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Abstract
We give a fine-grained classification of evaluating the Tutte polynomial T (G; x, y) on all integer
points on graphs with small treewidth and cutwidth. Specifically, we show for any point (x, y) ∈ Z2

that either
T (G; x, y) can be computed in polynomial time,
T (G; x, y) can be computed in 2O(tw)nO(1) time, but not in 2o(ctw)nO(1) time assuming the
Exponential Time Hypothesis (ETH),
T (G; x, y) can be computed in 2O(tw log tw)nO(1) time, but not in 2o(ctw log ctw)nO(1) time assuming
the ETH,

where we assume tree decompositions of treewidth tw and cutwidth decompositions of cutwidth ctw

are given as input along with the input graph on n vertices and point (x, y).
To obtain these results, we refine the existing reductions that were instrumental for the seminal

dichotomy by Jaeger, Welsh and Vertigan [Math. Proc. Cambridge Philos. Soc’90]. One of our
technical contributions is a new rank bound of a matrix that indicates whether the union of two
forests is a forest itself, which we use to show that the number of forests of a graph can be counted
in 2O(tw)nO(1) time.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases Width Parameters, Parameterized Complexity, Tutte Polynomial

Digital Object Identifier 10.4230/LIPIcs.ESA.2023.82

Related Version Full Version: https://arxiv.org/abs/2307.01046

Supplementary Material Software (MATLAB Code): https://github.com/isja-m/ForestRank4-5
archived at swh:1:dir:2e6936582c19e5fd2f127b3d1e601ecb9a1136f1

Funding Both authors are supported by the project CRACKNP that has received funding from
the European Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No 853234).

1 Introduction

We study the parameterized complexity of computing the Tutte Polynomial. The Tutte
polynomial is a graph invariant that generalizes any graph invariant that satisfies a linear
deletion-contraction recursion. Such invariants include the chromatic, flow and Jones polyno-
mials, as well as invariants that count structures such as the number of forests or the number
of spanning subgraphs. Due to its generality the Tutte polynomial is of great interest to a
variety of fields, including knot theory, statistical physics and combinatorics.
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For a number of these fields it is important to understand how difficult it is to compute
the Tutte polynomial. A series of papers, culminating in the work by Jaeger, Vertigan, and
Welsh [15] has given a complete dichotomy showing that the problem of evaluating the Tutte
polynmial is #P-hard on all points except on the following special points on which it is
known to be computable in polynomial time:

(1, 1), (−1, −1), (0, −1), (−1, 0), (i, −i), (−i, i), (j, j2), (j2, j), H1 (1)

where j = e2πi/3 and i =
√

−1, and Hα denotes the hyperbola {(x, y) : (x − 1)(y − 1) = α}.
These hyperbolic curves turn out to be of great importance to understanding the complexity
of the Tutte Polynomial, as the problem is generally equally hard on all points of the same
curve, except for the special points listed in (1).

Further refinements of the result by [15] have since been made: Among others, a more
fine-grained examination of the complexity was done by Brand et al. [5] (building on earlier
work by Dell et. al. [12]): they showed that for almost all points the Tutte polynomial cannot
be evaluated in 2o(n) time on n-vertex graphs, assuming (a weaker counting version of) the
Exponential Time Hypothesis. This is tight because, on the positive side, Björklund et al. [2]
showed that the Tutte polynomial can be evaluated on any point in 2nnO(1) time.

Another perspective worth examining is that of the parameterized complexity of the
problem, when parameterized by width measures. This is a rapidly evolving field within
parameterized complexity.1 Intuitively, it is concerned with the effects of structural properties
of the given input graph on its complexity. This often generates results that have greater
practical value and give a deeper understanding of the problem, in comparison with classical
worst-case analysis. It is therefore natural to ask what a complexity classification for the
Tutte Polynomial would look like in this parameterized context.

For the specific subject of evaluating the Tutte polynomial parameterized by width
measures, research has already been done in this area over twenty years ago: Noble [21] has
given a polynomial time algorithm for evaluation the Tutte Polynomial on bounded treewidth
graphs. Noble mostly focused on the dependence on the number of vertices and edges,
and showed each point of the Tutte polynomial can be evaluated in linear time, assuming
the treewidth of the graph is constant. See also an independently discovered (but slower)
algorithm by Andrzejak [1]. However, this glances over the exponential part of the runtime,
i.e. the dependence on the treewidth. Since this is typically the bottleneck, recent work aims
to refine our understanding of this exponential dependence with upper and lower bounds on
complexity of the problem in terms of this parameter that match in a fine-grained sense.

In this work, we extend this research line and determine the fine-grained complexity for
each integer point (x, y) of the problem of evaluating the Tutte polynomial (x, y). As was
done in previous works, we base our lower bounds on the Exponential Time Hypothesis
(ETH) and the Strong Exponential Time Hypothesis (SETH) formulated by Impagliazzo
and Paturi [14]. For a given width parameter k, the former will be used to exclude run
times of the form ko(k)nO(1), while the latter will be used to exclude run times of the form
(c − ϵ)knO(1) for some constant c and any ϵ > 0.

Specifically we consider the treewidth, pathwidth and cutwidth of the graph. The first two,
in some sense, measure how close the graph is to looking like a tree or path respectively. The
cutwidth measures how many edges are layered on top of each other when the vertices are
placed in any linear order. We will more precisely define these parameters in the preliminaries.

1 For example, the biennial Workshop on Graph Classes, Optimization, and Width Parameters (GROW)
already had its 10’th edition recently https://conferences.famnit.upr.si/event/22/.

https://conferences.famnit.upr.si/event/22/
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Figure 1 The red points have time complexity of the form kO(k), the blue points have time
complexity of the form O(ck) for some constant c and the green points have polynomial time
complexity.

Width measures in particular are interesting because instances where such structural
parameters are small come up a lot in practice. For example, the curve H2 corresponds to
the partition function of the Ising model, which is widely studied in statistical physics, on
graphs with particular topology such as lattice graphs or open/closed Cayley trees ([18]). In
all such graphs with n vertices, even the cutwidth (the largest parameter we study) is at
most O(

√
n).

1.1 Our contributions
Our classification handles points (x, y) differently based on whether (x − 1)(y − 1) is negative,
zero or positive, and reads as follows:

▶ Theorem 1.1. Let G be a graph with given tree, path and cut decompositions of width tw,
pw and ctw respectively. Let (x, y) ∈ Z2 be a non-special point, then up to some polynomial
factor in |V (G)|, the following holds.
1. If (x − 1)(y − 1) < 0 or x = 1, then T (G; x, y) can be computed in time twO(tw) and

cannot be computed in time ctwo(ctw) under ETH.
2. If y = 1, then T (G; x, y) can be computed in time O(4pw) or O(64tw) and cannot be

computed in time 2o(ctw) under ETH.
3. If (x − 1)(y − 1) = q > 1, then T (G; x, y) can be computed in time O(qtw). Furthermore,

a. if x ̸= 0, then T (G; x, y) cannot be computed in time O((q − ϵ)ctw) under SETH.
b. if x = 0, then T (G; x, y) cannot be computed in time O((q − ϵ)pw) and O(q − ϵ)ctw /2)

under SETH.

This is a fine-grained classification for evaluating the Tutte polynomial at any given
integer point, simultaneously for all the parameters treewidth, pathwidth and cutwidth. This
is because if a graph has cutwidth ctw, pathwidth pw and treewidth tw, then tw ≤ pw ≤ ctw.
Our result implies that, for evaluating the Tutte polynomial at a given integer point, it does
not give a substantial advantage to have small cutwidth instead of small treewidth. This is
somewhat surprising since, for example, for computing the closely related chromatic number
of a graph there exists a 2ctwnO(1) time algorithm, but any pwo(pw) nO(1) time algorithm
would contradict the ETH [19].

Of particular interest are the upper bounds in Case 2. for the points {(x, y) : y = 1},
which are closely related to the problem of computing the number of forests in the input
graph. One reason why this results stands out in particular is that it indicates an inherent

ESA 2023
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asymmetry between the x- and y-axes, in this parameterized setting. In the general setting,
problems related to the Tutte Polynomial often have a natural dual problem, which one can
obtain by interchanging the x- and y-coordinates. For example the chromatic polynomial
can be found (up to some computable term f) as χG(λ) = f(λ)T (1 − λ, 0), while the flow
polynomial can be found as CG(λ) = g(λ)T (0, 1 − λ). These two problems are equivalent on
planar graphs, in the sense that the chromatic number of a planar graph is equal to the flow
number of its dual graph.

We note that for this curve we have an ETH bound, while for the other results of the
form ctwnO(1) we have a stronger SETH bound. We suspect that a (4 − ϵ)ctwnO(1) lower
bound for any ϵ > 0, based on SETH, also holds for evaluating T (G; 2, 1), but that it will
take significant additional technical effort.

Techniques. In order to get the classification, our first step follows the method of [15] to re-
duce the evaluation of T (G; x, y) for all points in hyperbola Hα = {(x, y) : (x − 1)(y − 1) = α}
to the evaluation to a single point in Hα. This is achieved in [15] by some graph operations
(stretch and thickening), but these may increase the involved width parameters. We refine
these operations in Section 3 to avoid this.

With this step being made, several cases of Theorem 1.1 then follow from a combination
of new short separate and non-trivial arguments and previous work (including some very
recent work such as [8, 13]).

However, for the upper bound in Case 2. of Theorem 1.1, our proof is more involved. To
get our upper bound, we introduced the forest compatibility matrix. Its rows and columns are
indexed with forests (encoded as partitions indicating their connected components). An entry
in this matrix indicates whether the union of the two forests forms a forest itself. This matrix
is closely related to matrices playing a crucial role in the Cut and Count method [11] and
rank based method [4] to quickly solve connectivity problems on graphs with small tree-width.
However, the previous rank upper bounds do not work for bounding the rank of the forest
compatibility matrix over the reals since we check for acyclicity instead of connectivity. We
nevertheless show that this the rank of this matrix is 4n; in fact the set of non-crossing
partitions forms a basis of this matrix. We prove this via an inductive argument that is
somewhat similar to the rank bound of 2n/2−1 of the matchings connectivity matrix over
GF (2) from [10]. Subsequently, we show how to use this insight to get a 2O(tw) algorithm to
evaluate T (G; 1, 2) (i.e. counting the number of spanning forests).

1.2 Organization

The remainder of this paper supports Theorem 1.1, although some slightly less interesting
cases (being the upper bound in Case 1.) are deferred to the full version of the paper [20].
Proofs of Lemmas and Theorems indicated with † are also deferred to the full version [20].

In Section 2 we describe some preliminaries. In Section 3 we show how to reduce the task
of computing all points along a hyperbola curve to a single point. We now describe where
each part of Theorem 1.1 can be found in the paper. The lower bound in Case 1. is given in
Theorem 5.7 and 5.3. The lower bound in Case 2. is by Dell et al. [12]. The upper bound in
Case 2. is given in Section 4 (specifically, Theorems 4.17 and 4.18). The lower bound in
Case 3. is given in Theorem 5.1 (for q = 2) and Theorem 5.4 (for q > 2). The upper bound
bound in 3. is given in Theorem 5.2 (for q = 2) and Theorem 5.5 (for q > 2).
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2 Preliminaries

Computational Model. In this paper we frequently have real (and some inteormediate
lemma’s are even stated for even complex) numbers as intermediate results of computations.
However, as is common in this area we work in the word RAM model in which all basic
arithmetic operations with such numbers can be done in constant time, and therefore this
does not influence our running time bounds.

Interpolation. Throughout this paper we will use interpolation to derive a polynomial,
given a finite set of evaluations of said polynomial. For our purposes it suffices to note that
this can be done in polynomial time, for example by solving the system of linear equations
given by the Vandermonde matrix and the evaluations (see e.g. [7, Section 30.1]).

▶ Lemma 2.1. Given pairs (x0, y0), . . . , (xd, yd), there exists an algorithm which computes
the unique degree d polynomial p such that p(xi) = yi for i = 0, . . . , d and runs in time O(d3).

2.1 The Tutte polynomial
There are multiple ways of defining the Tutte polynomial. In this paper we will only need
the following definition

T (G; x, y) =
∑

A⊆E

(x − 1)k(A)−k(E)(y − 1)k(A)+|A|−|V |,

where k(A) denotes the number of connected components of the graph (V, A). We will often
use the following notation

Hα = {(x, y) : (x − 1)(y − 1) = α}.

Note that these curves form hyperbolas and that for α = 0 the hyperbola collapses into two
orthogonal, straight lines. We refer to these two lines as separate curves

Hx
0 = {(x, y) : x = 1},

Hy
0 = {(x, y) : y = 1}.

Throughout the paper we will refer to the problem of finding the value of T (G; a, b) for
an individual point as computing the Tutte polynomial on (a, b). We will often restrict the
Tutte polynomial to a one-dimensional curve Hα. Note that in this case the polynomial can
be expressed as a univariate polynomial2

Tα(G; t) := T
(

G; α

t
+ 1, t + 1

)
.

We refer to the problem of finding the coefficients of Tα as computing the Tutte polynomial
along Hα.

As mentioned in the introduction, the Tutte polynomial is known to be computable in
polynomial time on the points

(1, 1), (−1, −1), (0, −1), (−1, 0), (i, −i), (−i, i), (j, j2), (j2, j) (2)

and along the curve H1 and it is #P to evaluate it on any other point. We call the points
listed in (2), along with the points on the curve H1 special points. See [15] for more details.

2 Note that one can get rid of the negative powers of t in the following expression, by multiplying the
whole polynomial by some power of t.

ESA 2023



82:6 Tutte Polynomial Parameterized by Width Measures

2.2 Width measures
We consider the width measures treewidth, pathwidth and cutwidth of a graph G (denoted
respectively with tw(G), pw(G) and ctw(G)). We use standard notation (such as introduced
in [9]); see the appendix

2.3 Brylawski’s tensor product formula
In Section 3 we will make use of Brylawski’s tensor product formula [6] to reduce the
computation of T (G; x′, y′) to that of T (G′; x, y) for some other point (x′, y′) and some other
graph G′. The original formula is formulated in terms of pointed matroids, however we will
only need the formulation for (multi)graphs. Before we can state the formula, we first need
to introduce some notation.

Given graphs G and H, where an edge e ∈ E(H) is labeled as a special edge, we define
the pointed tensor product3 G⊗e H of G and H as the graph given by the following procedure.
For every edge f ∈ E(G) we first create a copy Hf of H, then identify f with the copy of
the edge e in Hf and finally remove the edge f (and thus also the edge e) from the graph.

Intuitively it might be easier to think of this product as replacing every edge of G with a
copy H \ e, where two of the vertices in H are designated as gluing points. For example one
could replace every edge with a path of length k by taking as H the cycle Ck+1 on k + 1
vertices, as seen in figure 2.

u

v

w u

v

w

Figure 2 The pointed tensor product of the left-hand graph with a 3-cycle is given by the
right-hand graph.

Note that this is not always well-defined, as one can choose which endpoint is identified
with which. It turns out that this choice does not affect the graphic matroid of G ⊗e H and
thus it does not affect the resulting Tutte polynomial. In this paper we will only consider
graphs H that are symmetric over e and thus the product is actually well-defined.

We are now ready to state Brylawski’s tensor product formula. Let TC and TL be the
unique polynomials that satisfy the following system of equations

(x − 1)TC(H; x, y) + TL(H; x, y) = T (H \ e; x, y)
TC(H; x, y) + (y − 1)TL(H; x, y) = T (H/e; x, y).

We define

x′ = T (H\e; x, y)
TL(H; x, y) y′ = T (H/e; x, y)

TC(H; x, y) .

Let n = |V (H)|, m = |E(H)| and k = k(E(H)). Brylawski’s tensor product formula
states that

T (G ⊗e H; x, y) = TC(H; x, y)m−n+kTL(H; x, y)n−kT (G; x′, y′).

3 Note that this is different from the standard tensor product for graphs.
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3 Reducing along the curve Hα

In this section we describe how we can lift hardness results from a single point (a, b) ∈ Hα to
the whole curve Hα. We summarize the results from this section in the following theorem.

▶ Theorem 3.1. Let (a, b) ∈ C2. Also let T (G; x, y) be the Tutte polynomial of G and
α := (a − 1)(b − 1). There exists a polynomial time reduction from computing T on (a, b)
for graphs of given tree-, path- or cutwidth, to computing T along Hα for graphs width the
following with parameters.

If |a| /∈ {0, 1} or if |b| /∈ {0, 1} and a ̸= 0, then the treewidth remains tw(G). The cutwidth
and pathwidth become at most ctw(G) + 2 and pw(G) + 2 respectively.
If |b| /∈ {0, 1} and a = 0, then the treewidth remains tw(G). The pathwidth becomes at
most pw(G) + 2 and the cutwidth becomes at most 2 ctw(G).
If |a|, |b| ∈ {0, 1}, then the treewidth remains tw(G). The pathwidth becomes at most
pw(G) + 2 and the cutwidth becomes at most 12 ctw(G).

Theorem 3.1 lets us lift both algorithms and lower bounds from a point (a, b) to the
whole curve Hα. While our main theorem only requires Theorem 3.1 to be stated for integer
valued points, we will state it as the most general version we can prove. We note that for
Case 1. of Theorem 1.1, we do not care too much about constant multiplicative factors in
the cutwidth, since we have an ETH bound of the form ctw(G)o(ctw(G)). For Case 2. we
only need the bounds on the treewidth and pathwidth. Thus the blowup in the cutwidth is
only relevant for Case 3.. In this case the only integer valued points that fall under the third
item of Theorem 3.1 are (−1, 0), (0, −1) and (−1, −1). These are all special points, which
means that this item is not relevant for Case 3..

In our proofs we will make use of the following transformations.

▶ Definition 3.2 ([15]). Let G be a simple graph. We define the k-stretch kG of G as the
graph obtained by replacing every edge by a path of length k. We define the k-thickening kG

of G as the graph obtained by replacing every edge by k parallel edges.

A new variant we introduce to keep the cutwidth low is defined as follows:

▶ Definition 3.3. We define the insulated k-thickening (k)G as the graph obtained by replacing
every edge by a path of length 3 and then replacing the middle edge in each of these paths by
k parallel edges.

u v

Figure 3 The result of applying the insulated 4-thickening to an edge between u and v.

3.1 Effect on width parameters
We give three lemmas that show how these transformations effect the parameters we use.

▶ Lemma 3.4 (†). Let G be a graph. Then we have that tw(kG) ≤ tw(G), tw(kG) ≤ tw(G)
and tw((k)G) ≤ tw(G).

▶ Lemma 3.5 (†). Let G be a graph. Then we have that pw(kG) ≤ pw(G) + 2,
pw(kG) ≤ pw(G) and pw((k)G) ≤ pw(G) + 2.

ESA 2023



82:8 Tutte Polynomial Parameterized by Width Measures

▶ Lemma 3.6 (†). Let G be a graph. Then we have that ctw(kG) ≤ ctw(G),
ctw(kG) ≤ k ctw(G) and ctw((k)G) ≤ ctw(G) + k − 1.

We remark that the only significant blowup is that of the cutwidth, when applying the
k-thickening. We will therefore limit our use of this transformation as much as possible.

3.2 Reductions

We now discuss the proof of Theorem 3.1. In the full version in the appendix we split the
theorem into multiple separate cases. Here, we only give one case as a representative sample:

▶ Lemma 3.7. Let (a, b) ∈ C2 be a point with |a| /∈ {0, 1}. Also let T (G; x, y) be the Tutte
polynomial of G and α := (a − 1)(b − 1). There exists a polynomial time reduction from
computing T on (a, b) for graphs of given tree-, path- or cutwidth, to computing T along Hα

for graphs with the following with parameters. The treewidth and cutwidth remain tw(G) and
ctw(G) respectively. The pathwidth becomes at most pw(G) + 2.

We prove this lemma using essentially the same proof as given in [15]. Note that in our
setting we use Lemmas 3.4, 3.5 and 3.6 to ensure that relevant parameters are not increased
by the operations we perform.

Proof. By Brylawski’s tensor product formula [6], we find the following expression for the
k-stretch of the graph G

(1 + a + · · · + ak−1)k(E)T

(
G; ak,

b + a + · · · + ak−1

1 + a + · · · + ak−1

)
= T (kG; a, b). (3)

Note that

ak − 1 = (1 + a + · · · + ak−1)(a − 1)

and

b + a + · · · + ak−1

1 + a + · · · + ak−1 − 1 = b − 1
1 + a + · · · + ak−1 .

We find that the point on which we evaluate T (G) in (3) also lies on Hα.
By examining the formula for the Tutte polynomial, we find that for n = |V (G)| the

degree of the Tutte polynomial is at most n2 + n. By choosing k = 0, . . . , n2 + n, since
|a| /∈ {0, 1}, we can find T (G; x, y), for n2 + n + 1 different values of (x, y) ∈ Hα. By lemma
2.1, we can now interpolate the univariate restriction

Tα(G; t) = T
(

G; α

t
+ 1, t + 1

)
.

of T (G) along Hα.
Note that by Lemmas 3.4 and 3.6 the k-stretch preserves both the cutwidth and the

treewidth of the graph and by Lemma 3.5 the pathwidth increases by a constant additive
factor. We find that any fine-grained parameterized lower bound for Hα extends to points
(a, b). ◀
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4 Counting forests

In this section we consider the problem of counting the number of forests in a graph. This
problem corresponds to the point (2, 1) and thus by Theorem 3.1 any bounds found for this
problem can be lifted to the whole curve Hy

0 .
We trivially get the following lower bound from existing bounds on the non-parameterized

version of the problem [12].

▶ Theorem 4.1. Computing the Tutte polynomial along the curve Hy
0 cannot be done in

time 2o(ctw(G))nO(1), unless #ETH fails.

To complement this lower bound, we give an algorithm to count the number of forests in
a graph G in ctw(G) time. The algorithm uses a rank based approach, the runtime of which
depends on the rank of the so called forest compatibility matrix. We start by introducing
this matrix and examining its rank.

4.1 Notation
We will use the notation [n] = {1, . . . , n}. Unless stated otherwise, we will assume the set
[n] to be ordered. We write π ⊢ S to indicate that π is a partition of S.

We will consider matrices indexed by partitions. We will write M [π, ρ] for the element in
the row corresponding to π and the column corresponding to ρ. We will write M [π] for the
vector containing all elements in the row corresponding to π.

4.2 Rank bound
In this section we prove the following theorem, for the so called forest compatibility matrix Fn.

▶ Theorem 4.2. The rank of Fn is at most Cn, the nth Catalan number. In particular
rank(Fn) = O(4nn−3/2)

Before we can define the forest compatibility matrix, we first need the following definitions.

▶ Definition 4.3. We say that a boundaried graph G = ([n] ∪ V, E), with boundary [n], is
a representative forest for a partition π ⊢ [n], if for every S ∈ π there is some connected
component C ⊆ V (G) such that C ∩ [n] = S.

Given two boundaried graphs G and H, both with boundary B, we define the glue G ⊕ H

of G and H as follows. First take the disjoint union of G and H. Then identify each v ∈ B

in G with its analogue in H.

This definition shows how one can relate forests and partitions. Throughout the section we
will mostly consider partitions as they capture only the information we need. The following
definition elaborates on this by lifting the concept of cycles in a clue of two trees to a cycle
inducet by two partitions.

▶ Definition 4.4. Let π, ρ ⊢ [n] and let Gπ and Gρ be representative forests of π and ρ

respectively. We say that π and ρ induce a cycle if Gπ ⊕ Gρ contains a cycle.

It is not hard to see that it does not matter which representatives Gπ and Gρ we choose, since
one only needs to know the connected components on [n]. This means that this definition is
indeed well-defined. For this same reason, in the following definition, we only need a row
and column for each partition of the separator.

ESA 2023



82:10 Tutte Polynomial Parameterized by Width Measures

▶ Definition 4.5. We define the forest compatibility matrix FS of a set S by

FS [π, ρ] :=
{

0 if π and ρ induce a cycle
1 otherwise

for any π, ρ ⊢ S. We will write Fn := F[n].

Finally we will need the following definition to bound the rank of the forest compatibility
matrix.

▶ Definition 4.6. We say that two sets A, B ∈ π are crossing on an ordering <, if there are
a1, a2 ∈ A and b1, b2 ∈ B such that a1 < b1 < a2 < b2 or b1 < a1 < b2 < a2. If a partition
contains two crossing sets, we refer to it as a crossing partition.

Throughout this section it will sometimes be convenient to think of the ordering as a
permutation.

The general idea behind the proof of Theorem 4.2 is to show that any partition can be
“uncrossed”, i.e. its row in Fn can be written as a linear combination of rows, corresponding
to non-crossing partitions.

4.2.1 Manipulating partitions

For the proof of Theorem 4.2 we will need the following operations, which will allow us to
manipulate partitions by contracting an expanding intervals and projecting down to subsets
of the ground set.

▶ Definition 4.7. An interval is a subset I ⊆ [n] of consecutive numbers, i.e. there is no
b /∈ I such that a1 < b < a2 for some a1, a2 ∈ I. Given an interval I and a partition π of [n],
we define the contraction π −i I of π by I as the partition of the set [n] −i I := ([n] ∪ {i}) \ I

given by we merging all sets that intersect I and replacing I by a single element i, i.e.

π −i I := {S ∈ π : S ∩ I = ∅} ∪
{(⋃

{S ∈ π : S ∩ I ̸= ∅} ∪ {i}
)

\ I
}

.

If we have an ordering on [n], we place i in the same place in the ordering as I, that is for
any a ∈ [n] \ I and b ∈ I, we have a < b if and only if a < i.

We define the blowup π +i I of π by I as the partition of the set [n] +i I := ([n] ∪ I) \ {i},
given by adding all elements of I to the set that contains i and then removing i, i.e.

π +i I := {S ∈ π : i /∈ S} ∪ {(S \ {i}) ∪ I : i ∈ S}.

Again we place I in the same place in the ordering as i.

We will sometimes abuse notation and refer to [n] −i I as simply [n′] for n′ = n − |I| + 1.
We now turn our attention to a number of useful lemmas. The first lemma intuitively

says that if we contract an interval contained in some partition, then any decomposition of
the resulting smaller partition gives the same decomposition of the larger partition.

▶ Lemma 4.8. Let π be a partition of [n] and let I be an interval such that I ⊆ S ∈ π.
We set n′ = n − |I| + 1. Suppose that for some set of partitions R of [n′], we have
Fn′ [π −i I] =

∑
ρ∈R aρFn′ [ρ]. Then Fn[π] =

∑
ρ∈R aρFn[ρ +i I].
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Proof. Let χ be some partition of [n]. Note that if |S′ ∩ I| ≥ 2 for some S′ ∈ χ, we have
that Fn[π, χ] = Fn[ρ +i I, χ] = 0. Thus we may assume that χ contains no such sets. Also
note that if there is some cycle that only requires I and not the rest of S, then again we
have that Fn[π, χ] = Fn[ρ +i I, χ] = 0. Thus we may assume that any cycle induced by χ

and π that has a set that intersects I, also requires a set that intersects S \ I, but not I.
We now claim that for χ with the above assumptions we have Fn[ρ +i I, χ] = Fn[ρ, χ −i I]

for any ρ. This would immediately imply that for such χ

Fn[π, χ] = Fn[π −i I, χ −i I] =
∑
ρ∈R

aρFn[ρ, χ −i I] =
∑
ρ∈R

aρFn[ρ +i I, χ],

which proves the lemma.
First note that if ρ and χ −i I induce a cycle, that does not involve i, then ρ +i I and χ

also induce that same cycle and vice versa.
Now suppose that ρ +i I and χ induce a cycle involving I, then there is some S′ in the

cycle that intersects I. By assumption there is also some set S′′ ∈ χ in the cycle, that
intersects S \ I, but not I. W.l.o.g. the cycle does not loop back on itself and thus these
sets are the only two in the cycle that intersect S. Note that S′ gets merged into the set
containing i, but S′′ does not. Since the rest of the cycle does not involve I, it is unaffected
and thus the cycle remains intact after contraction.

In the reverse direction we assume that ρ and χ −i I induce a cycle involving i, then it
is clear to see that this cycle survives after blowing up i, using one of the sets in χ that
intersect I. This proves the claim and thus the lemma. ◀

This next lemma intuitively says that if we project our partition to a subset of the ground
set, then any decomposition of the resulting smaller partition gives the same decomposition
of the larger partition.

▶ Lemma 4.9. Let π be a partition of [n] and let n′ < n. Suppose that for some set of parti-
tions R of [n′], we have Fn′ [π|[n′]] =

∑
ρ∈R aρFn′ [ρ], then Fn[π] =

∑
ρ∈R aρFn[ρ ⊔ π|[n]\[n′]].

Proof. Let χ be some partition of [n]. If χ and π|[n]\[n′] induce a cycle, then the statement
trivially holds. In the rest of the proof we will therefore assume that any cycle induced by χ

and π requires the use of π|[n′].
We first define an equivalence relation ∼ on [n] by defining two elements to be equivalent

if they are either in the same set of χ or in the same set of π|[n]\[n′]. We then complete this
to a full equivalence relation. We now define the partition χ′ of [n′] as the set of equivalence
classes of ∼, restricted to [n′].

We claim that Fn[ρ ⊔ π|[n]\[n′], χ] = Fn′ [ρ, χ′] for any ρ, which would immediately imply
that

Fn[π, χ] = Fn′ [π|[n′], χ′] =
∑
ρ∈R

aρFn′ [ρ, χ′] =
∑
ρ∈R

aρFn[ρ ⊔ π|[n]\[n′], χ]

which proves the lemma.
Suppose that ρ ⊔ π|[n]\[n′] and χ induce some cycle. Since the cycle must pass through

[n′], there must be some path from one element of [n′] to another, induced by ρ ⊔ π|[n]\[n′]
and χ. Since all elements in this path are equivalent, this path must lie entirely inside of a
set S′ ∈ χ′ and thus replacing such a path with S′ results in a cycle induced by ρ and χ′.
Note that if a cycle only requires sets from π|[n′], this operation results in a single set S′

from χ′ in the new cycle. However, since any set involved in the old cycle must contain at
least two elements in the path, that set together with S′ induces a cycle.

ESA 2023



82:12 Tutte Polynomial Parameterized by Width Measures

Similarly, in the reverse direction we take a cycle induced by ρ and χ′ and blow up any
sets of χ′ into a path in the corresponding connected component to find a cycle induced by
ρ ⊔ π|[n]\[n′] and χ. ◀

The following two lemmas help ensure that our operations do not introduce new crossings.
The first of the two lemmas shows us that we can safely contract an interval, so long as it is
contained in a set of the partition.

▶ Lemma 4.10 (†). Let I ⊆ [n] be an interval of [n]. Let π be a non-crossing partition of
[n] −i I. Then π +i I is also non-crossing.

This next lemma shows us that, in our setting, projection is safe, as long as we do not
forget any elements of sets that cross one another.

▶ Lemma 4.11 (†). Let π ⊢ [n] be a partition such that only A, B ∈ π cross each other and
all other pairs of sets in π are non-crossing. Then for a non-crossing partition ρ of A ∪ B

we have that ρ ∪ π|[n]\(A∪B) is non-crossing.

4.2.2 Proof of the rank bound
With Lemmas 4.8, 4.9, 4.10 and 4.11 in hand, we are now ready to describe the main
uncrossing operation.

▶ Lemma 4.12. Let π be a non-crossing partition on an ordering p. In time O(n) we can
find constants cρ, such that Fn[π] =

∑
ρ∈N cρFn[ρ], where N is the set of partitions that are

non crossing on p ◦ (i, i + 1).

Proof. Throughout the proof, we will consider the partition π on the ordering p ◦ (i, i + 1).
We first note that since π is non-crossing on p, any crossing of π must involve both i and
i + 1. Let i ∈ A ∈ π and i + 1 ∈ B ∈ π. If A = B, then π is non-crossing and thus we may
assume that A ̸= B. Note that π|A∪B, when viewed as a partition of A ∪ B, consists of
either 4 or 5 intervals which alternate between A and B. Define π′ as the partition given by
contracting these intervals. We find that π′ is a partition on n′ elements, where either n′ = 4
or n′ = 5 elements, with intervals of size 1 (see Figure 4).

We can explicitly construct the forest compatibility matrices for n′ ∈ {4, 5} and check
that the non-crossing partitions give a basis. With this paper we provide a MATLAB script
that verifies this. Thus we can write

Fn′ [π′] =
∑
ρ∈R

cρFn′ [ρ],

where R is the set of non-crossing partitions of [n′]. By Lemma 4.8 we find that

FA∪B [π|A∪B ] =
∑
ρ∈R

cρFA∪B [ρ +i1 I1 + · · · +in′ In′ ].

By Lemma 4.10 each ρ +i1 I1 + · · · +in′ In′ is still non-crossing. By Lemma 4.9 we find

Fn[π] =
∑
ρ∈R

cρFA∪B [(ρ +i1 I1 + · · · +in′ In′) ∪ π|[n]\(A∪B)].

By Lemma 4.11 each (ρ +i1 I1 + · · · +in′ In′) ∪ π|[n]\(A∪B) is still non-crossing. We conclude
that Fn[π] can be written as a linear combination of rows corresponding to non-crossing
partitions.

Note that we can construct π′ in O(n) time. We then find the cρ in O(1) time and
reconstruct the (ρ +i1 I1 + · · · +in′ In′) ∪ π|[n]\(A∪B) in O(n) time. ◀
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Figure 4 From left to right, these are examples of π before the swap, π after the swap, π|A∪B

and π′.

By repeatedly applying Lemma 4.12, we can prove the following theorem.

▶ Theorem 4.13. The rows corresponding to non-crossing partitions span a row basis of the
forest compatibility matrix Fn.

Proof. Let π be a partition of [n] such that we can turn it into a non-crossing partition
by swapping two consecutive elements i and i + 1 in the order of [n]. By Lemma 4.12 we
can write the row Fn[π] corresponding to π as a linear combination of rows corresponding
to non-crossing partitions of [n]. This shows that, for Bp the set of rows corresponding
to non-crossing partitions on p, we have Bp◦(i,i+1) ⊆ span(Bp). Since every partition is
non-crossing for some permutation and every permutation can be decomposed into 2-cycles
on consecutive elements, this implies that every row can be written as a linear combination
of rows corresponding to non-crossing partitions on some fixed ordering p. ◀

From this we immediately find a proof for Theorem 4.2.

Proof of Theorem 4.2. By Theorem 4.13 the non-crossing partitions form a basis of Fn.
Since there are Cn such partitions we find rank(Fn) ≤ Cn. ◀

4.3 Algorithm
We will now describe the algorithm for counting forests. We first define the dynamic
programming table and the notion of representation. For details on how to compute the
table entries, see the full version [20].

▶ Definition 4.14. Let G be a graph and let (T, (Bx)x∈V (D)) be a tree/path decomposition
of G. Recall that Gx is defined as the graph induced by the union of all bags, whose nodes
are descendants of x in T. We define the dynamic programming table τ by

τx[π] := |{X ⊆ E(Gx) : (V, X) is acyclic ,

∀u, v ∈ Bx there is a path in (V, X) from u to v iff ∃S ∈ π s.t. u, v ∈ S}|
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In other words, the table entry τx[π] counts the number of forests in Gx whose connected
components agree with π. In the rest of this section, we will refer to the number of nonzero
entries τx[π] in a ’row’ τx of the dynamic programming table as the support of τx, written
supp(τx). Our aim will be to ensure that the support of our rows remains contained in the
entries corresponding to non-crossing partitions for some ordering on the bag Bx. This is
captured in the following definition.

▶ Definition 4.15. We say a vector a, indexed by partitions, is reduced on an ordering p, if
aπ = 0 for any partition π that is crossing for p.

In order to ensure that we do not lose any relevant information we will reduce our rows,
while retaining the following property for the matrix FBx .

▶ Definition 4.16. Given a matrix M , we say that a vector a M -represents a vector b if
Ma = Mb

In the full version of the paper[20], we describe a dynamic programming algorithm that
works with reduced rows, rather than the whole table. It does so by alternating between
reducing the current row in the table and computing the next row. This allows us to work
with a table where the rows effectively have size rank(Ftw) (or rank(Fpw)). Doing so, we
establish the following:

▶ Theorem 4.17 (†). There exists an algorithm that, given a graph G with a path decompos-
ition of width pw(G), computes the number of forests in the graph in time 4pw(G)nO(1).

▶ Theorem 4.18 (†). There exists an algorithm that, given a graph G with a tree decomposition
of width tw(G), computes the number of forests in the graph in time 64tw(G)nO(1).

5 Other cases

In this section we handle the remaining cases mentioned in Theorem 1.1.

5.1 The curve H2

The curve H2 is equivalent to the partition function of the Ising model. Both our proofs for
the upper and lower bound on the complexity will make use of this fact.

▶ Theorem 5.1. Computing the Tutte polynomial along the curve H2 cannot be done in time
(2 − ϵ)ctw(G)nO(1), unless SETH fails.

Proof Sketch. Using known equivalences we first reduce #MaximumClosedSubgraphs
to the problem of computing the Tutte polynomial along the curve H2. We then ap-
ply a simple transformation, based on a similar argument by [17] to ensure the graph
only has odd degree vertices. It then suffices to note that on graphs with only odd
degree vertices, the complement of a perfect matching is a maximum closed subgraph
and thus #MaximumClosedSubgraphs is equivalent to #PerfectMatchings on such
graphs. This allows us to lift an existing lower bound from [8] on #PerfectMatchings to
#MaximumClosedSubgraphs. ◀

We also show in the full version that this lower bound can be matched with a tight upper
bound. The proof uses dynamic programming combined with subset convolution [3, 9].

▶ Theorem 5.2. Let G be a graph with a given tree decomposition of width tw(G). There
exists an algorithm that computes T (G; a, b), for (a, b) ∈ H2, in time 2tw(G)nO(1).
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5.2 The curve Hx
0

The curve Hx
0 contains the point (1, 2), which counts the number of connected edgesets of a

connected graph. Using existing results this gives an ETH lower bound which matches the
running time of the algorithm mentioned in theorem 1.1.

▶ Theorem 5.3. Let 0 < α < 1. Computing the Tutte polynomial along the curve Hx
0 cannot

be done in time (α ctw(G) − ϵ)(1−α) ctw(G)/2nO(1), unless SETH fails.

Proof. In [13] a lower bound of pctw(G) is found for counting connected edgesets modulo
p. In the reduction the authors reduce to counting essentially distinct q-coloring modulo
p, with cutwidth ctw(G) + q2 and p = q. Thus we find a lower bound of pctw(G)−p2 =
(α ctw(G))(1−α) ctw(G)/2 for p = (α ctw(G))1/2. ◀

5.3 The curve Hq for q ∈ Z≥3

These curves contain the points (1 − q, 0), which count the number of q-colorings. Using
previous results and a folklore algorithm, we find matching upper and lower bounds for these
points and thus for the whole curves.

▶ Theorem 5.4. Let q ∈ Z≥3. Computing the Tutte polynomial along the curve Hq cannot
be done in time (q − ϵ)ctw(G)nO(1), unless SETH fails.

Proof. Note that Hq contains the point (1 − q, 0). Computing the Tutte polynomial on this
point is equivalent to counting the number of q-colorings of the graph G.

By choosing a modulus p > q we can apply the results from [13] to find a lower bound of
qctw(G) on the time complexity of counting q-colorings modulo p. This lower bound clearly
extends to general counting. ◀

▶ Theorem 5.5. Let G be a graph with a given tree decomposition of width tw(G) and q ∈ Z≥3.
There exists an algorithm that computes T (G; a, b) for (a, b) ∈ Hq in time qtw(G)nO(1).

This theorem is a direct consequence of combining Theorem 3.1 with the following folklore
result:

▶ Theorem 5.6 (Folklore). Let G be a graph with a given tree decomposition of width tw(G)
and q ∈ Z≥3. There exists an algorithm that computes the number of q-colorings of G in
time qtw(G)nO(1).

5.4 The curve H−q for q ∈ Z>0

These curves contain the points (1 + q, 0). Using the same results we used to prove theorem
5.4 and exploiting the fact these results hold for modular counting, we find an ETH lower
bound which matches the running time of the algorithm mentioned in theorem 1.1.

▶ Theorem 5.7. Let q ∈ Z>0. Computing the Tutte polynomial along the curve H−q cannot
be done in ctw(G)o(ctw(G)) time, unless ETH fails.

Proof. Like mentioned earlier H−q contains the point (1 + q, 0). For a prime p > q we have
that T (G; 1 + q, 0) ≡p T (G; 1 + q − p, 0). This means that computing the Tutte polynomial
modulo p at the point (1 + q, 0) is equivalent to counting the number of p − q-colorings
of G modulo p. Since q > 0 and p > q we find that 0 < p − q < p and thus as before,
by [13], we find a lower bound of (p − q)ctw(G). Since the cutwidth of the construction
in [13] is O(n + rpr+2) for some r dependant on p − q and ϵ. We find that there is no
algorithm running in time O((p − q − ϵ)ctw(G)−rpr+2) = O((α ctw(G) − ϵ)ctw(G)(1−α)/(r+2)),
where p − q = (α ctw(G))1/(r+2). ◀
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6 Conclusion

In this paper we gave a classification of the complexity, parameterized by treewidth/path-
width/cutwidth, of evaluating the Tutte polynomial at integer points into either computable

in polynomial time,
in twO(tw) nO(1) time but not in ctwo(ctw) nO(1) time,
in qtwnO(1) time but not in 2o(ctw) (and for many points not even in rctwnO(1) time for
some constants q > r),

assuming the (Strong) Exponential Time Hypothesis.
This classification turned out to be somewhat surprising, especially considering the

asymmetry between Hx
0 = {(x, y) : x = 1} and Hy

0 = {(x, y) : y = 1} that does not show up
in other classifications such as the ones from [5, 12, 15].

Our paper leaves ample opportunities for further research. First, we believe that our rank
upper bound should have more applications for counting forests with different properties.
For example, it seems plausible that it can be used to count all Feedback Vertex Sets in
time 2O(tw)nO(1) or the number of spanning trees with k components in time 2O(tw)nO(1).
The latter result would improve over a result by Peng and Fei Wan [22] that show how to
count the number of spanning forests with k components (or equivalently, n − k − 1 edges)
in twO(tw) nO(1) time. We decided to not initiate this study in this paper to retain the focus
on the Tutte polynomial.

Second, it would be interesting to see if our classification of the complexity of all points
on Z2 can be extended to a classification of the complexity of all points on R2 (or even C2).
Typically, evaluation at non-integer points can be reduced to integers points (leading to
hardness for non-integer points), but we were not able to establish such a reduction without
considerably increasing the width parameters.

Third, it would be interesting to see if a similar classification can be made when paramet-
erized by the vertex cover number instead of treewidth/pathwidth/cutwidth. We already
know that the runtime of 2nnO(1) by Björklund et al. [2] for evaluating the Tutte polynomial
cannot be strengthened to a general 2O(k)nO(1) time algorithm where k is the minimum
vertex cover size of the input graph due to a result by Jaffke and Jansen [16], but this still
leaves the complexity of evaluating at many other points open.
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