
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 6, JUNE 2023 1877

Incremental Multilayer Resource Partitioning
for Application Placement in Dynamic Fog

Zahra Najafabadi Samani , Narges Mehran , Dragi Kimovski , Shajulin Benedict ,
Nishant Saurabh , and Radu Prodan

Abstract—Fog computing platforms became essential for de-
ploying low-latency applications at the network’s edge. However,
placing and managing time-critical applications over a Fog in-
frastructure with many heterogeneous and resource-constrained
devices over a dynamic network is challenging. This paper proposes
an incremental multilayer resource-aware partitioning (M-RAP)
method that minimizes resource wastage and maximizes service
placement and deadline satisfaction in a dynamic Fog with many
application requests. M-RAP represents the heterogeneous Fog
resources as a multilayer graph, partitions it based on the net-
work structure and resource types, and constantly updates it upon
dynamic changes in the underlying Fog infrastructure. Finally, it
identifies the device partitions for placing the application services
according to their resource requirements, which must overlap in
the same low-latency network partition. We evaluated M-RAP
through extensive simulation and two applications executed on a
real testbed. The results show that M-RAP can place 1.6 times as
many services, satisfy deadlines for 43% more applications, lower
their response time by up to 58%, and reduce resource wastage by
up to 54% compared to three state-of-the-art methods.

Index Terms—Application placement, deadline satisfaction, Fog
computing, resource partitioning, resource wastage.

I. INTRODUCTION

H IGHLY distributed applications, such as video process-
ing [1], e-commerce [2], virtual reality [3], object recogni-

tion, face detection [4], or natural language processing [5], raise
significant time-critical and low-latency challenges impossible
to fulfill using centralized Cloud data center technologies [6].
To mitigate this problem, Fog computing [7] has emerged
as a distributed paradigm encompassing highly heterogeneous
and dynamic devices, hierarchically split between the high-end

Manuscript received 3 March 2022; revised 5 March 2023; accepted 25 March
2023. Date of publication 28 March 2023; date of current version 8 May 2023.
This work was supported by the European Horizon 2020 project DataCloud
under Grant 101016835, in part by the Horizon Europe project Graph-Massivizer
under Grant 101093202, and in part by the Austrian Research Promotion Agency
(FFG) project Kärntner Fog under Grant 888098. Recommended for acceptance
by S. Pallickara. (Corresponding author: Radu Prodan.)

Zahra Najafabadi Samani, Narges Mehran, Dragi Kimovski, and Radu Prodan
are with the Institute of Information Technology, University of Klagenfurt, 9020
Klagenfurt, Austria (e-mail: Zahra.Najafabadi@aau.at; narges.mehran@aau.at;
dragi.kimovski@aau.at; radu.prodan@aau.at).

Nishant Saurabh is with the Department of Information and Computing
Sciences, Utrecht University, 3584 CS Utrecht, The Netherlands (e-mail:
n.saurabh@uu.nl).

Shajulin Benedict is with the Computer Science and Engineering, Indian
Institute of Information Technology Kottayam, Valavoor, Kerala 686635, India
(e-mail: shajulin@iiitkottayam.ac.in).

Digital Object Identifier 10.1109/TPDS.2023.3262695

TABLE I
MOTIVATIONAL SERVICE PLACEMENT EXAMPLE

Fig. 1. Comparative placement Gantt charts for Example 1.

Cloud and the low-end user devices. The Fog supports applica-
tions with time-critical low-latency constraints through service
placement [6], [8] across devices closer to the users’ needs
(e.g., computation, communication, storage). Existing works use
resource partitioning [9], machine learning [10], or distributed
deadline-aware [11] methods to place time-critical applications
in the Fog. Despite employing different technologies, they all
use greedy heuristics that overload the fastest devices to lower
the response time. However, Fog infrastructures have limited
capacity-constrained resources with sporadic availability, re-
quiring a trade-off between utilization and response time to
satisfy various time-critical application requests. The following
example illustrates the disadvantage of greedy heuristics miti-
gated by a similarity placement method.

Example 1. Let us assume a Fog network of four devices with
different memory sizes (see Table I). The devices d1 and d3
are always available. We assume two concurrent applications
A1 = {s1, s2} and A2 = {s3, s4} of two sequential services
each, with specific memory and execution deadline requirements
(see Table I b). The services exchange a message of fixed size,
transmitted between the hosting devices with the duration shown
in Table I a. After 9ms from the application requests, device d2
joins and d4 leaves the network. To mitigate the failures caused
by the leaving device d4, we consider a monitoring interval of
10ms, equal to the minimum service deadline. Fig. 1 displays
the Gantt charts comparing two placement heuristics.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-5182-9087
https://orcid.org/0000-0002-7952-4717
https://orcid.org/0000-0001-5933-3246
https://orcid.org/0000-0002-2543-2710
https://orcid.org/0000-0002-1926-4693
https://orcid.org/0000-0002-8247-5426
mailto:Zahra.Najafabadi@aau.at
mailto:narges.mehran@aau.at
mailto:dragi.kimovski@aau.at
mailto:radu.prodan@aau.at
mailto:n.saurabh@uu.nl
mailto:shajulin@iiitkottayam.ac.in

1878 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 6, JUNE 2023

1) Greedy placement unnecessarily overloads the fastest de-
vice d1, leading to resource wastage (representing the
percentage of unused memory) and deadline violations.
For example, placing s1 onto d3 satisfies its required
memory and provides a response time of 9ms ahead of
its deadline. However, the method places s1 with the
lowest deadline onto d1 and occupies 40% of its memory
with a low response time of 5ms. Similarly, it places
s2 with a lower deadline on d1, eliminating the trans-
mission time and providing the lowest response time of
5 + 0 + 7 = 12ms. The utilization of d1 is 60%, and the
remaining devices have insufficient memory to host s3
despite being idle. Moreover, they cannot host s4 due
to the dependency on s3. The method places half of the
services and, thus, has a low placement rate of 0.5 and
a deadline satisfaction rate of 0.5. The average device
memory wastage is 1− 2+1

15 ≈ 0.8 for the first monitoring
interval and 1− 1

11 ≈ 0.9 for the second.
2) Similarity placement maps each service to a device with a

capacity similar to the required resources and a response
time within the deadline. Unlike the greedy method, it
places s1 to d3 with an equal memory size and a response
time of 9ms, eliminating the wastage on d3, satisfies
the deadline, and spares d1 for other services. Likewise,
placing s2 to d3 eliminates the transmission time and
generates a response time of 9 + 0 + 12 = 21ms, which
satisfies the deadline. Afterward, it places s3 onto d1 with
a response time of 7ms, which satisfies its deadline and
eliminates memory wastage. Finally, it places s4 on all
4GB of memory of d2 with a lower transmission to d1. As
d2 leaves the network before completing s4, the placement
relocates s4 onto d4 with a failure overhead of 3ms (i.e.,
2ms execution on the failed device plus 1ms to detect the
failure), a transmission time of 2ms (from d1, hosting s3)
and a response time of 7 + 3 + 2 + 13 = 25ms. Despite
the lost computation of 3ms, s4 can still reach its deadline.
The average resource wastage is 1− 5+4+2

15 ≈ 0.27 for
the first interval, and 1− 0+1+4

11 ≈ 0.55 for the second.
Notably, although a lower resource wastage leads to a
higher placement rate, one can still reach a high placement
rate and waste resources.

Research Proposal. To address this challenge, we propose
an incremental multilayer resource-aware partitioning (M-RAP)
method for adaptive placement of distributed time-critical ap-
plications, represented as directed acyclic graphs (DAG) of
services with soft absolute response deadlines [12], in a dynamic
Fog. M-RAP approaches this problem as multi-objective opti-
mization of three goals: Fog placement rate, resource wastage,
and service deadline satisfaction rate. M-RAP models Fog as
a dynamic multilayer graph comprising the changing network
structure [13] and devices with different resources and avail-
ability [14]. M-RAP splits the Fog devices into overlapping
partitions considering different resources and network structures
to accelerate application placement. Afterward, it incrementally
updates the partitions by tracking infrastructure changes to
detect clusters of dynamic networks with minimum time and
cost that avoid re-partitioning. Each resource partition has an

associated feature, defined as a quadruplet of the average number
of cores, memory and storage sizes, and processing speed of its
devices. Afterward, the dynamic application placement needs
two steps.

1) Similarity placement step maps all application services to
feature partitions based on their resource requirements,
which must share the same network partition underneath
to satisfy their deadlines.

2) Monitoring and replacement step mitigates critical situa-
tions in case of device failures and invalid placements and
maps the affected services onto new feature partitions.
We performed extensive simulations with an intensive
workload of application requests in a Fog environment
with devices that dynamically join or leave the network.
Compared to three related methods [9], [15], [16], M-RAP
improves the Fog placement rate by range 1.4–1.6 times,
satisfies deadlines for range 5–43% more placement re-
quests, decreases the application response time by range
16–58%, and reduces the resource wastage by range 1–
54%. We validate the simulation using two e-commerce
and video streaming applications in a real computing
continuum testbed [17].

Extensions. This paper extends our early work [18] on appli-
cation placement in a static multilayer Fog in three areas.

1) We model the evolving Fog as a dynamic multilayer graph
based on the incremental network changes and device
availability;

2) We design a new dynamic placement algorithm based on
an incremental multilayer resource partitioning method
considering infrastructure changes;

3) We compare our results against three state-of-the-art meth-
ods using two applications running on a real testbed.

Outline. The paper has ten sections. Section II summarizes the
related work. Section III presents the model underneath M-RAP
representing the Fog as a dynamic multilayer graph. Section IV
proposes a two-phase architecture for placing an application in a
dynamic Fog: multilayer partitioning described in Section V and
service placement described in Section VI. Section VII provides
the experimental setup. Section VIII evaluates M-RAP com-
pared to related work using simulation experiments, confirmed
on a real testbed in Section IX. Section X concludes the paper.

II. RELATED WORK

This section revisits existing static and dynamic Fog place-
ment methods, summarized in Table II.

A. Static Placement

Static placement methods model the Fog without inspecting
the unstable network and the dynamic service workloads.

1) Resource wastage: Taneja et al. [15] proposed a resource-
aware application mapping to maximize utilization in Fog. Sim-
ilarly, Shooshtarian et al. [19] proposed a two-phase allocation
method on hierarchical Fog resources using local clustering in
each layer to optimize resource utilization. Jie et al. [20] mod-
eled resource allocation in Fog and Cloud as a two-stage non-
cooperative game to minimize the service cost and maximize

SAMANI et al.: INCREMENTAL MULTILAYER RESOURCE PARTITIONING FOR APPLICATION PLACEMENT IN DYNAMIC FOG 1879

TABLE II
RELATED WORK COMPARISON (“D”: DEADLINE SATISFACTION, “T”: MESSAGE

TRANSMISSION, “W”: RESOURCE WASTAGE)

resource utilization. Unfortunately, these methods ignore the
network structure of Fog devices and introduce high latencies.

2) Transmission time: Sajjad et al. [21] proposed a decen-
tralized resource partitioning method based on multiple biased
random walks to reduce the transmission time. Similarly, Fili-
poska et al. [22] designed a community-based resource manage-
ment method in Fog that exploits distributed hierarchical clus-
tering to minimize latency and service migration. Sun et al. [23]
partitioned the Fog devices based on the network connection and
modeled the application placement in each cluster as a multi-
objective optimization of execution and transmission time. Lera
et al. [9] proposed a greedy application placement that optimizes
availability and latency by partitioning the Fog resources based
on their connectivity. Ma et al. [24] introduced a collaborative
method for service caching and placement in edge computing
formulated as a mixed integer nonlinear programming problem
to minimize the transmission and execution time. These methods
clustered the Fog devices based on network connectivity with-
out considering the other resources such as processing speed,
memory, or storage.

3) Contribution: Static placements methods investigate
greedy heuristics to improve transmission time [9], [21], [22],
[23], [24] by overloading the fast devices and generating high
wastage. Although [15], [19], [20] improve resource wastage,
they impose high latencies. M-RAP improves these methods by
clustering the Fog devices into overlapping partitions based on
their network structure and resources optimizing transmission
time and resource wastage.

B. Dynamic Placement

Related work studied two dynamic placement aspects.
1) Dynamic applications: Yousefpour et al. [25] investi-

gated changes in the application structure by formulating the
placement as an integer non-linear programming problem using
reactive service provisioning for optimizing cost and service
delay. Similarly, Sami et al. [10] inspected the changes in
the application structure using a proactive demand-driven deep
reinforcement method to optimize the deadline. Meng et al. [11]
proposed a deadline-aware task dispatching and scheduling
method for Edge computing as an unrelated parallel machine
problem that minimizes resource wastage and transmission

TABLE III
IMPORTANT NOTATION SUMMARY

time through a decentralized greedy heuristic. Similarly, Han
et al. [26] formulated a linear programming scheduling problem
to minimize the response time of Edge computing services by
considering the dynamic application requirements in a static
Fog network. Tran et al. [27] proposed a collaborative caching
and processing based on an integer linear programming Edge
scheduling method to minimize the transmission time consider-
ing dynamic application requests.

2) Dynamic infrastructure: Mseddi et al. [28] modeled the
availability of Fog devices based on discrete Markov processes
to maximize the application deadline satisfaction. They extended
their work with an integer linear programming method [16] to
optimize the monolithic application placement rate and deadline
satisfaction, considering the mobility of Fog devices rather than
workflows.

3) Contribution: Most related works [10], [11], [24], [25],
[26] focused on dynamic workflows and neglected network in-
stability that affects their deadlines. A few efforts [16], [28] par-
tially considered the deadlines or resource wastage in a dynamic
Fog for simpler monolithic applications. M-RAP augments the
related works by modeling the network instability and device
availability as a dynamic multilayer graph to decrease resource
wastage and maximize deadline satisfaction of workflow appli-
cations in Fog.

III. MODEL

This section presents the abstract model underneath M-RAP,
using a formal notation summarized in Table III.

A. Infrastructure Model

We model the distributed infrastructure in three layers.
1) Cloud layer represents a high-performance data center

suitable for placing resource-intensive tasks.
2) Fog network layer F = (D,N) lies between the Cloud

and the end-users and provides proximity computational
and storage services on top of two resource sets [7].

1880 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 6, JUNE 2023

� Physical devices D = {d1, d2, . . . , dn}, modeled as
a quadruple of resources dj = (Rj1, Rj2, Rj3, Rj4),
where Rj1 represents the number of cores, Rj2 the
memory size in GB, and Rj3 the storage size in GB,
and Rj4 processing speed in millions of instructions
(MI) per second.

� Network connections N = {nqj |(dq, dj) ∈ D ×D}
between devices, where a connection nqj =
(BWqj , LATqj) depends on the bandwidth BWqj and
the latency LATqj between the devices dq and dj .

3) Client layer consists of a set of users U = {u1, . . . , uz},
including sensor and actuator client devices that request
Fog resources for placing their applications.

B. Multilayer Fog Resource Model

The single Fog network layer only represents the topolog-
ical interconnection of the physical devices, thereby failing to
capture their heterogeneous resources. To better handle resource
diversity, we model the Fog across four layersL = {l0, l1, l2, l3}
that incorporates various device relationships based on the net-
work topology and resource types.
� Network layer l0 corresponds to the Fog network layer

modeled in Section III-A.
� Processing layer l1 indicates similarities among Fog de-

vices according to their number of cores and their speed;
� Memory l2 and storage l3 layers indicate similarities based

on Fog devices’ memory and storage sizes.
We model Fog resources as a fully interconnected multilayer

graph G = (D, E , L), where D is the set of Fog devices repli-
cated across all four layers L, and E = {Ell′ | ∀l, l′ ∈ [0, L)} is
the set of weighted bidirectional graph edges of two types.

1) Inter-layer edges Ell′ = {Ej
ll′ |(dj , dj) ∈ D ×D} con-

nect each device dj in the layer l ∈ Lwith the correspond-
ing device dj in all the other layers l′ ∈ L, l �= l′. They
uncover relations among resource types within the same
device. We consider a weight wj

ll′ = 1 for the inter-layer
edges of the device dj in the layers l and l′.

2) Intra-layer edges Ell = {El
qj |(dq, dj) ∈ D ×D ∧ q �=

j} connect two Fog devices inside one layer l ∈ L using
a weight function w(l) : Ell → R, representing their sim-
ilarity score w

(l)
qj = 1

1+disl(dq,dj)
, where disl(dq, dj) is

the euclidean distance between their resources, calculated
based on the features in each layer, as follows:

disl (dq, dj)

=

⎧⎨
⎩
√(

R̂q1 − R̂j1

)2
+
(
R̂q4 − R̂j4

)2
, l = l1;

Rql −Rjl, l ∈ {l2, l3},

where R̂j1 and R̂j4 are the normalized number of cores
Rj1 and processing speed Rj4 of dj . This facilitates the
partitioning of Fog devices based on their specific resource
capacity. The Fog devices with a similarity score of 1 have
an identical resource in the layer l.

Fig. 2. Multilayer graph.

Example 2. Fig. 2 shows a weighted multilayer graph G =
(D, E , L) with two layers L = {l, l′} containing four de-
vices D = {d1, d2, d3, d4}, and the intra-layer edges Ell =
{(wl

12), (w
l
13), (w

l
23), (w

l
24)} in the layer l, and El′l′ =

{(wl′
12), (w

l′
24), (w

l′
34)} in the layer l′.

C. Dynamic Fog Network Model

We define a dynamic Fog infrastructure as a temporal se-
quence of network layers {F0, . . . , Ft−1, Ft, . . . } changing over
time. Every temporal Fog network layer Ft = (Dt, Nt) during
the time interval Δt = [t− 1, t] consists of:

1) Physical devices as unordered set Dt = {dt1, . . . , dtn},
wheredtj = (Rt

j1, R
t
j2, R

t
j3, Rj4) represents the resources

available on a devicedtj during the time intervalΔt. We up-
date the set of available devicesDt+1 = Dt ∪DJt \DLt

with:
a) Joining devices DJt in the Fog network during the

time interval Δt;
b) Leaving devices DLt from the Fog network during the

time interval Δt.
2) Network connections Nt = {nt

qj |(dtq, dtj) ∈ Dt ×Dt}
during the time interval Δt, where a network connec-
tionnt

qj = (BW t
qj , LAT

t
qj) represents the available band-

width BW t
qj and latency LAT t

qj between the devices dtq
and dtj .

D. Dynamic Multilayer Fog Resource Model

We model the dynamic Fog resources as a temporal se-
quence of multilayer graphs {G0, . . . , Gt−1, Gt, . . . }, where
Gt = (Dt, Et, L) models the the multilayer Fog resources dur-
ing the time interval Δt (see Section III-B). We represent the
multilayer graph changes ΔGt = (GJt, GLt) in the Fog in-
frastructure during the time interval Δt = [t− 1, t] using the
incremental growth GJt and shrink GLt.

1) Incremental growth GJt = (DJt, EJt) denotes the set
of joining devices DJt = {dn+1, . . . , dn+k} and their
associated edges EJt = {Et

ll′ |∀l, l′ ∈ [0, L)} in the Fog
network during the time interval Δt. We update the mul-
tilayer resource graph by replicating all new Fog devices
in all the layers L of the multilayer graph Gt. We finally
generate the set of bidirectional edges EJt containing the
new inter-layer edges EJll′ = {(dtj , dtj) ∈ DJt ×DJt}
and the new intra-layer edges EJll = {Elt

qj | (dtq, dtj) ∈
Dt ×DJt ∧ q �= j} associated to the Fog devices in DJt
(see Section III-B).

SAMANI et al.: INCREMENTAL MULTILAYER RESOURCE PARTITIONING FOR APPLICATION PLACEMENT IN DYNAMIC FOG 1881

2) Incremental shrink GLt = (DLt, ELt) denotes the set of
leaving devicesDLt = {dn−1, . . . , dn−k′ } and their asso-
ciated edges ELt = {Et

ll′ |∀l, l′ ∈ [0, L)} in the Fog net-
work during the time interval Δt. We update the Fog mul-
tilayer graph by deleting the devices inDLt and their asso-
ciated inter-layer ELll′ = {(dtj , dtj) ∈ DLt ×DLt} and
intra-layer edges ELll = {Elt

qj | (dtq, dtj) ∈ Dt ×DLt ∧
q �= j} from the dynamic multilayer resource graph Gt.

Example 3. We consider the incremental changes in the
multilayer graph ΔGt = (GJt, GLt) from Fig. 2 based on the
incremental growth and shrink.

1) Incremental growth GJt considers the joining device
DJt = {d5}, its associated intra-layer edges EJll =
{wl

45, w
l
25} in the layer l,EJl′l′ = {wl′

45, w
l′
25} in the layer

l′, and the inter-layer edge EJll′ = {E5
ll′ }.

2) Incremental shrink GLt considers the leaving device
DLt = {d1}, its associated intra-layer edges ELll =
{wl

12, w
l
13} in the layer l, EJl′l′ = {wl′

12} in the layer l′,
and the inter-layer edge EJll′ = {E1

ll′ }.

E. Application Model

An online time-critical application has three characteristics.
1) Application structure A = (S,M,Θ, u) requested by a

user u is a DAG of services S = {s1, s2, . . . , sm} in-
terconnected through request messages M . Every ser-
vice si ∈ S has a quadruple of resource demands si =
(ri1, ri2, ri3, ri4), where ri1 is the required number of
cores, ri2 is the required memory size, ri3 is the storage
size, and ri4 is the workload in MI. We assume that the
service resource demand is static and does not change over
time.

2) Request message mpi = (SZpi, sp, si) ∈ M has a size
SZpi, a source sp ∈ S , and a destination service si ∈ S . A
user u ∈ U triggers the application execution via an initial
request message mu1 to the service s1.

3) Absolute soft deadlines Θ = {θ1, θ2, . . . , θm} define the
target completion time θi for each service si. Following
the theory of soft real-time computing, our utility function
maximizes the set of met service deadlines to optimize the
overall application quality of service [29].

F. Workload Model

We consider a workload W = {AS0, . . . , ASt, . . . } of ap-
plications requested by different users U during multiple time
intervals Δt = [t− 1, t] in a dynamically evolving Fog infras-
tructure {F0, . . . Ft, . . . }.

1) Placement of an application A = (S,M,Θ, u) during
the time interval Δt is a function μt : S → Dt ∪∅,
where μt(si) = dtj satisfies the needs of each service si =
(ri1, ri2, ri3, ri4) on a device dtj = (Rt

j1, R
t
j2, R

t
j3, Rj4):

deadline satisfaction (RTij ≤ θi, defined in the next
paragraphs), sufficient cores (ri1 ≤ Rt

j1), memory (ri2 ≤
Rt

j2) and storage (ri3 ≤ Rt
j3).

An invalid placement μt(si) = ∅ indicates no device in
Dt that satisfies the service constraints.

2) Execution time of a service si is the ratio between its
workload ri4 and the processing speed Rj4 of the hosting
device dtj=μt(si): ETij =

ri4
Rj4

.
3) Transmission time of a message m ∈ M of size SZ be-

tween two devices dtq and dtj is: TRt
qj = LAT t

qj +
SZ

BW t
qj

,

where LAT t
qj is the latency and BW t

qj is the bandwidth
of a network connection nt

qj ∈ Nt at the time interval δt.
4) Failure overhead caused by a leaving device dtj′ ∈ DLt

to a service si during the time interval Δt is the sum of
its response time RT t

ij′ and the time PTij for executing
the placement algorithm to select a new device dtj (see
Algorithm 3, Section VI-A): FT t

ij′ = RT t
ij′ + PTij .

5) Response time of a service si ∈ S running on the device
dtj = μt(si) during the time interval Δt is the sum of
a) the maximum response time RT t

pq of its predecessors
sp, including its request message transmission time
TRt

qj , where μt(sp) = dtq (or TRt
uj , in case of initial

message request),
b) its execution time ETij , and
c) any potential failure overhead caused by the leaving

device dtj′ :

RT t
ij =

⎧⎪⎨
⎪⎩
TRt

uj + ETij + FT t
ij′ , ∃mui ∈ M ;

max
mpi∈M

{
RT t

pq + TRt
qj

}
+ETij+FT t

ij′ , ∃mpi∈M ∧ sp∈S.

6) Device allocation resulting from a service placement
dtj = μt(si) updates its resource availability dtj = (Rt

j1 −
ri1, R

t
j2 − ri2, R

t
j3 − ri3) for the required execution time

intervals: t, t+ 1, . . . , t+
⌈
RT t

ij

Δt

⌉
, and releases them for

the intervals following its completion.
7) Application response time is the highest response time

of all services si ∈ S: RTA = max
si∈S

{RT t
ij |dtj = μt(si)}.

The service with the highest response time has no succes-
sors in the application DAG structure.

8) Deadline fulfillment requires that the response time of the
application placement satisfies the deadlineΘ:RTA < Θ.

G. Placement Objectives

We define three performance objectives for placing a re-
quested application set ASt in a dynamic Fog infrastructure Ft

during the time interval Δt = [t− 1, t]:
1) Maximize Fog placement rate, as the ratio between the

number of services si placed in the Fog and the total num-
ber of requested services for all applications A ∈ ASt:∑

A∈ASt
|Sµ|

∑
A∈ASt

|S| , where Sµ = {si ∈ S|μt(si) �= ∅} and |S|
and |Sµ| represent the cardinality of the two service sets.

2) Minimize processing, memory, and storage wastages,
defined as the remaining percentage between the re-
source units rik consumed by the placed services
to the total resource units Rt

jk of the devices: 1−
∑

A∈ASt

∑
si∈Sµ max{ rik

unitk
}

∑
dt
j
∈Dt

max{
Rt

jk
unitk

}
, where k ∈ 1, 2, 3, unit1 =

1882 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 6, JUNE 2023

Fig. 3. M-RAP architecture design.

1core and unit2 = unit3 = 1GB (memory and storage
sizes).

3) Maximize service deadline satisfaction rate, defined as the
percentage of services fulfilling their absolute soft dead-

lines:
∑

A∈ASt
|SΘ|

∑
A∈ASt

|S| , where SΘ = {si ∈ S|RT t
ij ≤ θi}, and

|SΘ| along with |S| represent the cardinality of the two
service sets.

IV. M-RAP ARCHITECTURE DESIGN

Fig. 3 depicts the M-RAP architecture design in three phases,
outlined in this section: multilayer graph modeling, Fog multi-
layer partitioning, and M-RAP placement.

A. Multilayer Graph Modeling

A multilayer graph models the Fog devices based on their
network interconnections and similarity in processing speed and
the number of cores, memory, and storage sizes, as described in
Section III-B. A dynamic multilayer graph constantly updates
the multilayer graph based on the incremental temporal changes
(i.e., growth, shrink) in the availability of Fog devices (i.e.,
joining, leaving), as defined in Section III-D.

B. Fog Multilayer Partitioning

The multilayer partitioning of the Fog devices from a mul-
tilayer graph based on their network connections, processing,
memory, and storage resources has three steps (see Section V-B
and Algorithm 1):

1) Layer partitioning splits each layer l ∈ L of the multilayer
graph in a set P(l) of disjoint partitions that cluster the
devices based on their resource types targeting a single
objective such as transmission time, processing speed, and
resource wastage (see Section III-B).
� Network layer l0 partitioning clusters the highly inter-

connected devices based on their network connections
N .

� Processing layer l1 partitioning cluster Fog devices
with a similar number of cores and processing speed.

� Memory l2, and storage l3 layer partitioning cluster
Fog devices with similar memory and storage sizes.

2) Graph compression shrinks the disjoint partitions from
the processing, memory, and storage layer partitions
in a simpler representation associated with similar re-
sources. The compressed graph enables the detection of
overlapping partitions without analyzing individual de-
vices resulting in considerable reductions in both time and
cost.

3) Feature partitioning splits the compressed graph into dis-
joint partitions, where each partition clusters devices with
similar average processing, memory, and storage sizes to
address multiple objectives, such as minimizing transmis-
sion time, processing speed, and resource wastage.

4) Incremental multilayer partitioning updates the multilayer
partitions, compressed graph, and feature partitions upon
the temporal availability of the Fog devices and their
resources (see Section V-C and Algorithm 2) to adaptively
detect clusters in dynamic Fog with minimum cost and
time.

C. M-RAP Placement

The placement phase maps all application sets ASt arriving
during the time interval Δt in two phases.

1) Dynamic application placement allocates resources to all
services simultaneously to ensure their placement in the
same network partition and satisfy their deadlines.
a) Similarity placement maps every service si onto the

proper feature partition FP t
k based on its deadline

and resource requirements according to the placement
function (see Section VI-A and Algorithm 3). This
phase narrows the search space by exploring the parti-
tions rather than all Fog devices.

b) Monitoring and replacement softens the hard deadline
in critical cases of invalid placements and leaving de-
vices and relocates the affected services to new feature
partitions with minimal deadline violation.

2) Service placement assigns a Fog device dtj = μt(si) in
the selected feature partition to each service si while
ensuring the placement of the entire application within
the same network layer partition (see Section VI-B and
Algorithm 4).

V. FOG MULTILAYER PARTITIONING

This section describes the multilayer partitioning method.

A. Modularity

We convert multilayer graph of Fog resources into multilayer
partitions using modularity [30] metric Q ∈ [−1, 1] to measure
their connectivity strength:

Q =
1

2 W
·
∑
l∈L

∑
l′∈L

∑
dj∈l

∑
dq∈l{(

w
(l)
jq −

σl
j · σl

q

2Wl

)
· αll′ +Bjq · Eq

ll′

}
· λjq,

SAMANI et al.: INCREMENTAL MULTILAYER RESOURCE PARTITIONING FOR APPLICATION PLACEMENT IN DYNAMIC FOG 1883

� σ
(l)
j =

∑n
dj∈l w

(l)
jq and σ

(l)
q =

∑n
dq∈l w

(l)
qj are the connec-

tivity strengths of dj and dq with the layer l’s devices;
� Wl =

∑n
dj∈l

∑n
dq∈l w

(l)
jq is the total sum of the intra-layer

edges’ weights between devices dj and dq in layer l ∈ L;
� W =

∑
l∈L Wl is the total sum of the intra-layer edges’

weights between Fog devices, ∀l ∈ L;
� Ej

ll′ indicates the number of inter-layer edges of the Fog
device dj from layer l to layer l′;

� αll′ is equal to 1 if l = l′ and 0 otherwise;
� Bjq is equal to 1 if j = q and 0 otherwise;
� λjq is equal to 1 if devices dj and dq belong to the same

partition, otherwise 0.
Q ≤ 0 represents low-quality partitions of disassortative Fog

devices with sparse connections among them.
Q > 0 represents high-quality partitions with better connec-

tivity strength among densely connected Fog devices. Hence,
the goal is to find a set of partitions in a multilayer graph with
the highest modularity (Q → 1).

B. Multilayer Partitioning

We convert the multilayer graph of Fog resources into a
multilayer partition(P(l),P(GP)) of layer P(l) and feature
partitions P(GP) in three steps.

1) Layer partitioning defines a set of disjoint partitions
P(l) = {p1, p2, . . . } in a layer l, and employs the Louvain
clustering [31] and the modularity [30] metric to obtain
high-quality partitions with densely connected devices.
The Louvain algorithm applies two phases in multiple
iterations until achieving a partition with the maximum
modularity.
a) We consider each Fog device dj in a layer l as a

single partition, calculate the modularity and define it
as Qmax. Afterwards, we consider all its neighboring
devices dq (i.e., (dj , dq) ∈ Ell and (dq, dj) ∈ Ell) and
calculate the modularity Q1 by considering the new
possible partition. If the gain in modularity is positive
(i.e.,Q1 −Qmax > 0), we place dj and dq in the same
partition and considerQ1 asQmax. We repeat this step
sequentially for all devices in the layer l until no further
modularity gain is possible.

b) We consider all partitions from the first phase as nodes
of each layer l, connected according to the edges
between their devices. The edges between the Fog
devices in the same partition represent self-loops. This
new graph and its maximum modularity represent the
input to the next iterative step starting with the first
phase.

2) Graph compression merges similar resources from a par-
tition in a single node with an average speed or size in
the processing, memory, and storage layers. This high-
level intermediate representation of the partitions asso-
ciated with similar resources automates the detection of
overlapping partitions without a detailed analysis of in-
dividual devices. A compressed graph GP = (VP , EP)
corresponding to a multilayer graph G = (D, E , L) con-
sists of two sets:

Fig. 4. Modularity (Q) computation at steps 1 and 2 for the multilayer graph
from Fig. 2.

� Layer partition nodes are the union in processing
(l1), memory (l2), and storage (l3) layers: VP =⋃

l∈L∧l>0 P(l).
� Inter-layer partition edges represent connections be-

tween a partition p in a layer l and a partition p′ in a
layer l′ �= l, such that there is at least one inter-layer
edge (dq, dq) ∈ Ell′ in the original graph G between a
device dq ∈ p ∈ P(l) and a device dq ∈ p′ ∈ P(l′):

EP = {(p, p′) ∈ P(l)× P (l′) | ∀l �= l′ ∈ L

∧∃ (dq, dq) ∈ Ell′ ∧ dq ∈ p ∧ dq ∈ p′}.

3) Feature partitioning splits a compressed graph GP =
(VP , EP) in a set P(GP) of disjoint feature partitions
(exhibiting similar features) by applying several Lou-
vain clustering steps to achieve maximum modularity
(similar to the layer partitioning from Section I). A fea-
ture of a layer partition p ∈ VP is a quadruple Fp =
(Rp1, Rp2, Rp3, Rp4) with the average number of cores,
memory and storage sizes, and processing speed across all
devices in p.

Example 4. We partition the multilayer graph in Fig. 2.
1) Layer partitioning: The Louvain algorithm finds the high-

est modularity partitions in each layer in two steps.
a) We create four partitionsP(l) = {p1, p2, p3, p4} in the

layer l and other four P(l′) = {p′1, p′2, p′3, p′4} in the
layer l′ (see Fig. 4). Each partition in P(l) and P(l′)
consists of one Fog device (i.e., d1, d2, d3, d4) with
the modularities Qmax = −0.33 and Q′

max = −0.27.
Afterward, we consider all the neighboring devices
and create two partition sets P(l) = {p1, p2} and
P(l′) = {p′1, p′2} with a positive modularity gain (i.e.,
Q1 = 0.11 > Qmax, Q′

1 = 0.22 > Q′
max), indicating

better device connectivity in each layer partition. Thus,
we select the partitionsP(l) andP(l′), update the max-
imum modularities (i.e., Qmax = Q1, Q′

max = Q′
1),

and consider p1, p2, p′1, p
′
2 as nodes in a new multilayer

graph.
b) We build one partition in each layer considering the

partitions p1, p2, p
′
1, p

′
2 with the highest modularities

Qmax and Q′
max from the first step, and the neighbor-

ing nodes, P(l) = {p1} and P(l′) = {p′1}, with the
modularities Q2 = Q′

2 = 0 (see Fig. 4). As the max-
imum modularities from the first step are positive for

1884 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 6, JUNE 2023

Fig. 5. Feature partitioning example.

both layers, we consider them as the highly connected
partition output.

2) Graph compression: Fig. 5(a) illustrates a compressed
graph representing the four partitions in the l and l′ layers
from Fig. 4 as nodes: VP = {p1, p2, p′1, p′2}. Similar to
the nodes, we compress the edges between two partitions:
Ep = {(p1, p′1), (p1, p′2), (p2, p′2)}.

3) Feature partitioning: Fig. 5(b) iterates two feature parti-
tioning steps on the compressed graph GP from Fig. 5(a).
a) We create a set of four feature partitions P(GP) =

{FP1, FP2, FP3, FP4}with the modularityQmax =
0.16, where each feature partition FPk consists of a
single layer partition (i.e., p1, p2, p′3, p′4). Afterward,
we consider the neighboring partitions to generate a
new feature partition set P(GP) = {FP1, FP2} with
a positive modularity gain Q = 0.37 > Qmax, which
becomes the maximum modularity Qmax = Q.

b) We start from the feature partition set P(GP) with the
maximum modularity from the first step. We iteratively
check the neighboring partitions of each feature parti-
tion FPk ∈ P(GP) considered as a node of the new
graph and obtain a single partition FP1 with lower
modularity Q = 0. We select the feature partition set
P(GP) = {FP1, FP2} with the highest modularity
from the first step as output.

C. Incremental Multilayer Partitioning

We update the multilayer partitions (Pt(l),Pt(GP)) during
the time intervals Δt in three steps to maximize the modularity
in response to the availability of Fog devices.

1) Incremental layer partitioning updates the previous layer
partitions Pt−1(l) to Pt(l) based on the layer partition
changes ΔPt(l) computed from the multilayer graph
changes ΔGt = (GJt, GLt) during Δt = [t− 1, t].
a) Incremental growth GJt = (DJt, EJt) upon every

joining device dn+1 ∈ DJt has three cases.

Case-1: If dn+1 has no intra-layer edges in the layer
l ∈ L, we create an isolated partition p = dn+1 ∈
ΔPt(l) in l, and consider other layer partitions
unchanged.

Case-2: If dn+1 has intra-layer edges in the same layer
partition p ∈ Pt(l), we add dn+1 to the partition

p ∈ ΔPt(l) and consider the other layer partitions
unchanged.

Case-3: If dn+1 has intra-layer edges in more layer
partitions, we add it to the partition p ∈ ΔPt(l)with
the highest aggregated similarity scoreΔwl

(n+1)p =∑m
dj∈p w

l
(n+1)j across all its edges, where m is the

number of devices in p.

b) Incremental shrink GLt = (DLt, ELt) upon every
leaving device dn−1 ∈ DLt has two cases.

Case-1: If dn−1 ∈ p ∈ Pt(l) has no edges, we delete
it from its associated partition p ∈ ΔPt(l) and con-
sider the other layer partitions unchanged.

Case-2: If dn−1 has several connecting edges, we re-
structure all the devices in the partition p ∈ ΔPt(l)
containing dn−1 and its neighboring partitions p′ ∈
ΔPt(l) into single partitions, and apply the Louvain
algorithm.

2) Incremental graph compression updates the compressed
graph Gt

p = (V t
p , E

t
p) at the time interval Δt based on the

layer partition changesΔPt(l) in the processing, memory,
and storage layers during the time interval Δt. We com-
pute the compressed graph changesΔGt

p = (ΔV t
p ,ΔEt

p)
by merging the layer partitions changes ΔPt(l) and their
inter-layer edges into two sets of single nodes ΔV t

p and
edges ΔEt

p.
3) Incremental feature partitioning updates the feature parti-

tions Pt(Gp) at the time interval Δt using the compressed
graph changesΔGt

p = (ΔV t
p ,ΔEt

p) and the feature parti-
tions during the intervalΔt = [t− 1, t]. We restructure the
layer partition changes ΔV t

p in the processing, memory,
and storage layers to single partitions and repeat the feature
partitioning steps for the compressed graph changes ΔGt

p

(see Sections II and III). We leave the other partitions
unchanged.

Example 5. We update partitions upon incremental changes
in the multilayer graph ΔGt = (GJt, GLt) from Section III-D.

1) Incremental layer partitioning updates the partitions based
on the incremental growth and shrink in two steps:

GJt: The joining device d5 in the layer l belongs to the
Case-3, since it has two edges to the layer partitions
p1, p2 ∈ P(l) with the aggregated similarity scores of
wl

51 = 0.5 and wl
52 = 1. We, therefore, assign d5 to the

SAMANI et al.: INCREMENTAL MULTILAYER RESOURCE PARTITIONING FOR APPLICATION PLACEMENT IN DYNAMIC FOG 1885

layer partition p2 with the highest score and update
the layer partition changes ΔPt(l) = p2. The joining
device d5 in the layer l′ has two edges to the same layer
partition p′2 ∈ P(l) and belongs to the Case-2. Thus,
we add it to the layer partition p′2 and update the layer
partition changes ΔPt(l

′) = p′2.
GLt: The leaving device d1 in the layers l and l′ represents

the Case-2 in Section V-C. We restructure the layer
partitions p1 ∈ P(l) and p′1 ∈ P(l′) to single partitions
and update them to p1 = {d2, d3} and p′1 = {d2} using
the Louvain algorithm. Finally, we update the layer
partition changes to ΔPt(l) = {p1, p2} and ΔPt(l

′) =
{p′1, p′2}.

2) Incremental graph compression joins the devices
in the layer partitions {p1, p2} ∈ ΔPt(l) and
{p′1, p′2} ∈ ΔPt(l

′) into the set of single nodes
ΔV t

p = {p1, p2, p′1, p′2}. Similarly, it compresses the
inter-layer edges between these partitions to single edges:
ΔEt

P = {EP1
, EP2

, EP3
}.

3) Incremental feature partitioning applied on the compress
graph changes ΔGt

P = (ΔV t
p ,ΔEt

P) generates: FP1 =
{p1, p′1} and FP2 = {p2, p′2}.

D. Multilayer Resource Partitioning Algorithm

Algorithm 1 receives the following input parameters:
1) a Fog multilayer graph with four layers L,
2) a set of Fog devices D and their processing, memory, and

storage resources, and
3) the inter-layer and intra-layer edges E .
First, line 1 initializes five empty sets corresponding to the par-

titions in the network (l0), processing (l1), memory (l2) and stor-
age (l3) layers, and the feature partitions. Line 2 clusters densely
connected Fog devices in the same network layer partitionP(l0).
Similarly, lines 3–5 partition the Fog devices in the processing
P(l1), memory P(l2), and storage P(l3) layers (see Section I).
Line 6 creates a compressed graph GP (VP , EP) using the inter-
layer edges between the processing, memory, and storage layers,
where VP = {P(l1),P(l2),P(l3)} (see Section II). Afterward,
lines 7 computes the featureFP of each partition p ∈ VP as their
devices’ dj ∈ p average number of cores, memory, storage sizes,
and processing speed. Line 8 performs feature partitioning on
the compressed graph, as presented in Section III. Finally, line 9
returns the feature partition set P(GP) and the set of partitions
in the network layer P(l0).

layerPartition function clusters devices in disjoint partitions
P(l) in a layer l (line 11), initialized with the empty set in
line 12. Afterward, lines 13–17 assign each Fog device dj in
layer l to a single partition and add it to the layer partitions
P(l). Lines 19–26 iterate all partitions pj and their neighbor
partitions pq and calculate the modularity considering the new
possible partitions pj ∪ pq (line 25). Afterward, line 21 iterates
as long as the modularity gain Q is greater than modularity
Qmax, merges the partition pj with partition pq in line 22 and
considers Q as Qmax in line 23. Otherwise, it stops merging the
partition pj with its neighbor pq . Finally, line 27 returns layer
partitions P(l).

Algorithm 1. Multilayer Resource Partitioning.

getFeatures function computes the feature list of all parti-
tions p ∈ Vp (line 29), initialized with an empty list in line 30.
Lines 31–33 iterate through partitions p ∈ Vp, calculate their
feature as a quadruple of the average number of cores, memory
and storage sizes, and processing speed across all their devices
dj ∈ p (line 32) and adds it to feature list of all partitions fList
(line 33), returned in line 35.

Computational complexity of Algorithm 1 is O(|L| · |Ell|+
|EP |), where |L| is the number of layers in Fog multilayer graph,
|Ell| is the number of intra-layer edges in layer l, |Ep| is the
number of edges in compressed graph Gp, and |L| � |Ep| �
|Ell|. Hence, the algorithm has a linear complexity of O(|Ell|).

E. Incremental Multilayer Partitioning Algorithm

Algorithm 2 has the following parameters:
1) a Fog multilayer graph during the time interval Δt with

four layers L,
2) the inter-layer and intra-layer edges Et,
3) the incremental multilayer graph changes ΔGt during the

time interval [t− 1, t], and
4) the layer Pt−1(l) and feature partitions Pt−1(Gp) of the

previous time interval.
First, line 1 initializes five empty sets corresponding to the

partitions in the network (l0), processing (l1), memory (l2), and

1886 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 6, JUNE 2023

storage (l3) layers, and the feature partitions Pt(Gp) during
the time interval Δt. Lines 2–4 update the layer partitions and
calculate the changes ΔPt in the network, processing, memory,
and storage layers based on the incremental multilayer graph
changes ΔGt during the interval Δt and the previous layer
partition Pt−1(li) (see Section V-C). Line 5 generates a com-
pressed graph of partition changes in the processing, memory,
and storage layers and their associated inter-layer edges. Line 6
calculates the feature Fp of layer partitions changes as the aver-
age number of cores, memory and storage size, and processing
speed of their devices dtj ∈ ΔV t

P . Line 7 updates the feature par-
titions using the compressed graph changes ΔGt

p(ΔV t
p ,ΔEt

p),
and the previous feature partitions Pt−1(Gp) (see Section V-C).
Finally, line 8 returns the network layer and feature partitions
(Pt(l0),Pt(Gp)) during the time interval Δt.

dLayerPartition function updates the partitions upon changes
in the Fog (line 10). Line 11 initializes the layer partition changes
ΔPt and layer partitions Pt(li) with the empty set. Afterward,
lines 12–14 iterate through all joining devices dtj ∈ DJt, and
line 13 updates the partitions based on three incremental growth
case conditions defined in Section V-C. Similarly, lines 15–17
iterate through all the leaving devices dtj ∈ DLt, and line 16
updates the partitions based on the two incremental shrink case
conditions explained in section V-C. Line 18 creates a new set
of partitions Pt(li) based on layer partition changes ΔPt(li)
and previous layer partitions Pt−1(li). Line 19 returns the layer
partition changesΔPt(li) and the updated layer partitionPt(li).

compressGraph function initializes the compressed node
changes ΔV t

p and their associated edges ΔEt
p with the empty

set in line 22. Lines 23–26 iterate through the partitions in
the layer partition changes and add them together with their
associated inter-layer edges to the compressed graph changes
ΔGt

p(ΔV t
p ,ΔEt

p) returned in line 27.
dFeatPart function updates feature partitions Pt(Gp) upon

incremental changes ΔPt(Gp) (line 29), initialized in line 30
with the empty set. Lines 31–33 iterate through changed par-
titions V t

p in the compressed graph ΔGt
p. Line 32 updates the

previous feature partitions Pt−1(Gp) by repeating the feature
partitioning step for every change V t

P in the compressed graph,
added to the feature partition changesΔP(Gp). Line 34 updates
the feature partitions Pt(Gp) by adding the changes ΔPt(Gp)
to the previous feature partitions Pt−1(Gp), returned in line 35.

Computational complexity of Algorithm 2 is O(|L| · |EJll +
ELll|+ |ΔEP |), where |EJll| and |ELll| are the numbers of
intra-layer edges of joining and leaving devices in the layer
l, |ΔEp| is the number of edges in the compressed graph
changes ΔGp, and |L| � |ΔEp| � |EJll + ELll|. Hence, the
algorithm has a linear complexity of O(|EJll + ELll|), which
is negligible compared to Algorithm 1 (|EJll + ELll| � |Ell|),
since it only updates the partitions based on incremental
changes.

VI. M-RAP PLACEMENT

This section describes the placement of application services
in dynamically selected feature partitions based on two dynamic
application and service placement algorithms.

Algorithm 2. Incremental Multilayer Partitioning.

A. Dynamic Application Placement Algorithm

The dynamic application placement algorithm maps each
application service during a time interval to a feature partition
with the highest fitness. We define the fitness of a feature
partition FP t

k for a service si ∈ S based on the similarity of
its Fog devices to the service resource demands and the lowest
transmission time to the requesting user u:

Fit
(
FP t

k, si, u, T
)

= max
p∈FP t

k

(Sim (p, si) +Rank (p, TRuj)),

1) maxp∈FP t
k
{Sim(p, si)} is the maximum partition simi-

larity between the service demand si = (ri1, ri2, ri3, ri4)
with the feature Fp = (Rt

p1, R
t
p2, R

t
p3, R

t
p4) in FP t

k at the
time interval Δt, calculated using the euclidean distance
in the [0, 1] interval. Placing a service to a device in a
partition with the highest similarity satisfies the service
demands and avoids resource wastage on devices with
higher capacity.

2) Rank(p, TRuj) ranks the partition p based on the trans-
mission timeTRuj between the device dtj ∈ p ∈ FP t

k and
the user u requesting the service si. The partition with the

SAMANI et al.: INCREMENTAL MULTILAYER RESOURCE PARTITIONING FOR APPLICATION PLACEMENT IN DYNAMIC FOG 1887

highest rank, normalized in the [0, 1] interval, contains
the device dtj with the lowest transmission time to the
user.

Algorithm 3 receives five parameters for computing feature
partitions that satisfy the application deadline Θ and individual
service resource demands:

1) an application workload W over t time intervals,
2) the feature partition set Pt(GP),
3) the network partition set Pt(l0),
4) the message transmission times T between the users and

the Fog devices, and
5) the leaving devices during the time interval Δt.
First, sorts the applications ASt requested in time interval Δt

to prioritize those with the lowest deadline. The algorithm places
the applications in two steps.

1) Similarity placement (lines 2–4) selects the appropriate
feature partitions for all applications A ∈ ASt requested
during the time intervalΔt and place their services si ∈ S
on the Fog devices that satisfy their resource demands
close to the requesting users. In this first stage, the
placeApp function considers the service deadlines and
declares invalid placement μt(si) = ∅ in case of any
violation.

2) Monitoring (lines 5–13) iterates through all executing
services and takes two actions:

a) release resources of completed tasks (lines 6–8);
b) replace mapping devices in case of leaving devices

(lines 9–10) or invalid placements (lines 11–12), by in-
voking again the placeApp function to select a new
feature partition for placing the affected service close to
its requesting user satisfying the resource demands. In
the case of invalid placement, the new invocation relaxes
the hard deadline (set to infinity) and places the affected
service on the fastest available device.

The algorithm returns an array of placement functionsμL[W]
in line 13.

placeApp function selects the feature partition (line 16) that
satisfies the resource demand of each service si ∈ S (line 17).
Lines 19–22 iterate through each feature partition FP t

k ∈
Pt(GP), calculate its fitness to si, and insert it in an fpRank list
in descending fitness order (line 20). Line 21 sorts the devices
dtj ∈ FP t

k in ascending order based on their transmission time
TRuj to user u and stores them in a matrix dMatr, where
each row contains the transmission time to Fog devices in a
feature partition FP t

k ∈ Pt(GP). Line 23 invokes a service
placement function (see Algorithm 4) that maps all application
services si ∈ S onto devices with appropriate features in the
same network layer partition. The function returns the device
μt(si) in line 25, which updates the application placement μt

returned in line 23.
Computational complexity of Algorithm 3 is O(|S| ·

|Pt(Gp)|), where |S| is the number of services and |Pt(Gp)|
is the number of feature partitions at time interval Δt. The
algorithm reduces the service placement complexity by clus-
tering similar devices into a feature partition. Therefore, it
only searches for appropriate feature partitions instead of it-
erating through all devices D, where |Pt(Gp)| � |D|. Since

Algorithm 3. Dynamic Application Placement.

Algorithm 4. Service Placement.

|Pt(Gp)| � |S|, the algorithm has a linear complexity of
O(|S|).

B. Service Placement Algorithm

The service placement algorithm allocates a Fog device to
each application service in the selected feature partitions. Plac-
ing the services of an application across tightly connected Fog
devices in the same network layer partition during a time interval
brings two advantages:

1) less network instability due to alternative connections
between Fog devices;

2) lower transmission time between devices inside a parti-
tion, which reduces application response time.

1888 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 6, JUNE 2023

TABLE IV
CARINTHIAN COMPUTING CONTINUUM (C3) TESTBED

Algorithm 4 receives the following input parameters:
1) a service si to place on a Fog device μt(si) in the same

network layer partition as the other application services;
2) an absolute deadline θi for a service si,
3) a network layer partition set Pt(l0),
4) a feature partition set fpRank ranked based on the fitness

to si, and
5) a sorted list of devices based on their transmission time in

each feature partition FP t
k ∈ fpRank.

Lines 2–3 extract the network layer partition of the first service
placement μt(s1) in p1 (if available). Lines 4–12 iterate through
the feature partitions FP t

k ∈ fpRank at the time interval Δt in
descending order of their fitness. Afterward, line 5 extracts the
set of Fog devices dList in each feature partition FP t

k sorted
by the transmission times to the requesting user. To place the
service si onto a Fog device, lines 6–12 iterate through each
device dtj ∈ dList and line 7 extracts its network layer partition
in pi. If this partition is the same as p1 and the device dtj meets the
resource constraints of the service si (including its deadline θi),
line 9 performs the placement and line 10 updates the available
resources of device dtj . If no service placement on the same
network partition is possible, line 14 assigns an invalid device.
Lines 11 and 14 return the placement result.

Computational complexity of Algorithm 4 is O(1) in the best
case, by placing a service onto a feature partition FP t

k with the
highest fitness and the device with the lowest user transmission
time. If no device with sufficient resources exists, the algorithm
searches for other feature partitions and their associated devices,
leading to a worst-case complexity of O(|Pt(Gp)| · |FP t

K |),
where |Pt(Gp)| is the number of feature partitions during the
time interval Δt and |FP t

K | is the number of devices in the
feature partition FP t

K . Since |Pt(Gp)| � |FP t
K |, the algo-

rithm has a linear worst case complexity of O(|FP t
K |), where

|FP t
K | � |D|.

VII. EXPERIMENTAL SETUP

We perform experiments based on a real computing testbed
and real-world applications and compare the results against three
related methods. We first validate M-RAP using simulation in
Section VIII followed by a real testbed in Section IX.

A. Carinthian Computing Continuum

We used the Carinthian Computing Continuum (C3) testbed
consisting of eight heterogeneous virtual resource instances
from four providers distributed in seven geographical locations
across the Cloud and Fog layers, displayed in Table IV.

Cloud resources consist of virtualized large instances pro-
visioned on-demand on the Exoscale data centers (https://www.
exoscale.com/compute/) in Sofia.

Fog devices comprise Exoscale provider instances in the data
centers of the A1 network operator in Vienna, Zurich, and
Munich with a 10Gbit/s network throughput. The instances are
of types medium, small, and tiny running Ubuntu 18.04
LTS. The University of Klagenfurt (AAU) [17] provisions vir-
tualized large instances with 12-core AMD Ryzen Thread-
ripper 2920X processors at 3.5GHz and 32GB of memory, and
medium with 8-core processor and 16GB of memory running
Ubuntu 18.04 LTS. Finally, five NVIDIA Jetson Nano (NJN)
running Linux for Tegra (L4T), three Raspberry Pi-3
B+ (RPi3B+), and 32 Raspberry Pi-4 (RPi4) with Raspberry
Pi OS complete the testbed.

B. Related Work Comparison

We compare M-RAP with three state-of-the-art methods in-
vestigating application placement on Fog and Cloud.

1) Availability-aware placement (AAP) [9] uses a greedy
algorithm to improve the application deadline satisfaction
upon failures. For this purpose, it partitions the Fog devices
into hierarchical clusters based on network connectivity
without considering the resource characteristics. AAP
places applications with higher deadlines onto the Cloud
upon insufficient Fog devices.

2) Resource-aware placement (RAP) [15] uses a fractional
selectivity model to place services onto the Fog and Cloud
based on their requirements. RAP optimizes resource uti-
lization and response time but ignores network connectiv-
ity.

3) Joint container placement (JCP) [16] uses particle swarm
optimization to improve the placement rate and deadline
satisfaction of monolithic applications in a dynamic Fog
and Cloud environment. JCP does not support workflows.

4) Extended M-RAP uses Cloud instances upon insufficient
Fog devices to enable a fair comparison against the pre-
vious related methods. After Algorithm 3 sorts and prior-
itizes the placement of applications with lower deadlines
onto the available Fog devices, it places the remaining
ones with higher deadlines onto Cloud instances with the
highest similarity score and the lowest transmission time
to the requesting user to satisfy their resource demands.

VIII. SIMULATION EXPERIMENTS

We evaluated the M-RAP method using the YAFS [32]
simulator on an Intel Core(TM) i7-8650U processor at
1.90GHz and 16GB of RAM, running Ubuntu 18.04 LTS.

https://www.exoscale.com/compute/
https://www.exoscale.com/compute/

SAMANI et al.: INCREMENTAL MULTILAYER RESOURCE PARTITIONING FOR APPLICATION PLACEMENT IN DYNAMIC FOG 1889

TABLE V
TIME-CRITICAL APPLICATION CHARACTERISTICS

TABLE VI
SIMULATION SCENARIOS

A. Workload Simulation

We use the Gn_Graph function from the NetworkX pack-
age to generate workflows compliant with the model in Sec-
tion III-E. Each request has a size in the range 0.002 MB–50
MB, which generates a service workload of range 100 MI–500
MI according to a representative data stream workflow [1]. Each
service has a deadline of range 20 ms–200 ms based on the
analysis of five types of time-critical applications (see Table V).
We generated the application microservices and their resource
requirements (i.e., processing speed, number of cores, memory,
and storage size) using a uniform random distribution based on
a previous study [9].

B. Fog Simulation

We simulated the Fog as a bidirectional Albert-Barabasi ran-
dom graph [33] with 100 C3 devices, as recommended in [9],
[34], using the Python NetworkX package. We selected 25
devices with the highest betweenness centrality [35] as Fog
gateways. The device with the lowest betweenness centrality
represents the Cloud data center. We configured the network
latency and bandwidth by sending ICMP echo requests and
measuring the maximum throughput using theiPerf3 tool [17]
(see Table IV). We simulated the dynamic Fog over 10000s
and configured the joining and leaving Fog devices using a
uniform random distribution based on range 90–99% availability
model [36]. We selected a simulation time interval 20ms repre-
senting the lowest service deadline of the simulated time-critical
applications (see Table V). We monitor the leaving and joining
devices in each time interval and perform incremental multilay-
ered resource partitioning upon Fog infrastructure changes.

C. Simulation Scenarios

We divide the simulation into three parts, shown in Table VI.
We split the 10000s simulation in five simulation periods (i.e.,
ΔT1–ΔT5) of 2000s each to simplify the analysis and direct
comparison with the AAP method [9].

1) Dynamic service placement evaluates the Fog placement
rate, failure rate, resource wastage, and hop distance in

three scenarios (i.e., SMALL, MEDIUM, LARGE). Each
scenario contains randomly generated application sets, the
number of services, users, and application requests.

2) Runtime analysis evaluates the application response time
and failure overhead for the three scenarios (D-SMALL,
D-MEDIUM, and D-LARGE).

3) Deadline satisfaction evaluates the application response
time in three scenarios (D-SMALL, D-MEDIUM, D-
LARGE) in a faulty and reliable Fog.

D. Dynamic Service Placement

We evaluate the dynamic placement regarding Fog placement
rate, resource wastage, and hop distance.

1) Fog Placement Rate: Fig. 6 shows the placement and
failure rates (marked “F” calculated as the ratio between the
number of failed services and the total requested services Sµ)
on the Fog devices over the 10000s simulation time in the three
scenarios.

SMALL: Fig. 6(a) shows that M-RAP achieved an average Fog
placement ratio of 0.94 during all simulation periods with only
0.03 failed services. Although AAP placed a similar number of
services in the Fog during the ΔT1, ΔT3, and ΔT5 periods, the
failure rate increased from 0.1 to 0.46, leading to an average Fog
placement ratio of 0.60. JCP performed worst with an average
placement ratio of 0.23.

MEDIUM: Fig. 6(b) shows that M-RAP outperformed the
other methods during all time intervals with an average Fog
placement ratio of 0.68. M-RAP imposes only 0.034 failures
ratio thanks to its incremental partitioning approach. Although
JCP can also execute applications in a dynamic Fog with low
failures ratio (0.03), it only achieved an average placement
ratio of 0.23. In contrast, AAP and RAP cannot cope with the
changing device availability and placed only 0.44, respectively
0.45 services, with an average failure ratio of 0.14 and 0.15.

LARGE: Fig. 6(c) shows that M-RAP and JCP placed the
services in the Fog with only 0.02 and 0.01 failed services,
respectively. M-RAP achieved a higher average ratio of 0.4,
while AAP and RAP placed only 0.29, respectively 0.26 of the
services, with average failure rates of 0.11 and 0.07 (increasing
from ΔT1 to ΔT5).

Summary: M-RAP outperformed the related methods by plac-
ing services onto a consolidated set of devices with high re-
source similarity, leaving powerful devices for other placements.
M-RAP considers the device’s availability and introduces low
failures. In contrast, AAP and RAP are static greedy methods
that deliver higher wastage, lower placement, and higher failure
rates since they do not consider network changes. Although
JCP exhibited fewer failures, it placed fewer applications by
considering them monolithic.

2) Resource Wastage: Fig. 7 compares the four methods’
average core, memory, and storage wastage (see section III-G)
over a simulation time of 10000s. Figs. 8 and 9 analyze the idle
resources, indicating the percentage of underutilized cores and

memory on each device dtj :
Rt

jk−
∑

A∈ASt

∑
si∈Sµ max{rik}

Rt
jk

, where

k ∈ 1, 2.

1890 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 6, JUNE 2023

Fig. 6. Fog placement and failure rates during different simulation periods.

Fig. 7. Simulated average resource wastage.

Fig. 8. Simulated average idle cores.

Fig. 9. Simulated average idle memory.

SMALL: M-RAP and RAP provide an average core wastage
of 0.60 and a memory wastage of 0.47, while 50% of the Fog
devices are idle. AAP delivered a slightly better core wastage of
0.57 and an average memory wastage of 0.54; however, it did
not reduce the idle Fog devices below 50%. In contrast, JCP has
the highest core wastage of 0.97 and a memory wastage of 0.90
with 95% of idle Fog devices.

MEDIUM: AAP and RAP delivered an average core wastage
of 0.31 and 0.3 with 20%, respectively 38% of idle Fog devices.
M-RAP outperformed them with a lower average core wastage
of 0.29 and 10% idle Fog devices. Once again, JCP performs
worst with average core and memory wastage of 0.97 and 85%
idle Fog devices.

LARGE: M-RAP has average core wastage of 0.27 and 10%
idle Fog devices. AAP and RAP performed equally well (0.3)
with insignificantly more idle devices. JCP had the highest
wastage of 0.88 and 78% idle Fog devices. We can observe the

Fig. 10. Simulated average hop distance.

same trends for memory wastage and idle memory in all three
methods. In contrast, the average storage wastage was very high
in all cases, with an average of 0.9 for M-RAP, AAP, and RAP
and 0.95 for JCP.

Summary: The core, memory, and storage resources remained
vastly underutilized in all methods. M-RAP maximizes the Fog
placement rate and consumes more resources, which reduces the
core and memory wastage compared to the other methods. We
observe no significant differences in storage wastage. M-RAP
consolidates resource capacity by placing services on fewer
devices with similar requirements, keeping powerful devices
available, and reducing resource fragmentation and waste.

3) Hop Distance: Fig. 10 compares the average hop distance,
indicating the proximity of the hosting devices to the requesting
users over the physical network channels during the simulation
time of 10000s. One hop distance indicates a service placement
at the Fog gateway devices. We compute a hop distance his-
togram to increase the placement rate at a low hop distance
across all application services.

SMALL: Fig. 10(a) shows that M-RAP and AAP placed 42,
respectively 38 services at the first hop distance, while RAP and
JCP did not manage to place any services. M-RAP and AAP
outperformed RAP and JCP by placing 33 and 46 services at
the hop distance 2, respectively 56 and 70 services at the hop
distance 3. In contrast, RAP and JCP placed 5 services at a hop
distance of 2 and 36, respectively 25 at a distance 3.

MEDIUM: Fig. 10(b) shows that M-RAP placed more ser-
vices near end-users, i.e., 41 services at hop distance 1 and
48 services at hop distance 2. AAP placed 28 services at hop
distance 1 and 35 at a hop distance 2. RAP and JCP performed
worst and placed few services at hop distances of 1 and 2, and
the rest at hop distances of 4 and 5.

LARGE: Fig. 10(c) shows that M-RAP outperformed the other
methods by placing 44, 58, respectively 109 services at the first
three-hop distances. In comparison, AAP placed slightly fewer
services at the first three-hop distances (i.e., 39, 55, and 102).

SAMANI et al.: INCREMENTAL MULTILAYER RESOURCE PARTITIONING FOR APPLICATION PLACEMENT IN DYNAMIC FOG 1891

Fig. 11. Application response time in simulation periods.

Fig. 12. Simulated transmission and service execution times.

RAP and JCP performed worst by placing 94% of the services
at the distances of 3, 4, and 5.

Summary: M-RAP places more services across highly con-
nected Fog devices closer to the users by considering the mes-
sage transmission time as part of its methodology.

E. Runtime Analysis

We model the total application response time in three aggre-
gated components, following our methodology in [37]:

1) Failure overhead caused by the leaving Fog devices has
two components:
a) lost computation overhead from a service failure, de-

tected at the end of a time interval, and
b) placement overhead from executing the incremental

resource partitioning and placement algorithms.
2) Transmission and execution times represent all services’

average successful response time after placing the failed
ones on new devices.

3) Delay is the difference between the response time and the
deadline in case of a deadline miss.

1) Response Time: Fig. 11 shows the average response time
and the failure overhead (marked as “F”) in a dynamic Fog.
Fig. 12(a) and (b) indicate the simulation’s average transmission
and service execution times.

D-SMALL: Fig. 11(a) shows that M-RAP outperformed the
other methods for all time intervals with an average response
time of 32.42ms and 4.3ms failure overhead. Although AAP
performed slightly better for the first three simulation periods,
it provided a higher average response time of 92.17ms due to
the higher failure placement. RAP and JCP performed worst

with average response times of 128.11ms and 116.6ms due to
higher transmission time (see Fig. 12(a)). RAP had a high failure
overhead of 41.5ms.

D-MEDIUM: Fig. 11(b) shows that M-RAP reduces the re-
sponse time and failure overhead to an average of 75ms, respec-
tively 6.6ms due to the lower transmission time (see Fig. 12(a)).
The improvements are most evident during the ΔT5 period due
to more devices joining and leaving the network. AAP provides
a higher response time with an average of 117.38ms by placing
fewer services onto the Fog and ignoring the network changes,
leading to higher transmission times (see Fig. 12(a)) and failure
overheads. RAP performed worse with an average response time
of 168.07ms since it ignores service dependencies and network
changes causing higher transmission times (see Fig. 12(a)) and
high failure overheads of 29.13ms. Although JCP provides low
execution times (see Fig. 12(b)), this negligible improvement
does not affect the response time.

D-LARGE: Similar to other scenarios, Fig. 11(c) shows that
M-RAP provides the lowest response times with an average
of 82.36ms, negligible failure overheads of 4.84ms and lower
transmission time (see Fig. 12(a)). Although JCP had an average
failure overhead of 3.36ms, it provides a higher average response
time of 101ms by placing more services in the Cloud with higher
transmission time (see Fig. 12(a)). AAP and RAP performed
worse with average response times of 94ms and 124ms, and
failure overheads of 19.75ms and 21.76ms. The response time
difference is again evident over multiple time intervals, as the
static AAP and RAP methods do not consider network changes.

Summary: Fig. 11 shows that M-RAP outperforms the re-
lated methods by considering the network interconnections and
introducing very low failure overheads. M-RAP places services
onto highly connected devices with low transmission time close
to users in MEDIUM and LARGE scenarios. In contrast, AAP
performs better in the SMALL scenario by applying a greedy
algorithm. Fig. 12(b) shows that M-RAP provides a higher
execution time by placing the most services in the Fog and
outperforming JCP, which places most services in the high-
performance Cloud. However, JCP achieves higher response
times due to the higher transmission time to the Cloud (see
Fig. 12(a)). Finally, AAP and RAP explore static algorithms that
do not consider network changes and fail to place all services
successfully.

2) Failure Overhead: Fig. 11(d) performs an aggregated fail-
ure overhead analysis that splits the total average response time
of all simulated applications that encountered at least one failed
device in three components, following our methodology in [37].
Since most executions exhibited one service failure, the average
lost computation is approximately equal to one time interval of
20ms. The placement overhead of executing the low-complexity
incremental resource partitioning and placement algorithms is
around 8ms (see Section IX).

Table VII summarizes the severity [37] of the failure overhead
metrics, normalized against the application response time. We
restrict the analysis to the executions that exhibited at least one
failure to maximize the severity of the failures. Despite the high
severity of the lost computation and placement overheads, all
applications fulfill their deadlines in the D-SMALL scenario.

1892 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 6, JUNE 2023

TABLE VII
FAILURE OVERHEAD ANALYSIS

Fig. 13. Simulated average deadline satisfaction.

The number of applications missing their deadlines increases
with the scale of the simulated scenario due to the limited number
of available Fog devices and the high number of requests. How-
ever, our method manages to keep the average delay reasonable
(around 38.4ms) in the D-LARGE scenario, representing 25%
of the total application response time.

F. Deadline Satisfaction

Fig. 13 analyses the deadline satisfaction of the simulated
applications over a simulation time of 10000s.

1) Reliable Fog Infrastructure: Fig. 13(a) shows the average
deadline satisfaction ratio without faults.

D-SMALL: All three methods fulfilled the deadlines, except
JCP placed more applications in the Cloud.

D-MEDIUM: M-RAP outperformed other methods with a
slightly higher average deadline satisfaction rate of 0.69 com-
pared to AAP and RAP. JCP performed worst due to its higher
response time.

D-LARGE: M-RAP satisfied the deadlines with an average
rate of 0.60, while AAP and RAP exhibited a lower 0.48. JCP
performed worst with an average rate of 0.39.

Summary: M-RAP has a better deadline satisfaction rate
for increasing application requests by placing dependent ser-
vices across tightly connected Fog devices with lower latency
and higher bandwidth within the same network partitions (see
Figs. 11 and 12(a)).

2) Faulty Fog Infrastructure: We randomly failed Fog de-
vices during the service execution every 20s, such that all
devices are not reachable at the end of each simulation period
of 2000s. Fig. 13(b) evaluates this faulty Fog’s average deadline
satisfaction rate.

D-SMALL: M-RAP and AAP fulfilled the deadlines with an
average satisfaction rate of 0.34 and 0.35 upon randomly failing
Fog devices. RAP performed slightly worse with a cumulative
satisfaction rate of 0.31.

D-MEDIUM: All methods fulfilled the deadlines with a lower
satisfaction rate than in the D-SMALL scenario. However, the
M-RAP performed slightly better than AAP, with an average rate

of 0.21. In contrast, RAP and JCP exhibited a lower deadline
satisfaction rate of 0.17, respectively 0.15.

D-LARGE: JCP performed worst and fulfilled deadlines with
a low average rate of 0.1, while M-RAP fulfilled their deadlines
with a better average satisfaction ratio of 0.14.

Summary: We draw three observations from Fig. 13(b):
1) The number of deadline-satisfied applications decreases

for fewer Fog devices leading to a high Cloud utilization
with higher transmission times.

2) RAP and JCP exhibit a lower deadline satisfaction rate
than M-RAP and AAP upon faults since they do not con-
sider device failures and provide higher response times.

3) M-RAP achieves a higher average deadline satisfaction
rate by placing all services across highly connected Fog
devices in the same network layer partition. The request
routes through another path upon network failures leading
to a better deadline satisfaction rate. In contrast, AAP
places dependent services across weakly connected de-
vices prone to failures.

IX. REAL TESTBED EXPERIMENTS

A. Implementation

We installed a Docker engine 20.10 on all C3 testbed de-
vices, which partitions their resources by deploying container-
ized services isolated from each other based on their resource
requirements. The minimal scripts to create and run the con-
tainerized services are available in the GitHub repository (https:
//github.com/SiNa88/M-RAP). The lack of interference among
the isolated containers hosted by the same device ensures that
the service execution times follow the model defined in Sec-
tion III-F.

We run the M-RAP placement algorithms on a medium
C3 Fog instance type (see Table IV). The multilayer resource
partitioning has an average execution time of approximately
3s, executed once for the complete Fog network before the
application requests. The incremental multilayer partitioning
and service placement algorithms have a significantly faster
execution of approximately 3ms and 5ms due to their low
complexity with high responsiveness to the incremental changes
in the Fog network.

B. Real-World Applications

We validate in this section the simulation results using two
real-world applications from the e-commerce and video pro-
cessing domains, executed on the C3 testbed (see Fig. 14). We
generated ten simultaneous application requests (five for each
application) from different users to utilize the testbed and avoid
over-utilization entirely. We generated artificial network delays
and emulated the distributed locations of user devices using the
Linux tc, as summarized in Table VIII.

1) E-Commerce: E-commerce is a containerized online store
application composed of the following components.

Web interface (WI) service provides the graphical interface
for interaction with the user;

https://github.com/SiNa88/M-RAP
https://github.com/SiNa88/M-RAP

SAMANI et al.: INCREMENTAL MULTILAYER RESOURCE PARTITIONING FOR APPLICATION PLACEMENT IN DYNAMIC FOG 1893

Fig. 14. Real experimental applications.

TABLE VIII
APPLICATION RESOURCE REQUIREMENTS

Login (Log) service authenticates sessions by retrieving user-
names and passwords from a MongoDB database;

Catalogue (Cat) service previews product information;
Account (Act) service provides the user profile storing the

history of orders;
Shopping cart (Shc) service adds or removes products;
Payment (Pay) service connects the user to the bank payment

application and performs the transaction;
Order (Ord) service places the selected product from the stock

after inspecting the catalogs;
Shipping (Shp) service manages the shipping information by

publishing it to the RabbitMQ message broker.
2) Video Stream Processing: Video stream processing is a

traffic sign classification application following road safety in-
spection concerns [1].

Encoding (En) service receives and encodes the high-
resolution raw video stream.

Framing (Fr) service uses OpenCV to produce still frames
from different video scenes.

Low-accuracy training (LT) service trains a convolutional
neural network aiming for a 70% accuracy.

High-accuracy training (HT) service improves the multi-class
classification model from newly collected data aiming for an
accuracy 90%.

High-accuracy inference (HI) service uses the 90% accurate
model to classify the signs in the video frames.

Transcoding (Tr) service converts the video in different res-
olutions and bitrates and prepares it for delivery by using the
ffmpeg software suite.

Packaging (Pa) service delivers the transcoded stream.

C. Experimental Results

Fig. 15 shows the placement heatmap for e-commerce and
video processing applications for M-RAP and the three related
works on the C3 testbed. We observe that M-RAP places most
services onto Fog devices and very few onto the Cloud instances.
AAP and RAP use static greedy methods with higher wastage

Fig. 15. E-commerce and video processing placement heatmap for four related
methods in the C3 testbed.

and lower Fog placement. Finally, JCP places most services
into the Cloud instances by considering the applications as
monolithic.

E-commerce: Table IX shows that M-RAP provides lower
response times by placing all services onto the AAU cluster
and Exoscale instances in Klagenfurt, close to the end-users.
AAP provides a slightly higher response time by placing several
services onto the AAU cluster and the rest onto the higher latency
Exoscale instances in Vienna, Klagenfurt, and Sofia. In contrast,
RAP places several services onto the AAU cluster and distributes
the rest onto the Exoscale instances in Vienna, Zurich, Munich,
and Sofia without considering their dependencies, leading to
high transmission time. Lastly, JCP places the most services
onto Sofia’s A1 Cloud data center with a high response time.

Video processing: Table X shows that M-RAP presents the
lowest response time again by placing the most services on the
Exoscale instances in Vienna and Klagenfurt close to the end-
user. However, M-RAP’s advantage is less critical due to the high
video stream processing workload, which diminishes the role of
the transmission time. AAP places the services onto the smaller
Exoscale instances, RPi4, and NJN, with higher response times
because e-commerce services with an earlier deadline occupy
the more powerful instances. RAP places the services onto the
different clusters (AAU and Exoscale in Vienna, Munich, and
Sofia) without considering their dependencies, leading to higher
transmission time. Although JCP places all services onto the
Cloud instances, it provides similar response times to AAP and
is even lower than RAP since the powerful Cloud instances
compensate for the higher transmission time.

D. Result Validation

We validate the correctness of the simulation conducted in
Section VIII-E by comparing the response time and the Fog
placement in the D-SMALL scenario (see Table VI) with the real
testbed measurements for ten e-commerce and video processing
requests.

Response time: Fig. 16(a) and (b) reveal that M-RAP has a
lower median response time and follows the same trend in both
simulated and testbed scenarios. The simulation results show
a higher difference in response time than the real testbed due
to the higher number of requests and devices and the longer
transmission time to the Cloud. M-RAP and AAP placed most
applications on the Fog with a lower simulated response time
deviation than the real testbed, which placed more applications
in the Cloud due to a lower number of Fog devices. Except for
JCP, the response time of all methods follow the same trend
in simulation and real testbed. The real testbed shows a lower

1894 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 6, JUNE 2023

TABLE IX
COMPARATIVE PLACEMENT OF E-COMMERCE SERVICES (WITH THE NUMBER OF PLACED SERVICES IN BRACKETS)

TABLE X
COMPARATIVE PLACEMENT OF VIDEO STREAM PROCESSING SERVICES (WITH THE NUMBER OF PLACED SERVICES IN BRACKETS)

Fig. 16. Simulated versus real testbed results.

response time median for JCP compared to RAP because it
placed most of the applications in the A1 Cloud data center
in Sofia with a lower transmission time than the AWS or Google
data centers in Virginia and Frankfurt.

Fog placement rate: Fig. 16(c) and (d) show that M-RAP
provides the highest Fog placement rate, and JCP performs worst
in both simulation and real testbed experiments. The simulated
Fog placement rate shows higher deviations for all methods
except M-RAP due to more requests with different workloads
than the real testbed. The higher number of simulated Fog
devices leads to a significant placement rate difference between
the methods. The fewer Fog devices in the real testbed cause
a lower Fog placement rate. The placement rate divergence
between the simulation and real testbed indicates that M-RAP,
AAP, and RAP reached a high Pearson correlation of 0.87, 0.95,
and 0.91, while JCP attains 0.65 because of more variations.

X. CONCLUSION

We introduced a multilayer resource-aware partitioning (M-
RAP) method for adaptive application placement in a dynamic
Fog infrastructure. M-RAP represents the heterogeneous Fog
resources as an incremental multilayer graph and partitions it by
considering network connections and resource characteristics.
M-RAP constantly updates the multilayer graph and its parti-
tions upon changes in the availability of Fog devices. M-RAP

places the application in two steps. The first step matches the
requested application services based on their requirements with
feature partitions overlapping in the same network layer parti-
tion. The second step places the services on Fog devices closest
to the user in the selected partitions. We evaluated M-RAP based
on three simulation scenarios considering incremental changes
in a dynamic Fog infrastructure during five simulation periods.
The results indicate that M-RAP can place 1.6 times as many
services, satisfy deadlines for 43% as many application requests,
optimize application response time by 58%, and reduce resource
wastage by up to 54% compared to state-of-the-art methods.
We confirmed the simulation using e-commerce and video pro-
cessing applications executed on a real testbed comprising eight
heterogeneous Cloud and Fog instances distributed over seven
geographical locations.

We published our simulation code in the Code Ocean plat-
form (https://doi.org/10.24433/CO.7045020.v1) to support the
journal reproducibility initiative. In the future, we plan to extend
M-RAP to support mobility by:

1) assigning and maintaining unique identities of leaving
devices, and

2) incrementally assigning the mobile devices to the network
partitions with the highest proximity and connectivity.

REFERENCES

[1] N. Mehran, Z. N. Samani, D. Kimovski, and R. Prodan, “Matching-based
scheduling of asynchronous data processing workflows on the computing
continuum,” in Proc. IEEE Int. Conf. Cluster Comput., 2022, pp. 58–70.

[2] C. Guerrero, I. Lera, and C. Juiz, “A lightweight decentralized service
placement policy for performance optimization in fog computing,” J.
Ambient Intell. Humanized Comput., vol. 10, no. 6, pp. 2435–2452, 2019.

[3] W. Zhang, J. Chen, Y. Zhang, and D. Raychaudhuri, “Towards efficient
edge cloud augmentation for virtual reality MMOGs,” in Proc. IEEE/ACM
Symp. Edge Comput., 2017, pp. 1–14.

[4] E. Cuervo et al., “MAUI: Making smartphones last longer with code
offload,” in Proc. Int. Conf. Mobile Syst. Appl. Serv., 2010, pp. 49–62.

[5] Y. Lee, A. Scolari, B.-G. Chun, M. Weimer, and M. Interlandi, “From the
edge to the cloud: Model serving in ML.NET,” IEEE Data Eng. Bull.,
vol. 41, no. 4, pp. 46–53, Dec. 2018.

[6] C.-H. Hong and B. Varghese, “Resource management in fog/edge com-
puting: A survey on architectures, infrastructure, and algorithms,” ACM
Comput. Surv., vol. 52, no. 5, pp. 1–37, 2019.

[7] IEEE Standard for Adoption of OpenFog Reference Architecture for Fog
Computing, IEEE Std 1934–2018, pp. 1–176, 2018.

https://doi.org/10.24433/CO.7045020.v1

SAMANI et al.: INCREMENTAL MULTILAYER RESOURCE PARTITIONING FOR APPLICATION PLACEMENT IN DYNAMIC FOG 1895

[8] M. Ghobaei-Arani, A. Souri, and A. A. Rahmanian, “Resource manage-
ment approaches in fog computing: A comprehensive review,” J. Grid
Comput., vol. 18, no. 1, pp. 1–42, 2019.

[9] I. Lera, C. Guerrero, and C. Juiz, “Availability-aware service placement
policy in fog computing based on graph partitions,” IEEE Internet Things
J., vol. 6, no. 2, pp. 3641–3651, Apr. 2019.

[10] H. Sami, A. Mourad, H. Otrok, and J. Bentahar, “Demand-driven deep
reinforcement learning for scalable fog and service placement,” IEEE
Trans. Serv. Comput., vol. 15, no. 5, pp. 2671–2684, Sep./Oct. 2022.

[11] J. Meng, H. Tan, X.-Y. Li, Z. Han, and B. Li, “Online deadline-aware
task dispatching and scheduling in edge computing,” IEEE Trans. Parallel
Distrib. Syst., vol. 31, no. 6, pp. 1270–1286, Jun. 2020.

[12] J. Edinger, M. Breitbach, N. Gabrisch, D. Schäfer, C. Becker, and
A. Rizk, “Decentralized low-latency task scheduling for ad-hoc com-
puting,” in Proc. IEEE Int. Parallel Distrib. Process. Symp., 2021,
pp. 776–785.

[13] M. Peng, S. Yan, K. Zhang, and C. Wang, “Fog-computing-based radio
access networks: Issues and challenges,” IEEE Netw., vol. 30, no. 4, pp. 46–
53, Jul./Aug. 2016.

[14] A. Aral and I. Brandic, “Dependency mining for service resilience at the
edge,” in Proc. IEEE/ACM Symp. Edge Comput., 2018, pp. 228–242.

[15] M. Taneja and A. Davy, “Resource aware placement of IoT application
modules in fog-cloud computing paradigm,” in Proc. IEEE/IFIP Symp.
Integr. Netw. Service Manage., 2017, pp. 1222–1228.

[16] A. Mseddi, W. Jaafar, H. Elbiaze, and W. Ajib, “Joint container placement
and task provisioning in dynamic fog computing,” IEEE Internet Things
J., vol. 6, no. 6, pp. 10 028–10 040, Dec. 2019.

[17] D. Kimovski, R. Mathá, J. Hammer, N. Mehran, H. Hellwagner, and
R. Prodan, “Cloud, fog or edge: Where to compute?,” IEEE Internet
Comput., vol. 25, no. 4, pp. 30–36, Jul./Aug. 2021.

[18] Z. N. Samani, N. Saurabh, and R. Prodan, “Multilayer resource-aware
partitioning for fog application placement,” in Proc. IEEE Int. Conf. Fog
Edge Comput., 2021, pp. 9–18.

[19] L. Shooshtarian, D. Lan, and A. Taherkordi, “A clustering-based approach
to efficient resource allocation in fog computing,” in Proc. Int. Symp.
Pervasive Syst. Algorithms Netw., 2019, pp. 207–224.

[20] Y. Jie, C. Guo, K.-K. R. Choo, C. Z. Liu, and M. Li, “Game-theoretic re-
source allocation for fog-based industrial internet of things environment,”
IEEE Internet Things J., vol. 7, no. 4, pp. 3041–3052, Apr. 2020.

[21] H. P. Sajjad, F. Rahimian, and V. Vlassov, “Smart partitioning of geo-
distributed resources to improve cloud network performance,” in Proc.
Int. Conf. Cloud Netw., 2015, pp. 112–118.

[22] S. Filiposka, A. Mishev, and K. Gilly, “Community-based allocation and
migration strategies for fog computing,” in Proc. IEEE Wirel. Commun.
Netw. Conf., 2018, pp. 1–6.

[23] Y. Sun, F. Lin, and H. Xu, “Multi-objective optimization of resource
scheduling in fog computing using an improved NSGA-II,” Wirel. Pers.
Commun., vol. 102, no. 2, pp. 1369–1385, 2018.

[24] X. Ma, A. Zhou, S. Zhang, and S. Wang, “Cooperative service caching
and workload scheduling in mobile edge computing,” in Proc. IEEE Conf.
Comput. Commun., 2020, pp. 2076–2085.

[25] A. Yousefpour et al., “FOGPLAN: A lightweight QoS-aware dynamic fog
service provisioning framework,” IEEE Internet Things J., vol. 6, no. 3,
pp. 5080–5096, Jun. 2019.

[26] Z. Han, H. Tan, X.-Y. Li, S. H.-C. Jiang, Y. Li, and F. C. Lau, “OnDisc:
Online latency-sensitive job dispatching and scheduling in heterogeneous
edge-clouds,” IEEE/ACM Trans. Netw., vol. 27, no. 6, pp. 2472–2485,
Dec. 2019.

[27] T. X. Tran, P. Pandey, A. Hajisami, and D. Pompili, “Collaborative multi-
bitrate video caching and processing in mobile-edge computing networks,”
in Proc. IEEE 13th Annu. Conf. Wirel. On-Demand Netw. Syst. Serv., 2017,
pp. 165–172.

[28] A. Mseddi, W. Jaafar, H. Elbiaze, and W. Ajib, “Intelligent resource
allocation in dynamic fog computing environments,” in Proc. IEEE 8th
Int. Conf. Cloud Netw., 2019, pp. 1–7.

[29] J. Liu, Real-Time Systems; Chapter 2: Hard Versus Soft Real-Time Systems.
Englewood Cliffs, NJ, USA: Prentice Hall, 2000.

[30] P. J. Mucha, T. Richardson, K. Macon, M. A. Porter, and J.-P. Onnela,
“Community structure in time-dependent, multiscale, and multiplex net-
works,” Science, vol. 328, no. 5980, pp. 876–878, 2010.

[31] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” J. Statist. Mechanics Theory
Experiment, vol. 2008, no. 10, 2008, Art. no. P10008.

[32] I. Lera, C. Guerrero, and C. Juiz, “YAFS: A simulator for iot scenarios in
fog computing,” IEEE Access, vol. 7, pp. 91 745–91 758, 2019.

[33] A.-L. Barabási, “Scale-free networks: A decade and beyond,” Science,
vol. 325, no. 5939, pp. 412–413, 2009.

[34] D. Kimovski, H. Ijaz, N. Saurabh, and R. Prodan, “Adaptive nature-
inspired fog architecture,” in Proc. IEEE 2nd Int. Conf. Fog Edge Comput.,
2018, pp. 1–8.

[35] L. C. Freeman, “A set of measures of centrality based on betweenness,”
Sociometry, vol. 40, pp. 35–41, 1977.

[36] P. Pereira, C. Melo, J. Araujo, J. Dantas, V. Santos, and P. Maciel,
“Availability model for edge-fog-cloud continuum: An evaluation of an
end-to-end infrastructure of intelligent traffic management service,” J.
Supercomput., vol. 78, no. 3, pp. 4421–4448, 2022.

[37] R. Prodan and T. Fahringer, “Overhead analysis of scientific workflows
in Grid environments,” IEEE Trans. Parallel Distrib. Syst., vol. 19, no. 3,
pp. 378–393, Mar. 2008.

Zahra Najafabadi Samani received the MSc degree
in computer architecture from the University of Isfa-
han, Iran in 2016. She is currently working toward
the PhD degree and research assistant since 2019
with the Institute of Information Technology (ITEC),
University of Klagenfurt, Austria. Her research inter-
ests include resource management and performance
optimization in cloud, fog, and edge computing.

Narges Mehran received the MSc degree in com-
puter architecture from the University of Isfahan, Iran
in 2016. She is currently working toward the PhD
degree and teaching assistant since 2018 with ITEC,
University of Klagenfurt, Austria. Her research inter-
ests include cloud, fog, edge computing, and future
Internet architectures.

Dragi Kimovski received the PhD degree from the
Technical University of Sofia, Bulgaria in 2013 and
the Habilitation degree from the University of Kla-
genfurt, Austria, in 2023. Between 2015–2018, he
worked as a postdoctoral researcher with the Uni-
versity of Innsbruck, Austria. He is a postdoctoral
researcher with ITEC, University of Klagenfurt, Aus-
tria. He has co-authored more than 50 international
articles in parallel and distributed systems. He partic-
ipated as a workpackage and scientific coordinator in
several European projects.

Shajulin Benedict received the PhD degree from
Anna University, Chennai. He is an assistant professor
with the Indian Institute of Information Technology,
Kottayam, Kerala, India. Afterward, he served as a
professor with the St. Xavier’s Catholic College of
Engineering and a guest professor in Cloud comput-
ing with the Technical University of Munich, Ger-
many. He is the director, principal investigator, and
representative officer of the AIC-IIITKottayam incu-
bation center for nourishing young entrepreneurs in
India. His research interests include the Internet of

Things, performance analysis, cloud scheduling, and edge analytics.

1896 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 6, JUNE 2023

Nishant Saurabh received the PhD degree from the
University of Innsbruck, Austria in 2021. He is an
assistant professor with the Department of Informa-
tion and Computing Sciences, Utrecht University,
The Netherlands. Previously, he was a postdoctoral
researcher with ITEC, University of Klagenfurt, Aus-
tria. His research areas include resource management
and performance optimization in distributed systems.

Radu Prodan received the PhD degree from the
Vienna University of Technology in 2004. He is a
professor in distributed systems with ITEC, Univer-
sity of Klagenfurt, Austria. Previously, he was an
associate professor with the University of Innsbruck,
Austria. His research interests are performance opti-
mization, and resource management tools for parallel
and distributed systems. He participated in numer-
ous projects and coordinated the European Union
projects ARTICONF and Graph-Massivizer. He has
co-authored more than 200 publications and received
three IEEE best paper awards.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

