit attitudes
towards humans compared to robots, along with a lack of
correlation between implicit and explicit measures [53]. Due
to the limited number of studies, it is unknown if implicit atti-
tudes towards robots are cultural-independent. One study by
MacDormand and colleagues found that Japanese individu-
als have warmer (explicit) feelings towards robots compared
to US participants, but the IAT (implicit) revealed a similar
human preference across both cultures [36].

Here, we aim to fill the gaps in the literature by teasing
apart factors that contribute to shaping our attitudes towards
artificial agents, specifically cultural background and agents’
body type. To consider the multiple dimensions that attitudes
encompass, we assessed both implicit and explicit attitudes
towards artificial agents across two cultural groups (Dutch
and Japanese individuals) in two experiments. Participants
were asked to complete two online Implicit Association Test
tasks and to fill in theNegativeAttitude towardsRobots Scale
(NARS) questionnaires. The first goal of the research was
to investigate the cross-cultural differences in implicit and
explicit attitudes towards artificial agents. The majority of
the studies on the Japanese sample found a negative atti-
tude towards robots only for specific subscales of the NARS,
but always a different one [social—36], [emotional—48].
Given this observation, we hypothesized that Japanese com-
pared to Dutch participants will have a more positive general
explicit attitude towards robots and avatars, expressed by a
lower general NARS score (H1). The second goal of our
study was to investigate the cross-cultural effect of agents’
appearance on implicit attitudes towards robots and avatars.
Based on the reported implicit preference for humans com-
pared to robots and the potential cultural independence of
this effect [36, 53], we expected to find a significant pref-
erence towards humans in general, expressed by a D-score
> 0.15 (H2a). Given the great exposure that robots have in
Japanese society, we still expected differences in the implicit
attitude towards robots between the two cultures.We hypoth-
esized that Japanese participants, while having an implicit
preference for humans over robots, would have a more pos-
itive implicit attitude towards robots and avatars, compared
to Dutch participants, expressed by a larger positive D-
score for Dutch compared to Japanese participants (H2b).
As a preference toward non-realistic human-like robots was
not influenced by culture [32], we expected that partici-
pants would have a generally more positive implicit attitude
towards human-like robots compared to machine-like robots
regardless of the culture (H3). While results have shown
a preference towards machine-like robots when comparing
these with hyper-realistic humanoid robots [29, 45], we used
human-like robots in the present study, which differentiate
themselves from machine-like robots merely by humanoid
features such as familiar body shape, eyes, and head.

2 Method

2.1 Data Statement

Data, materials, and code are publicly available on the OSF
at this link https://osf.io/uat6r/. We report all measures in the
study, all manipulations, any data exclusions, and the sample
size determination rule.

2.2 Participants

We recruited 669 participants (280 Dutch, 389 Japanese),
for two online experiments via the open-source platform
Jatos [54]. We aimed to recruit a total of 160 participants
for each experiment. The online recruitment was coordi-
nated by Leiden University (NL) in collaboration with Tokyo
Woman’s Christian University (JP), via the SONA system,
AmazonMechanical-Turk [29], Prolific (www.prolific.com),
and CrowdWork [30]. For Experiment 1, participants were
aged between 17 and 30 (Dutch, 63 women) and 18 and 30
(Japanese, 42 women). For Experiment 2, participants were
aged between 35 and 58 (Dutch, 33 women) and 21 and 65
(Japanese, 41 women). Supplementary Table 1 provides fur-
ther demographic details. The following inclusion criteria
were used: Japanese or Dutch, with normal or correct-to-
normal vision (glasses, contact lenses), no current or previous
history of neurological and psychological impairment, and
no regular use of psychoactive drugs. The experimental pro-
cedures of this study were approved by the Psychology
Research Ethics Committee (2020-04-28-V2-2399). Before
the experiment, written informed consent was signed online.
Compensation consists of one credit or 2 euros (300 JPY).
Among the 669 participants recruited, 320 participants com-
pleted both the NARS and the IAT tasks (Experiment 1: 80
Dutch, 84 Japanese; Experiment 2: 78 Dutch, 78 Japanese).
Due to problems with the recruitment platform, 66 partici-
pants (56 Dutch, 10 Japanese) were not able to access the
first questionnaire after signing the informed consent. Addi-
tionally, 11 participants did not report their demographic
(6 Dutch, 5 Japanese), and 270 participants were excluded
because of incomplete data due to various reasons (e.g.,
technical problems, termination before the end of the experi-
ment (60 Dutch, 210 Japanese)).1 Before the data analysis, 2
Japanese participants were excluded based on the IAT exclu-
sion criteria [55], as they had less than 3 correct responses
with latency between 400 ms and 10 s in each block.

1 Because of the large number of excluded participants due to incom-
plete data, a summary table of the demographic information can be
found in Supplementary Table 1c.
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2.3 Design

A two-sessions counter-balanced mixed design was used
with participants’ nationality (Dutch, Japanese) as between
factor and NARS subscale (interactions, emotions, social
influence), IAT version (version 1: robots, humans; version
2: avatars, humans) as within factor. The order of sessions
was counterbalanced, and the stimuli presentation was fully
randomized. All tasks were done back-to-back, there was no
time in between the NARS and IAT tasks. The dependent
variables were the NARS score (explicit attitude) and the D-
score (implicit attitude). Since the IAT has been suggested to
be affected by a familiarity bias towards same-culture faces
[56], we controlled for this by presenting in Experiment 1
faces that were representative of the culture (Dutch faces to
Dutch sample; Japanese faces to Japanese sample), and in
Experiment 2 faces that were not representative of the cul-
tural background (Japanese faces to Dutch sample; Dutch
faces to Japanese sample) and therefore less familiar.

2.4 Materials

2.4.1 Negative Attitude Towards Robots (NARS)

The Negative Attitude Towards Robots Scale (NARS) [46]
has been developed to measure humans’ attitudes toward
communication with robots in daily life. It is composed
of 14 items in total, measuring attitudes on three different
subscales: (i) negative attitude in situations of interactions
with robots (i.e., “I would feel nervous operating a robot
in front of other people”); (ii) negative attitude towards the
social influence of robots (i.e., “I am concerned that robots
would be a bad influence on children”); (iii) negative atti-
tude towards emotions in interaction with robots (i.e., “I feel
comforted being with robots that have emotions”). Following
the guidelines of Flora (2020), we estimated the reliability of
the questionnaire calculating McDonald’s Omega [57]. The
ωu-coefficients for the NARS subscales for the Dutch sam-
ple were 0.711, 0.694, and 0.643 (Experiment 1) and 0.683,
0.681, and 0.784 (Experiment 2) for Subscale 1, 2, and 3
respectively. Theωu-coefficients for the NARS subscales for
the Japanese sample were 0.868, 0.859, and 0.807 (Exper-
iment 1) and 0.703, 0.760, and 0.625 (Experiment 2) for
Subscale 1, 2, and 3 respectively. See Supplementary mate-
rial for details on the computation. Participants were asked
to fill each item based on a 5-point Likert scale (1—Strongly
disagree, 5—Strongly agree). As this is a self-report mea-
sure, we decided to treat it as an explicit measure of attitude.
The original version of the NARS is in Japanese and has been
validated in English [58]. Dutch participants performed the
NARS in Dutch.

2.4.2 Implicit Association Test (IAT)

The Implicit AssociationTest (IAT) [9]measures the strength
of association between concepts (e.g., human, robots) and
evaluations (e.g., good, bad) or stereotypes (e.g., athletic,
villain). The IAT has a total of 7-blocks. In IAT participants
are asked to quickly sort words into categories that are on the
right and left-hand side of the computer screen by pressing
the “e” key if the word/picture belongs to the category on the
left and the “i” key if belongs to the category on the right.
The first two blocks (20 trials each) are practice blocks where
participants sort pictures (robots, humans) into categories,
followedby sortingwords (Good,Bad) in the same categories
(Supplementary Fig. 1). In the third block (20 trials) of IAT,
categories are combined, and participants are asked to sort
both concept and evaluation words. For instance, for the cat-
egories “Robot-Bad” and “Human-Good”. The fourth block
(20 trials) is the same as the previous block but with 40 trials
instead. The fifth block (20 trials) is the same as block one,
but the positions of the two categories are reversed. The sixth
block (20 trials) is the same as the third, but with inverted
categories (“Robot-Good”, “Human-Bad”). Lastly, the sev-
enth block is the same as the previous one but with 40 trials.
The side the category is presented (left or right) is counter-
balanced (“Good” can be either on the left or right). The IAT
measures response accuracy and reaction times. The overall
duration of the task is around 6 min. The IAT was built in
OpenSesame 3.2.8 [59], conducted on the online platform
JATOS—Just Another Tool for Online Research [54], and
translated into Japanese or Dutch.

2.5 Stimuli

2.5.1 Robot

In the first version of the IAT, we used pictures of robots
that are currently commercially available on the market:
15 images depict anthropomorphic human-like robots, with
familiar bodies and faces aiming to reproduce a human
shape, while 15 represent machine-like robots, without a
particular shape that could remind a human or an animal
(Fig. 1). The human-likeness of the robot was taken from
the ABOT database (http://www.abotdatabase.info/; Supple-
mentary Table 2) [60]. The images were pre-processed to
have a dimension of 500 × 500 pixels, equal contrasts, and
equal luminance. Since the robot pictures have far more vari-
ance than human faces (for shape and colors), we opted
for three different versions of the Robots IAT. In each ver-
sion, 10 images were randomly chosen (5 human-like, 5
machine-like). The three different versions were counterbal-
anced across participants.
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Fig. 1 A Example pictures for the IAT version 1 (robots). In the upper
line, human-like robots, and in the bottom line examples ofmachine-like
robots; B Example pictures for the IAT version 2 (avatars);C Examples

of the human pictures used in both IAT versions. On the left, examples
of pictures presented to the Dutch participants. On the right, example
of pictures presented to the Japanese participants

2.5.2 Avatars

In the second version of the IAT, we used two-dimensional
avatars based on a 3D human model, downloaded from the
Mixamo (Adobe Systems Incorporated, 2020) and Sketchfab
(Sketchfab Incorporated, 2020). We downloaded 10 images
depicting avatars from the bust to the face (5 Females, 5
Males, Fig. 1). Pictures were pre-processed and cut with
theGNU ImageManipulation Program (GIMPDevelopment
Team, 2020) into images of 252 × 319 pixels, equalized for
luminance and contrast.

2.5.3 Human Faces

The human faces displayed in both sessions of the IAT were
chosen from two standardized datasets. We opted to include
only neutral facial expressions to avoid association biases
due to the emotional valence of the pictures (see Fig. 1). For
Experiment 1, in the Dutch IAT experiment, we randomly
selected 10 pictures (5 Females, 5 Males) from the Radboud

Faces Database [61] and the Amsterdam Dynamic Facial
Expressions Set (ADFES) [62]. In the Japanese IAT version,
we randomly selected 10 pictures (5 Females, 5 Males) from
the Japanese and Caucasian Neutral Faces (JACNeuF) [63].
Crucially, in Experiment 1 we presented Dutch faces and
Japanese faces to Dutch and Japanese samples respectively,
while in Experiment 2 we presented Japanese and Dutch
faces to Dutch and Japanese samples respectively.

2.6 Procedure

The procedure was the same for the Dutch and Japanese
participants. The experiment started from the recruitment
platforms, Amazon’s Mechanical Turk, Prolific, and SONA
for Dutch participants, and Crowdwork for Japanese partici-
pants. From these platforms, theywere redirected toQualtrics
to read the information letter, provide consent, and complete
the demographic questionnaire (age, gender, education level,
nationality, and email address on which they received a link
to the Jatos experimental framework). After the demographic

123



International Journal of Social Robotics (2023) 15:1439–1455 1445

questions, the NARS questionnaire was administered. We
opted to include theNARSbefore the IATbecausewewanted
the participants to fill out the questionnaire and report their
explicit attitudes based on their mental idea of the robot.
Including the NARS after the IAT would likely bias par-
ticipants toward a specific robot’s shape. Following this,
participants were redirected to the JATOS web server to start
the IAT task. The total time of completion for the study was
around 15 min. Before each subsequent block iteration, par-
ticipants were informed about what key input (“e” or “i”)
represented what attribute and/or concept. Upon completion
of the first IAT version, participants started the IAT task with
the second version (either robots or avatars versus humans).
When the participants completed both IAT versions, theweb-
server redirected them to the final Qualtrics survey, where
participants were debriefed.

2.7 Data processing and analyses

For the NARS questionnaire, the items were averaged for
each subscale reflecting explicit attitudes towards interac-
tions (subscale 1), emotions (subscale 2), and social influence
(subscale 3). Higher scores reflect a stronger negative explicit
attitude towards robots. For the IAT task, we calculated the
D-score which references an implicit preference toward one
category over the other category [9]. The D-score is the aver-
age difference in response latency between combined tasks
divided by the inclusive standard deviation [9]. A larger pos-
itive D-score represents a less favorable implicit attitude
towards robots compared to humans. The D-score ranges
from− 2 to 2, with − 2 being total preference toward robots
(version 1) or avatars (version 2), and 2 being total preference
toward humans (both versions). A value of around − 0.15/
0.15 would indicate a light preference, a value of around −
0.35/0.35 a moderate preference, while a value of around −
0.65/0.65 indicates a strong preference for the specific cat-
egory. No preference for either humans or robots would be
concluded if the score fell within a range of − 0.15 and 0.15.
We calculated 4 D-scores in total: D-score for the IAT ver-
sion 1 (robot), D-score for the IAT version 2 (avatar), and
two D-score for the machine-like and human-like robots,
both based on IAT version 1. We excluded RTs based on
the criteria of Greenwald and colleagues (2003, p.214, Table
4). We excluded trials with latencies < 400 ms. In addition,
the D algorithm (IATscores package) excludes trials with
latencies > 10 s by default. Participants with less than 3 cor-
rect responses with latency between 400 ms and 10 s in each
block are excluded from the analyses, as short response times
could indicate deceptive responses [55]. Participants that did
not complete all blocks of the IAT version were not included
in the sample. The D-score was calculated with R library
IATscores, using R v4.1.2 (R Core Team, 2016).

All statistical analyses were performed using JASP v0.16
(JASP Team, 2021). All the variables’ distribution met the
assumptions of normality (Shapiro–Wilk tests) and homo-
geneity of the variance (Levene’s test). To test the hypotheses,
we conducted a series of Repeated-Measure ANOVA to ana-
lyze the explicit attitudes toward robots (H1) and the implicit
attitudes towards robots and avatars (H2a and H2b), and
towards specific robots’ body types (machine-like, human-
like, H3). In Experiment 1, age betweenDutch sample (Mean
� 19.75, SD � 2.38) and the Japanese sample (Mean �
25.88, SD � 3.60) differed significantly (t � − 12.60, p
� < 0.001, MD � − 6.131, 95% CI [ − 2.34, − 1.59]).
We controlled for age twofold. We performed linear regres-
sion with age as covariate and Nationality as a factor to
predict the dependent variable central to the hypothesis (e.g.,
D-scores of Robot IAT).After excluding the presence ofmul-
ticollinearity issues, age was included as a covariate in the
Repeated Measures ANOVAs. Similarly, the level of Educa-
tion, re-coded based on the UNESCO International Standard
Classification of Education, was included as a covariate in
the main analyses for Experiment 1. No significant effect
of age and level of education on the explicit nor implicit
attitude towards robots was found (Supplemental Material).
For Experiment 1 we conducted a total of three Repeated
Measures ANOVA (rmANOVA): to test H1, we conducted a
rmANOVAwith NARS score as a 3-level factor (Subscale 1,
Subscale 2, Subscale 3), Nationality as a between-subject
factor, and Age and Level of Education as covariates; to
test H2a, we conducted two one-sample t-tests (test value
� 0.15), one for each nationality with the D-scores of Robot
IAT and Avatar IAT as variables. To test H2b, we conducted
a rmANOVA with D-score as a 2-level factor (Avatar IAT,
Robot IAT), Nationality as a between-subject factor, andAge
and Level of Education as covariates; to test H3, we con-
ducted a rmANOVA with Robot IAT D-score as a 2-level
factor (machine-like, human-like), Nationality as a between-
subject factor, and Age and Level of Education as covariates.
In Experiment 2, age between Dutch sample (Mean� 42.65,
SD� 5.85) and Japanese sample (Mean� 41,29, SD� 9,60)
did not significantly differ (p � 0.288). For Experiment 2,
we conducted three rmANOVA: to test H1, we conducted a
rmANOVA with NARS score as a 3-level factor (Subscale
1, Subscale 2, Subscale 3) and Nationality as a between-
subject factor; to test H2a, we conducted two one-sample
t-tests (test value� 0.15), one for each nationalitywith theD-
scores of Robot IAT andAvatar IAT as variables. To test H2b,
we conducted a rmANOVA with D-score as a 2-level factor
(Avatar IAT,Robot IAT) andNationality as a between-subject
factor; to test H3, we conducted a rmANOVA with Robot
IAT D-score as a 2-level factor (machine-like, human-like)
and Nationality as a between-subject factor. Recent studies
showed that analyzing ordinal variables with metrics models
can lead to distorted effect-size estimates, inflated error rates,
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and other problems [64, 65]. As an additional control anal-
ysis, we performed a Cumulative Link Mixed-Effect Model
(CLMM) analysis to appropriately account for nonlinearities
in the ordinal norming scale in both experiments [66]

3 Results

3.1 Explicit Measure of Attitudes Towards Robots

In line with our hypothesis, we observed a small between-
subject effect of nationality in Experiment 1 [F(1, 160) �
3.868, p � .051, η2p � 0.024], with a non-significant effect
in the samedirection for Experiment 2 [F(1, 154)� 2.995 p�
.086, η2p � 0.019]. While participants from Japan (mean ±
standard deviation (Experiment 1: 38.04± 9.34; Experiment
2: 36.30 ± 5.61) had a lower overall NARS score compared
to Dutch participants (Experiment 1: 43.61 ± 7.18; Experi-
ment 2: 36.14± 7.45), the nationality by subscale interaction
was significant in both experiments [Experiment 1: F(1.93,
309.66) � 3.005, p � .053, η2p � 0.018; Experiment 2:
F(1.93, 297.36) � 14.302, p < .001, η2p � 0.085]. In Exper-
iment 1, post-hoc comparisons using the Holm test showed
that this significance in explicit attitude is primarily driven
by a difference on Subscale 3 of the NARS (t(160)� 1.271, p
� .045, MD� 2.624, 95% CI [− 0.26, 4.46], d� 0.154), but
not the other two scales, S1 (t(160) � 1.910, p � .214, 95%
CI [− 0.83, 3.89]), and S2 (t(160)� − 0.017, p� .986, 95%
CI [− 2.37, 2.35]). In Experiment 2, the interaction effectwas
explained by a difference on Subscale 1 of the NARS, (t(154)
� 5.026, p < .001, MD� 2.538, 95%CI [1.04, 4.03]), but not
the other two scales, S2 (t(154) � − 0.914, p � .723, 95%
CI [− 1.77, 1.17]), and S3 (t(154)� − 0.482, p� .723, 95%
CI [− 1.73, 1.24]). In other words, compared to Japanese
participants, Dutch participants had a more negative attitude
towards emotions in interaction with robots (Experiment 1)
and towards social interactions with robots (Experiment 2)
(Fig. 2). The results of the CLMM analysis confirmed that
Japanese participants had a lower NARS scores than Dutch
participants on Subscale 3 (Experiment 1: β � − 0.4470, SE
� 0.112, p � .021) and Subscale 1 (Experiment 2: β � −
0.1334, SE � 0.058, p < .001).

3.2 Implicit Measure of Attitudes Towards Robots
and Avatars

In line with our prediction, the average D-scores were 0.26
(Experiment 1) and 0.27 (Experiment 2) for the robot IAT,
and 0.31 (Experiment 1) and 0.32 (Experiment 2) in the
avatar IAT respectively. Both scoreswere significantly differ-
ent from 0.15 (Experiment 1: t � 7.207, p < .001, d � 0.563,
95% CI [0.122, 0.214]; t � 4.428, p � < .001, d � 0.346,
95% CI [0.064, 0.167]; Experiment 2: t� 6.950, p < .001, d

� 0.556, 95% CI [0.122, 0.219]; t � 4.829, p � < .001, d �
0.387, 95% CI [0.074, 0.387]), indicating a slight preference
towards humans over artificial agents. Our second hypothe-
sis was confirmed (H2a), as both Dutch and Japanese had a
preference towards humans compared to Robots andAvatars.
We foundno significant difference between theD-score in the
Avatar IAT compared to the Robot IAT (Experiment 1: t(162)
� 1.785, p � 0.076, 95% CI [− 0.005, 0.107]; Experiment
2: t(154) � 1.575, p � 0.117, 95% CI [− 0.012, 0.103]).

In contrast to our prediction, there was no signifi-
cant between-subject effect of Nationality (Experiment 1:
F(1,160) � 0.738, p � .39; Experiment 2: F(1,154) � 3.224,
p� .07) on the overallD-score. Japanese (Experiment 1: 0.19
± 0.33—robot, 0.31 ± 0.31—avatar; Experiment 2: 0.29 ±
0.33—robot, 0.37 ± 0.33—avatar) and Dutch (Experiment
1: 0.33 ± 0.32—robot, 0.31 ± 0.27—avatar; Experiment 2:
0.25 ± 0.30—robot, 0.26 ± 0.26—avatar) participants did
not differ in their implicit attitudes towards robots or avatars
(Fig. 3).

3.3 Implicit Measure of Attitudes Towards Different
Types of Robots

Contrary to our hypothesis, we did not find a significant main
effect of robots’ body types (Experiment 1: F(1,160)�1.577,
p � .21; Experiment 2: F(1,154) � 1,575, p=.216). No main
effect of Nationality was found (Experiment 1: F(1,160) �
2.127, p � .14; Experiment 2: F(1,154) � 0.784, p � .337).
An interaction effect between body type and nationality was
observed only in Experiment 1 (F(1,160) � 5.979, p � .016,
η2p � 0.036), but not in Experiment 2 (F(1,154) � 0.280, p
� .59). Post-hoc comparison using Holm test for Experiment
1 revealed a slight preference for human-like robots only for
the Dutch participants (t(160) �− 2.728, p � .043, MD �
0.128, 95% CI [− 0.080, 0.287], d �− 0.105), but not for
the Japanese sample.

3.4 Correlations Between Implicit and Explicit
Attitudes

As an exploratory analysis, we looked at the relation-
ships between explicit and implicit attitudes for the Dutch
and Japanese samples separately. Crucially, same-nationality
samples from Experiment 1 and Experiment 2 were merged.
Ten Pearson correlation tests between NARS and IAT
were carried out for each nationality and tested against a
Bonferroni-adjusted alpha level of 0.005 (0.05/10). Explicit
and implicit measures of attitudes towards robots were cor-
related only for the Dutch sample (Fig. 4). All subscales
of the NARS were positively correlated with the D-score
in the Robot IAT (r(156) � 0.312, p < .001, two-tailed;
r(156) � 0.230, p � .004, two-tailed; r(156) � 0.227, p �
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Fig. 2 On the upper row, Japanese and Dutch comparison of the NARS
total scores and NARS subscales for Experiment 1. Samples differ sig-
nificantly on the NARS Subscale 3 (p � .053); on the bottom row,
Japanese and Dutch comparison on the NARS total scores and NARS
subscales for Experiment 2. Samples differ significantly on the NARS
Subscale 1 (p < .001). The boxplots represent the mean score and

standard deviation across all participants for the NARS subscales: for
Experiment 1, NARS Subscale 3 scores ranged from 3 to 14 for the
Japanese sample (Mean 8.59 ± 2.43) and from 5 to 15 for the Dutch
sample (Mean 10.67± 2.18); for Experiment 2, NARS Subscale 1 score
ranged from 6 to 22 for the Japanese sample (Mean 11.67 ± 3.44) and
from 9 to 23 for the Dutch sample (Mean 14.21 ± 3.44)

. 004, two-tailed). The results showed that the more the atti-
tudes towards interactions, social influence, and emotions of
robots were negative, the more Dutch participants showed an
implicit preference towards humans. These correlations were
not driven by a particular robot body type, as similar correla-
tions were found for machine-like and human-like robots in
both experiments (Fig. 4). No significant correlations were
present in the Japanese sample between explicit and implicit
measures in both experiments IAT (NARS-S1: r(160) � −
0.066, p � .407, two-tailed; NARS-S2: r(160) � − 0.091, p
� .247, two-tailed; NARS-S3: r(160) � − 0.026, p � .747,
two-tailed). Crucially, we found no correlation between the
self-report measures and the D-score in the avatar task in
both samples.

4 Discussion

In the present study, we investigated the impact of individ-
uals’cultural background on explicit and implicit attitudes
towards robots and avatars. Using the NARS questionnaire
and the IAT in Japanese and Dutch samples, we investigated
the effect of cultural background and robots’ body type on
these measures. Partly in line with our hypotheses, we found
that the Japanese sample had more positive explicit attitudes
towards robots compared to the Dutch, but no evidence of
such a differencewas found at the implicit level. As predicted
by our second hypothesis, the implicit preference towards
humans was moderate in both cultural groups, but in contrast

to what we expected, neither culture nor robot embodiment
influenced this preference. Together, these results suggest
that cross-cultural differences in explicit attitudes do not gen-
eralize to implicit attitudes and that, also at the explicit level,
these cultural discrepancies are not always comparable.

In both experiments,Dutch participants generally reported
more negative explicit attitudes as measured by the NARS
compared to Japanese participants. However, the cross-
cultural discrepancies that were found are not the same
across the two experiments. In Experiment 1 such difference
was driven by subscale 3, namely emotions in interaction
with robots, while in Experiment 2 it was driven by sub-
scale 1, namely situations of interaction with robots. These
subscales for instance measure how people would feel in
actively engaging in a conversation with a robot (“I would
feel paranoid talking with a robot”), or in interacting with a
robot having emotions (“I feel comforted being with robots
that have emotions”). When comparing our results to those
of older studies, this finding is not surprising, since cross-
cultural differences related to specific subscales have also
been reported [39, 40]. Still, these previous outcomes diverge
from ours as they report also differences between NARS
Subscale 2, namely negative attitudes towards the social
influence of robots. Our results, along with the previous
findings, suggests that cross-cultural differences in explicit
attitudes towards robot appear to exist, but on what precisely
remains unclear. Despite the NARS has been widely used
in human–robot interaction literature [37, 39, 53], the ques-
tionnaire may be a reliable measure of a general attitude
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Fig. 3 aD-score of the Robot IAT byNationality in Experiment 1, rang-
ing from − 0.94 to 1 for the Japanese sample (Mean 0.19 ± 0.32) and
from -0.42 to 0.9 for the Dutch sample (Mean 0.33 ± 0.32); b D-score
of the Robot IAT by Nationalityin Experiment 2, ranging from − 0.55
to 1 for the Japanese sample (Mean 0.29 ± 0.33) and from − 0.72 to
0.93 for the Dutch sample (Mean 0. 25± 0.30); c D-score of the Avatar

IAT by Nationality in Experiment 1, ranging from − 0.40 to 1 for the
Japanese sample (Mean 0.31 ± 0.31) and from − 0.41 to 0.95 for the
Dutch sample (Mean 0.31 ± 0.27); d D-score of the Avatar IAT by
Nationality in Experiment 2, ranging from − 0.58 to 1 for the Japanese
sample (Mean 0.37 ± 0.33) and from − 0.32 to 0.80 for the Dutch
sample (Mean 0.26 ± 0.26)

towards the robot, but not sensitive enough to capture atti-
tudes towards a specific aspect of human–robot interaction.
The reliability of the NARS is indeed still debated: while
some authors suggested that, when taken separately, the dif-
ferent factors of the NARS were not reliable enough [49],
others reported high internal consistency for all the subscales
of the NARS [40]. Regardless of the specific subscale in
which we found a cross-cultural difference, the main dis-
crepancy between our results and previous findings is about
the direction of this difference. In prior experiments, it was
the Japanese sample that had the most negative attitudes
towards robots, in terms of social influence [39] and emo-
tional interaction with robots [40] compared to other cultures
including theDutch one. The high exposure to robots in Japan
is not negligible [67]. In both the aforementioned studies, the
authors claimed that this high exposure may have given the
Japanese population more realistic expectations of robots,
with much awareness of their shortcomings [39, 40], which
in turn may have been reflected in negative attitudes toward

robots. Although we found an opposite trend, we believe that
the explanation might in fact be the same: if on the one hand,
the overexposure to robots can give the tools to be more criti-
cal and concerned about this technology [7], on the other it is
undeniable that it can naturalize their presence in society. For
this reason, the Japanese population may be more concerned
about the social influence of robots, but this can coexist with
their propensity for social interaction with robots found in
the present study.

For the Dutch sample, contrary to a previous study [40],
we found that participants had a generally more negative
attitude towards robots compared to the Japanese one. Look-
ing solely from the point of view of robot exposure, one
could argue that the reduced frequency with which Dutch
people experience human–robot interactions might enhance
their concerns towards them.Webelieve that entirely explain-
ing these results from the perspective of robot overexposure
canbe reductive, as our results resonatewell alsowith the out-
comes of recent works investigating Dutch attitudes towards
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Fig. 4 A correlation between Robot D-score and NARS Subscale 1 (p <
.001), Subscale 2 (p � .004) and Subscale 3 (p � .004) for the Dutch
sample in both experiments; B correlation between Robot D-score and
NARS Subscale 1 (p� .0� 407), Subscale 2 (p� .247) and Subscale 3

(p � .747) for the Japanese sample in both experiments; C correlations
heatmap for Dutch sample in both experiments;D correlations heatmap
for Japanese sample in both experiments. Significant correlations are
flagged

the future [68, 69]. In terms of technology outlooks, Dutch
respondents have proven to be particularly moderate: they
expressed optimism about the overall impact of technology
on society, but not without uneasiness towards specific tech-
nologies such as robotics and digitalization [68]. Especially
regarding the intimate relationship with a robot, or the possi-
bility for robots tomake decisions about human lives, the vast
majority of respondents expressed sincere concern and nega-
tive feelings [68, 69]. These results are directly in linewith the
negative attitudes towards social and emotional interactions
with robots that Dutch participants reported in the present
study.

Dutch and Japanese participants indicated more positive
implicit attitudes towards humans both in the Robot and

Avatar IAT.A similar conclusion has been reached by numer-
ous previous studies,whichhave foundmore positive implicit
attitudes towards humans compared to robots, assessed both
with the IAT [53, 70, 71, 72] and with a different task [49].
A possible explanation lies in the assumption of similarity:
the morphologic and biomechanics overlap is surely inten-
sified with pictures of humans compared to robots, and this
may have produced an ingroup bias already established in
the IAT [73] and human–robot interaction literature [74].
If the morphologic overlap was the only explanation, we
should have observed more positive attitudes towards avatars
compared to robots. It is possible that categorizing robots
as ingroup or outgroup might depend on factors that are
not solely linkedwithmorphological similarities. Supporting
this position, a study found negative implicit attitudes even
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for hyper-realistic robots [75]. As much as we can create
robots similar to humans, they will still seize a plethora of
unique features that will always make them fundamentally
different from us, a distinct social category [74].

Along with the preferences towards humans in both cul-
tures, we still expected Japanese participants to have slightly
more positive implicit attitudes towards robots and avatars,
with a significant decrease in the average D-score compared
to the Dutch one. The results do not support our hypothe-
sis, since the differences in D-score between Japanese and
Dutch participants are negligible in both tasks. This lack
of effect of the nationality in the implicit attitudes towards
robots, but not in the explicit ones, is directly in line with
previous findings: some authors found that Japanese par-
ticipants expressed more positive explicit attitudes towards
robots compared to theUS sample, but these differenceswere
absent at the implicit level [36]. This conflicted association
between explicit and implicit measures in the Japanese sam-
ple, combined with a non-significant correlation amongst the
measures, is not new in the literature and it could mean
that people implicitly have different opinions about robots
than they explicitly want to or can reveal [76]. A desire to
conform can lead to a self-presentational bias [9]. Partici-
pants choose to present themselves to others which may not
accurately reflect their attitudes and dispositions owing to
concerns about social desirability [9, 77]. Cross-cultural dif-
ferences might be at play in this process. Japan, for instance,
considers itself a robot-friendly country [78]. This does not
necessarily imply that, at the individual level, Japanese par-
ticipants all would have positive implicit attitudes, but might
impact the way participants chose to present themselves [36]

Another possible explanation resonates with MacDor-
mand and colleagues’ findings, as this ambivalence may
partially depend on a mismatch between the robot mental
representation that each participant had active while filling
NARS and the actual robots shown during the IAT [35]. In
fact, people’s assumptions about robots widely range from
humanoid to laboratory robots, industrial robots, and so on
[79]. This might influence implicit measures even though
Japanese participants rationally reportedwillingness to inter-
act with the robots. The mental representation of a robot that
participants have while filling out the self-report question-
naire might be very different from the actual robots shown in
the pictorial IAT. This speculation, however, holds only for
the Japanese participants, as for Dutch participants explicit
and implicit attitudes were positively correlated. A more
negative explicit attitude towards interactions and the social
influence of robotswas correlatedwith an implicit preference
towards humans.

Implicit and explicit measures have often been seen as dis-
cordant with each other [80]. However, it has been shown that
spontaneity—not engaging in the effortful process of retriev-
ing recently formed representations from memory while

completing self-report questionnaires—increases the corre-
lation between them [81]. As Japanese people are highly
exposed to robots, they could also retrieve more representa-
tions while filling self-report questionnaires; on the contrary,
Dutch people might rely on fewer mental images of robots
and answer more spontaneously. Due to the mixed results in
this study, it remains unclear to which degree implicit and
explicit measures are correlated. It is important to underline
that a lack of correlationmay depend on the limitations of the
implicit task in itself. The IAThas in fact received several crit-
icisms from the literature. First, some authors proposed that
the test might measure mere familiarity [68], but it has been
shown that the stimulus familiarity did not affect the auto-
matic race associations at the IAT [69]. More importantly,
the test foresees an opposition between two concepts, pos-
tulating a symmetrical relation between them. Following the
reasoning of Spatola and Wudarczyk, robots are not neces-
sarily antagonist categories [49]. The authors proposed a new
implicit measure lacking this bi-dimensional categorization
in which there is a priming of a semantic link that is indepen-
dent of the other category. In their task, human and robot are
never explicitly opposed as in the standard IAT. Future stud-
ies should investigate implicit measures by the means of this
new task, perhaps comparing it with the classic IAT. At the
same time, the mismatch between explicit and implicit mea-
sures found in the present study is in linewith the recent work
in the field of Human–Robot Interaction. Li and colleagues
examined the mind perception of robots using a manipulated
version of the IAT (MP-IAT) and an explicit mind perception
rating [82]. As there was no correlation between constructs,
the authors suggested that implicit and explicit measures
might be related but potentially independent concepts that
require independent assessment. Acknowledging the limita-
tions of the testing method, we are still keen to consider the
IAT as a useful tool in Human–Robot Interaction to under-
stand human perception of robots.

How culture influences the preference toward human-
like or machine-like robots remains elusive. Only in one
experiment we find that Dutch participants have a slight
preference for human-like robots compared to machine-like
ones compared to Japanese participants. This is inconsis-
tent with previous studies that found a preference towards
machine-like robots [24, 28, 29, 45], but still in line with
several works where people reported preferring human-like
robots [20, 83, 84]. The majority of the studies that found
a preference towards machine-like robots were in fact com-
paring them with hyper-realistic humanoid robots [29, 45],
which can be perceived as more threatening [70]. Since
Japanese people have previously shown a reluctance towards
hyper-realistic androids [45], we chose to not use pictures of
realistic humanoids, but rather of robots that have some char-
acteristics attributable to humans (limbs, head, face). Given
the lack of a difference evenwith this foresight, wewondered
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whether this appearance of the robots has been actually per-
ceived as human-like or machine-like at all. In fact, while
some studies would agree with us considering this shape as
human-like [8], others used similar robots as machine-like
counterparts for hyper-realistic humanoids [75]. We encour-
age performing a pre-test validation of the robot stimuli using
the ABOT database [60], which could help to categorize the
robots’ embodiment in a standardized manner across papers
and disciplines.

Another explanation might lie in the importance of the
context for the preferred appearance of robots. There is a
general consensus that the preference for a specific robot
appearance also depends on the social domain inwhich it will
be used [16]. So far, the nature of this context-dependency
remains unknown. It has been shown that the body type
preference for household robots can be humanoid but not
hyper-realistic [84], while another study found that human
appearance was strongly undesirable and a domestic robot
should look like a small machine-like robot [28]. Other
authors suggested that this preference is really affected by
individual differences, as some people preferred tall and
humanoid domestic robots, while others had a preference
towards mechanical-looking robots [8]. In terms of reliance,
literature shows that humanoid robots might be more appro-
priate to delegate tasks, whilemachine-likes robots still make
the participants feel more responsible for the task [24]. This
huge body of work suggests that it’s dangerous to abstract the
preference toward a particular robot body type from the spe-
cific social context in which it will be used. Future research
on both implicit and explicit attitudes towards robots should
frame the experimentwithin a specific context of use, perhaps
looking at the implicit association between different robot
embodiments and contextual tasks they might take over.

5 Limitations and Future Directions

A limitation of our research is the lack of assessment for
previous experiences with robots. Research has shown that
personal experiences with artificial agents, be it embodied
interactions or exposure through the arts, are crucial in shap-
ing our attitudes towards them and our willingness to interact
with them [40, 67]. These experiences can steer a mental rep-
resentation of the artificial agent that, in turn, might influence
our spontaneity in filling in self-report questionnaires [85]
but also modulate our implicit attitudes towards the agents
themselves [86]. Future research should strategically con-
trol this. In conjunction with experience, beliefs, and other
cognitive factors, the shape and form of the artificial agent
determine how the observer evaluates this agent [11]. In the
present study, we used machine-like and human-like robots.
It remains unclear towhat extent these labels represent proto-
typical machine-like and human-like robots as the definition

of machine-like and human-like robots or related labels is
extremely vague in the literature. In order to fully understand
the interplay between attitude and shape, form, embodiment,
a clearer consistency in the definition of the different types
of robots (e.g., machine-like, human-like, humanoid) is war-
ranted.

In the current study, explicit and implicit measures were
assessed together. As the relationship between those mea-
sures is still unclear, it remains to be understood whether
one could influence the other and vice versa. Future studies
could investigate these attitudes at separate moments to con-
trol for this potential effect. It is worth mentioning that both
our implicit and explicit measures are negatively framed:
the IAT test implies a conceptual opposition between artifi-
cial agents and humans, and in the NARS two out of three
subscales contain items negatively framed. Considering the
acquiescence bias, which occurs when people tend to agree
with statements without regard for their actual content [87], it
is very likely that positively framed scales could elicit differ-
ent responses in the participants. Salazar (2015) also founds
a greater tendency for the items in a positive questionnaire
to show results associated with the directionality of the [88].
However, in absence of cross-cultural literature on this mat-
ter, it is difficult to speculate about the effect of positively
vs negatively framed scales on the magnitude of the cul-
tural differences. Human–robot interaction literature would
benefit from comparing positively and negatively framed
questionnaires to investigate their sensitivity in capturing
cultural differences. Critically, despite online experiments
represent a useful and valid tool [89], they also comewith less
control by the researchers. Future research should also test
this in different context beyond online experiments. Finally,
we encourage a much more extensive inclusion of cultural
samples in order to avoid over-and under-representation.
A review by Lim and colleagues call for investigations
beyond theWest/European-East/Asian dichotomy,within the
framework of the individualism-collectivism dimension to
examine whether and under which circumstances certain
cultures could be more flexible in developing positive per-
ceptions and attitudes towards robots [7]. In this regard,
the recent study by Marchesi and colleagues showed that
the cultural values expressed by the individualist-collectivist
dimension have a greater effect than nationality on our
implicit attitudes toward robots [48]. This highlights the
need to investigate cross-cultural differences through this still
underexplored lens.

In conclusion, our study expanded the knowledge about
the effect of agents’ embodiment and of the users’ cultural
background on the attitudes towards robots and avatars, but
also about the relationship between explicit and implicitmea-
sures to assess human attitudes towards artificial agents.
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Collectively, our results suggest that cross-cultural differ-
ences in the explicit attitudes towards robots exist, but these
are not necessarily accompanied by implicit differences.
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