
Model-based Player Experience Testing with
Emotion Pattern Verification

Saba Gholizadeh Ansari1(�) , I. S. W. B. Prasetya1 Davide Prandi2, Fitsum
Meshesha Kifetew2, Mehdi Dastani1, Frank Dignum3, and Gabriele Keller1

1 Utrecht University, Utrecht, The Netherlands, s.gholizadehansari@uu.nl
2 Fondazione Bruno Kessler, Trento, Italy

3 Ume̊a University, Ume̊a, Sweden

Abstract. Player eXperience (PX) testing has attracted attention in
the game industry as video games become more complex and widespread.
Understanding players’ desires and their experience are key elements to
guarantee the success of a game in the highly competitive market. Al-
though a number of techniques have been introduced to measure the
emotional aspect of the experience, automated testing of player expe-
rience still needs to be explored. This paper presents a framework for
automated player experience testing by formulating emotion patterns’
requirements and utilizing a computational model of players’ emotions
developed based on a psychological theory of emotions along with a
model-based testing approach for test suite generation. We evaluate the
strength of our framework by performing mutation test. The paper also
evaluates the performance of a search-based generated test suite and LTL
model checking-based test suite in revealing various variations of tempo-
ral and spatial emotion patterns. Results show the contribution of both
algorithms in generating complementary test cases for revealing various
emotions in different locations of a game level.

Keywords: automated player experience testing, agent-based testing, model-
based testing, models of emotion

1 Introduction

Player experience (PX) testing has become an increasingly critical aspect of
game development to assist game designers in realistically anticipating the ex-
perience of game players in terms of enjoyment [17], flow [46] and engagement
[31]. While functional testing is intended to test the functionality of the game
[38], the PX testing verifies whether emotions and psychology of players shaped
during the interaction with the game are close to the design intention. This helps
game designers in early development stages to identify design issues leading to
game abandon, improve the general experience of players and even invoke certain
experience during the game-play [53,3,25]. Let us also clarify that ’usability’ is a
concept in the broad domain of PX testing, but not the only concept. Usability

c© The Author(s) 2023
L. Lambers and S. Uchitel (Eds.): FASE 2023, LNCS 13991, pp. 151–172, 2023.
https://doi.org/10.1007/978-3-031-30826-0 9

https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/
https://orcid.org/ 0000-0002-7135-5605
https://orcid.org/0000-0002-3421-4635
mailto:s.gholizadehansari@uu.nl
https://doi.org/10.1007/978-3-031-30826-0_9
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30826-0_9&domain=pdf

S. G. Ansari et al.

tests are designed to address issues that can lead to degrading the human perfor-
mance during the game-play [10], whereas PX can target the emotional experi-
ence of a player which eventually influences the success or failure of a game in the
market [1]. This has led to the emergence of Games User Research (GUR) as an
approach to gain insights into PX which is tied to human-computer-interaction,
human factors, psychology and game development [14].

Validating a game design relies either on trained PX testers or acquiring in-
formation directly from players with methods such as interviews, questionnaires
and physiological measurements [40,37], which are labour-intensive, costly and
not necessarily representing all users profiles and their emotions. Moreover, such
tests need to be repeated after every design change to assure the PX is still
aligned with the design intention. Thus, GUR researchers have turned into de-
veloping AI-based PX testing methods. In particular, agent-based testing has
attracted attention because it opens new rooms for automated testing of PX by
imitating players while keeping the cost of labour and re-applying the tests low.

There exist appraisal theories of emotions that address the elicitation of
emotions and their impact on emotional responses. They indicate that emotions
are elicited by appraisal evaluation of events and situations [33]. Ortony, Clore,
and Collins (OCC) theory [43] is one of several widely known appraisal theories
in cognitive science that is also commonly used in modeling emotional agents
[15,9,47,42,12]. Despite the influence of emotions on forming the experience of
players [39,13], this approach has not been employed in PX testing [6].

In our automated PX testing approach, we opt for a model-driven approach
to model emotions. Theoretical models of human cognition, used for decades
in cognitive psychology, provide a more coherent outlook of cognitive processes.
In contrast, applying a data-driven (machine learning) approach is greatly con-
strained by the availability of experimental data. Inferring a cognitive process
from limited experimental data is an ill-posed problem [5] because such a process
is subjective. Individuals can evaluate the same event differently due to age, gen-
der, education, cultural traits, etc. For example, when a romantic relationship
ends, some individuals feel sadness, others anger, and some even experience relief
[48]. However, according to appraisal theories of emotions, common patterns can
be found in emergence of the same emotion. These patterns are given as a struc-
ture of emotions by the aforementioned OCC. Thus, a model-driven approach
derived form a well-grounded theory of emotions such as OCC, is sensible when
access to a sufficient data is not possible.

In this paper, we present an agent-based player experience testing framework
that allows to express emotional requirements as patterns and verify them on
executed test suites generated by model-based testing (MBT) approach. The
framework uses a computational model of emotions based on OCC theory [21]
to generate the emotional experience of agent players. Comparing to [21], this
paper contributes to expressing emotion patterns’ requirements and generating
covering test suites for verifying patterns on a game level. We show such a
framework allows game designers to verify the emotion patterns’ requirements
and gain insight on emotions the game induce, over time and over space.

152

Model-based Player Experience Testing with Emotion Pattern Verification

Revealing such patterns requires a test suite that can trigger enough diversity
in the game behavior and as a result in the evoked emotions. This is where the
model-based testing approach with its fast test suites generation can contribute.
In this paper, we employ an extended finite state machine (EFSM) model [18]
that captures all possible game play behaviors serving as a subset of human
behaviors, at some level of abstraction. We use a search based algorithm (SB)
for testing, more precisely multi objective search algorithm (MOSA) [44], and
linear temporal logic (LTL) for model checking (MC) [8,11] as two model-based
test suite generation techniques to investigate the ability of each generated test
suite in revealing variations of emotion e.g absence of an emotion in a corridor.
We apply test-cases distance metric to measure test suites’ diversity and the
distance between SB and MC test suites. Results on our 3D game case study
shows that SB and MC, due to their different techniques for test generation,
produce distinctive test cases which can identify different variations of emotions
over space and time, that cannot be identified by just one of the test suites.

The remainder of this paper is organized as follows. Section 2 explains the
computational model of emotions and the model-based testing approach. Section
3 presents the PX framework architecture. Section 4 describes our methodology
of expressing PX requirements using emotion patterns, test suites diversity mea-
surement, and the overall PX testing algorithm. Section 5 shows an exploratory
case study to demonstrate the emotion pattern verification using model-based
testing along with an investigation on results of SB and MC test suite gener-
ation techniques. Mutation testing is also addressed in this section to evaluate
the strength of the proposed approach. Section 6 gives an overview of related
work. Finally, Section 7 proposes future work and concludes the paper.

2 Preliminaries

This section summarizes the OCC computational model of emotions [21] and
the model-based testing as key components of our PX framework.

2.1 Computational Model of Emotions

Gholizadeh Ansari et al. [21] introduces a transition system to model goal-
oriented emotions based on a cognitive theory of emotions called OCC. The
OCC theory gives a structure for 22 emotion types, viewed as cognitive processes
where each emotion type is elicited under certain conditions. The structure is
constructed based on the appraisal theory which is validated with a series of ex-
periments in psychology [50,16,49]. The appraisal conditions, exist in the OCC,
are modeled formally in [21] for six goal-oriented emotion types (ety), namely:
hope, joy, satisfaction, fear, distress, and disappointment for a single agent sim-
ulations where the agent’s emotional state changes only by game dynamism
expressed through events to the agent. A game is treated as an environment
that discretely produces events triggered by the agent’s actions or environmen-

153

S. G. Ansari et al.

tal dynamism such as hazards. The event tick represents the passage of time.
The emotion model of an agent is defined as a 7-tuple transition system M :

(S, s0, G,E, δ,Des, Thres)

– G is a set of goals, that the agent wants to achieve; each is a pair 〈id, x〉 of
a unique id and significance degree.

– S is the set of M ’s possible states; each is a pair 〈K,Emo〉:
• K is a set of propositions the agent believes to be true. It includes, for

each goal g, a proposition status(g, p) indicating if g has been achieved
or failed, and a proposition P(g, v) with v∈[0..1], stating the agent’s
current belief on the likelihood of reaching this goal.

• Emo is the agent’s emotional state represented by a set of active emo-
tions, each is a tuple 〈ety, w, g, t0〉, ety is the emotion type, w is the
intensity of the emotion respecting a goal g, and triggered time t0.

– s0 ∈ S is the agent’s initial state.
– E specifies the types of events the agent can experience.
– δ is M ’s state transition function; to be elaborated later.
– Des is an appraisal function; Des(K, e, g) expresses the desirability, as a

numeric value, of an event e with respect to achieving a goal g, judged when
the agent believes K. OCC theory has more appraisal factors [43], but only
desirability matters for aforementioned types of emotion [21].

– Thres : thresholds for activating every emotion type.

The transition function δ updates the agent’s state 〈K,Emo〉, triggered
by an incoming event e ∈ E as follows:

〈K , Emo〉 e−−−−→ 〈K′ ,

updated emotion Emo′︷ ︸︸ ︷
newEmo(K, e,G) ⊕ decayed(Emo)〉

– K ′ = e(K) \ H, where e(K) is the updated beliefs of the agent when K
is exposed to e; these may include updates on goals’ likelihood and their
status. H is the set of likelihoods of goals that are achieved or failed; this
information is no longer needed and removed from e(K).

– Emo′ = newEmo(K, e,G) ⊕ decayed(Emo), where newEmo(K, e,G) and
decayed(Emo) are newly activated emotions and the still active emotions
that decay over time. The operator ⊕ merges them after applying some
constraints [21].

Emotion activation. One or multiple emotions can be activated by an
incoming event (except tick). This is formulated as follows:

newEmo(K, e,G) = {〈ety, g, w, t〉 | ety ∈ Etype, g ∈ G,w = Eety(K, e, g) > 0} (1)

where w is the intensity of the emotion ety towards the goal g ∈ G and t is the
current system. Upon an incoming event, the above function is called to check
the occurrence of new emotions as well as re-stimulation of existing emotions in

154

Model-based Player Experience Testing with Emotion Pattern Verification

Emo for every g ∈ G. Eety(K, e, g) internally calculates an activation potential
value and compares it to a threshold Thresety; a new emotion is only triggered
if the activation potential value exceeds the threshold. These thresholds might
vary according to players’ characters and their moods. For instance, when a
person is in a good mood, their threshold for activating negative emotions go
up which conveys they become more tolerant before feeling negative-valenced
emotions. There is also a memory (emhistory) of activated emotions in the past
for some reasonable time frame. This is maintained implicitly in the emotions’
activation functions. The activation function of each emotion, based on provided
definitions in the OCC theory, is as bellows, where x, v and v′ refer to the goal’s
importance, the goal likelihood in previous and the new state respectively.

– E Hope (K, e, g) =

activation intensity︷ ︸︸ ︷
v′ ∗ x︸ ︷︷ ︸

activation potential

− Thres Hope

provided g = 〈id, x〉 ∈ G, P(g, v) ∈ K, P(g, v′) ∈ e(K), and v<v′<1.

– E Fear (K, e, g) = (1 − v′) ∗ x − Thres Fear , provided g = 〈id, x〉 ∈ G,
P(g, v) ∈ K, P(g, v′) ∈ e(K), and 0<v′<v.

– E Joy (K, e, g) = Des(K, e, g) − Thres Joy , provided g ∈ G, P(g, 1) ∈
e(K), and Des(K, e, g) > 0.

– E Distress (K, e, g) = |Des(K, e, g)| − Thres Distress , provided g ∈ G,
P(g, 0) ∈ e(K), and Des(K, e, g) < 0.

– E Satisfaction (K, e, g) = x−Thres Satisfaction , provided that g = 〈id, x〉 ∈
G, status(g, achieved) ∈ e(K), and both 〈Hope, g〉, 〈Joy, g〉 ∈ emhistory.

– E Disappointment (K, e, g) = x−Thres Disappointment , provided g=〈id, x〉 ∈
G, status(g, failed) ∈ e(K), and both 〈Hope, g〉, 〈Distress, g〉 ∈ emhistory.

Emotion decay. An emotion intensity in Emo declines over time, triggered
by tick events. This is formulated with a decay function over intensity as follows:

decayed(Emo) = {〈ety, g, w′, t0〉 | 〈ety, g, w, t0〉∈Emo, w′=decayety(w0, t0) > 0} (2)

where w0 is the initial intensity of ety for the goal g at time t0; this is stored in
emhistory. decayety which is a decay function defined as an inverse exponential
function over the peak of intensity (w0) at time t0.

2.2 Model-based Testing with EFSM

Since automated testing is a major challenge for the game industry due to the
complexity and hugeness of games’ interaction space, a recent development is to
apply a model-based approach for test generation. [30,52,18]. For this purpose,
an extended finite state machine (EFSM) M can be used which is a finite state
machine (FSM), extended with a set V of context variables that allows the
machine to have richer concrete states than the abstract states of its base FSM

155

S. G. Ansari et al.

[2]. Transitions t in M take the form n
l/g/α−−−→ n′ where n and n′ are source and

destination abstract states of the transition, l is a label, g is a predicate over V
that guards the transition, and α is a function that updates the variables in V .

Figure 1 shows an example of a small level in a game called Lab recruits
4which is the case study of this paper as well. A Lab recruits level is a maze
with a set of rooms and interactive objects, such as doors and buttons. A level
might also contain fire hazards The player’s goal is to reach the object gf0.
Access to it is guarded by door3, so reaching it involves opening the door using
a button, which in turn is in a different room, guarded by another door, and so
on. Ferdous et al. [18] employs a combined search-based and model-based testing
for functional bug detection in this game using EFSM model (Figure 1). In the
model, all interactable objects are EFSM states: doors (3), buttons (4), and the
goal object gf0. For each doori, dip and dim are introduced to model the two
sides of the door. The model has three context variables representing the state
of each door (open/close). A solid edged transition on the model is unguarded,
modelling the agent’s trip from one object to another without walking through
a door. A dotted transition models traversing through a door when the door is
open. A dashed self loop transition models pressing a button; it toggles the status
of the doors connected to the pressed button. Notice that the model captures the
logical behavior of the game. It abstracts away the physical shape of the level,
which would otherwise make the model more complicated and prone to changes
during development. Given such a model, abstract test cases are constructed as
sequences of consecutive transitions in the model. This paper will extend the
EFSM model-based testing approach [18] for player experience testing.

Fig. 1: A game level in the Lab Recruits game and its EFSM model [18].

3 PX Testing Framework

The proposed automated PX testing framework aims to aid game designers for
PX assessment of their games by providing information on the time and place
of emerged emotions and their patterns which would ultimately determine the
general experience of player. E.g. if these patterns do not fulfill design intentions,
game properties can be altered and testing process can be repeated.

4 https://github.com/iv4xr-project/labrecruits

156

Model-based Player Experience Testing with Emotion Pattern Verification

Figure 2 shows the general architecture of the framework. There are four main
components: a Model-based Testing component for generating tests, the Model
of Emotions component implements the computational model of emotions from
Section 2.1, an Aplib basic test agent [45] for controlling the in-game player-
character, and the PX Testing Tool as an interface for a game designer towards
the framework. The designer needs to provide these inputs, see 1 in Figure 2:

– An EFSM that abstractly models the functional behavior of the game.
– A selection of game events that have impacts on the player’s emotions (e.g.

defeating an enemy, acquiring gold).
– Characteristics that the designer wants to address in the agent to resemble

a certain type of players, such as: a player’s goals and their priorities, the
player’s initial mood and beliefs before playing the game, and the desirability
of incoming events for the player. E.g. a player might experience a high level
of positive emotions on defeating an enemy, while for another player who
prefers to avoid conflicts, acquiring a gold bar could be more desirable.

Given the EFSM model, the Model-based testing component, 2 in Figure
2, generates a test suite consisting of abstract test cases to be executed on the
game under test (GUT). The test generation approach is explained in Section
4.1. Due to the abstraction of the model, emotion traces cannot be obtained
from pure on-model executions. They require the executions of the test cases on
the GUT. An adapter is needed to convert the abstract test cases into actual
instructions for the GUT. The Aplib basic test agent does this conversion.

Attaching the Model of Emotions to the basic test agent creates an emotional

test agent, 3 in Figure 2, which is able to simulate emotions based on incoming
events. Via a plugin, the emotional test agent is connected to the GUT. Each
test case of the test suite is then given to the agent for execution. The agent
computes its emotional state upon observing events and records it in a trace file.
Finally, when the whole test suite is executed, the PX Testing Tool analyzes
the traces to verify given emotional requirements and provide heat-maps and
timeline graphs of emotions for the given level (4 in Figure 2).

Fig. 2: Automated PX testing framework architecture.

157

S. G. Ansari et al.

4 Methodology

This section describes the framework’s model-based test generation techniques
and our approach to measure a test suite’s diversity. Then, our approach for
expressing emotion pattern requirements and verifying them are explained.

4.1 Test Suite Generation

A test generation algorithm is applied to produce abstract test cases from a
model with respect to a given coverage criterion. From now on, we refer to
these abstract test cases simply as test cases. In our context, game designers
can evaluate the game experience by evaluating emerging emotional experience
through various paths to the game’s goal. So, a proper test suite needs to cover
various variations of player behavior to expose various emotion patterns. Here,
we aim at graph-based coverage, such as transition coverage. However, since the
model of emotions from Section 2.1 is goal-oriented, some adjustment is needed:

Definition 1. Transition-goal coverage over an EFSM model M with respect to
a goal state g is a requirement to cover all transitions in M , where a transition
t is covered by a test case if its execution passes t and terminates in g.

Given the above definition, the PX framework uses the following complementary
test generation approaches; one is stochastic and the other is deterministic.

Search Based Test generation Search based testing (SBT) formulates testing
problems as an optimization problem in which a search algorithm is used to find
an optimized solution, in the form of a test suite, that satisfies a given test
adequacy criterion encoded as a fitness function [36]. Meta-heuristic algorithms
such as genetic algorithm [23] and tabu [22,26] are commonly used for this. Our
framework uses an open source library EvoMBT [18] that comes with several state
of the art search algorithms e.g. MOSA [44]. We utilize this to produce a test
suite satisfying e.g. the criterion in Def.1 to represent players’ potential behavior
in the game, which are then executed to simulate their emotional experience.

To apply MOSA, individual encoding, search operators and a fitness func-
tion need to be defined. An individual I is represented as a sequence of EFSM
transitions. Standard crossover and mutation are used as the search operators.
MOSA treats each coverage target as an independent optimisation objective. For
each transition t, the fitness function measures how much of an individual I is
actually executable on the model and how close it is from covering t as in Def.1.
MOSA then evolves a population that minimize the distances to all the targets.

LTL model checking test generation Model checking is the second tech-
nique we use for test generation. This technique is originally introduced for
automated software verification that takes a finite state model of a program
as an input to check whether given specifications hold in the model [8]. Such

158

Model-based Player Experience Testing with Emotion Pattern Verification

specifications can be formulated in e.g. LTL which is a powerful language for
expressing system properties over time. When the target formula is violated,
a model checker produces a counter example in the form of an execution trace
to help debugging the model. This ability is exploited for producing test cases
by encoding coverage targets as negative formulas, and converting the produced
counter examples to test cases [4,11,20]. We use this to generate test suites sat-
isfying the coverage criterion in Def.1, encoded as an LTL properties. For each
transition t : n1 → n2 in the EFSM model, the transition-goal coverage require-
ment to cover t is encoded as the following LTL formula:

φt = ¬g U (n1 ∧ X (n2 ∧ ¬g U g))

where g is the goal state like gf0 in Figure 1. The model checking algorithm
checks whether ¬φt is valid on the EFSM model using depth-first traversal [29].
If it is not, a counter example is produced that visits t and terminates in g. An
extra iteration is added to find the shortest covering test case.

4.2 Test Suite Diversity

Diversity is an approach to measure the degree of variety of the control and data
flow in software or a game[41]. We use this approach to measure the diversity of
test suites obtained from the generators in Section 4.1. A test suite’s diversity
degree is the average distance between every pair of distinct test cases, which
can be measured in e.g. the Jaro distance metric. For a test case tc, let tc and
|tc| be its string representation and its length respectively. The Jaro distance
between two test cases of tci and tcj is calculated as follows:

Dis Jaro(tci, tcj) =

{
1 , if m = 0

1 − 1
3
(m
|tci|

+ m
|tcj |

+ m−t
m

) , if m 6= 0
(3)

where m is the number of matching symbols in two strings whose distance is less
than b|tci|/2c, assuming tci is the longer string; and t is half of the number of
transpositions. Then, the diversity of a test suite TS is a summation of distances
between every pair of distinct test cases, divided by the number such pairs:

Divavg(TS) =

∑|TS|
i=1

∑|TS|
j=i+1Dis Jaro(tci, tcj)
|TS| ∗ (|TS|−1)

2

(4)

where |TS| is TS’ size. Additionally, if TS1 and TS2 are two test suites, the
average distance between them is:

Dis avg(TS1, TS2) =

∑
tci∈TS‘1,tcj∈TS2

Dis Jaro(tci, tcj)

|TS1| ∗ |TS2|
(5)

This is used in Section 5 to measure the distance between the test suites
generated by the two approaches (Section 4.1) provided by our framework, along
with their complementary effects on revealing different emotion patterns.

159

S. G. Ansari et al.

4.3 Emotion Patterns’ Requirements and Heat-maps

In Section 2.1, we described the emotion model of an agent. When the agent
executes a test case, it produces a trace of its emotion state over time. Such a
trace is a sequence of tuples (t, p, Emo) where t is a timestamp, Emo is the agent
emotion state at time t, and p is its position. Running a test suite produces a
set of such traces.We define emotion patterns to capture the presence or absence
of an emotional experience in a game. Such a pattern is expressed by a string of
symbols, each representing the stimulation, or lack of a certain emotion type.

Definition 2. An emotion pattern is a sequence of stimulations e or ¬e, where
e is one of the symbols H, J , S, F , D and P . Each represents the stimulation
of respectively hope, joy, satisfaction, fear, distress, and disappointment.

A single pattern such as F represents the stimulation of the corresponding
emotion, in this case fear. We will restrict ourselves to simply mean that this
stimulation occurs, without specifying e.g. when it happens exactly, nor for how
long it is sustained. A negative single pattern such as ¬F represents the absence
of stimulation, in this case fear. A pattern is a sequence of one or more sin-
gle patterns, specifying in what order the phenomenon that each single pattern
describes is expected to occurs. Patterns provide a simple, intuitive, but reason-
ably expressive way to express PX. For example, the pattern JFS is satisfied by
traces where the agent at some point becomes satisfied (S) after a stimulation
of joy (J), but in between it also experiences a stimulation of fear at least once.
Another example is J¬FS when there is no stimulation of fear between J and
S. The presence of this pattern indicates the presence of a ’sneak’ route, where
a goal is achievable without the player has to fight enough for it.

As a part of PX requirements, developers might insist on presence or absence
of certain patterns. More precisely, given a pattern p, we can pose these types of
requirements: Sat(p) requires that at least one execution of the game under test
satisfies p; UnSat(p) requires that Sat(p) does not hold; and V alid(p) requires
that all executions satisfy p. In the context of testing, we will judge this by
executions of the test cases in the given test suite TS.

Heat-maps Whereas above we discuss emotion patterns over time, a heat-
map shows patterns over space. Assuming the visitable parts of a game level
form a 2D surface, we can divide it into small squares of u×u. Given a posi-
tion p and a square s, we can check if p∈s. Given a trace τ , let Emo(s) =
{Emo | (t, p, Emo) ∈ τ, p∈s}: the set of emotions, that occur in the square
s. This can be aggregated by a function aggr that maps Emo(s) to R. An ex-
ample of an aggregator is the function maxe that calculates the maximum of a
specific emotion e (e.g. hope). Section 5 will show some examples. Such maps
can be analyzed against requirements, e.g. that the aggregate values in certain
areas should be of a certain intensity. We can also create an aggregated heat-
map of an entire test suite by merging the traces of its test cases into a single
trace, and then calculate the map from the combined trace. Finally, the overall
methodology of our PX testing is summarized in Algorithm 1.

160

Model-based Player Experience Testing with Emotion Pattern Verification

4.4 PX Framework Implementation

Algorithm 1 The Execution of automated PX
Testing Algorithm.

Input: EFSM M , coverage criterion C,
configuration parameters Config for test generator,
and emotion pattern requirements’ list R.

Output: Emotion traces, Heat-maps of emotions,
and the verification of requirements’ (true/false).

1: procedure Exec(M,C,Config, R)
2: TSabstract← TSGenerate(M,C,Config)
3: TSconcrete← Translate(TSabstract)
4: Configure an emotional test agent A
5: tracesemotion ← ∅
6: for all test cases tc ∈ TSconcrete do
7: τ ← A executes tc on the SUT
8: tracesemotion ← tracesemotion ∪ {τ}
9: end for
10: Hmaps← GenerateHeat-maps(tracesemotion)
11: V result← { (r,Verify(r)) | r ∈ R }
12: return (tracesemotions, Hmaps, V results)
13: end procedure

The test agent is implemented us-
ing APlib Java library [45]. It has
a BDI architecture [27] with a
novel goal and tactical program-
ming layer. We use JOCC library
[21] for modeling emotions. To fa-
cilitate the model-based testing,
we integrate EvoMBT[18]. It gen-
erates abstract test suites from
an EFSM model, utilizing Evo-
Suite [19] for search-based test
generation. An implementation of
LTL model checking algorithm
is employed to produce model
checking-based test suites. The
framework and its data will be
available for public use.

5 Case Study

This section presents an exploratory case study conducted to investigate the use
of a model-based PX testing framework5 for verifying emotion requirements in a
game-level and to investigate the difference between the search based generated
test suite and the model checker generated test suites on revealing emotion pat-
terns. Finally, we run mutation testing to evaluate the strength of our framework.

5.1 Experiment Configuration

Figure 3 shows a test level called Wave-the-flag in the Lab Recruits, a config-
urable 3D game, designed for AI researchers to define their own testing problems.

Fig. 3: Wave-the-flag level.

It is a medium sized level, consisting
of a 1182 m2 navigable virtual floor,
8 rooms, 12 buttons, and 11 doors.
Its EFSM model consists of 35 states
and 159 transitions. The player starts
in the room marked green at the top,
and must find a ’goal flag’ gf0 marked
red in the bottom room to finish the
level. Doors and buttons form a puzzle
in the game. A human player needs to
disclose the connections between but-
tons and doors to open a path through

5 https://doi.org/10.5281/zenodo.7506758

161

S. G. Ansari et al.

the maze to reach the aforementioned goal flag in a timely manner. The player
can earn points by opening doors and lose health in case of passing fire flames.
For the test agent, the latter is also observable as an event called Ouch. If the
player runs out of health, it loses the game. The player also has no prior knowl-
edge about the position of doors, buttons and the goal flag, nor the knowledge
on which buttons open which doors. Since there are multiple paths to reach the
target, depending on the path that the player chooses to explore, it might be able
to reach the goal without health loss, at one end of spectrum, or it can end up
dead at the other end. The EFSM model (not shown) of the Wave-the-flag level
is constructed similar to the running example in section 2.2. To add excitement,
Wave-the-flag also contains fire flames. However, these flames are not included
into the EFSM model because the placement and amount of these objects are
expected to change frequently during development. Keeping this information in
the EFSM model would force the designer to constantly update the model after
each change in flames. Thus, similar to the running example, the EFSM model
contains doors, buttons and goal flags.

In addition to the EFSM model, we need to characterize a player to do
PX testing (1 in Figure 2). Table 1 shows basic characteristics of a player,
defined with a set of parameters, to configure the emotion model of the agent
before the execution. The level designer determines values of these parameters.
After the execution of the model, we asked the designer to check the plausibility
their values by checking the emotional heat-map results. The designer checked
randomly selected number of test cases with their generated emotional heat maps
to check the occurrence of emotions are reasonable. Thus, the utilized values for
the following experiment is confirmed reasonable by the designer. Moreover, The
likelihood of reaching the goal gf0 is set to 0.5 in the initial state to model a
player who initially feels unbiased towards the prospect of finishing the level.
Thus, the agent feels an equal level w of hope and fear at the beginning.

5.2 PX Testing Evaluation

Test suites are generated from the EFSM model using LTL model checking
(MC) and the search-based (SB) approach with the full transition-goal coverage
criterion (Def.1) named as TSSB and TSMC , both with 60 seconds time budget.

Abstract test suite characteristics. Our reason for using multiple test
generation algorithms is to improve the diversity of the generated test cases,
which in turn would improve our ability to reveal more emotion patterns. Table
2 shows the basic characteristics of the generated test suites. Due its stochastic
behavior, the search-based (SB) generation is repeated 10 times, and then aver-
aged. The SB algorithm manages to provide full transition-goal coverage with, in
average, 54.6 test cases (σ = 7.8), with the average diversity of 0.192 (σ = 0.03)
between test cases in a test suite. The model checker (MC) always satisfies the
criterion with 74 test cases and average diversity of 0.113. The higher diversity
of SB test suites (TSSB) can be explained through the stochastic nature of the
search algorithm. Table 2 also shows the length of the shortest and longest test
cases. While SB manages to find a shorter test case with only 17.7 transitions

162

Model-based Player Experience Testing with Emotion Pattern Verification

Table 1: Configuration of Player Characterization. G is the agent’s goal set; it has one
goal for this level, namely reaching the goal-flag gf0, s0 is the emotion model’s initial
state, a set of relevant events (E) needs to be defined by the designers: DoorOpen
event, triggered when a new door gets open, is perceived as increasing the likelihood
of reaching gf0 by v1 in the model, Ouch event, that notifies fire burn, is perceived
as declining the likelihood of reaching gf0 by v2, GoalInSight event, triggered at the
first time the agent observes the goal gf0 in its vicinity , is modelled as making the
agent believes that the likelihood of reaching the goal becomes certain (1), and finally
GoalAccomplished event is triggered when the goal gf0 is accomplished. Des reflects
the desirability/undesirability of each event with respect to the goal and Thres is the
emotions’ activation thresholds. x, vi, and yi are constants determined by the designer.

Parameter Value
G g =< gf0, x >∈ G
s0 likelihood(gf0, 0.5) ∈ K0,

Emo0 = {< Hope, gf0, w, 0 >,< Fear, gf0, w, 0 >}
E = {DoorOpen,Ouch,GoalInSight,GoalAccomplished}

on DoorOpen event: likelihood(gf0,+v1),
on fire burn in Ouch event: likelihood(gf0,−v2) ,

on GoalInSight event: likelihood(gf0, 1).
Des Des(K,DoorOpen, gf0) = +y1 ,

Des(K,Ouch, gf0) = −y2 ,
Des(K,GoalInSight, gf0) = +y3

Thres 0

in average, its longest test case has in average 74.25 transitions. Finally, the last
row in Table 2 indicates the difference between SB and MC test suites. The
distance between two test suites is measured for every generated TSSB using
Equation 5 which brings about 0.214 (σ = 0.024) distance in average between
test cases of the two suites. Later, we investigate whether such a difference can
lead to differences at the execution level in emotion patterns.

Table 2: Characteristics of LTL-model checking-based and search-based test suites with
respect to the same coverage criterion.

Test suite size Divavg(TSi) Shortest tc longest tc
TSMC 74 0.113 23 45
TSSBavg 54.6 0.192 17.7 74.25

Div avg(TSMC , TSSB) 128.6 0.214

Evaluation of emotional heat-maps. Inspecting the emerging emotions
requires real execution of test cases on the game under test. The execution of
TSMC with 74 test cases and the TSSB with the average 54.5 test cases took
11,894 seconds and 10,201 respectively in the game. After the executions, the
automated PX testing framework produces a heat-map of emotions for every
test case to give spatial information about the intensity of the emotion at each
location in the game. Unlike [21] which only produces heat-maps of emotions for
a single pre-defined navigation path, Figure 4 shows the aggregated heat map
visualization of some selected emotions, evoked during the execution of all test
cases in TSMC and a randomly chosen TSSB suite from the previously generated
10 TSSB suites, with the square size u=1 and maxe as the aggregation func-
tion. So, the maps show the maximum intensity on a given spot over the whole
execution of the corresponding test suite. The brighter color shows the higher
intensity of an emotion. In this case, the bright yellow represents the highest

163

S. G. Ansari et al.

emotional intensity in heat maps. The heat maps of hope, joy and satisfaction
for these test suites show quite similar spatial information (only hope and joy
are shown in Figure 4). However, TSMC generally shows a higher level of hope
during the game-play (Figures 4a and 4b). So, if the designer verifies his level on
the presence and spatial distribution of intensified hope through the level, the
test cases produced by TSMC can expose these attributes better. This can be
explained by the model checker setup to find shortest test cases; some can then
open the next door sooner, raising hope before its intensity decays too much.

The maps also show a difference in the spatial coverage of TSSB and TSMC

(marked green in Figures 4a and 4b). The transition that traverses the corridor is
present in TSMC , but when the corresponding abstract test case is transformed
into an executable test case for APlib test agent, they also incorporate optimiza-
tion. So, it finds a more optimized way for execution by skipping the transition
that actually passes the corridor towards the room, if the next transition is to
traverse back along same corridor. The corridor is, however, covered by TSSB .

(a) MC-Hope (b) SBT-Hope (c) SBT-Joy

Fig. 4: Heat-map visualization of positive emotions for SBT and MC test suites.

The most striking differences between TSSB and TSMC are revealed in their
negative emotions’ heat-maps (Figure 5). Most places that are marked black
as distress-free by executed TSMC (Figure 5a) are actually highly distressful
positions for some test cases of TSSB . The presence of distress might be the
intended player experience, whereas its absence in certain places might actually
be undesirable. Upon closer inspection of individual test cases, it turns out that
the test cases of TSSB that pass e.g. the red regions in Figure 5a and 5b always
show distress in the marked corridor, whereas one test case in TSMC manages
to find a ’sneak route’ that passes the corridor without distress, and finishes the
level successfully. Thus, if the designer is looking for the possibility of absence of
distress in the sneak corridor, inspection of TSSB would not suffice. The heat-
maps of disappointment reveals another difference. While TSMC only finds one
location where the agent dies and feels disappointed, TSSB manages to find 3
more locations in the level with the disappointment state (Figure 5c).

The main reason behind those differences is that a sequence of transitions
results in experiencing an emotion in the agent, not just a single transition.
Furthermore, emotions intensity has a residual behavior which means a sequence
of transitions and behavior might result in an emotion which still remains in
the agent emotional state after some time. Thus, providing state coverage or the

164

Model-based Player Experience Testing with Emotion Pattern Verification

transition-coverage criterion does not in itself suffice to manage revealing possible
emotions and their patterns. The variation of transitions and their order in a test
case can resemble the different player behaviors during the game-play that their
outcomes ultimately form the player emotional experience. Therefore, finding
a proper test suite that can capture the distributions of theses emotions with
test cases exhibiting the presence or absence of emotions in various locations is
challenging. As remarked before, due to the stochastic nature of its algorithm, the
search algorithm produces more diverse test suite than the LTL model checker,
and hence can increase the chance of revealing more variation of emotions in
different locations of the level. However, our experiments show the model checker
does provide useful complementary test cases, e.g. for finding corner cases which
can be covered only by the model checker that were missed by SB. All mentioned
differences can explain the 0.20 distant difference between TSMC and TSSB .

(a) MC-Distress (b) SBT-Distress (c) SBT-Disappointment

Fig. 5: Heat-map visualization of negative emotions for SBT and MC test suites.

Checking emotion pattern requirements.The PX testing framework is
also capable of verifying emotion requirements using patterns as defined in Def-
inition 2 format based on stimulation of emotions. These patterns are verified by
inspecting the order in which different emotions are stimulated, as recorded in the
trace files. Although there are numerous combinations of emotions, only some of
them matter for the designer to check. As a requirement, recall that a pattern can
be posed as an existential requirement, i.e. Sat(p), or need to happen for all game-
plays, i.e. V alid(p) or need to unwitnessed for all game-plays, i.e.USat(p). It is also
essential to clarify that the choice of which emotion patterns are to be required
can vary among game-levels, as expectations on the occurrences of patterns de-
pend on the design goal. E.g. a game level with Sat(DHS) would provide at least
one thrilling game-play. But if it is intended to be an easy level for beginners, the
designer might insist onUnSat(DHS) instead.We have collected a number of emo-
tion pattern requirements from the designer of the Wave-the-flag level; these are
shown in the upper part of Table 3. The main expectation of the designer is to en-
sure that the designed level is enjoyable by experiencing different positive as well
as negative emotions during the game-play and to avoid the player to get bored by
interpreting boredom as absence of active emotions in the agent emotional state for
some time. As can be seen in Table 3, while most requirements are verified during
the test, there are requirements like Sat(J¬S) that are failed. This requirement
indicates the designer expects at least one execution path that joy is stimulated

165

S. G. Ansari et al.

at least once thought the execution, but the agent never reaches the goal with sat-
isfaction. Having Sat patterns failed to be witnessed, or UnSat patterns that are
witnessed, assist the designer to alter their game level and run the agent through
the level again. For example, here, the fail on Sat(J¬S) is an indication that the
designer needs to put some challenging objects like fire or enemies in the vicinity
of the goal gf0.

Table 3: Emotion pattern check with TSMC and TSSB. H= hope, F= fear, J= joy,
D= distress, S= satisfaction, P = disappointment and ¬X = absence of emotion X.

Emotion patterns TSMC TSSB

Sat(¬DS) 4 4
UnSat(¬FS) 4 4
Sat(J¬S) 7 7
UnSat(JD) 4 4
Sat(JFS) 4 4
Sat(DHP) 4 4
Sat(DHS) 4 4

Sat(DH¬DS) 7 4
Sat(FDHFJ) 7 4

Sat(HFDDDHFJ) 7 4
Sat(FDDHFP) 7 7

Emotion patterns length=2 101/144 (70.2%) 101/144 (70.2%)
Emotion patterns length=3 88/150 (58.6%) 88/150 (58.6%)
Emotion patterns length=4 71/164 (43.2%) 72/164 (43.9%)
Emotion pattern length=5 60/177 (33.8%) 61/177 (34.4%)

Table 3 also shows the similar ratio of the pairwise combination of emotions
over various Sat(p) for the pattern p between length 2-5 by the TSSB and the
TSMC , indicating that both test suites can perform well to detect Sat-type
emotion patterns. However, there the last three patterns in Table 3 are covered
by TSSB but missed by TSMC . Thus, they are complementary, which makes it
reasonable to use both test suites for verifying emotion pattern requirements.

5.3 Mutation Testing Evaluation

Mutation testing [32] is a technique to evaluate the quality of test suites in de-
tecting faults, represented by faulty variants (’mutants’) of the target program
generated through a set of mutation operators. Here, we use this to evaluate the
strength of our PX testing approach. In the procedure, we use a corrected Wave-
the-flag level (’original’ level), satisfying all the emotion pattern requirements
we posed in Table 3. Mutations are applied on the original’s level definition file
to produce mutants (one mutation per mutant). An example of a mutation is
to remove all fire flames from a certain zone in the level; Table 4 lists the used
mutation operators. A mutant represents an alternate design of the level, main-
taining the level’s logic, but may induce different PX. To apply the mutations,
the game level is divided to 16 zones of about equal size. We apply the muta-
tion operators on each zone. Every mutant is labeled with the applied mutation
operator and z x y where (x, y) specifies the bottom-left corner of the zone on
which the mutation is applied. After dropping mutations that do not change the
level’s properties, we obtain 20 distinct mutants, from which we randomly choose
10 mutants for execution. We re-run both TSMC and TSSB test suites on each

166

Model-based Player Experience Testing with Emotion Pattern Verification

mutant. A mutant is automatically killed when the correctness of a specification
is judged differently from the original results. Table 5 shows that 8 of the 10
randomly selected mutants are killed. Remaining mutants are not killed because
emotion requirements might not be distinctive enough to kill them too.

Table 4: Mutation operators
Code Description
RF Remove fire

RW2WF Relocate fire
between walls

RMRF Relocate fire in
middle of a room

AMRF Add fire in
middle of a room

AW2WF Add fire
between walls

Table 5: Kill matrix of the mutants.

Emotion patterns O
ri

g
in

a
l

R
F

z
0

5
1

R
F

z
4
8

1
7

R
F

z
0

5
1

R
M

R
F

z
2
4

0

R
W

2
W

F
z

0
3
4

R
W

2
W

F
z

2
4

5
1

R
W

2
W

F
z

4
8

0

R
W

2
W

F
z

4
8

1
7

A
M

R
F

z
2
4

5
1

A
W

2
W

F
z

7
2

3
4

Sat(¬DS) 4 4 4 4 4 4 4 4 4 4 4
UnSat(¬FS) 4 7 4 4 4 4 4 4 4 4 4
Sat(J¬S) 4 4 4 7 4 4 7 7 4 7 7
UnSat(JD) 4 4 4 4 4 4 4 4 7 4 4
Sat(JFS) 4 4 4 4 4 4 4 4 4 4 4
Sat(DHP) 4 4 4 4 4 4 4 4 4 4 4
Sat(DHS) 4 4 4 4 4 4 4 4 4 4 4

Sat(DH¬DS) 4 4 4 4 4 4 4 4 4 4 4
Sat(FDHFJ) 4 7 4 4 4 4 4 4 4 4 4

Sat(HFDDDHFJ) 4 7 4 4 4 4 4 7 4 4 4
Sat(FDDHFP) 4 7 7 7 4 4 4 4 7 4 4

Threat to Validity. The designed character in Player Characterization, the
selected coverage criterion for test generation to verify UnSat specifications, and
the small number of mutation testing assessments due to the computational cost
are internal threats to the validity of the work. In terms of external threats,
performing the experiment on one level is not safe to be generalized.

6 Related Work

A number of research has been conducted on automated play testing to reduce
the cost of repetitive and labor-intensive functional testing tasks in video games
[35,54]. In particular, agent based testing has been a subject of recent research
to play and explore the game space on behalf of human players for testing pur-
poses. Ariyurek et al. [7] introduces Reinforcement Learning (RL) and Monte
Carlo Tree Search (MCTS) agents to detect bugs in video games automatically.
Stahlke et al. [51] presents a basis for a framework to model player’s memory
and goal-oriented decision-making to simulate human navigational behavior for
identifying level design issues. The framework creates an AI-agent that uses a
path finding heuristic to navigate a level, optimized by a given player charac-
teristics such as level of experience and play-style. Zhao et al. [55] intend to
create agents with human-like behavior for balancing games based on skill and
play-styles. These parameters are measured using introduced metrics to help
training the agents in four different case studies to test the game balance and to
imitate players with different play-styles. Gordillo et al. [24] addresses the game
state coverage problem in play-testing by introducing a curiosity driven rein-

167

S. G. Ansari et al.

forcement learning agent for a 3D game. The test agent utilizes proximal policy
optimization (PPO) with a curiosity factor reflected on the RL reward function
with frequency of a game state visit. Pushing the agent to have the exploratory
behaviour provides a better chance to explore unseen states for bugs.

Among game model-based testing, Iftikhar et al. [30] applies it on Mario
Brothers game for functional testing. The study uses UML states machine as a
game model for test case generation which manages to reveal faults. Ferdous et al.
[18] employs combined search-based and model-based testing for automated play-
testing using an EFSM. Search algorithms are compared regarding the model
coverage and bug detection. Note that while an EFSM provides paths through
a game, it can not reveal the experience of a player who navigates the path.

Despite some research on modeling human players and their behavior in agents
for automated functional play testing, there are a few research on automation of
PX evaluation. Holmgard et al. [28] propose to create procedural personas or player
characteristics for test agent to help game designers to develop game contents and
desirable level design for different players. The research proposes to create per-
sonas in test agents using MCTS with evolutionary computation for node selec-
tion. The result on MiniDungeons 2 game shows how different personas brings
about different behavior in response to game contents which can be seen as differ-
ent play-styles. Lee et al. [34] investigate a data-driven cognitive model of human
performance in moving-target acquisition to estimate the game difficulty for dif-
ferent players with different skill level. There is limited research on the emotion
prediction and its usage for automation of PX evaluation. Gholizadeh et al. [21]
introduce an emotional agent using a formal model of OCC emotions and propose
the potential use of such an agent for PX assessment. However, the approach lacks
automated path planning and reasoning, and hence it cannot do automated game-
play. Automatic coverage of game states and collecting all emerging emotions are
thus not supported which are addressed in this paper.

7 Conclusion & Future work

This paper presented a framework for automated player experience testing, in
particular automated verification of emotion requirement, using a computational
model of emotions and model-based test generation targeting a subset of human
players’ behaviors. We presented a language for emotion patterns to capture emo-
tion requirements. We also investigated the complementary impact of different
test generation techniques on verifying spatial and temporal emotion patterns.

Future work. The explained language is able to capture complex patterns
with the temporal order of emotions’ stimulations in the framework. However,
it cannot capture spatial behavior of emotions, such as differences in the heat-
maps. Generally, combining spatial and temporal aspects to verify emotion re-
quirements in specific areas and time intervals would give a more refined way
to assess the emotional experience. How to capture this into formal patterns is
still an open question. Investigating the application of our approach in empirical
case studies with human players is future work.

168

Model-based Player Experience Testing with Emotion Pattern Verification

References

1. Agarwal, A., Meyer, A.: Beyond usability: evaluating emotional response as an
integral part of the user experience. In: CHI’09 Extended Abstracts on Human
Factors in Computing Systems, pp. 2919–2930. ACM New York, NY, USA (2009)

2. Alagar, V., Periyasamy, K.: Extended finite state machine. In: Specification of
software systems, pp. 105–128. Springer (2011)

3. Alves, R., Valente, P., Nunes, N.J.: The state of user experience evaluation practice.
In: Proceedings of the 8th Nordic Conference on Human-Computer Interaction:
Fun, Fast, Foundational. pp. 93–102 (2014)

4. Ammann, P.E., Black, P.E., Majurski, W.: Using model checking to generate tests
from specifications. In: Proceedings second international conference on formal en-
gineering methods (Cat. No. 98EX241). pp. 46–54. IEEE (1998)

5. Anderson, J.R.: Arguments concerning representations for mental imagery. Psy-
chological review 85(4), 249 (1978)

6. Ansari, S.G.: Toward automated assessment of user experience in extended reality.
In: 2020 IEEE 13th international conference on software testing, validation and
verification (ICST). pp. 430–432. IEEE (2020)

7. Ariyurek, S., Betin-Can, A., Surer, E.: Automated video game testing using syn-
thetic and humanlike agents. IEEE Transactions on Games 13(1), 50–67 (2019)

8. Baier, C., Katoen, J.P.: Principles of model checking. MIT press (2008)
9. Bartneck, C.: Integrating the occ model of emotions in embodied characters. In:

Proceeding of the Workshop on Virtual Conversational Characters: Applications,
Methods, and Research Challenges (2002)

10. Bevan, N.: What is the difference between the purpose of usability and user experi-
ence evaluation methods. In: Proceedings of the Workshop UXEM. vol. 9, pp. 1–4.
Citeseer (2009)

11. Callahan, J., Schneider, F., Easterbrook, S., et al.: Automated software testing
using model-checking. In: Proceedings 1996 SPIN workshop. vol. 353. Citeseer
(1996)

12. Demeure, V., Niewiadomski, R., Pelachaud, C.: How is believability of a virtual
agent related to warmth, competence, personification, and embodiment? Presence
20(5), 431–448 (2011)

13. Desmet, P., Hekkert, P.: Framework of product experience. International journal
of design 1(1) (2007)

14. Drachen, A., Mirza-Babaei, P., Nacke, L.E.: Games user research. Oxford Univer-
sity Press (2018)

15. Elliott, C.D.: The affective reasoner: a process model of emotions in a multiagent
system. Ph.D. thesis, Northwestern University (1992)

16. Ellsworth, P.C., Smith, C.A.: From appraisal to emotion: Differences among un-
pleasant feelings. Motivation and emotion 12(3), 271–302 (1988)

17. Fang, X., Chan, S., Brzezinski, J., Nair, C.: Development of an instrument to
measure enjoyment of computer game play. INTL. Journal of human–computer
interaction 26(9), 868–886 (2010)

18. Ferdous, R., Kifetew, F., Prandi, D., Prasetya, I., Shirzadehhajimahmood, S., Susi,
A.: Search-based automated play testing of computer games: A model-based ap-
proach. In: International Symposium on Search Based Software Engineering. pp.
56–71. Springer (2021)

19. Fraser, G., Arcuri, A.: Evosuite: automatic test suite generation for object-oriented
software. In: Proceedings of the 19th ACM SIGSOFT symposium and the 13th
European conference on Foundations of software engineering. pp. 416–419 (2011)

169

S. G. Ansari et al.

20. Gargantini, A., Heitmeyer, C.: Using model checking to generate tests from re-
quirements specifications. In: Software Engineering—ESEC/FSE’99. pp. 146–162.
Springer (1999)

21. Gholizadeh Ansari, S., Prasetya, I.S.W.B., Dastani, M., Dignum, F., Keller, G.: An
appraisal transition system for event-driven emotions in agent-based player expe-
rience testing. In: Engineering Multi-Agent Systems: 9th International Workshop,
EMAS 2021, Virtual Event, May 3–4, 2021, Revised Selected Papers. pp. 156–174.
Springer Nature (2021)

22. Glover, F.: Tabu search—part i. ORSA Journal on computing 1(3), 190–206 (1989)
23. Goldberg, D.E.: Genetic algorithms. Pearson Education India (2006)
24. Gordillo, C., Bergdahl, J., Tollmar, K., Gisslén, L.: Improving playtesting coverage

via curiosity driven reinforcement learning agents. arXiv preprint arXiv:2103.13798
(2021)

25. Guckelsberger, C., Salge, C., Gow, J., Cairns, P.: Predicting player experience
without the player. an exploratory study. In: Proceedings of the Annual Symposium
on Computer-Human Interaction in Play. pp. 305–315 (2017)

26. Harman, M., Jones, B.F.: Search-based software engineering. Information and soft-
ware Technology 43(14), 833–839 (2001)

27. Herzig, A., Lorini, E., Perrussel, L., Xiao, Z.: BDI logics for BDI architectures: old
problems, new perspectives. KI-Künstliche Intelligenz 31(1) (2017)

28. Holmg̊ard, C., Green, M.C., Liapis, A., Togelius, J.: Automated playtesting with
procedural personas through mcts with evolved heuristics. IEEE Transactions on
Games 11(4), 352–362 (2018)

29. Holzmann, G.J.: The model checker spin. IEEE Transactions on software engineer-
ing 23(5), 279–295 (1997)

30. Iftikhar, S., Iqbal, M.Z., Khan, M.U., Mahmood, W.: An automated model based
testing approach for platform games. In: 2015 ACM/IEEE 18th International Con-
ference on Model Driven Engineering Languages and Systems (MODELS). pp.
426–435. IEEE (2015)

31. Jennett, C., Cox, A.L., Cairns, P., Dhoparee, S., Epps, A., Tijs, T., Walton, A.:
Measuring and defining the experience of immersion in games. International journal
of human-computer studies 66(9), 641–661 (2008)

32. Jia, Y., Harman, M.: An analysis and survey of the development of mutation
testing. IEEE transactions on software engineering 37(5), 649–678 (2010)

33. Lazarus, R.S., Folkman, S.: Stress, appraisal, and coping. Springer publishing com-
pany (1984)

34. Lee, I., Kim, H., Lee, B.: Automated playtesting with a cognitive model of senso-
rimotor coordination. In: Proceedings of the 29th ACM International Conference
on Multimedia. pp. 4920–4929 (2021)

35. Lewis, C., Whitehead, J., Wardrip-Fruin, N.: What went wrong: a taxonomy of
video game bugs. In: Proceedings of the fifth international conference on the foun-
dations of digital games. pp. 108–115 (2010)

36. McMinn, P.: Search-based software test data generation: a survey. Software testing,
Verification and reliability 14(2), 105–156 (2004)

37. Mirza-Babaei, P., Nacke, L.E., Gregory, J., Collins, N., Fitzpatrick, G.: How does
it play better? exploring user testing and biometric storyboards in games user
research. In: Proceedings of the SIGCHI conference on human factors in computing
systems. pp. 1499–1508 (2013)

38. Myers, G.J., Sandler, C., Badgett, T.: The art of software testing. John Wiley &
Sons (2011)

170

Model-based Player Experience Testing with Emotion Pattern Verification

39. Nacke, L., Lindley, C.A.: Flow and immersion in first-person shooters: measuring
the player’s gameplay experience. In: Proceedings of the 2008 conference on future
play: Research, play, share. pp. 81–88 (2008)

40. Nacke, L.E.: Games user research and physiological game evaluation. In: Game
user experience evaluation, pp. 63–86. Springer (2015)

41. Nikolik, B.: Test diversity. Information and Software Technology 48(11), 1083–1094
(2006)

42. Ochs, M., Pelachaud, C., Sadek, D.: An empathic virtual dialog agent to improve
human-machine interaction. In: Proceedings of the 7th international joint confer-
ence on Autonomous agents and multiagent systems-Volume 1. pp. 89–96 (2008)

43. Ortony, A., Clore, G., Collins, A.: The cognitive structure of emotions. cam (bridge
university press. Cambridge, England (1988)

44. Panichella, A., Kifetew, F.M., Tonella, P.: Automated test case generation as a
many-objective optimisation problem with dynamic selection of the targets. IEEE
Transactions on Software Engineering 44(2), 122–158 (2017)

45. Prasetya, I., Dastani, M., Prada, R., Vos, T.E., Dignum, F., Kifetew, F.: Aplib:
Tactical agents for testing computer games. In: International Workshop on Engi-
neering Multi-Agent Systems. pp. 21–41. Springer (2020)

46. Procci, K., Singer, A.R., Levy, K.R., Bowers, C.: Measuring the flow experience of
gamers: An evaluation of the dfs-2. Computers in Human Behavior 28(6), 2306–
2312 (2012)

47. Reilly, W.S.: Believable social and emotional agents. Tech. rep., Carnegie-Mellon
Univ Pittsburgh pa Dept of Computer Science (1996)

48. Roseman, I.J., Smith, C.A.: Appraisal theory. Appraisal processes in emotion: The-
ory, methods, research pp. 3–19 (2001)

49. Roseman, I.J., Spindel, M.S., Jose, P.E.: Appraisals of emotion-eliciting events:
Testing a theory of discrete emotions. Journal of personality and social psychology
59(5), 899 (1990)

50. Smith, C.A., Ellsworth, P.C.: Patterns of cognitive appraisal in emotion. Journal
of personality and social psychology 48(4), 813 (1985)

51. Stahlke, S.N., Mirza-Babaei, P.: Usertesting without the user: Opportunities and
challenges of an ai-driven approach in games user research. Computers in Enter-
tainment (CIE) 16(2), 1–18 (2018)

52. Utting, M., Legeard, B.: Practical model-based testing: a tools approach. Elsevier
(2010)

53. Vermeeren, A.P., Law, E.L.C., Roto, V., Obrist, M., Hoonhout, J., Väänänen-
Vainio-Mattila, K.: User experience evaluation methods: current state and devel-
opment needs. In: Proceedings of the 6th Nordic conference on human-computer
interaction: Extending boundaries. pp. 521–530 (2010)

54. Zarembo, I.: Analysis of artificial intelligence applications for automated testing of
video games. In: ENVIRONMENT. TECHNOLOGIES. RESOURCES. Proceed-
ings of the International Scientific and Practical Conference. vol. 2, pp. 170–174
(2019)

55. Zhao, Y., Borovikov, I., de Mesentier Silva, F., Beirami, A., Rupert, J., Somers,
C., Harder, J., Kolen, J., Pinto, J., Pourabolghasem, R., et al.: Winning is not ev-
erything: Enhancing game development with intelligent agents. IEEE Transactions
on Games 12(2), 199–212 (2020)

171

S. G. Ansari et al.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

172

http://creativecommons.org/licenses/by/4.0/

	Model-based Player Experience Testing with Emotion Pattern Verification
	1 Introduction
	2 Preliminaries
	2.1 Computational Model of Emotions
	2.2 Model-based Testing with EFSM

	3 PX Testing Framework
	4 Methodology
	4.1 Test Suite Generation
	4.2 Test Suite Diversity
	4.3 Emotion Patterns' Requirements and Heat-maps
	4.4 PX Framework Implementation

	5 Case Study
	5.1 Experiment Configuration
	5.2 PX Testing Evaluation
	5.3 Mutation Testing Evaluation

	6 Related Work
	7 Conclusion & Future work
	References

