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Abstract 

Domestic cattle have spread across the globe and inhabit variable and unpredictable environments. They have been 
exposed to a plethora of selective pressures and have adapted to a variety of local ecological and management con‑
ditions, including UV exposure, diseases, and stall‑feeding systems. These selective pressures have resulted in unique 
and important phenotypic and genetic differences among modern cattle breeds/populations. Ongoing efforts to 
sequence the genomes of local and commercial cattle breeds/populations, along with the growing availability of 
ancient bovid DNA data, have significantly advanced our understanding of the genomic architecture, recent evolu‑
tion of complex traits, common diseases, and local adaptation in cattle. Here, we review the origin and spread of 
domestic cattle and illustrate the environmental adaptations of local cattle breeds/populations.
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Introduction
Domestic cattle are descended from the aurochs (Bos 
primigenius) (Ajmone-Marsan et  al. 2010), which were 
widely distributed in Europe, Asia and northern Africa 
during the Holocene and went extinct in 1624 (Felius 
et  al. 2014). Modern cattle were estimated have been 
domesticated ~ 10,000  years before present (BP) in 
Southwest Asia and ~ 8,000 years BP in South Asia (Lar-
son et al. 2014; Pitt et al. 2019).

At present, approximately 1.5 billion cattle are kept on 
all inhabited continents, in a variety of climatic zones 
under diversified conditions (www. fao. org/ faost at/ en/). 
Domestic cattle are divided into humpless taurine cat-
tle (Bos taurus taurus) and humped indicine/zebu cat-
tle (Bos taurus indicus), local populations of which have 
undergone continuous admixture with other bovine 
species (Chen et al. 2018a; Chen and Lei 2021; Wu et al. 
2018). Taurine cattle are largely confined to temper-
ate and cold climates and are widely distributed in the 
Northern Hemisphere; some breeds are distributed in 
tropical Africa and America. Indicine cattle are found in 
southern Asia, Africa, northern Australia, the southern 
US, and Latin America (Utsunomiya et  al. 2019; Zhang 
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et  al. 2020). Indicine cattle differ from taurine cattle in 
various ways: they exhibit a muscular fatty hump of vari-
able size on their shoulders, a larger dewlap, drooping 
ears, and a tolerance of semiarid and tropical environ-
ments. Indicine cattle have a lower basal metabolic rate, 
water, and nutrient requirements. Moreover, they are 
generally more resistant to ticks and intestinal parasites 
than taurine cattle (Utsunomiya et al. 2019).

Global dispersal of cattle
Over the past 10,000 years, cattle domestication has been 
followed by several major migrations, leading to their 
presence on all inhabited continents (Felius et al. 2014). 
Environmental conditions of heat or cold, high altitudes 
or lowlands, and arid zones or humid tropical environ-
ments have contributed to the many adaptations of cattle 
and pronounced genomic diversity among breeds/popu-
lations (Fig. 1).

Taurine cattle were introduced from the Middle 
East into Africa 6,800  years ago (Felius et  al. 2014) and 
probably influenced by local aurochs, which likely con-
tributed to the ancestry of modern African taurine 
cattle (Pitt et  al. 2019; Verdugo et  al. 2019). The impor-
tation of male indicine cattle to Africa was initiated 
as early as 4,000  years ago and intensified at AD 700 

(Ajmone-Marsan et  al. 2010). At the end of the nine-
teenth century, cattle of the original taurine ancestry 
were largely replaced by indicine cattle, which were less 
vulnerable to devastating rinderpest epidemics (Felius 
et  al. 2014). A major taurine-indicine admixture event 
was dated to approximately 750–1,050  years (approxi-
mately 150 generations) ago (Kim et al. 2020). This male-
mediated indicine introgression into local taurine herds 
generated African indicine populations with a variable 
taurine/indicine genomic composition that are better 
adapted to dry climates. Over time, there was a stepwise 
transition from taurine to indicine diversity in Africa.

Approximately 4,200 years ago, climate change caused 
a male-mediated westward migration of indicine cattle 
from the Indus Valley to the Near East, which resulted 
in a change in genetic composition as cattle adapted to 
a dry climate (Verdugo et al. 2019). The eastward migra-
tion of taurine cattle reached the northern part of East 
Asia between 5,000 and 4,000 years ago, accompanied by 
the rapid adaptive evolution of ancestral taurine cattle 
to extremely low temperatures, as found in Siberia and 
the Qinghai-Tibetan Plateau (Felius et al. 2014). Around 
3,000 years ago, indicine cattle migrated to Indochina and 
southern China. Following the contact of indicine cat-
tle with early imports of taurine cattle, a north-to-south 

Fig. 1 Domestication and main migration routes of Bos taurus and Bos indicus. Paternal (Y) and maternal (taurine, T; indicine, I; and aurochs, P and C) 
haplogroups are shown in parentheses, separated by a semicolon
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taurine-to-indicine cline was established at both the phe-
notypic and genomic levels in China (Gao et  al. 2017). 
Intermediate taurine-indicine populations exhibited vari-
ous combinations of taurine and indicine ancestries. The 
importation of indicine cattle to Southeast Asia likely 
began 1,500 years ago. Cattle were imported into North 
and South America from Europe and Africa since 1492 
(Ajmone-Marsan et  al. 2010; Felius et  al. 2014). Dur-
ing their continuous dispersal in the tropical zones of 
Asia, Africa, and America, indicine cattle encountered 
southwestern and eastern Asian, African, and Ameri-
can taurine populations, respectively (Chen et al. 2018a; 
Utsunomiya et al. 2019), driving the emergence of several 
hybrid populations. Both southwestern Asia and central 
China are now characterized as typical taurine–indicine 
transition zones.

Molecular evidence of uniparental and autosomal 
markers has confirmed that taurine and indicine cattle 
are derived from two geographically separated and genet-
ically differentiated aurochs progenitors from West and 
South Asia, respectively. Among modern cattle, there 
are seven major mitochondrial haplogroups (taurine T1, 
T2, T3, T4, and T5 as well as indicine I1 and I2) (Chen 
et al. 2010; Lenstra et al. 2014; Xia et al. 2019a); the rare 
mitochondrial haplogroups E, R, P, Q and C, support-
ing sporadic aurochs introgressions (Zhang et  al. 2020; 
Xia et al. 2021; Cubric-Curik et al. 2022); five Y chromo-
some haplogroups (taurine Y1, Y2a, and Y2b as well as 
indicine Y3a and Y3b) (Xia et al. 2019b; Cao et al. 2019; 
Edwards et  al. 2011; Pérez-Pardal et  al. 2018); and at 
least eight major autosomal ancestral groups (Chen et al. 
2018a, 2020) as follows: (1) African taurine cattle living in 
humid and sub-humid, tsetse fly-infested, tropical envi-
ronments in West Africa (Gautier et al. 2009; Kim et al. 
2017); (2) East Asian taurine cattle in Northeast Asia 
and the Qinghai-Tibetan Plateau, which are adapted to 
extremely cold and hypoxic environments, and some of 
them carry alleles arising from yak introgression (Chen 
et al. 2018a; Wu et al. 2018); (3) Eurasian taurine cattle in 
semiarid regions in Central Asia (Chen et al. 2021; Kan-
tanen et  al. 2009); (4) European taurine cattle inhabit-
ing temperate climates that carry alleles arising through 
admixture with European aurochs and are the ancestors 
of most globalized industrial breeds (Achilli et  al. 2008; 
Daetwyler et al. 2014; Park et al. 2015); (5) Indian-Paki-
stani indicine cattle in hot and semiarid regions (Chen 
et  al. 2010); (6) African indicine cattle in semiarid East 
and Central Africa with a mixed ancestry of African tau-
rine and South Asian indicine breeds (Bahbahani et  al. 
2017; Kim et  al. 2017, 2020); (7) Diversified East Asian 
indicine cattle that inhabit hot-humid environments 
and carry alleles from other wild and/or domestic Asian 
bovine species (Chen et  al. 2018a; Sinding et  al. 2021); 

and (8) Indonesian breeds in hot-humid environments, 
which show a mix of indicine, banteng and/or Bali cat-
tle ancestries (Mohamad et al. 2009; Sudrajad et al. 2020). 
For a more detailed and comprehensive classification of 
modern cattle, see Felius et al. (2011).

Adaptation to a cold environment
Cold climates are likely to affect the phenotypic char-
acteristics and metabolism of cattle. Northern Fennos-
candia and the Republic of Sakha, Russia, represent the 
northernmost regions inhabited by humans and are 
home to cattle breeds adapted to extremely cold environ-
ments (Weldenegodguad et al. 2018) (Fig. 2). For exam-
ple, the Yakut cattle can be found above the Arctic Circle, 
and they have adapted to extremely cold winters (-50 °C). 
Recent genome-wide scans found that all Yakut cattle 
carry a breed-specific missense mutation in an evolution-
arily conserved NRAP gene involved in heart function 
(Buggiotti et  al. 2021) (Table  1). This change is shared 
by most hibernating mammals but absent from many 
mammalian species and other modern and ancient cattle 
breeds and bovine species. NRAP encodes the nebulin-
related-anchoring protein enabling actin filament-bind-
ing activity and is abundantly expressed in striated and 
cardiac muscles involved in myofibrillar assembly and 
force transmission in the heart (Truszkowska et al. 2017). 
Thus, this young convergent NRAP amino acid change 
in Yakut cattle suggests that they may slow down their 
metabolism but enhance their heart function to supply 
blood during the winter periods (Buggiotti et al. 2021).

Previous studies revealed several candidate genes that 
might be related to cold acclimation, including RETREG1, 
RPL7, and SLC8A1, in Yakut cattle of Russian (Weld-
enegodguad et  al. 2018; Yurchenko et  al. 2018). Among 
them, RETREG1 (also known as FAM134B) is related 
to the impairment of pain and temperature sensation in 
humans (Kurth et al. 2009). RPL7 encodes a component 
of 60S ribosomal subunit and showed a fourfold up-regu-
lation in the skin of freeze tolerant frogs (Wu et al. 2018). 
SLC8A1 encodes for solute carrier family 8 member A1 
that is predominantly expressed in human heart and its 
mutations was found to be significantly associated with 
blood pressure rising during salt load (Liu et  al. 2018). 
Another study on cold adaptation of Hereford and the 
Kazakh Whiteheaded cattle bred in Siberia for several 
decades identified a single candidate genomic region by 
both genome-wide association study (GWAS) and scan 
for selective sweeps, where MSANTD4 and GRIA4 were 
annotated. It was believed that both genes contribute to 
the cold-stress resistance phenotype due to their indirect 
involvement in the cold shock response (MSANTD4) and 
body thermoregulation (GRIA4) (Igoshin et al. 2019).
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In northern Swedish cattle (Fjäll or Swedish moun-
tain cattle) that also live in areas with a subarctic cold 
climate, signatures of positive selection were found 
near AQP3 and AQP7 (Ghoreishifar et al. 2020). AQP3 
and AQP7 are mapped at the same chromosomal loca-
tion as an aquaporin cluster and they encode the water 
channel protein aquaporin 3 and a member of the aqua-
porin family of water-selective membrane channels, 
respectively. AQP7 facilitates water, glycerol, and urea 
transport, and thus may play an important role in ther-
moregulation in the form of perspiration. Mongolian 
and Yanbian cattle in northern China with an annual 
average temperature of 2–6  °C harbor a substitution 
in PRDM16 (p.P779L), which maintains brown adipo-
cyte formation by boosting thermogenesis-related gene 
expression, indicating its vital role in cold tolerance 
(Yan et al. 2022).In northern Chinese cattle, LCORL has 
also been identified as a candidate gene for larger body 

size and greater height that may reflect local environ-
mental effects (Lango Allen et al. 2010).

Adaptation to tropical regions
Temperature increases lead to changes in forage quality 
and exacerbate livestock susceptibility to pests and dis-
eases (Berman 2011). These factors cause physiological 
or behavioral changes in livestock, driving their adapta-
tion to high-temperature environments. The body tem-
perature is coordinated and controlled by the balance 
between metabolic heat production and loss (Bernabucci 
et al. 2014). Heat stress occurs when animals are exposed 
to high temperatures and cannot dissipate sufficient 
endogenous heat in time (Koch et  al. 2019). Heat stress 
directly affects the food intake, growth, milk yield, and 
health conditions of domestic animals (e.g., heat shock), 
resulting in losses to production (Silva et al. 2021). There-
fore, the study of thermal adaptation in cattle has become 

Fig. 2 Examples of local adaptations in cattle breeds/populations, each labelled with the candidate gene or genes under selection
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an important topic of research. Indicine cattle have sev-
eral phenotypes that reflect adaptations to tropical envi-
ronments, including their hump, large ears, and excess 
skin.

The hump, large ears and excess skin of indicine cattle
The hump is a muscular structure located above the 
withers on the dorsal region of the thoracic cage of indi-
cine cattle; it is more prominent in males than females. 
The biological importance of the indicine hump remains 
unclear. Its abundant fat has inspired speculations 
regarding a role in energy storage in times of starvation, 
whereas the biomechanical relevance of the hump to the 
stabilization of the scapula suggests artificial selection 
for animal performance during draft (Utsunomiya et  al. 
2019). To date, no specific genomic region or gene has 
been implicated in the development of the hump.

Most indicine cattle carry large ears that are either 
spear tip-shaped or pendulous. Excess skin is usually pre-
sent across the entire ventral midline, especially around 

the neck (throatlatch), chest (dewlap), and navel. A recent 
haplotype-based GWAS revealed that navel size was 
strongly associated with copy number variation at intron 
3 of the high-mobility group AT-hook 2 gene (HMGA2) 
(Aguiar et  al. 2018). The available evidence is not yet 
conclusive but suggests that structural variants (SVs) of 
HMGA2 may explain the excess skin and ear morphol-
ogy of indicine cattle, similar to findings in pigs (Li et al. 
2012) and dogs (Boyko et al. 2010).

Skin morphology of indicine cattle
Cutaneous evaporation is the main avenue by which cat-
tle dissipate heat, with the involvement of sweat glands 
and other skin components. A comparison of the skin 
morphology revealed denser, larger, and baggier sweat 
glands in indicine cattle with smaller capillary surface 
areas of hair follicles than those in taurine cattle, whereas 
the differences in skin morphology in their crossbreds 
correlated with the proportion of taurine ancestry (Jian 
et  al. 2014). Likely the combination of large ears and 

Table 1 Overview of known genes under local adaptation in cattle populations

Category Breed/population Method Gene Refs

Cold adaptability Yakut cattle RFMix, allele frequency NRAP (Buggiotti et al. 2021)

Cold adaptability Russian native cattle DCMS and hapFLK RETREG1 (Yurchenko et al. 2018)

Cold adaptability Hereford and
Kazakh Whiteheaded cattle 
bred in Siberia

GWAS and DCMS MSANTD4, GRIA4 (Igoshin et al. 2019)

Cold adaptability Fjäll cattle DCMS AQP3, AQP7 (Ghoreishifar et al. 2020)

Cold adaptability Yanbian and Mongolian 
cattle

FST, Pi, Tajima’s D PRDM16 (Yan et al. 2022)

Navel size Nellore cattle GWAS HMGA2 (Aguiar et al. 2018)

Heat adaptability African and Asian zebus LOTER, iHS, FST, XP‑EHH, 
XP‑CLR, Hp

HSPA4, HSPA9, DNAJC18, 
SOD1

(Bahbahani et al. 2017; Kim 
et al. 2017, 2020)

Slick‑hair phenotype and 
Thermoregulation

Senepol cattle Association analysis PRLR (Littlejohn et al. 2014)

Thermoregulation African zebu XP‑EHH PRLH (Kim et al. 2017)

Water reabsorption African humped cattle LOTER, iHS, FST GNAS (Kim et al. 2020)

Heat adaptability Brahman FST FADS2P1 (Low et al. 2020)

Adaptation to endemic 
pathogens

African taurine cattle PBS TICAM1, ARHGAP15, CARD11 (Kim et al. 2020; Noyes et al. 
2011)

Adaptation to endemic 
pathogens

African and Asian zebus LOTER, iHS, FST ATG4B, MATR3, MZB1, STING1 (Kim et al. 2020)

Light coat color Brahman, Nellore, and Gir GWAS, di, Tajima’s D MC1R, ASIP (Mei et al. 2018; Trigo et al. 
2021; Xu et al. 2015)

White to cream coat Borgou cattle iHS and Rsb SILV (Flori et al. 2014)

Dark brown coat Chinese cattle XtX statistics KITLG, LEF1, MCM6 (Gao et al. 2017)

Black coat Zhoushan cattle FST MC1R (Jiang et al. 2021)

Hypoxia adaptation Tibetan cattle FST and XP‑EHH EPAS1 (Wu et al. 2020)

Short stature Tibetan cattle FST and XP‑EHH HMGA2, ADH7 (Wu et al. 2020)

Adaptive immune responses Jiaxian Red, Bashan, 
and Bohai Black cattle

FST and XP‑EHH SLAMF1, CD84, SLAMF6 (Ma et al. 2022; Sun et al. 
2021; Xia et al. 2021)

Hair growth Mongolian cattle FST and θπ ratio DVL2 (Mei et al. 2021)
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excess skin with high density and effective sweat glands 
provides a smart, adaptive tolerance of indicine cattle to 
heat stress.

Positively selected genes associated with thermotolerance
Heat tolerance is a well-known characteristic of indi-
cine cattle (Hansen 2004) and a prerequisite for indicine 
survival in hot climates. Genomic selection studies on 
African and Asian indicine cattle have identified a large 
number of candidate genes associated with heat toler-
ance. A subset of these genes (such as HSPA4, HSPA9, 
DNAJC18, and SOD1) are under selection (Bahbahani 
et al. 2017; Kim et al. 2017, 2020).

The prolactin signaling pathway not only is involved 
in lactation but also affects the hair morphology and 
thermoregulatory phenotype of cattle. Mutations in the 
11th exon of the prolactin receptor (PRLR) have been 
shown to have a major effect on the slick-hair pheno-
type of cattle (Flórez Murillo et al. 2021; Littlejohn et al. 
2014; Porto-Neto et al. 2018). The first slick mutation was 
found in the Senepol cattle, a tropically adapted breed of 
mostly European cattle descent, resulting in truncation of 
the C-terminal region of the protein involved in STAT5 
activation during prolactin signaling (Littlejohn et  al. 
2014). Cattle with an extremely short and slick-hair coat 
show strong thermotolerance to withstand hot weather 
(Dikmen et al. 2014; Olson et al. 2003). Interestingly, the 
analysis of African cattle genomes also revealed a signifi-
cant selective signal in prolactin releasing hormone gene 
PRLH, of which a missense mutation (p. Arg76His) in its 
exon 2 was highly conserved in African indicine cattle 
(73%) but absent in commercial taurine breeds, indicat-
ing its selective advantage by regulating prolactin expres-
sion relevant to thermotolerance in African indicine 
cattle (Kim et al. 2017).

Heat stress increases sympathetic nerve activity in kid-
neys, muscle, and skin (Rowell 1990). A genomic region 
with the access of indicine ancestry (92.44%) was found 
on Bos taurus  chromosome (BTA) 13:57.15–57.65  Mb 
(Bahbahani et  al. 2017; Kim et  al. 2017, 2020), where 
GNAS complex locus gene is annotated. This gene is 
related to water reabsorption through mediating the anti-
diuretic hormone arginine vasopressin in aquaporin-2 
water channels and subsequently contributing to the 
water conservation pathway of kidney (Boone and Deen 
2008). This finding suggested that this specific indicine 
haplotype contributes to the local adaptation of African 
humped cattle to arid climate (Kim et al. 2020).

Adaptation to endemic pathogens
Pathogenic burden is an important driver of adaptation to 
tropical environments in cattle. Bovine trypanosomiasis, 

a vector-borne parasitic infection caused by Trypano-
soma spp., has long been a constraint on cattle farming in 
sub-Saharan Africa. Some African taurine cattle such as 
N’Dama, can withstand infection by Trypanosoma con-
golense. Genetic analysis has revealed selective sweeps at 
TICAM1 and ARHGAP15 loci in African taurine cattle, 
which were linked to previously identified quantitative 
trait loci (Noyes et al. 2011). Another selection signature 
in African taurine cattle is located in the upstream of 
CARD11 (Kim et al. 2020), which is essential for the sign-
aling of T and B cells in the innate and adaptive immune 
systems (Hara et  al. 2003; Pomerantz et  al. 2002). Fur-
thermore, CARD11 has been found to be differentially 
expressed between the trypanotolerant (N’Dama) and the 
trypanosusceptible (Boran) breeds (Noyes et al. 2011).

Candidate selective loci on BTA7 (MATR3, MZB1, and 
STING1) and BTA3 (ATG4B) with the excess of indicine 
ancestry were identified in both African humped as well 
as Asian and American-Australian indicine cattle, sug-
gesting their possible contribution to genetic resistance 
to ticks and tick-borne diseases such as East Coast fever 
(Kim et  al. 2020). STING1 regulates the production of 
intracellular DNA-mediated type I interferon and is thus 
essential for host defense against DNA pathogens (Ishi-
kawa et al. 2009).

Adaptation to ultraviolet exposure
Coat color variation may contribute to the adaptation 
of cattle to tropical/subtropical or high-latitude envi-
ronments. Many indicine breeds, such as Nellore, Thar-
parkar, Bhagnari, Dajal, Hariana, and Guzerat, have light 
colors that can reflect a large proportion of incident solar 
radiation (Hansen 2004). The mixture of short, thick, 
densely arranged white/gray and dark hairs that cover the 
black skin of indicine cattle provides reflectance at short 
light wavelengths. Other studies have shown positive 
selection for the melanocortin 1 receptor (MC1R) gene 
in indicine cattle (Brahman, Nellore, and Gir), implying 
that their light coat color has played an important role in 
adaptation to tropical environments (Mei et al. 2018; Xu 
et al. 2015). The uniform white to cream coat of Borgou 
cattle is likely the result of artificial selection on the can-
didate gene SILV (Flori et al. 2014). This gene encodes a 
type I integral membrane protein in the premelanosome 
matrix (PMEL17), which is essential for melanosome 
development and is responsible for lightening or diluting 
the base color defined by the MC1R in some cattle breeds 
(Kühn and Weikard 2007; Schmutz and Dreger 2013).

The Nellore breed has been strongly selected for white 
coat, but bulls of this breed generally exhibit darker 
hair, ranging from light gray to black, on the head, neck, 
hump, and knees. GWAS has shown that this darkness is 
associated with a deletion of 1,155 bp followed by a small 
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SINE-1 insertion (more than 150 bp) between the 1B and 
1C noncoding exons of ASIP (Trigo et  al. 2021). ASIP 
plays a crucial role in decreasing eumelanin and increas-
ing pheomelanin production by blocking MC1R (Barsh 
et al. 2000; Cieslak et al. 2011). Thus, this SV of ASIP may 
cause darker coat pigmentation on specific parts of the 
body by decreasing the expression of ASIP and conse-
quently increasing the production of eumelanin.

The common denotation of yellow cattle for all indige-
nous Chinese cattle refers to its predominant light to dark 
brown color. Using a whole-genome scan for genetic dif-
ferentiation and association analyses with both environ-
mental and morphological covariables, several coat color 
and pigmentation genes (KITLG, LEF1, and MCM6) were 
identified in Chinese cattle and considered to be involved 
in UV protection (Gao et  al. 2017). Black Angus and 
Wagyu are typical black-coat taurine cattle breeds, while 
Zhoushan is an endangered black-coat indicine breed in 
southern China. The identification of a shared genomic 
region between Zhoushan and Angus cattle shows that 
the dark coat color of Zhoushan cattle may be related to 
the p.F195L mutation in MC1R (Jiang et al. 2021).

Although many genetic variants associated with cat-
tle coat color have been identified (Mei et al. 2018; Trigo 
et al. 2021), little is known about the genetic basis of light 
coat color in indicine cattle in Asia and Africa. Indeed, 
coat color in Asian and African indicine cattle exhib-
its high variability, and the genetic basis of adaptations 
involving coat color requires further study.

Adaptation to high altitude
High altitudes (> 2,500 m above sea level) in regions, such 
as the Qinghai-Tibetan Plateau, the Rocky Mountains of 
the USA, and the Simien Mountains Plateau of Ethiopia, 
can cause hypoxia due to an insufficient supply of oxygen 
to vital organs. However, cattle populations have thrived 
in these regions for thousands of years as a result of vari-
ous physiological adaptations to hypoxic environments 
(Newman et al. 2015; Wang et al. 2021; Wu et al. 2020).

EPAS1 encodes a subunit of the HIF transcription fac-
tor and is a key gene for hypoxia adaptation in Tibetans 
(Beall et  al. 2010; Simonson et  al. 2010; Yi et  al. 2010). 
Recently, this gene was found to have evolved under posi-
tive selection in Tibetan cattle (top 5% ranking), corrobo-
rating the previously reported convergence of genetic 
adaptation to high altitude in dogs and humans (Wu et al. 
2020). Some highly differentiated nonsynonymous SNPs 
were found in EPAS1 of Tibetan cattle, which likely con-
tribute to their local adaptation (Wu et al. 2020).

Similarly, a strong high association of double variants in 
the oxygen degradation domain of EPAS1 has been found 
in Angus cattle in the Rocky Mountains, where they suf-
fer from high-altitude pulmonary hypertension (HAPH) 

(Newman et  al. 2015). These variants likely represent 
gain-of-function mutations that are prevalent in Angus 
cattle found at low altitude, but may be pathogenic under 
hypoxic conditions at high altitudes (Newman et al. 2015).

Short stature in adult Tibetan cattle, which have an 
average height of less than 110 cm, is another distinc-
tive phenotype thought to contribute to their adapta-
tion to the Qinghai-Tibetan Plateau. HMGA2 has been 
identified as a candidate gene associated with the high-
altitude adaptation of humans and domestic animals 
(Kader et al. 2015; Weedon et al. 2008, 2007). This gene 
was found to be positively selected for in Tibetan cat-
tle (Wu et  al. 2020). Notably, a nonsynonymous SNP 
(p.A64P in HMGA2) has a higher frequency in Tibetan 
cattle than in other cattle populations. ADH7, another 
gene that is associated with short stature in Tibetan 
cattle (Wu et al. 2020), has undergone positive selection 
in Tibetan cattle and is correlated with human weight 
and the body mass index (Weedon et al. 2008).

Potentially selected genes related to environmental 
adaptation in other local cattle populations
Adaptation to local climate conditions is also being 
studied in other cattle populations. Chinese cattle still 
serve as a major labor force in agricultural production 
and are well known for their endurance and adaptive 
ability (Randhawa et al. 2016).

Genomic selection signatures of cattle breed in 
northern (Mongolian cattle) and southern China (Min-
nan cattle) identified several adaptive genes related to 
local environmental challenges, such as DVL2, HSPA4, 
and CDHR4 (Mei et  al. 2021). DVL2 plays an impor-
tant role in limiting hair growth and links to the hair 
follicle cycle (Gutiérrez-Gil et  al. 2017). The missense 
mutations in DVL2 show significant north–south popu-
lation stratification and might impact both fur growth 
in different cattle breeds and adaptation to different cli-
mates (Mei et al. 2021). A region on BTA3 that includes 
the signaling lymphocytic activation molecule family 
(SLAMF) genes SLAMF1, CD84, and SLAMF6 might 
be associated with high disease resistance in native 
Chinese cattle breeds, such as Jiaxian Red, Bashan, 
and Bohai Black cattle (Ma et al. 2022; Sun et al. 2021; 
Xia et  al. 2021). SLAMF receptors are involved in the 
regulation and interconnection of innate and adaptive 
immune responses.

Adaptive introgression
Yak introgression into Tibetan taurine cattle
Yak (Bos grunniens) are thought to have inhabited the 
Tibetan Plateau for millions of years and have high 
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altitude adaptations, such as enlarged lungs and hearts. In 
contrast, domestic taurine cattle were introduced to the 
Tibetan Plateau by humans only a few thousand years ago 
(Chen et  al. 2015). Taurine cattle that were not adapted 
to the Tibetan Plateau suffered from severe pulmonary 
hypertension in the early period (Will et  al. 1975). Yak 
introgression into Tibetan cattle genomes partially facili-
tated cattle adaptation to high altitude (Chen et al. 2018a; 
Wu et al. 2018). Several adaptive introgressed genes have 
been identified that are related to the response-to-hypoxia 
pathway (for example, COPS5, IL1A, IL1B, MMP3, 
EGLN1, EGLN2, HIF3α, RYR2, and SDHD).

Introgression of banteng‑like sequences into East Asian 
indicine cattle
East Asian indicine cattle are unique in caring for signifi-
cant exotic ancestry, which is related to and can be mod-
eled as gene flow from banteng (Bos javanicus) (Chen 
et al. 2018a, 2018b). However, while the banteng provides 
a good genetic match, it is not the precise source of East 
Asian indicine cattle (Sinding et al. 2021), indicating that 
more wild Bos diversity needs to be sequenced to fully 
explain their evolution. Nevertheless, using the Javan ban-
teng as a reference is informative, and it has been inferred 
that between 2.38 and 3.84% of the southeastern Chi-
nese indicine genome is of banteng ancestry (Chen et al. 
2018a). Analysis of nonsynonymous substitutions in the 
introgression region led to the identification of the genes, 
such as T2R12, TAS2R9, and TAS2R6. These are homo-
logues of bitter taste receptors in humans and giant pandas 
(Meyerhof et al. 2010; Zhao et al. 2013) may serve similar 
functions in East Asian indicine cattle. Although a clear 
correlation between bitterness and toxicity has not been 
established, it is generally believed that this taste ability 
prevents mammals from intoxication by avoiding ingestion 
of potentially harmful food constituents (Meyerhof et  al. 
2010). In addition, several introgressed genes conducive to 
the local adaptation of East Asian indicine cattle to the hot 
and humid tropical climate have been detected (Chen et al. 
2018a). For example, several heat-shock protein (HSP) 
genes, including HSPA1A, HSPB8, HSPA8, HSPA4, HSPB2 
and HSF2, are involved in key cellular defense mecha-
nisms during exposure to hot environments. Genes related 
to hair cell differentiation and blood circulation, such as 
ATOH, GNA14, VPS13 and KIF2B, also play important 
roles in temperature adaptation (Chen et al. 2018a).

Introgression of banteng segmenst into Indonesian indicine 
cattle
Indonesia is home to Bali cattle, a local domesticated 
version of the Javan banteng, either or both of which 
are admixed into local Indonesian indicine breeds such 
as Galekan and Madura (Mohamad et al. 2009; Sudrajad 

et  al. 2020), to the extent that this admixture likely  has 
adaptive implications, hopefully future research will clar-
ify this interesting question.

New approaches to exploring genetic adaptation
Unearthing cattle adaptation with ancient DNA (aDNA)
aDNA sequencing provides a historical record of genomic 
variation. It provides new possibilities for identifying 
introgressions of wild stock and for studying domestica-
tion at the genomic level. Comparisons of early domestic 
cattle genomes in the Fertile Crescent to the genomes of 
their aurochs progenitors revealed diverse origins with 
separate introgressions of wild stock, such as British and 
Moroccan aurochs introgression into Neolithic Balkans 
and Levantine cattle, indicating that genetic exchange 
among early domestic groups and wild progenitors 
widely contributed to the development of domestic cat-
tle (Verdugo et al. 2019). A genome comparison of British 
aurochs with modern European cattle revealed a number 
of genes associated with neurobiology, growth, metabo-
lism, and immunobiology that show evidence of having 
undergone positive selection within the time since cat-
tle domestication ~ 10,000 years ago. The analysis further 
showed significant introgression from the British aurochs 
into modern British and Irish cattle (Park et  al. 2015). 
The environmental differences between Europe and 
Southwest Asia where cattle originated are notable. It is 
likely that the adaptation of European Neolithic cattle to 
a cold and wet Europe involved local aurochs introgres-
sion. Mitochondrial data and archaeological evidence 
revealed that East Asian aurochs, which belonged to the 
C haplogroup, were distributed in northern China during 
the Holocene and overlapped with early domestic cattle 
for millennia, possibly also contributing to the forma-
tion of modern East Asian cattle, a possibility that future 
research will hopefully clarify (Brunson et  al. 2016; Cai 
et  al. 2018; Zhang et  al. 2013). Together, these findings 
suggest that additional aurochs populations have contrib-
uted to local cattle, which calls for future research into 
aurochs genomics. Furthermore, Verdugo et  al. (2019) 
identified rapid and widespread introgression of indicine 
cattle in southwest and central Asia ~ 4,200  years ago, 
which was likely associated with climate change that led 
to the preferential use of arid-adapted indicine bulls for 
breeding. aDNA therefore has incredible potential to 
reveal not only aurochs evolution and the origin of cattle 
but also the transitions and breeding transformation of 
cattle, and much history has yet to be explored.

Adaptive potential arising from structural variation (SV)
Compared to smaller variants, SVs of at least 50 
base pairs (bp) in length often have more extreme 
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consequences (Chiang et  al. 2017) and thus may have 
made substantial contributions to cattle adaptive evo-
lution. For example, an additional copy of FADS2P1 
has been under positive selection in Brahman cat-
tle (Low et  al. 2020). It is a pleiotropic gene involved 
in the biosynthesis of unsaturated fatty acids, lipid 
homeostasis, inflammatory response, and promotion 
of myocyte growth and cell signaling. Its additional 
copy in indicine cattle may very well modulate water 
permeability and heat loss from skin by regulating the 
composition of fatty acids in the cell membranes (Low 
et  al. 2020). However, SVs are extremely challenging 
to detect via short-read sequencing technologies. An 
accurate identification and characterization of SVs on 
the genome requires long-read sequencing technolo-
gies, novel computational approaches (Ho et al. 2020), 
and the availability of pangenome that represents the 
genome variations of a wide panel of cattle (Crysnanto 
et  al. 2021; Leonard et  al. 2022; Talenti et  al. 2022; 
Zhou et al. 2022; Gong et al. 2022).

Integration of phenotypic, genetic, and functional data 
into adaptation studies
In the study of cattle environmental adaptability, phe-
notypic traits are easily distinguished. “Omics”-based 
analysis, such as transcriptomics and epigenomics, 
facilitates the study of functional variations that affect 
nonobvious or intermediate phenotypes. Furthermore, 
the integration of genome-wide selection scans with 
GWAS helps map putative regions of functional influ-
ence. This is particularly important in studies of indige-
nous populations, in which obtaining large sample sizes 
is challenging. Last, histological analyses or functional 
experiments can directly establish the links between 
candidate adaptive variants and phenotypes. For exam-
ple, analyses combining GWAS and functional vali-
dation of mutations suggest that PRL and PRLR affect 
thermoregulatory and hair-morphology phenotypes in 
cattle (Flórez Murillo et al. 2021; Littlejohn et al. 2014; 
Porto-Neto et al. 2018).

Conclusions and perspectives
After domestication, cattle spread around the world with 
human migrations. Selection pressures in response to 
regional conditions have affected global cattle genome 
diversity. The collection of global genome-wide popu-
lation genetic data has led to the discovery of several 
examples of local adaptations to diverse environments. 
Further progress will depend on research in several areas 
as follows:

• High-coverage long-read whole-genome sequencing 
of local diverse populations can be used to construct 
pangenomes, which will include a large part of the 
global repertoire of SNPs and SVs.

• Whole-genome sequencing of aurochs and ancient 
cattle will enable hypotheses of the genetic conse-
quences of recent artificial and natural selection in 
domestic cattle to be tested.

• Extending current GWAS-based methods to detect 
polygenic adaptations in combination with climate 
and environmental data is an important future 
direction.

• Detailed phenotyping will be stimulated by artificial 
intelligence approaches (Liang et al. 2021) and/or on 
integrative omics datasets (Peng et al. 2020).

These lines of progress are expected to illuminate the 
mode and tempo of local adaptation as large numbers 
of cattle settled in all inhabited continents.
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