
1.  Introduction
With increasing probability of dry periods in a warming climate, salt intrusion in estuaries is becoming an 
urgent problem in many coastal areas (Eslami et al., 2021). Salt intrusion is influenced by many processes which 
show variability on a wide range of time scales. On hourly scales, variations in wind velocity (or direction) and 
tidal water level are significant. On daily scales, river discharge can substantially change due to precipitation 
events. In addition, river discharge seasonally varies in many estuaries (Díez-Minguito et al., 2013; Simpson 
et al., 2001), and spring-neap variations in tidal forcing have a large impact on the extent of the salt intrusion 
(Banas et al., 2004; Gong et al., 2013; Lerczak et al., 2006).

Such temporal variability in the salt intrusion length indicates that the time-averaged values often do not provide 
a complete description of the state of estuaries. To address this matter, earlier studies were devoted to quantifying 
the response of estuaries to time-dependent forcing (Chen, 2015; Kranenburg, 1986; MacCready, 1999, 2007; 
Monismith et al., 2002). Of particular interest is the statistical behavior of the salt intrusion length in estuaries, for 
example, described by time-dependent probability density functions (PDFs). To obtain such PDFs, auto-regressive 
models, in combination with Markov Chain Monte Carlo simulations, were used in the Suwannee River (USA) 
estuary (Guerra-Chanis et  al.,  2019) and the Guadalquivir (Spain) estuary (Reyes-Merlo et  al.,  2013). More 
detailed statistical models were also introduced to fill the gaps between scarce observational data (Tian, 2019).

In principle, all variability in the salt intrusion length can be traced back to internal processes in the estuary, such 
as waves or instabilities of density currents, and variability in the forcing, for example, in the river discharge 
(Biemond et al., 2022; Chen, 2015). Additional understanding of salt intrusion in estuaries would be obtained if 
we would be able to explain the statistical properties of the salt intrusion length from the statistical properties of 
the forcing. Here, we only focus on river discharge forcing since it was observed that sub-tidal timescale varia-
bility in salt intrusion length is primarily induced by varying river discharge. For instance, Lee and Lwiza (2008) 
reported that the sub-annual variation of bottom salinity in Chesapeake Bay (USA) is mostly due to changing 
river discharge. Similar conclusions were presented for the Modaomen (China) estuary (Lin et al., 2019).

When considering variability in salt intrusion length, much of the forcing variability is on smaller time scales 
than subtidal. Hence, it can be represented as a stochastic process in the widely used deterministic salt-intrusion 
models (Chen, 2015). This results in models consisting of stochastic differential equations, which are subse-
quently solved using stochastic calculus (Hanson, 2007; Kloeden & Platen, 1992; Oksendal, 1995). The advan-
tage of these stochastic models is that a whole toolbox is available to study the temporal evolution of the salt 
intrusion characteristics and the corresponding PDFs.
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In this paper, we formulate conceptual stochastic models of salt intrusion in 
estuaries and provide, given a stochastic model of the river discharge forcing, 
solutions for the PDF of the salt intrusion length. First, in Section 2.1 moti-
vating results on the statistics of salt intrusion length and river discharge are 
presented from observations in the San Francisco Bay (USA) estuary. The 
general form of a stochastic salt-intrusion model is presented in the remain-
der of Section 2. Our intention here is to introduce a new view on estuarine 
salt intrusion, by considering the stochastic forcing-response relationships 
using the most basic formulation of the physics of estuarine salt intrusion. 
The San Francisco Bay example serves as a case study and we do not aim to 
offer a tool which can be used for practical purposes because both the model 
and observational data set used have substantial limitations.

In Section 3, we consider the stochastic salt intrusion dynamics in this model 
under different representations of the noise in the river discharge forcing. 
In the additive noise case, the noise does not depend on the river discharge 
state itself, whereas in the multiplicative noise case, it does depend on the 
river discharge state. In Section 4, we show that a more general stochastic 
model including both additive and multiplicative noise in river discharge, 
when properly fitted, provides an adequate representation of the skewness 
of the PDF of the San Francisco Bay salt intrusion length. The results are 
summarized and discussed in Section 5.

2.  Data and Model
Multi-yearly time series of salt intrusion length and river discharge are 
required to derive reliable sub-tidal statistical properties from observations. 

Daily river discharge data is available across the globe and can, for example, be downloaded from the Global 
Runoff Data Centre (GRDC), see https://portal.grdc.bafg.de. There are also large modeling efforts on river 
discharge and an overview of these models is given in Gao et al. (2020). However, multi-yearly data sets for salt 
intrusion length are rare. When being evaluated with a sufficient amount of data, salt intrusion lengths can be 
computed with autoregressive models (Guerra-Chanis et al., 2019; Jassby et al., 1995; Monismith et al., 2002; 
Reyes-Merlo et al., 2013). The advantage of these models is that the salt intrusion length can be reconstructed 
even from periods where no observations are available.

2.1.  A Motivating Example

As an example, we here use a data set consisting of discharge and salt intrusion length time series from the 
Dayflow reanalysis product (Ghimire et al., 2022) for San Francisco Bay which was downloaded from https://
data.cnra.ca.gov/dataset/dayflow. The complex topography of the San Francisco Bay is shown in Figure 1. Impor-
tant features for the salt intrusion are the differences in depth between the narrow, deep channel and the shallow 
parts of the bay in the downstream part, and the confluence of the Sacramento and San Joaquin rivers at about 
80 km from the Bay's connection with the ocean. There are many factors that influence the salt intrusion into this 
estuary (Monismith, 2016; Monismith et al., 2002).

The time series and estimates of the PDF of both river discharge Q and salt intrusion length X2 (i.e., the distance of 
the 2 psu isohaline contour to the estuary mouth, see Figure 1) for the San Francisco Bay (Monismith et al., 2002) 
are plotted versus time t in Figure 2. Based on Monismith et al. (2002), the standard error of the estimates of the 
salt intrusion length X2 is 1.32 km (below Equation 8 in his paper). There is a strong seasonal component in both 
time series with largest river discharge in winter and smallest in summer (Figure 2a), which we will analyze in 
more detail in Section 4. There are large negative excursions in X2 when Q has large values (Figure 2b). This leads 
to a negative skewness in X2 (Figure 2d) while the PDF of Q is positively skewed (Figure 2c). The dimensionless 
skewness S calculated here (see values in caption of Figure 2) is the third moment of the time series M3, normal-
ized by the variance M2, according to 𝐴𝐴 𝐴𝐴 = 𝑀𝑀3∕(𝑀𝑀2)

3∕2 .

It is important to stress here that the Dayflow time series is not real observational data. In a comparison of the 
Dayflow salinity data with real observations (e.g., continuously operating bottom salinity sensors), the Dayflow 

Figure 1.  A map of San Francisco Bay, where the bathymetric data is 
obtained from Fregoso et al. (2017).
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values deviate systematically from the observed values (Monismith, 2017). This is mainly because the Dayflow 
estimations are only based on surface observations, and no observations seaward of 55 km are used. A second 
issue is that, effectively, in the Dayflow salinity data all variability at periods less than 18  days is damped 
(Monismith,  2017). Also the Dayflow discharge data has limitations for low discharge at sub-monthly time 
scales, as substantial approximations regarding the water balance have to be made to calculate the net discharge 
(Monismith, 2016). Finally, during low to moderate flows, regulations and operational constraints play a role. 
In the last section, we will discuss the effects of these limitations in the Dayflow data on the results for the San 
Francisco Bay case.

2.2.  Stochastic Salt Intrusion Model

One of the simplest deterministic models to determine the sub-tidal salt intrusion characteristic length X in an 
estuary, given a river discharge Q is that presented in Chen (2015). The governing equation is

1

2

𝑑𝑑𝑑𝑑
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=

𝐶𝐶3
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+

(

𝑄𝑄

𝐴𝐴
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𝑋𝑋
,� (1)

where A is the constant cross section of the estuary. The Cj, j = 0, 1, 2, 3 are constants that are independent of the 
river discharge Q. Compared to Chen (2015), partial slip conditions are used on the bottom boundary (instead of 
no-slip conditions), which leads to the coefficients (Biemond et al., 2022).

𝐶𝐶0 = 𝐾𝐾ℎ

[

m2s−1
]

,� (2a)

𝐶𝐶1 = 0.00305 ×
𝐻𝐻

2

𝐾𝐾𝑣𝑣

[s],� (2b)

𝐶𝐶2 = (0.0275)2 ×
𝑐𝑐
2
𝐻𝐻

4

𝐴𝐴𝑣𝑣𝐾𝐾𝑣𝑣

[

m2
]

,� (2c)

Figure 2.  (a) Time series of the river discharge Q for San Francisco Bay over the period 1997–2022. (b) Same but the 
salt-intrusion length X2. (c) Histogram of the time series in (a) with mean 893.1 m 3s −1, standard deviation 1,101.1 m 3s −1 and 
skewness 4.6. (d) Same as (c) but for (b) with mean 74.6 km, standard deviation 10.9 km and skewness −0.9. Data source: 
https://data.cnra.ca.gov/dataset/dayflow.
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𝐶𝐶3 = (0.0365)3 ×
𝑐𝑐
4
𝐻𝐻
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𝐴𝐴
2
𝑣𝑣𝐾𝐾𝑣𝑣

[

m4s−1
]

.� (2d)

Here, Kh (m 2s −1) is the horizontal eddy diffusivity, Av (m 2s −1) is the vertical eddy viscosity, Kv (m 2s −1) is the 
vertical eddy diffusivity, and H (m) is the depth of estuary. Furthermore, β = 7.6 × 10 −4 (-) is the compressibility 
of salt, socn = 35 (psu) is the prescribed salinity at the river mouth, g = 9.81 (ms −2) is the gravitational acceleration 

and 𝐴𝐴 𝐴𝐴 = (𝑔𝑔𝑔𝑔𝑔𝑔𝑜𝑜𝑜𝑜𝑜𝑜𝐻𝐻)

1

2 (m s −1). The parameter C0 controls the strength of the horizontal diffusion of salt. Further-
more, C1 and C2 are generally small and quantify the salt intrusion due to the interaction of the shear of the river 
current with the stratification. Finally, C3 determines the strength of the salt intrusion due to advection through 
exchange flow. As it is assumed (Chen, 2015) that the mean salinity varies linearly with the distance to the mouth, 
we can relate X to X2 (as plotted in Figure 2b) through X2 = (1 − 2/socn)X ∼ 0.94X. Note that the sub-tidal model 
does not account for variations of the salt intrusion length due to the tides, which are estimated in San Francesco 
Bay to be at most 10 km (Monismith et al., 2002).

In a stochastic salt intrusion model, the river discharge Qt (m 3s −1) (the subscript t is added here to explicitly indi-
cate that the variable is stochastic) is determined by the precipitation surplus and snow melt. The magnitudes of 
these processes have a strong seasonal component, but incidental fluctuations can be large, for example, because 
of instant heavy rainfall. A conceptual stochastic model for river discharge was suggested in Hoogendoorn and 
Weltje (2007), with governing equation

𝑑𝑑𝑑𝑑𝑡𝑡 = 𝜆𝜆0𝑄𝑄𝑡𝑡𝑑𝑑𝑑𝑑 + 𝜎𝜎0𝑄𝑄𝑡𝑡𝑑𝑑𝑑𝑑𝑡𝑡,� (3)

where Wt is a Wiener process. For further details on stochastic processes such as the Wiener process, we refer to 
Mikosch (2000). The parameter λ0 (s −1) is a rate constant and σ0 (s −1/2) is the discharge volatility. A procedure to 
estimate the values of these parameters from observations is given in Hoogendoorn and Weltje (2007). A more 
extended stochastic model of river discharge was presented in Livina et al. (2003), where long-term correlated 
multiplicative noise replaces the second term in Equation 3 and a periodic forcing is added.

To provide stochastic descriptions of both river discharge and salt intrusion, we generalize Equation 3 and add a 
stochastic component to Equation 1. This gives stochastic differential equations for the two-dimensional stochas-
tic process (Xt, Qt).
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(

𝐶𝐶3
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𝑡𝑡
,� (4a)

𝑑𝑑𝑑𝑑𝑡𝑡 = 𝜇𝜇𝑄𝑄(𝑡𝑡𝑡 𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝜎𝜎𝑄𝑄(𝑡𝑡𝑡 𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑
(2)

𝑡𝑡
.� (4b)

Here the functions μQ and σQ are kept general for the moment and μQ (t, Qt) can, for example, include a seasonal 
component. In Equation  4a, also a general noise term (independent of the river discharge noise) σX (ms −1/2) 
is added for completeness. Such a contribution can result from precipitation and evaporation over the estuary 
(Savenije, 2005). Although it is considered to be very small, we keep it here as it is useful to illustrate the effects 
of river discharge noise on the salt intrusion statistics (Section 3.1 below). Hence, in this general formulation, 
there are two Wiener processes 𝐴𝐴 𝐴𝐴

(𝑖𝑖)

𝑡𝑡
 , i = 1, 2. The initial conditions are X0 = X (t0) and Q0 = Q (t0).

As written in Equation 4b, the model is formulated as a system of Itô stochastic differential equations, which is 
most appropriate for numerical calculations (Mikosch, 2000). A Stratonovich formulation could equally well be 
used and next transformed into Itô equations, but this is not further considered here as it does not influence the 
results essentially. The Equation 4 are solved with an Euler-Maruyama scheme (Kloeden et al., 1994) over an 
interval of 20 years, with a time step Δt = 0.11 days, which gives sufficient accuracy in the numerical solutions 
(verified by using time steps down to Δt = 0.014 days). The Python codes of the stochastic salt intrusion model 
(SSM version) are available online (Dijkstra et al., 2023).

3.  Results: Idealized Cases
In this section, we investigate how the statistics of the salt intrusion length responds to different stochas-
tic formulations of the river discharge. To focus on the role of noise on the basic processes of salt intrusion, 
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two classical limiting cases of Equation 4b will be studied: the diffusive limit (also called the "tidal stirring 
limit” (MacCready, 2007)), for which C1 = C2 = C3 = 0, and the exchange limit, for which C0 = C1 = C2 = 0 
(Chatwin, 1976).

Values for the depth, width, horizontal diffusion coefficient (for the diffusive limit) and the vertical diffusion 
coefficient (for the exchange limit) are chosen based on the San Francisco Bay example (Section 2.1). Regarding 
the geometry, representative values are H = 13 m and width B = 2,100 m. Appropriate values for the mixing 
coefficients are chosen such that the mean salt intrusion length computed by the model matches the observed 
mean salt intrusion length. In the observations (Figure 2), the average salt intrusion length 𝐴𝐴 𝑋̄𝑋2 = 74.6  km (hence 

𝐴𝐴 𝑋̄𝑋 = 79.4  km), while the average river discharge 𝐴𝐴 𝑄̄𝑄 = 893  m 3s −1. To obtain these values in the two limiting cases, 
Kh = 2,600 m 2s −1 is chosen for the diffusive limit and Kv = 5.5 × 10 −4 m 2s −1 for the exchange limit; we will also 
assume that Av = Kv. Values of the noise amplitudes are chosen arbitrarily here, but are motivated by estimated 
values from observations, such as presented in Section 4 below.

3.1.  Constant Qt

In this first subsection, we only consider additive noise in Equation  4a, independent of the river discharge. 
Although this is a physically less interesting case, as this noise contribution is assumed to be small, it serves here 
to illustrate the methodology as explicit analytical solutions of the PDFs can be obtained. In this case (𝐴𝐴 𝐴𝐴𝑡𝑡 = 𝑄̄𝑄 
and constant σX), Equation 4a can be written in the form.

𝑑𝑑𝑑𝑑𝑡𝑡 = 𝑓𝑓 (𝑋𝑋𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝜎𝜎𝑋𝑋𝑑𝑑𝑑𝑑𝑡𝑡,� (5a)

𝑓𝑓 (𝑋𝑋) =

⎧

⎪

⎨

⎪

⎩

2

(

𝐶𝐶0

𝑋𝑋
−

𝑄̄𝑄

𝐴𝐴

)

(dif fusive limit),

2

(

𝐶𝐶3

𝑋𝑋3
−

𝑄̄𝑄

𝐴𝐴

)

(exchange limit),
� (5b)

where only the two limiting cases are considered.

The PDF, indicated from now on by p (x, t), satisfies the Fokker-Planck equation (Gardiner, 2002)

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= −

𝜕𝜕

𝜕𝜕𝜕𝜕
(𝑓𝑓 (𝑥𝑥)𝑝𝑝) +

𝜎𝜎
2
𝑋𝑋

2

𝜕𝜕
2
𝑝𝑝

𝜕𝜕𝜕𝜕2
,� (6)

on the domain (x, t) ∈ [0, 𝐴𝐴 ∞ ] × [0, 𝐴𝐴 ∞ ] with p → 0 for x → 𝐴𝐴 ∞ . The equilibrium solution pe(x) of Equation 6 is 
given by

𝑝𝑝𝑒𝑒(𝑥𝑥) = 𝑁𝑁exp

(

∫
𝑥𝑥

0

2

𝜎𝜎
2
𝑋𝑋

𝑓𝑓 (𝑠𝑠) 𝑑𝑑𝑑𝑑

)

� (7)

and N is a normalization constant such that 𝐴𝐴 ∫ ∞

0
𝑝𝑝𝑒𝑒(𝑥𝑥)𝑑𝑑𝑑𝑑 = 1 .

For the deterministic exchange limit case (σX = 0), and the value of Kv = 5.5 × 10 −4 m 2s −1 chosen, the model 
gives a salt intrusion length of X = 79.1 km. A typical time series of salt intrusion length for σX = 0.03 (km s −1/2) 
is shown in Figure 3a. The histogram and analytical PDF (Equation 7, red curve) are plotted in Figure 3b. Under 
constant river discharge X is positively skewed, with large positive excursions of X, due to the nonlinear processes 
in the salt balance equation. For the deterministic diffusive limit, and the value of Kh = 2,600 m 2s −1 chosen, the 
model gives a salt intrusion length of X = 79.5 km. For σX = 0.03 (km s −1/2) the results show similar positive 
skewness (Figures 3c and 3d) as in the exchange flow case, but with a larger variance.

The mechanism explaining the positive skewness is the fact that the damping of the fluctuations in salt intru-
sion length (with respect to the mean), say indicated by 𝐴𝐴 𝑋̃𝑋 , is expressed as the derivative of the function f(X) in 
Equation 5b at the mean salt intrusion length 𝐴𝐴 𝑋̄𝑋 . This results from linearization of the Equation 5b around 𝐴𝐴 𝑋̄𝑋 , 
resulting in an equation 𝐴𝐴 𝐴𝐴𝑋̃𝑋 ∼ 𝜆𝜆𝑋̃𝑋𝑋𝑋𝑋𝑋 , where λ is a damping coefficient. For the diffusive limit, λ is proportional to 

𝐴𝐴 −𝐶𝐶0∕𝑋̄𝑋2 . If 𝐴𝐴 𝑋̄𝑋 is large, then λ is small and so large excursions of X can occur. If 𝐴𝐴 𝑋̄𝑋 is small, there is large damping, 
preventing large excursions. For the exchange limit, the damping is proportional to 𝐴𝐴 −𝐶𝐶3∕𝑋̄𝑋4 and hence a similar 
reasoning explains the positive skewness.
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Note that a positively skewed distribution in the salt intrusion length is not seen in the salt intrusion length meas-
urements in Figure 2d. Below, we will investigate whether variability in the river discharge Q might explain the 
observed negative skewness.

3.2.  Stochastic Qt: Additive Noise

To consider the effects of additive noise in the river discharge Q, with mean 𝐴𝐴 𝑄̄𝑄 , on X we choose μQ and σQ in 
Equation 4b as

𝜇𝜇𝑄𝑄(𝑡𝑡𝑡 𝑡𝑡𝑡𝑡) =
𝑄̄𝑄 −𝑄𝑄𝑡𝑡

𝜏𝜏
� (8a)

𝜎𝜎𝑄𝑄(𝑡𝑡𝑡 𝑡𝑡𝑡𝑡) = 𝜎𝜎𝑄̄𝑄� (8b)

where τ (s −1) is a damping time scale and σ (s −1/2) a constant normalized standard deviation. With introduction of 
the new variable 𝐴𝐴 𝐴𝐴𝑡𝑡 =

(

𝑄𝑄𝑡𝑡 − 𝑄̄𝑄
)

∕𝑄̄𝑄 , the equations for Xt and Yt become

𝑑𝑑𝑑𝑑𝑡𝑡 =

⎧

⎪

⎨

⎪

⎩

2

(

𝐶𝐶0

𝑋𝑋𝑡𝑡

−
𝑄̄𝑄(1 + 𝑌𝑌𝑡𝑡)

𝐴𝐴

)

𝑑𝑑𝑑𝑑 + 𝜎𝜎𝑋𝑋𝑑𝑑𝑑𝑑
(1)

𝑡𝑡
(diffusive limit),

2

(

𝐶𝐶3

𝑋𝑋
3
𝑡𝑡

−
𝑄̄𝑄(1 + 𝑌𝑌𝑡𝑡)

𝐴𝐴

)

𝑑𝑑𝑑𝑑 + 𝜎𝜎𝑋𝑋𝑑𝑑𝑑𝑑
(1)

𝑡𝑡
(exchange limit),

� (9a)

𝑑𝑑𝑑𝑑𝑡𝑡 = −
𝑌𝑌𝑡𝑡

𝜏𝜏
𝑑𝑑𝑑𝑑 + 𝜎𝜎𝜎𝜎𝜎𝜎

(2)

𝑡𝑡
.� (9b)

In this case, Yt is an Ornstein-Uhlenbeck process (or red noise process) with equilibrium covariance function 
proportional to exp (−t/τ) (Mikosch, 2000). The equilibrium PDF of Qt is Gaussian with mean 𝐴𝐴 𝑄̄𝑄 and variance            

𝐴𝐴 𝑄̄𝑄
2
𝜏𝜏𝜏𝜏

2∕2 .

We consider the two limiting cases for the San Francisco Bay estuary, with τ = 10 (days) and σ = 10 −4 (s −1/2). 
Indeed, the simulated Q (Figures 4a and 4b) has a near-Gaussian distribution (a longer time series is needed to 

Figure 3.  (a) Time series of the salt intrusion length X for the constant Q, San Francisco Bay case for σX = 0.03 (km s −1/2) 
in the exchange limit. (b) Histogram of the time series in (a) with mean 84.4 km, standard deviation 14.7 km and skewness 
0.63. The analytic PDF (7) is the red curve. (c)–(d) Same as (a) and (b) but then for the diffusive limit and with σX = 0.03 
(km s −1/2). In this case, we find a mean 87.8 km, standard deviation 24.5 km and skewness 0.51.
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obtain a zero skewness). In the exchange limit (Figures 4c and 4d), there is a slight positive skewness in the results 
for X due to the same mechanism as in the constant Q case (Section 3.1). The standard deviation of both Q and X 
increases substantially with increasing τ (results not shown) as is expected from the Ornstein-Uhlenbeck process 
for Q. The results for the diffusive limit (Figures 4e and 4f) are very similar to the exchange flow case with again 
a larger variance in the distribution for X.

White noise is obtained in the limit τ → 0 and Qt can be written as

𝑄𝑄𝑡𝑡 = 𝑄̄𝑄(1 − 𝜎𝜎𝜎𝜎 (𝑡𝑡)) → 𝑌𝑌𝑡𝑡 = −𝜎𝜎𝜎𝜎 (𝑡𝑡),� (10)

where ζ(t) is a white noise (Mikosch, 2000) process (zero mean and delta correlated). The equation for Xt then 
becomes

𝑑𝑑𝑑𝑑𝑡𝑡 = 𝑓𝑓 (𝑋𝑋𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝜎𝜎𝑋𝑋𝑑𝑑𝑑𝑑
(1)

𝑡𝑡
+ 2

𝑄̄𝑄

𝐴𝐴
𝜎𝜎𝜎𝜎𝜎𝜎

(2)

𝑡𝑡
,� (11a)

Figure 4.  (a) Time series of river discharge Q for red noise with τ = 10 days and σ = 10 −4 (s −1/2). (b) Histogram of the time 
series of (a) with mean 892.6 m 3s −1, standard deviation 58.6 m 3s −1 and skewness 5.7 × 10 −2. (c) Time series of the salt 
intrusion length X in the exchange limit case; note that σX = 0. (d) Histogram of the time series in (c) with mean 79.2 km, 
standard deviation 1.4 km and skewness 3.6 × 10 −2. (e) Same as (c) but for the diffusive limit case. (f) Histogram of the time 
series in (e) with mean 79.6 km, standard deviation 3.3 km and skewness 5.1 × 10 −2.
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𝑓𝑓 (𝑋𝑋) =

⎧

⎪

⎨

⎪

⎩

2

(

𝐶𝐶0

𝑋𝑋𝑡𝑡

−
𝑄̄𝑄

𝐴𝐴

)

, (diffusive limit).

2

(

𝐶𝐶3

𝑋𝑋
3
𝑡𝑡

−
𝑄̄𝑄

𝐴𝐴

)

, (exchange limit).
� (11b)

Hence, when only a single realisation of the Wiener process is considered (W (1) = W (2)), the white noise case is 
the same as the constant Q case with 𝐴𝐴 𝐴𝐴

′
𝑋𝑋
= 𝜎𝜎𝑋𝑋 + 2𝜎𝜎𝑄̄𝑄∕𝐴𝐴 and hence the results are similar to those in Section 3.1 

(and hence not shown).

3.3.  Varying Qt: Multiplicative Noise

Next, the noise in the river discharge is assumed proportional to Q itself. This is considered to be a reasonable 
assumption (Hoogendoorn & Weltje, 2007) as in case of large discharge, many sources of discharge are involved 
and hence fluctuations are also large. For small discharge, there are only a few sources and fluctuations are 
smaller. To obtain pure multiplicative noise, we choose in Equation 4b.

𝜇𝜇𝑄𝑄(𝑡𝑡𝑡 𝑡𝑡𝑡𝑡) =
𝑄̄𝑄 −𝑄𝑄𝑡𝑡

𝜏𝜏
� (12a)

𝜎𝜎𝑄𝑄(𝑡𝑡𝑡 𝑡𝑡𝑡𝑡) = 𝜎𝜎
(

𝑄𝑄𝑡𝑡 − 𝑄̄𝑄
)

� (12b)

with constant τ and constant σ. Again with 𝐴𝐴 𝐴𝐴𝑡𝑡 =
(

𝑄𝑄𝑡𝑡 − 𝑄̄𝑄
)

∕𝑄̄𝑄 , this gives

𝑑𝑑𝑑𝑑𝑡𝑡 = 𝜇𝜇𝜇𝜇𝑡𝑡𝑑𝑑𝑑𝑑 + 𝜎𝜎𝜎𝜎𝑡𝑡𝑑𝑑𝑑𝑑
(2)

𝑡𝑡
.� (13)

with the notation μ = −1/τ to make the formulas below easier. The stochastic model for Yt (which is a geometric 
Brownian motion process in the It𝐴𝐴 𝐴𝐴𝐴 case), has a corresponding Fokker-Planck equation

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= −

𝜕𝜕

𝜕𝜕𝜕𝜕
(𝜇𝜇𝜇𝜇𝜇𝜇) +

𝜕𝜕
2

𝜕𝜕𝜕𝜕2

(

𝑦𝑦
2
𝜎𝜎
2

2
𝑝𝑝

)

.� (14)

The time-dependent solution p (y, t), for y ≥ 0, with initial condition p (y, 0) = p0(y) is given by

𝑝𝑝(𝑦𝑦𝑦 𝑦𝑦) =
𝑝𝑝0(𝑦𝑦)

𝑦𝑦

√

2𝜋𝜋𝜋𝜋2𝑡𝑡

𝑒𝑒
−

(

ln 𝑦𝑦−𝜇𝜇𝜇𝜇+
1

2
𝜎𝜎
2
𝑡𝑡

)2

2𝜎𝜎2𝑡𝑡 ,
� (15)

and hence the stochastic variable Zt = ln Yt is normally distributed with mean μt − σ 2t/2 and variance σ 2t. The 
mean (and other moments) of this distribution are thus not stationary, which is not a satisfactory model for river 
discharge (as also acknowledged in Hoogendoorn & Weltje, 2007).

To obtain stationary statistics, we consider the Correlated Additive-Multiplicative (CAM) noise model where the 
PDF is of power-law type (Castellana et al., 2018; Sura et al., 2001). Suggestions for power-law distributions of 
river discharge have also appeared frequently in the literature (Bowers et al., 2012) and see references in Livina 
et al. (2003). The equation for Yt in this case becomes

𝑑𝑑𝑑𝑑𝑡𝑡 = 𝜇𝜇𝜇𝜇𝑡𝑡𝑑𝑑𝑑𝑑 + (𝜎𝜎𝐴𝐴 + 𝜎𝜎𝑀𝑀𝑌𝑌𝑡𝑡)𝑑𝑑𝑑𝑑
(2)

𝑡𝑡
,� (16)

with two noise amplitudes σA (additive) and σM (multiplicative). The additive component could arise from random 
storage of water in a river due to soil or vegetation variations (Hickin, 1984) in addition to human induced varia-
tions (all independent of the river discharge itself). The corresponding Fokker-Planck equation to Equation 16 is

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= −

𝜕𝜕

𝜕𝜕𝜕𝜕
(𝜇𝜇𝜇𝜇𝜇𝜇) +

1

2

𝜕𝜕
2

𝜕𝜕𝜕𝜕2

[

(𝜎𝜎𝐴𝐴 + 𝜎𝜎𝑀𝑀𝑦𝑦)2𝑝𝑝
]

.� (17)

The equilibrium PDF for y > − σA/σM is given by (Castellana et al., 2018; Sura et al., 2001)

𝑝𝑝𝑒𝑒(𝑦𝑦) = 𝑁𝑁exp

{

2𝜇𝜇

𝜎𝜎
2
𝑀𝑀

[(

1 −
𝜎𝜎
2
𝑀𝑀

𝜇𝜇

)

ln(|𝜎𝜎𝑀𝑀𝑦𝑦 + 𝜎𝜎𝐴𝐴|) +
𝜎𝜎𝐴𝐴

𝜎𝜎𝑀𝑀𝑦𝑦 + 𝜎𝜎𝐴𝐴

]}

� (18)

 19447973, 2023, 7, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
034454 by U

trecht U
niversity L

ibrary, W
iley O

nline L
ibrary on [27/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Water Resources Research

DIJKSTRA ET AL.

10.1029/2023WR034454

9 of 14

and pe(y) = 0 when y ≤ −σA/σM; here N is again a normalization constant such that the integral over pe(y) is 
unity.

By coupling Equation 16 to the stochastic salt intrusion model Equation 9a, we can systematically address the 
effects of the multiplicative noise. Note that for σM = 0, we recover the additive noise case with a damping 
time scale τ and noise amplitude σA = σ. Results are shown in Figure 5 for τ = 10 days, σA = 10 −4 (s −1/2) and 
σM = 5 × 10 −4 (s −1/2). As soon as multiplicative noise is present, the negative skewness in the PDF of X is found in 
the exchange limit (Figures 5c and 5d) under a positive skewness in Q (Figures 5a and 5b). This can be explained 
by the fact that the noise-driven excursions in Q become proportional to the discharge, leading to large positive 
excursions in the discharge and consequently negative ones in the salt intrusion length. Similar results are also 
found in the diffusive limit case (Figures 5e and 5f), but the PDF for salt intrusion length in this case has a larger 
spread than that in the exchange flow case.

Figure 5.  (a) Time series of river discharge Q for Correlated Additive-Multiplicative noise with τ = 10 days and σA = 10 −4 
(s −1/2) and σM = 5 × 10 −4 (s −1/2). (b) Histogram of the time series of (a) with mean 892.6 m 3s −1, standard deviation 61.3 m 3s −1 
and skewness 1.3. (c) Time series of the salt intrusion length X in the exchange limit case; note that σX = 0. (d) Histogram of 
the time series in (c) with mean 79.2 km, standard deviation 1.4 km and skewness −1.02. (e) Same as (c) but for the diffusive 
limit case. (f) Histogram of the time series in (e) with mean 79.7 km, standard deviation 3.4 km and skewness −0.88.
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4.  Results: San Francisco Bay Case
So far, we have only considered the idealized exchange and diffusive limits and focussed on typical qualitative 
results, not worrying about the precise amplitudes of the noise and neglecting any seasonal dependence of the 
river discharge. To investigate whether the stochastic model defined by Equation 4 is able to capture the statistics 
of the San Francisco Bay salt intrusion lengths, as shown in Section 2.1, we turn to the model with CAM noise as 
in Section 3.3 and add a seasonal component in the river discharge forcing. The equations then become

𝑑𝑑𝑑𝑑𝑡𝑡 = 2

(

𝐶𝐶3

𝑋𝑋
3
𝑡𝑡

+
𝑄𝑄𝑡𝑡

𝐴𝐴

(

−1 +
𝐶𝐶2

𝑋𝑋
2
𝑡𝑡

)

+
𝐶𝐶0

𝑋𝑋𝑡𝑡

+

(

𝑄𝑄𝑡𝑡

𝐴𝐴

)2
𝐶𝐶1

𝑋𝑋𝑡𝑡

)

𝑑𝑑𝑑𝑑 + 𝜎𝜎𝑋𝑋𝑑𝑑𝑑𝑑
(1)

𝑡𝑡
,� (19a)

𝑑𝑑𝑑𝑑𝑡𝑡 = (𝜇𝜇𝜇𝜇𝑡𝑡 + 𝑆𝑆𝑌𝑌 (𝑡𝑡))𝑑𝑑𝑑𝑑 + (𝜎𝜎𝐴𝐴 + 𝜎𝜎𝑀𝑀𝑌𝑌𝑡𝑡)𝑑𝑑𝑑𝑑
(2)

𝑡𝑡
,� (19b)

where the seasonal component is represented by SY(t). Parameterizations for the viscosities and diffusivities used 
are (Biemond et al., 2022)

𝐾𝐾𝑣𝑣 = 7.28 10−5 × 𝑈𝑈𝑇𝑇𝐻𝐻 ; 𝐴𝐴𝑣𝑣 =
𝐾𝐾𝑀𝑀

𝑆𝑆𝑆𝑆
; 𝐾𝐾ℎ = 0.035 × 𝑈𝑈𝑇𝑇𝐻𝐻𝐻� (20)

where UT = 0.85 (ms −1) is the tidal current amplitude and Sc = 2.2 is the Schmidt number.

To estimate parameters in the stochastic river discharge model Equation  19b, we first analyze the seasonal 
mean in the observed time series and the probability density of the seasonally filtered data, the latter calcu-
lated by differencing the original time series. The seasonal cycle of the river discharge Q shows maximal 
values in December-January and minimal values around August-September (Figure 6a). We fit this seasonal 
cycle rather roughly with a simple function 𝐴𝐴 𝐴𝐴𝑄𝑄(𝑡𝑡) − 𝑄̄𝑄 = 𝑎𝑎sin(2𝜋𝜋𝜋𝜋∕𝑇𝑇 ) + 𝑏𝑏cos(2𝜋𝜋𝜋𝜋∕𝑇𝑇 ) , with coefficients 
a = 203 m 3s −1, b = 520 m 3s −1 and T is 1 year. This results in the function SY(t) = α cos (2πt/T) + β sin (2πt/T), 
where 𝐴𝐴 𝐴𝐴 = −2𝑎𝑎𝑎𝑎∕

(

𝑇𝑇 𝑄̄𝑄
)

= −4.38 × 10−8 (s −1) and 𝐴𝐴 𝐴𝐴 = 2𝜋𝜋𝜋𝜋∕
(

𝑇𝑇 𝑄̄𝑄
)

= 1.12 × 10−7 (s −1).

Figure 6.  (a) Mean seasonal cycle of the time series in Figure 2a. (b) Time series of the seasonally filtered data. (c) 
Histogram of the time series in (c). (d) Variation of the noise amplitudes σA (drawn) and σM (dashed), both in 𝐴𝐴 𝐴𝐴

−1∕2 , in the 
Correlated Additive-Multiplicative model versus the decay time scale τ in the autocorrelation function.
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The seasonally filtered time series are shown in Figure 6b and its histogram (Figure 6c) shows a non-Gaussian 
shape. The decay time scale τ is determined from the computation of the autocorrelation function of the time 
series in Figure 6b and gives about 20 days. This appears to be reasonable value considering the adjustment 
time  scales of river discharge to large rainfall anomalies (Savenije,  2005). Having determined τ, this fixes 
μ = −1/τ. We next fit a CAM noise model to this time series, by assuming that the seasonally filtered data are 
stationary and hence the moments Mj, j = 1, …3 of this distribution can be fitted to those of Equation 18 which 
are given by (Castellana et al., 2018)

𝑀𝑀1 = 0 ; 𝑀𝑀2 = −
𝜎𝜎
2
𝐴𝐴

2𝜇𝜇 + 𝜎𝜎
2
𝑀𝑀

; 𝑀𝑀3 =
2𝜎𝜎3

𝐴𝐴
𝜎𝜎𝑀𝑀

(

2𝜇𝜇 + 𝜎𝜎
2
𝑀𝑀

)(

𝜇𝜇 + 𝜎𝜎
2
𝑀𝑀

) .� (21)

The variation of the coefficients σA and σB with the chosen decay time scale τ is shown in Figure 6d. Because the 
amplitude σM is larger than σA, this indicates that multiplicative noise is important to explain the river discharge 
statistics (of course, under the assumptions of a CAM noise stochastic model).

One can now systematically study the behavior of the salt intrusion model by first considering the case 
μ = σM = σA = σX = 0 to check whether the seasonal cycle is well simulated. As another case, the seasonal cycle 
can be switched off (α = β = 0) to check whether the distribution in Y as in Figure 6c is generated, with the esti-
mated values of μ, σA, and σM. Although we do not show results of these simulations here, the results are instruc-
tive to determine how noise and seasonal forcing contribute to variability in salt intrusion.

With full seasonal cycle, τ = 20 days, σX = 0 and the fitted values of σA = 3.66 × 10 −4 (s −1/2) and σM = 1.05 × 10 −3 
(s −1/2), the results for the river discharge and salt-intrusion length X2 = 0.94X are shown in Figure 7. The river 
discharge distribution (cf. Figure 2c) is relatively well represented, although the large extremes in discharge (cf. 
Figure 2a) are not captured. Also the salt intrusion length PDF (cf. Figure 2d) is reasonably captured, in particular 
the negative skewness. No effort was undertaken to further optimize the parameters to get an even closer corre-
spondence with the observed salt intrusion length PDF, as also the salt intrusion model is quite idealized.

Figure 7.  (a) Full model with Correlated Additive-Multiplicative noise for the San Francisco Bay estuary, with τ = 20 days, 
σX = 0, σA = 3.66 × 10 −4 (s −1/2) and σM = 1.05 × 10 −3 (s −1/2). (a) Time series of Q. (b) Histogram of the time series in (a) with 
mean 887.4 m 3s −1, standard deviation 517.7 m 3s −1 and skewness 4.1. (c) Time series of X2. (d) Histogram for the time series 
in (c) with mean 74.3 km, standard deviation 8.1 km and skewness −1.1.
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Changes in the damping time scale τ affect the PDF quantitatively but in the range of realistic values 
(τ = 10 − 30 days), the negative skewness in X2 is still captured well. This shows that the stochastic model in 
Section 2.2, with CAM noise in the river discharge, is capable to efficiently represent the statistics of both river 
discharge and salt intrusion length. A nonzero σX will add to the variability of the salt intrusion length, but as its 
magnitude is likely to be very small (Savenije, 2005), we do not consider this effect here.

5.  Summary and Discussion
In many salt intrusion modeling studies in estuarine environments, deterministic models are used and the position 
of the salt intrusion front is estimated given forcing conditions, such as river discharge (Martyr-Koller et al., 2017). 
Focus is often on the different flow regimes which can appear in parameter space (Dijkstra & Schuttelaars, 2021; 
Geyer & MacCready, 2014) or on the transient response to river discharge variability (Biemond et al., 2022; 
Monismith et  al.,  2002). Indeed, to determine the statistics of the salt intrusion length, one can force any 
salt-intrusion model with an observed time series of river discharge (or a statistical model of such a time series) 
and investigate the salt response. In this paper, we introduced an idealized stochastic model of the combined river 
discharge behavior and salt intrusion length in estuaries. Instead of just prescribing the river discharge, stochastic 
models of river discharge were proposed, following up on the work of Hoogendoorn and Weltje (2007) and Livina 
et al. (2003). By doing so, the effects of the stochastic properties in the river discharge time series on the statistics 
(e.g., Gaussian vs. non-Gaussian) of the salt intrusion length can be systematically studied.

Key to formulate such stochastic models is the representation of the noise in the forcing and/or the stochastic 
representation of non-resolved processes, such as mixing. In this study, we restricted the analysis to stochastic 
representation of the river discharge forcing for which we used well-known stochastic models (e.g., red noise) 
with its special limiting cases (e.g., white noise). This representation was combined with a stochastic conceptual 
nonlinear salt-intrusion model. Only diffusion processes were used in the stochastic models to which standard 
Itô calculus can be applied. The use of additive and multiplicative noise processes in the river discharge model 
was interpreted through the representation of specific processes, where the additive component is viewed as the 
representation of the random variations in water storage, for example, due to vegetation changes (Hickin, 1984), 
and the multiplicative component through the variations of discharge due to multiple sources (Hoogendoorn & 
Weltje, 2007). In the salt-intrusion results, we focussed on qualitative properties of the probability density func-
tion (PDF) of the salt intrusion length, in particular on its non-Gaussian properties (e.g., skewness). In specific 
cases, analytical representations of the PDF could be obtained by solving the corresponding Fokker-Planck 
equation.

Two dynamically limiting cases, the exchange limit and the diffusive limit, were considered in the salt balance 
equation. When, for each limiting case, fluctuations in the river discharge are modeled as red noise (i.e., 
with a Gaussian PDF) this leads to a positive skewness in the salt intrusion length PDF. The reason is that 
the salt-intrusion responds differently to small river discharges than to large ones. The degree of the skewness 
depends on the decorrelation time scale of the river discharge. For Correlated Additive-Multiplicative (CAM) 
noise (Sura et al., 2001) in the river discharge, the skewness becomes strongly negative because noise in the river 
discharge is strongly amplified at large discharges and leads to large negative excursions in the salt intrusion 
length. The CAM noise model is generalizing earlier work on stochastic river discharge modeling (Hoogendoorn 
& Weltje, 2007), although the actual time series of many rivers may show more complicated behavior (Livina 
et al., 2003).

With a seasonal forcing and CAM noise parameters based on observations, the statistics of salt intrusion in the 
San Francisco Bay estuary could be reasonably captured and understood. We reiterate that the Dayflow data has 
several limitations (Section 2.1) in particular on sub-monthly values of river discharge and salt intrusion length 
(Monismith, 2016). As we focus in this paper on the multi-year statistical properties, these data limitations will 
not have much effect on these results as variability on sub-monthly time scales has a much smaller amplitude 
than that on the longer time scales. The salt intrusion model also has limitations in describing the salt intrusion in 
the San Francisco Bay estuary. To provide a more detailed description of the statistics of the salt intrusion of this 
particular example other, for example, more empirical models (Monismith, 2017), can be used.

The approach can be extended to compute the two-dimensional PDF in the river discharge, salt intrusion length 
space, by solving a spatially two-dimensional Fokker-Planck equation, and can then be compared to results on 
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functional relationships between these variables, such as provided in Figure 4 of Monismith et al. (2002). The 
methodology was also applied to the Quadalquivir giving qualitatively similar results for the PDFs as for the 
San Francisco Bay case. The observed PDFs of the Quadalquivir, however, have a bimodal shape due to the 
water management of the estuary and hence are not fully captured by our model. Hence, if one is interested in 
reproducing the detailed statistical properties of salt intrusion in a specific estuary, one may have to turn to more 
complicated stochastic models for river discharge, for example, with help of nonlinear time series analysis meth-
ods (Livina et al., 2003). In principle the methodology presented in this paper can also be applied to establish a 
statistical relationship between forcing conditions (e.g., discharge) and salinity in a branched system. However, 
this would require considering other quantities as done now, since the extent of salt intrusion and discharge in 
a branched system differs per branch. Moreover, the model would need modifications to be suitable to simulate 
branched systems. Physics that need to be included would be quite different when the salt intrusion extends 
beyond a bifurcation.

Further work could focus on the application to more detailed salt intrusion models The stochastic approach can 
certainly be extended to 2DV models, which are formulated by stochastic partial differential equations. Tech-
niques exist to efficiently solve such equations numerically. For instance, to decrease the dimensionality of the 
system, a Karhunen-Loeve expansion can be performed on the stochastic variables (Holmes et al., 2012; Sapsis 
& Lermusiaux, 2009). Also the class of stochastic processes can be extended, for example, with the inclusion of 
jump processes (Hanson, 2007) in addition to diffusion processes, to generate possibly better representations for 
river discharge which are related to extreme rainfall events or extreme droughts. Note that once such a stochastic 
model has been developed, one can use it to study the long-term changes in salt intrusion length statistics, for 
example, due to climate change, by determining how the parameters in the stochastic model of the river discharge 
will change. In this way, also changes in extremes in salt intrusion length under climate change can be efficiently 
determined.

Although the intend of the paper was to introduce the stochastic methodology in the estuary physics community, 
we think that it can also be of practical use. One problem that could be addressed is how to change the statistics 
of the river discharge Q (which could in reality be achieved through upstream water regulation) to obtain statistics 
of X2 that obey user-specified criteria. For example, an explicit criterion could be that at a specific spatial distance 
X* from the estuary mouth, the probability that X2 > X* is below a given critical value. Likewise, one could use 
this to demand that the mean time interval of events during which X2 > X* is below a critical value. In this way, 
the methodology may eventually be useful for water management purposes.

Data Availability Statement
The measured river discharge and salt intrusion length, used in the analysis of this paper, are retrieved from 
https://data.cnra.ca.gov/dataset/dayflow for the San Francisco Bay. All codes to generate the results can be 
downloaded (Dijkstra et al., 2023) from https://zenodo.org/record/8006697#.ZH8M8C8RrEk, DOI: https://doi.
org/10.5281/zenodo.8006697.
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