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Abstract—For egocentric vision tasks such as action recognition, there is a relative scarcity of labeled data. This increases the risk

of overfitting during training. In this paper, we address this issue by introducing a multitask learning scheme that employs related tasks

as well as related datasets in the training process. Related tasks are indicative of the performed action, such as the presence of objects

and the position of the hands. By including related tasks as additional outputs to be optimized, action recognition performance typically

increases because the network focuses on relevant aspects in the video. Still, the training data is limited to a single dataset because

the set of action labels usually differs across datasets. To mitigate this issue, we extend the multitask paradigm to include datasets

with different label sets. During training, we effectively mix batches with samples from multiple datasets. Our experiments on egocentric

action recognition in the EPIC-Kitchens, EGTEAGaze+, ADL and Charades-EGO datasets demonstrate the improvements of our

approach over single-dataset baselines. On EGTEA we surpass the current state-of-the-art by 2.47 percent. We further illustrate the

cross-dataset task correlations that emerge automatically with our novel training scheme.

Index Terms—Egocentric vision, action recognition, multi-dataset training, multitask learning

Ç

1 INTRODUCTION

CLASSIFICATION models for egocentric vision tasks such as
action recognition are predominantly trained using

supervised learning schemes. While action recognition
from first- and third-person videos can be assumed to
have a comparable complexity, labeled datasets for the
third-person perspective, (e.g., [1], [2], [3], [4], [5], [6]) are
typically orders of magnitude larger than egocentric data-
sets, (e.g., [7], [8], [9], [10], [11], [12], [13], [14], [15], [16],
[17], [18], [19], [20]).

While more general egocentric video datasets exist, (e.g.,
[7], [8], [15], [21]), they focus on longer-term activities such
as walking [15], socializing [10], [11], [16] or doing sports
[12]. The recognition of the actions that make up those activ-
ities, such as ‘cut a carrot’ and ‘open the fridge’, requires a
more granular analysis over shorter video fragments. Ego-
centric video datasets that address such action recognition
tasks are homogeneous in terms of the action domain,
recording environment and the recorded actors. While there
is a steady progression in the variation within the datasets
that have been introduced over the years, each dataset has a
focus on a specific task or application.

ADL [9] was one of the first egocentric video datasets
that focused on human activities in indoor environments.
Participants performed daily activities such as cooking and
cleaning in their homes with annotations of the temporal
range of activities, objects used and the locations in the
house [22]. To increase granularity and specialization in
cooking activity recognition, the EGTEA datasets were
introduced [14], [23] where participants followed narrated
recipes for meal preparation in their kitchens. To scale up
the dataset size and remove the use of scripts, the EPIC-
Kitchens dataset [19] introduced a culturally diverse set of
videos with a large variety of actions and interactions with
cooking ingredients and kitchen-related objects. Additional
modalities such as object presence are predominantly used
both during training and at test time. While the perfor-
mance of some detection tasks such as object detection is
impressive, the requirement of additional inputs for testing
is a limiting factor.

Obtaining egocentric videos with relevant labels for vari-
ous tasks is labor-intensive, and there is a need for learning
schemes that can reduce overfitting without requiring more
annotated data. In this paper, we introduce such a scheme
that uses annotations from both related tasks and related
datasets. Using an extended multitask learning (MTL)
scheme, we exploit annotations of related tasks during
training, while only video data are required for testing. We
base our work on ideas developed in [24], where joint train-
ing with related video recognition tasks such as object,
hand and gaze detection have been shown to improve
action recognition performance. We investigate the concept
of task relatedness [25]. Our premise is that common actions
in different datasets such as ‘cut’ and ‘open’ are associated
by the network and the same neural pathways are reused,
producing efficient and robust multi-purpose models. This
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provides an effective and efficient way to utilize additional
training data from diverse sources. We allow for video data
from other datasets to be used in the training process, and
treat the issue of different label sets as additional tasks. Our
novel learning scheme is termed Multi-Dataset, Multitask
Learning (MD-MTL).

To demonstrate the benefits of our approach, we adapt a
3D-convolutional neural network [26] to include additional
task-specific output layers [24] for the tasks of other datasets.
In MD-MTL, each epoch consists of the data of the combined
training sets, while each batch comprises data randomly cho-
sen out of all datasets, to allow for batch loss calculation that
represents the full spectre of available domains. We also
experiment with other batch division strategies.

We experiment with combinations of data from EPIC-
Kitchens [19], EGTEA Gaze+ [14] and ADL [9] to demon-
strate the effectiveness of our multi-dataset, multitask train-
ing scheme for egocentric action recognition. Specifically,
regarding ADL we investigate the potential improvements
on longer term activity recognition performance by utilizing
the short-term actions from EPIC and EGTEA. Lastly, we
use Charades-EGO [8] to investigate the benefits from asso-
ciated third-person videos in egocentric action recognition.

The contributions of this paper are the following:

� We extend Multitask Learning (MTL) to include
training data from multiple datasets (MD-MTL) with
a simple but effective network modification.

� We introduce a batch formation scheme for on-the-
fly association of dataset-specific samples to dataset-
specific tasks.

� We demonstrate the improvements of MD-MTL in
classification performance for the main action recog-
nition tasks. We also highlight the reuse of the same
pathways for related classes across datasets.

In Section 2 we review recent advances in video action
recognition, multitask learning, and multi-dataset training.
In Section 3 we introduce MD-MTL. In Section 4 we describe
our experiments and discuss the results in Section 5. In Sec-
tion 6 we conclude the paper.

2 RELATED WORK

We first provide an overview of video action recognition,
with a focus on egocentric action and activity recognition.
In Section 2.2 we discuss advances in multitask learning
and in Section 2.3 we review related work on multi-dataset
training.

2.1 Video Activity Recognition

Since the introduction of large-scale image [27] and video
[1], [2] datasets, convolutional neural networks (CNNs)
have consistently produced state-of-the-art results [2], [28],
[29], [30], [31], [32], [33], [34], [35], [36] for image and video
recognition tasks. Likewise, CNN-based approaches have
been adopted and adapted to tackle first-person video
understanding [37], [38], [39], [40], [41], [42], [43].

Egocentric action recognition has seen incremental
improvements over the years with the prominent works of
[9], [14], [37], [38], [40], [44], [45], [46], [47]. Originally, fea-
ture-based techniques [37], [48], [49], [50] were developed to

explicitly model and capitalize on the inherent characteristics
of first-person videos such as motions [37], [45], [48], [50],
[51], [52], ego-motion [37], [49], [53], human gaze [37], [52],
[53], [54], [55] and the presence and movement of hands [9],
[37], [44], [49], [55] and objects [9], [37], [44], [49], [55].

The wide use of CNNs in third-person vision was fol-
lowed by their extensive application in egocentric action and
activity recognition [16], [21], [38], [40], [41], [56]. Earlier
approaches handled CNN features as an additional modality
to handcrafted features [49] or as a feature combination
mechanism on previously extracted egocentric features [16].
Fully convolutional approaches viewed action recognition as
a learning-based problem with CNNs being used as appear-
ance [24], [57] and motion [58] feature extractors. More data
hungry methods used multi-stream deep networks that uti-
lized optical flow alongside RGB images as input modalities
[21], [38], [59], [60], [61] to be able to focus on motion. In [61],
[62] optical flow was employed to detect salient regions,
which were cropped from the original RGB frames and were
given to the network as a second, more focused RGB stream.
Other input modalities have been employed including depth
[7], [41], egocentric cues comprising hand [63], [64], [65] and
object regions [64], [66], [67], head motions [63] and gaze-
based saliency maps [63], [65], sensor-based modalities [15],
[56], [59] and sound [43], [68], [69]. In [38], [40] object and
hand localization and segmentationwere intermediate learn-
ing steps that forced the network to focus on important ego-
centric cues prior to action prediction.

Explicit attention modeling mechanisms are increasingly
common in egocentric video action recognition [14], [54], [55],
[65], [66], [70], [71], [72], [73], [74], [75], [76], [77] to influence
the network towards focusing on the significant spatio-tem-
poral features of videos. Self-attention approaches do not
require additional data but learn the spatial or temporal
importance of input video frames with carefully designed
attention layers [70], [73], [75], [76] or dynamically weigh the
importance of input modalities [71]. In [14], [54], [65], [72],
[77], gaze supervision was explicitly required to construct
attention maps to weigh the last layer’s features before classi-
fication. Shen et al. [65] used hand segmentation masks in
addition to gaze to regulate attention onto informative
frames. Finally, in [66] motion- and object-based features
extracted from past frames were forwarded to an attention
mechanism that effectively combined them with the present
and selected the most relevant information to represent the
ongoing action. In ourwork,wemodel video action and activ-
ity recognition with 3D-CNNs to jointly model spatio-tempo-
ral featureswithout requiring additional inputmodalities.

2.2 Multitask Learning

Caruana [25] was one of the first to show the benefits of mul-
titask learning by assigning multiple tasks to be solved
jointly by a single model. Recently, this concept has found
successful application in image and video understanding
tasks [78], [79], [80], [81], [82], [83], [84], [85]. Misra et al. [78],
investigated the number of task-specific layers that should
stem from the backbone network to find the optimal setup to
train task dualities, pairing segmentation with surface nor-
mal prediction and object detection with attribute classifica-
tion. In [83], video captioning with action prediction and
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action performance quality were combined as separate task
outputs. In [79], an object detection scheme was proposed
where action labels were predicted for each detected object
in addition to the object class. In [82], human pose was used
prior to action recognition in an intermediate, secondary
task. In our work, all task outputs are parallel and do not
affect each other, apart from sharing the backbone network.

Another promising direction in multitask learning is
adaptive training. In [80], in every training iteration the gra-
dients were scaled per task to find an optimal solution to be
backpropagated, whereas in [85], network parameters were
randomly selected to be either task-specific or shared across
tasks. In [81], an attention mechanism was applied to weigh
each layer’s activations according to the specified task and
in [84] task-specific attention was modulated at the channel
level. In this work, we treat all tasks equally to assess the
effects of the varied dataset distributions and the comple-
mentarity of tasks in the learning process.

In the egocentric activity recognition domain, Yan et al.
[52] considered the activities performed by each individual
participant as separate tasks where the objective was to
cluster common activities among participants without
supervision. In [38] an object detection and an action classi-
fication task were combined after two separate streams
were individually trained. In [73] the action classifier was
used to bias the classification output of the verb and noun
parts of the action label. In [14], [72] the networks were
trained to produce gaze maps as intermediate tasks which
were applied to the final activations to weigh the action out-
put accordingly. We follow the structure from [24] where a
single network was trained on multiple tasks including clas-
sification, hand detection, and gaze prediction and extend it
to handle tasks originating from different datasets.

2.3 Multi-Dataset Training

Multi-dataset or multi-domain learning is related to transfer
learning in the sense thatwewish to utilize data fromnumer-
ous sources in order to optimize the learning process.
Usually, this is unfeasible due to the lack of universally com-
patible annotations that capture all tasks across datasets [86].
Thus, multi-dataset training refers to the combination of
diverse data sources concurrently during training to jointly
optimize the gradients of a multitask loss from the tasks of
all datasets [87], [88]. Kokkinos [88] proposed UberNet to
tackle the tasks of boundary, semantic boundary and
saliency estimation, surface normal prediction, segmentation
and object detection in a single network. The lack of a dataset
with annotations for all tasks led to a gradient accumulation
update rule that only updated gradients for a task when
enough samples had been seen for it. However, it risked
memory constraints from maintaining task-specific gra-
dients until the threshold was met. Additionally, the gradi-
ent updates for the main block may not be representative of
all the tasks in each training step, affecting the statistics in
the batch normalization layers [89]. To alleviate this issue,
[90] proposed training on interleaved mini-batches per data-
set and the use of group normalization [91] to facilitate net-
work convergence. The main difference in our approach is
that we create mixed batches that enable the network to
grasp information across datasets on every training iteration.

Chong et al. [92] jointly modeled human attention with
separate output layers for gaze and saliency estimation. Each
layer branched-off from a single backbone that was trained
with mixed batches. There were as many backpropagation
steps per batch as the number of available output layers,
which could negatively affect training of the backbone as in
[88]. Guo et al. [93] proposed several approaches to combine
datasets for human pose estimation including the unification
of datasets towards a single prediction task, transfer learning
between datasets in a sequence, and a multitask scheme to
jointly supervise each dataset’s output poses. Of the latter,
outputs were eventually combined with a voting mecha-
nism. This approach used fully compatible datasets, from a
task perspective, making task fusion feasible. We also inves-
tigatemapping related tasks across datasets.

A more related approach to ours [94] considered
concatenating output layers for cross-dataset classification,
but without leveraging the possible class similarities
throughout tasks. Alternatively, [95] performed inter-data-
set experiments on EPIC-Kitchens and EGTEA Gaze+, but
only on the subset of common classes. Our approach is dif-
ferent in that we construct a single model that fully encap-
sulates both datasets. Lastly, [96] considered explicit task
outputs for face attribute classification, with mixed batches
across datasets and masked losses, while attempting to
diversify the learned manifold by adding a domain adapta-
tion output to discriminate the datasets during training. In
contrast, we focus on unifying the learned representations.

3 METHODOLOGY

In this section we describe the extension of a single task net-
work to multitask (MTL) (Section 3.1), and subsequently
describe our process to adapt it to multiple datasets (MD-
MTL) (Section 3.2).

3.1 Multitask Network Structure

We adopt the multitask network with task-specific output
layers (MTL) from [24]. It comprises a 3D-CNN backbone
feature extractor [26] that receives a short video clip and
outputs spatio-temporal features after the last convolutional
layer. We prefer 3D-CNNs because they can handle motion
information from the temporal structure of the video with-
out requiring an additional optical flow input. Recent
approaches to capture motion from RGB, e.g., [35], [69], are
promising developments to further acquire temporal
motion features but these are out of scope for this work.
Fig. 1a shows the MTL network with task-specific layers.

In our MTL setting we define a set of tasks T with a dis-
tinct task-specific output layer for its respective results. For-
mally, for each task t 2 T we define an output function
ftðgðxÞ; utÞ, with gðx; usÞ the shared block, ut the task-specific
parameters, us the shared parameters from g and x the net-
work input. Each task-specific layer comprises a distinct
loss function designed to accommodate the type of task it
represents. We use classification and coordinate regression
tasks. Classification tasks consist of a fully connected layer.
Their inputs are the activations of gðxÞ, followed by an aver-
age pooling operation to reduce the temporal dimension,
and their outputs are the per-class probabilities. To train
classification tasks we use the categorical cross-entropy loss.
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We use coordinate regression tasks in our experiments
(see Section 4) to find egocentric hand locations and estimate
gaze. These are implemented with the numerical coordinate
regression layer, introduced in [97], to predict a coordinate
for every two input frames and extended in [24] to handle 3D
feature volumes as input. The coordinate regression layer
begins with a 3D convolution. The 3D output is split along
the temporal dimension with each slice Z being passed to a
Differential Spatial to Numerical Transform (DSNT) layer
[97] to produce a coordinate for each. In the DSNT layer,
each slice is passed through a softmax activation to produce
a 2D probability distribution Ẑ that represents the abstract
location; the final ðx; yÞ coordinate is taken as the probability
distribution’s expectation for each dimension. To train the
coordinate regression layer we utilize the DSNT loss which
is defined as the euclidean distance between the predicted
(cpÞ and the ground truth (cgtÞ coordinate regularized with
the Jensen-Shannon divergence to smooth the gradients
around the prediction with a factor � ¼ 0:5. Analytically, the
DSNT loss function is given in Equation (1):

Lcoord ¼ �Leucðcp; cgtÞ þ ð1� �ÞJSðẐ k N ðcgt; s2ÞÞ: (1)

3.2 Multi-Dataset Network Adaptation

Our extension from single- to multi-dataset training (MD-
MTL) requires two modifications. The first is to append
task-specific layers for the tasks of the additional datasets

and the second is to adapt the training process to accommo-
date for the induced variation in the mixed training batches.

We handle the additional tasks in the way we would
treat any added task from the initial dataset, i.e., we add
task-specific layers to the shared network block that pro-
duce a distinct output, independent of the other tasks. Simi-
lar to the single-dataset MTL network, each output layer in
MD-MTL utilizes its own loss function for training. A visu-
alization of this extension is given in Fig. 1b.

We need to accommodate for the fact that no samples
within a mixed batch have labels associated with all the
available tasks, since each subset corresponds to a distinct
dataset. Our strategy is to leverage the process of averaging
the loss across a batch, which is commonly employed when
training neural networks with mini-batches.

The premise is that for a batch of size B the loss is calcu-
latedB times and averaged to provide an approximation of a
B-sized mini-batch. Loss averaging is not possible when
batches assimilate different datasets and tasks. In this case,
we subsample each batch based on its origin dataset i and
produce an effective batch per dataset of size bi. Then, we cal-
culate each task’s loss for the appropriate samples only, zero-
ing out those that were forwarded through a task-specific
layer for which there is no available label. The losses are then
averaged over the size of the effective batch bi and gradients
for each task-specific layer are calculated with respect to the
dataset tasks’ losses. Once the per-task gradient approxima-
tion is handled, they are accumulated before being backpro-
pagated through g. Consequently, all tasks are contributing
into training the shared network block regardless of the
number of samples that were taken from each dataset. We
visualize this process in Fig. 2.

Multi-dataset training with mixed batches (instead of
interleaved batches or alternating datasets sequentially)
allows the network to gather gradients from samples repre-
senting the full range of available datasets in a single training
step.Hence, the direction of the gradientwill not be represen-
tative of one dataset as in single dataset training. Instead, it

Fig. 1. We adapt the MTL network structure from [24] to accommodate
the tasks from a range of datasets within a single network. In (a) the net-
work combines task-specific output layers by aggregating the gradients
from each output. In (b) we extend the structure by further attaching
task-specific layers for the additional tasks in the new datasets.

Fig. 2. Mixed-batch loss approximation. A batch is subsampled for each
task. The loss from each task layer is averaged over its dataset’s sam-
ples. Task-specific losses are passed through their respective layers.
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will be biased by all datasets in a ratio defined by the sam-
pling process during batch formulation.We permute all data-
sets and allow the imbalance to be induced in the network.
Due to the similarities of datasets in our experiments, we
expect mixed batches to contain complementary information
and prevent divergence in training. Indeed, we see in Sec-
tion 4.1 evidence of improved performancewhen the datasets
are related and deterioration when they represent a different
domain. In the supplemental material, which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPAMI.2021.3061479, we
visualize and discuss the progression of the training losses.

4 EXPERIMENTS

First we discuss the datasets we experimented with and the
training and evaluation settings. In Section 4.1 we analyze
the experiments with egocentric datasets and in Section 4.3
we delve into a task mapping scheme to capitalize on the
semantic class relationships. In Sections 4.2 and 4.4 we ana-
lyze the mechanics of MD-MTL models to demonstrate the
correlations across tasks from different datasets and in Sec-
tion 4.5 we focus on the extension for datasets between first
and third-person vision. In Section 4.6 we experiment with
additional batch formation strategies. Finally, in Section 4.7
we provide a comparison with the state-of-the-art on EPIC-
Kitchens and EGTEA Gaze+.

Datasets. We design multi-dataset experiments on ego-
centric video datasets EPIC-Kitchens [19], EGTEA Gaze+
[14] and ADL [9], all of which capture activities performed
in homes from the first-person perspective. EGTEA Gaze+
consists of scripted meal preparation activities, whereas
EPIC promotes action variability by encouraging partici-
pants to behave consistently to their routines. Videos from
both datasets take place in kitchens, ensuring homogeneous
locations, and consist of specialized and related sets of short
duration actions such as ‘open’, ‘close’ and ‘cut’. ADL is less
specific in terms of environments and actions, capturing a
predefined set of daily living activities occurring through-
out the participants’ homes, performed in an unscripted
manner. These annotations represent temporally longer
activities such as ‘washing dishes’ or ‘watching tv’, which
makes it harder to represent the whole activity in the short
video segments that are used as input to the network.
Hence, content-wise, EPIC and EGTEA are suitable candi-
dates for our task- and dataset-relatedness experiments in
order to estimate the possible benefits of joint training. On
the other hand, the more varied context of ADL allows us to
investigate whether our multi-dataset training approach
can adapt to a more diverse domain within a single model.

Furthermore, we perform experiments on the Charades-
EGO [8] dataset. It comprises a joint collection of first and
third-person videos. For each third-person video there is an
associated egocentric one, recorded by the same participant
for the same activities and environment. This allows
researchers to model the association between the two video
perspectives. Our aim is not to capture the inter-video asso-
ciations but to examine if a model trained on contrasting
perspectives can be efficiently applied to both, simulta-
neously. Table 1 lists the datasets and their characteristics.

Following [24] we also leverage hand location predic-
tions. They have been found to improve classification per-
formance when included as additional tasks in a multitask
setting, due to the implicit focus on the salient regions. For
the annotations, we synthesize the left and right hand loca-
tion coordinates for each frame of ADL, EGTEA, and EPIC-
Kitchens using the hand detection algorithm presented in
[64]. As shown in [24], these synthetic hand annotations
lead to accurate hand detection models.

Training and Evaluation Settings. For all experiments we
use aMulti-Fiber Network (MFNet) [26] pretrained onKinet-
ics-400 [1] as the backbone feature extractor. It acts as the ini-
tial structure upon which task-specific layers are attached.
Our choice is justified by the fact that it comprises a 3D CNN
structure, able to capture spatio-temporal information with-
out the need for an optical flow stream, with a significantly
lower number of parameters (�8M), for a depth similar to a
3D ResNet-50 (�47M). We train all models with triangular
cyclical learning rate [98] oscillating from 0.0005 to 0.005 and
back within 20 epochs. Our training cycle is repeated three
times, (i.e., 60 epochs) unless otherwise stated. We use sto-
chastic gradient descent for optimization, with Nesterov
momentum (0.9) and weight decay (0.0005). The input for
training is a sequence of 16 frames uniformly sampled from
a 32-frame window randomly chosen to represent the action
segment for an epoch. The selected frames are scaled to 256�
256 and randomly cropped to 224� 224. Additionally, we
perform color augmentations and flip the sequence horizon-
tallywith a 50 percent chance. Even though it is counter-intu-
itive to train a hand detector that identifies left and right
hands with random video flipping, early experiments
showed that it does not affect hand estimation. Lastly, we
use batch size of 32 for both single and multi-dataset experi-
ments, for comparison purposes.

To evaluate an action segment, we select 16 frames from a
32-frame window around the clip’s temporal center. We
resize to 256� 256 and use the 224� 224 center crop. The
indicated performances are derived from the best perform-
ingweights for the action task, acquiredwith early stopping.

4.1 Multi-Dataset Experiments on EPIC,
EGTEA, and ADL

Single Dataset Baselines. In the single dataset (SD) MTL setup
in [24] the trainable tasks for EPIC are action, verb, and
noun classification and left/right hand location prediction

TABLE 1
List of Datasets and Their Characteristics

Name ADL EGTEA EPIC CH-EGO

Videos fpv fpv fpv fpv/3rd
Participants 20 32 32 112
Scripted partially yes no yes

Labels
Actions 18 106 2513 157
Verbs - 19 125 33
Nouns - 53 352 38
Locations 8 [22] kitchen kitchen 16
Other objects gaze, recipes,

hand segm.
objects,

narrations
narrations

We emphasize on the sizes of the classification tasks.
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(EALL). For EGTEA, gaze estimation is added to the set of
trainable tasks (GALL). ADL annotations describe long-term
activities with the addition of indoor locations from [22]
(AALL). For EPIC, training and validation are performed on
the custom train/val splits from [24], namely 26,375 action
segments from participants 1-29 are used for training and
the remaining 2,095 for validation, with the exception of
videos withheld by the dataset authors for testing. The latter
denote scenarios on seen (S1) and unseen (S2) kitchens. S1
consists of videos from participants that also have a number
of videos in the training set, whereas in S2 all participant
videos are excluded from the training set. S1 and S2 are
evaluated on the EPIC-Kitchens server. On EGTEA we use
the first split provided by the dataset authors which consists
of 8,299 training and 2,022 validation segments and for ADL
we train on the videos of participants 1-6 (111 clips) and val-
idate for participants 7-20 (198 clips). We report the SD base-
lines in Table 2.

4.1.1 EPIC-Kitchens Analysis

We now turn to multi-dataset learning (MD-MTL). We
incrementally add new datasets and their tasks to be trained
alongside EPIC. The multi-dataset (MD) experiments are
named after the included tasks, so EALL+GALL contains all
tasks of the SD EPIC experiment (EALL) and all tasks from
the SD EGTEA experiment (GALL). We also perform an MD
experiment only on the action tasks for the two datasets
(EA+GA) to show the effect of the missing classification and
coordinate regression tasks in the MD-MTL setting. In
Table 3a we compare models containing EPIC-Kitchens in
the training set.

EA+GA For this experiment we trained only on the 2,513
and 125 action classes of EPIC and EGTEA, respectively. We
achieve a similar level of overfit on the validation set but
results on both test sets are below the SD baselines, especially
for S1. This highlights the importance of the additional tasks
to regularize training and enhance the information acquired
by the network when they are present, verifying [24] about
the merits of MTL, also in anMD setting.

EALL+GALL We proceed to integrate actions, verbs,
nouns and hands from EPIC and actions, verbs, nouns,
hands and gaze from EGTEA. The additional tasks offer a
noticeable improvement on action classification for EPIC
over the SD baseline on the validation set. This shows that
the network is able to fit both training sets simultaneously
and that there is potential benefit from our approach if
applied on a larger scale. However, we also observe a
decline in test set S1 performance. We highlight that perfor-
mance on S2 is not as affected as in S1. The reason is that the

additional tasks from EGTEA prohibit the network from
overfitting on EPIC, resulting in a larger performance drop
on the seen kitchens. The model’s generalization capability
to unseen data is less affected, manifesting relatively robust
results on S2.

EALL+GALL+AALL The addition of the ADL action
and location tasks reaches the limit of the learning capabi-
lity of our model. The domain shift that occurs from the
long unstructured activity videos prohibits convergence
to the same minimum for EPIC. Thus, test performance
also drops.

4.1.2 EGTEA Gaze+ Analysis

We now evaluate the EGTEA tasks of the previous models.
Table 3b summarizes the results on the action task.

EA+GA In this experiment we train only on the EGTEA
and EPIC action tasks. Performance improves from the SD
baseline (+0.79 percent Top1, +0.91 percent mean class accu-
racy). This already shows the benefit from using MD-MTL.
We are improving on EGTEA without adding data specifi-
cally for it, but only train jointly with a related task from a
different dataset.

EALL+GALL Similar to EPIC, using all available classifica-
tion tasks together with the coordinate regression layers fur-
ther improves performance. It is +1.39 percent in Top1 and
+1.21 percent in mean class accuracy up from the SD base-
line and +0.60 and +0.29 percent, respectively, from EA+GA.
This is another case of the benefits from using MTL to utilize
not only the additional relevant data, but all the learnable
tasks.

EALL+GALL+AALL Adding data and tasks from the ADL
dataset worsens action classification performance on the
EGTEA tasks. Since EGTEA has a larger window for

TABLE 2
SD-MTLTop1/Top5 Accuracy (%) for Actions (A), Verbs (V) and
Nouns (N) for EPIC and EGTEA (Reported From [24]) and for

Activities (A) and Locations (L) for ADL for the
Best Performing Weights on (A)

Model Top1 (A-V-N/A-L) Top5 (A-V-N/A-L)

EALL (EPIC) 19.29 48.9 27.27 35.39 78.18 47.85
GALL (EGTEA) 68.99 79.08 79.03 91.74 99.26 96.39
AALL (ADL) 64.65 72.22 88.38 96.97

TABLE 3
EPIC, EGTEA, and ADL MD-MTLTask Combinations

Tasks Top1 Top5 Top1 S1 Top1 S2

EALL 19.29 35.91 29.73 17.86
EA+GA 18.15 35.93 24.35 17.04
EALL+GALL 19.69 36.68 26.69 17.17
EALL+GALL+AALL 18.29 34.15 24.17 15.84

(a) EPIC-Kitchens: Top1/Top5 (%) action classification accuracy
on the validation set andTop1 on the S1 and S2 test sets

Tasks Top1 Top5 Mean cls acc.

GALL 68.99 91.74 61.40
EA+GA 69.78 93.37 62.31
EALL+GALL 70.38 93.08 62.61
EALL+GALL+AALL 69.34 92.63 60.87

(b) EGTEA Gaze+: Top1/Top5 (%) and mean class accuracy
(%) for the action classification task on test split 1

Tasks Top1 Top5 Mean cls acc.

AALL 64.65 88.38 56.10
EALL+GALL+AALL 58.08 86.87 43.61

(c) ADL:Top1/Top5 (%) andmean class accuracy (%)
for the activity classification task on the validation set

An overview for all classification tasks appears in the supplemental material,
available online.
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improvement, the decline due to ADL is not as strong as for
the EPIC tasks and the SD baseline is still surpassed. How-
ever, the effects of the domain shift are evident. The training
loss for the action task is higher (bottom graph in Fig. 1 of
the supplemental material, available online) illustrating the
difficulty to assimilate actions from the highly variable loca-
tions of ADL with the kitchen environments of EGTEA.

4.1.3 ADL Analysis

To train on ADL EALL+GALL+AALL we add one more learn-
ing cycle to the model and train for 80 epochs, to accommo-
date for the diverse distribution of the ADL dataset. Results
on ADL are presented in Table 3c.

EALL+GALL+AALL Following the results on EPIC and
EGTEA, the three-dataset model is unable to reach the sin-
gle dataset baseline of ADL. This result verifies the previous
conclusion that additional datasets without a related data
distribution can hurt performance.

4.2 Weight Correlations

In this section we analyze the learned classification weights
in MD networks. We measure the correlations between
weights for the task pairs of actions, verbs and nouns. We
find that positive correlations arise in the classification
weights across tasks for classes with similar semantic inter-
pretations. This is an important finding that demonstrates
the ability of the network to capitalize on the relationships
of the data without additional supervision. We highlight
some examples in Fig. 3. We show correlations for classes
with the same name, e.g., ’take’ in both EGTEA and EPIC
(r ¼ 0:52), but also on classes with similar semantic mean-
ing, e.g., ’tomato’ in EGTEA correlates with ’heart’
(r ¼ 0:43) in EPIC which refers to a tomato’s interior, with
second best the correlation with the actual ’tomato’ class
(r ¼ 0:38). Correlation values are higher across action tasks,

possibly due to their stricter nature in having to associate
both the correct verb and the correct noun class. For exam-
ple, the verb and noun constituents for ’divide/pull apart
onion’ correlate with ’peel’ and ’onion’ in EPIC with r ¼
0:26 and 0.37 respectively, whereas the correlation with
action ’peel onion’ is r ¼ 0:50. This means that the model is
more certain about the combination of features it requires
when classifying a full action class instead of having to
assess it as the union of a verb and a noun. In the following
section we investigate a way to further exploit the associa-
tive ability of the network by mapping these classes into the
same task.

4.3 EPIC and EGTEAWith Task Mapping

In many cases, the datasets have partly overlapping label
sets for some tasks. In this experiment we reduce the out-
put layers of the network by mapping similar tasks across
datasets. We combine the verb and noun classification
tasks of EPIC and EGTEA and the hand coordinate layers.
We leave the action layers and the gaze unchanged. Our
aim is to connect the verb and noun tasks as much as pos-
sible while training the action tasks independently. This
effort resembles the merged labels technique in [94]. Our
approach differs in that we manually map the semantically
similar verb and noun classes of EGTEA to EPIC since the
majority of its labels are identical or synonyms. There are
rare cases where an EPIC label needs to be assigned to
multiple EGTEA labels. For example, verb classes ’wash’
and ‘clean/wipe’ are both assigned to EPIC’s ‘wash’ and
noun classes that represent containers such as ’tomato con-
tainer’ and ’bread container’ are assigned to ‘package’.
This task combination scheme is less naive compared to
our earlier MD approach. The downsides are that we are
not able to properly evaluate the verb and noun tasks of
EGTEA due to the many-to-one class assignments and that
an almost direct mapping across tasks is not always feasi-
ble. The task mapping model is trained for 80 epochs
(referred to as Verb-Noun Mapping).

Verb-Noun Mapping results for EPIC are presented in
Table 4a. Action recognition performance is similar to the
naive MD approach but with a significant increase in verb
and noun classification as well as in Top1 on the EPIC test
sets. In fact, with task mapping, the model is able to general-
ize as well as with the SD model on the S2 test set. This
improvement shows that MD-MTL has an even greater
potential when secondary tasks of the datasets can be com-
bined explicitly.

Task mapping also proves beneficial for the action recog-
nition task of EGTEA as shown in Table 4b. Verb-Noun
Mapping is +0.99 percent from the previous best
(EALL+GALL: 70.38 percent) and +2.38 percent from the SD
baseline (GALL: 68.99 percent). Next, we present an addi-
tional experiment on SD EGTEA with its initial weights pre-
trained on the SD EPIC model EALL. It improves +1.09
percent from the SD model pretrained on Kinetics, but is
still lower than both naive MD (-0.30 percent) and MD with
task mapping (-1.29 percent). This shows that MD-MTL net-
works can capitalize on the additional data advantageously
over transfer learning, while keeping the tasks of the initial
dataset functional and potentially improved.

Fig. 3. Correlations for classification weights across tasks in multi-data-
set model EALL+GALL (Zoom in for best view).
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4.4 Task Affinities

The task mapping approach from Section 4.3 enhances the
correlations across actions, while fixing some inaccurate
cases of the previous model. For example, correlation for
the ’cut carrot’ action increases from r ¼ 0:56 to r ¼ 0:66
and for ’peel onion’ from r ¼ 0:50 to r ¼ 0:54. Notably, for
the latter, the second best correlated action to ’divide/pull
apart onion’ from the first model is ’peel potato’ with r ¼
0:44which drops to r ¼ 0:37. This suggests that the model is
now better able to tell apart the two objects.

To further demonstrate the correlated outputs we com-
pare the performance of the EGTEA SD model (GALL)
against the EGTEA verb and noun tasks of the EALL+GALL

MD model on the EPIC validation split for the samples
that comprise mapped classes. This corresponds to 1,677
samples for verbs and 1,107 for nouns. Table 5 shows Top1
and mean class accuracy for the mapped verbs and nouns.
The improvement of the MD model is consistent over SD,
achieving +12.46 and +7.16 percent on the two metrics for
verbs and +16.35 and +5.98 percent for nouns. This
increase demonstrates the generalization ability of MD-
MTL for samples that do not belong in the data distribu-
tion for which the tasks are trained for. Finally, in Fig. 4 we
visualize the normalized confusion matrices for these
experiments. In Fig. 4a we observe fewer errors for verbs
such as ’turn on’ and ’turn off’ and the performance of
highly represented classes such as ’cut’, ’open’ and ’close’
increases. Similarly for nouns, in Fig. 4b, we see that the
SD model (left) tends to classify a number of samples as

’condiment container’ which is largely fixed in the MD
case (right). Generally, most noun classes have significant
improvements.

4.5 Multi-Dataset Experiments on Charades-EGO

We perform experiments on Charades-EGO to explore the
associative ability of tasks when applied on data from dif-
ferent perspectives and the potential for performance
improvements in the MD-MTL setting. We split the dataset
into its first- and third-person constituents and treat them
as two separate datasets. Consequently, we have two sub-
datasets, charego1 and charego3, with the same classifica-
tion tasks. We produce action segments from the video level
annotations. This results in 33,099/9,148 action segments
for charego1 and 34,269/9,386 for charego3 for training and
validation, respectively. In Table 6 we report video level
mean Average Precision (mAP) following [8] and Top1/
Top5 accuracy for the action task. The performance of the
remaining classification tasks can be found in the supple-
mental material, available online. We train three models in
total. An SD model for charego1 for actions, verbs and
nouns (C1ALL), an SD model for charego3 for the same tasks
(C3ALL) and the MD combination with both sets of tasks
(C1ALL+C3ALL).

Validation on charego1 shows that MD training provides
a marginal improvement over the SD baseline on the video
level mAP. This shows the benefit to the first-person tasks
when using the third-person videos to train their distinct
tasks in the MD setting. An interesting insight arises from
evaluating on the first-person data using the respective
C3ALL tasks of the MD model. Recognition performance is
worse when compared to the egocentric tasks, however it is
significantly higher from the charego3 SD network. This
shows that the network learns to associate the internal

TABLE 4
Mapping EGTEAVerb-Noun Tasks on EPIC

Model A V N S1 A S2 A

EALL+GALL 19.69 45.99 25.65 26.69 17.17
Verb-Noun Mapping 19.68 48.33 28.32 28.1 17.86

(a) EPIC-Kitchens: Top1 (%) action (A), verb (V), noun (N) accuracy
on the validation set and Top1 for actions on S1-S2 test sets

Model Top1 Top5 Mean cls acc.

GALL 68.99 91.74 61.40
GALL pretrained on EPIC 70.08 92.63 62.66
EALL+GALL 70.38 93.08 62.61
Verb-Noun Mapping 71.37 92.78 62.23

(b) EGTEA Gaze+: Top1/Top5 and mean class accuracy (%) for
actions on test split 1

TABLE 5
Comparison Between SD and MD-MTL on the

Mapped Verbs and Nouns

Model Top1 (%) Mean cls acc. (%)

Mapped Verbs
GALL 32.68 13.98
EALL+GALL 45.14 21.14

Mapped Nouns
GALL 9.40 6.86
EALL+GALL 25.75 12.84

Evaluating the EGTEA tasks on the EPIC validation split.

Fig. 4. Confusion matrices for mapped verbs (a) and mapped nouns
(b) from the EGTEA tasks on the EPIC validation split.
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representations of classes that co-exist in different tasks and
reuses them across perspectives (also confirming the find-
ings of Sections 4.2 and 4.4 in this setting).

Similar insights can be inferred from the results of the
third-person video split of Charades-EGO. In this experiment,
the SD model exhibits marginally better mAP than the MD
model, but the correlation property across tasks of different
perspectives is still present. The first-person tasks of
C1ALL+C3ALL have +5.9 percent higher mAP from the SD
C1ALL modelwhen evaluated on charego3.

4.6 Batch Formation Strategies

The mixed batch (MB) formation strategy described in Sec-
tion 3.2 is not the only way to load data in the MD-MTL net-
work. To further demonstrate the ability of our batch
formation strategy to allow optimal generalization across data-
sets,we compare against two alternative strategies: interleaved
batches (IB) and interleaved datasets (ID). In interleaved
batches, in every iteration a dataset is selected at random and
the input to the network consists of data only from this dataset.
In interleaved datasets, batch composition is the same, but
each dataset’s training set is fully processed before data from
the remaining datasets are seen. In either case, the network
sees the complete training set of every dataset per epoch. We

experiment on the EALL+GALL tasks for every batch strategy,
using the same training hyperparameters defined in Section 4.
In Table 7we summarize our results.

The three strategies have different effects on the perfor-
mance. Interleaved batches outperform mixed batches on
EPIC, albeit with a strong performance drop for EGTEA. A
possible reason is that the size difference of the datasets (the
training set of EPIC is almost three times larger than that of
EGTEA) does not allow the network to equally capture fine-
grained features from EGTEA. When using the interleaved
datasets strategy, we see a significant performance drop for
EPIC, with EGTEA being more robust. This is the result of
the order with which datasets are seen on every epoch. In
our ID experiment, the training set of EPIC is always seen
first and EGTEA follows in every epoch. Information that is
acquired in the beginning of an epoch is partly “unlearned”
when the second dataset is seen. Mixed batches (MB)
appear to perform somewhat more consistently. However,
the modest differences between the strategies suggest that
MD-MTL performs favorably over single-dataset MTL,
independent of the choice of batch formation strategy.

TABLE 6
Action Recognition Performance on Charego1 and Charego3,

the First- and Third-Person Splits of Charades-EGO,
Respectively

Validation on
charego1

Validation on
charego3

Model Top1 Top5 mAP Top1 Top5 mAP

C1ALL (SD) 7.05 24.21 21.90 3.55 14.70 12.30
C3ALL (SD) 3.61 15.40 14.70 8.15 27.02 20.40
C1ALL (MD) 7.01 24.69 22.10 6.79 22.85 18.20
C3ALL (MD) 5.81 21.75 20.10 8.12 26.04 20.00

SDmodels are trained on all tasks (actions, verbs, nouns) of their split. TheMD
model is trained on the combination of the tasks of both splits. Results in%.

TABLE 7
Comparison Across Batch Formation Strategies Mixed (MB),
Interleaved Batches (IB), and Interleaved Datasets (ID) on the

Task Combinations of EPIC and EGTEA

Top1 (%) Top5 (%)

Strat. Actions Verbs Nouns Actions Verbs Nouns

MB 19.69 45.99 25.65 36.68 78.37 50.67
IB 20.11 47.76 29.99 37.78 78.84 51.24
ID 17.91 48.42 23.26 33.57 78.18 45.94
(a) Results on EPIC-Kitchens

Top1 (%) Mean cls acc. (%)
Strat. Actions Verbs Nouns Actions Verbs Nouns

MB 70.38 80.57 79.03 62.61 80.02 73.55
IB 65.43 79.72 74.83 55.31 77.21 65.95
ID 69.68 80.86 78.64 61.31 81.59 72.13
(b) Results on EGTEA Gaze+

TABLE 8
State-of-the-Art Comparison on EPIC-Kitchens

Test S1 (Seen kitchens) Test S2 (Unseen kitchens)

Top1 (%) Top5 (%) Top1 (%) Top5 (%)

Method Modalities Params A V N A V N A V N A V N

TSN [19] RGB+F 20.2M 20.54 48.23 36.71 39.79 84.09 62.32 10.89 39.40 22.70 25.26 74.29 45.72
EF [43] RGB 11M 19.86 45.68 36.80 41.89 85.56 64.19 10.11 34.89 21.82 25.33 74.56 45.34
R(2+1)D-34 [86] RGB 64M 26.80 59.10 38.00 46.10 87.40 62.70 16.80 48.40 26.60 31.20 77.20 50.40
LSTA [73] RGB+F 82M 30.33 59.55 38.35 49.97 85.77 61.49 16.63 47.32 22.16 30.39 77.02 43.15
VNMapping RGB 10M 28.10 55.62 38.04 49.38 86.39 62.69 17.86 46.57 25.74 36.26 77.60 51.86
MTL [24] RGB 10M 29.73 56.00 40.15 50.95 87.06 64.07 17.86 45.99 26.25 35.68 77.98 50.19
VFS [68] RGB+F+AU 218M 29.13 44.64 30.64 49.71 76.41 59.39 18.40 38.37 15.23 35.64 75.15 39.84
RU [71] RGB+F+O 52.6M 33.06 56.93 43.05 55.32 85.68 67.12 19.49 43.67 26.77 37.15 73.30 48.28
GSM [36] RGB 13M 33.45 59.41 41.83 - - - 20.18 48.28 26.15 - - -
EF [43] RGB+F+A 32.6M 36.66 66.10 47.89 58.62 91.28 72.80 20.97 54.46 30.39 39.40 81.23 55.69
LFB [66] RGB+TO 201.2M 32.70 60.00 45.00 55.30 88.40 71.80 21.20 50.90 31.50 39.40 77.60 57.80
SAP [99] RGB+O 198.6M 34.80 63.20 48.30 55.90 86.10 71.50 23.90 53.20 33.00 40.50 78.20 58.00
AV-SF [69] RGB+SF+AU 38.5M 35.90 65.70 46.40 57.80 89.50 71.70 24.00 55.80 32.70 43.20 81.70 58.90
R(2+1)D [86] RGB+ED 118M 34.50 65.20 45.10 53.80 87.40 67.80 25.60 57.30 35.70 42.70 81.10 58.70

A = Actions, V = Verbs, N = Nouns, F = optical flow, AU = audio, O = objects/object features, TO = object features at various temporal locations, ED = Pretrain-
ing on very large scale external datasets, VNMapping = Verb-Noun Mapping.
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4.7 State-of-the-Art Comparison

EPIC-Kitchens. In Table 8 we compare against the state-of-
the-art on the S1 and S2 test sets of EPIC-Kitchens. Our
method shows competitive performance, however a num-
ber of methods have improved accuracy. One reason is the
additional input data that most of these methods employ.
For example, the top performing approach [86] utilizes a
much larger network (118M parameters) and is pretrained
on a video dataset about 3k times larger than Kinetics-400
(IG-Kinetics-65M). Interestingly, with Kinetics-400 pre-
training on a network eight times larger than ours (R(2+1)
D-34, 64M parameters) they perform -1.30 percent lower on
S1 and -1.06 percent on S2 Top1 actions. Furthermore, a
number of methods include optical flow, object and audio
input streams which tend to leverage separate networks for
each modality. We highlight [43] which outperforms us
with their full model but when only the RGB stream is uti-
lized we show a +7.75 percent improvement. The remain-
ing approaches do not offer an ablation with only the RGB
stream, therefore we cannot compare directly. We note [36]
that only use RGB input and are +2.32 percent better on S2.
Their model uses feature gating to encode temporal infor-
mation forward and backward in time with a 2D network
backbone. Applying this in our 3D network is an interesting
direction for future work.

EGTEA Gaze+. Only a number of the aforementioned
works provide action recognition results on EGTEA Gaze+.
We compare against methods that utilize RGB and optical
flow in Table 9. Despite the enhanced input, we are able to
outperform all of them with significant margins. The previ-
ous state-of-the-art on split 1 of EGTEA Gaze+ [24] achieves
68.99 percent Top1 and 61.40 percent mean class accuracy,
which we surpass by 1.39 and 1.21 percent with MD-MTL
and by 2.38 and 0.83 percent with MD-MTL with task map-
ping, respectively. Furthermore, using MD-MTL the perfor-
mance on the average of the three splits of EGTEA Gaze+
improves from [77] by 2.47 percent on Top1 and 2.88 per-
cent on mean class accuracy despite the absence of optical
flow in our method.

5 DISCUSSION

In this work we introduced an effective batch scheme that
comprises samples from multiple datasets and associates

them with their respective tasks during training. This
approach manifests a trade-off between acquiring the opti-
mal estimation of the gradient direction from a batch from a
single data distribution and the need to accommodate the
presence of samples from multiple datasets in every train-
ing iteration. Essentially, we expect the network to find a
minimum along a variety of manifolds which can be costly
for optimization, and even not possible if the dataset distri-
butions are incompatible. We found that EPIC and EGTEA
show improvements in their validation sets which indicates
that the scheme of multi-dataset training is potentially bene-
ficial when semantically related datasets are combined. At
the same time it is practical in terms of producing outputs
that reflect tasks from multiple domains without sacrificing
accuracy. However, the inclusion of ADL showcases the
possible pitfalls of adding a dissimilar dataset. We also
observed performance improvements when applying the
multi-dataset training scheme on a combination of first- and
third-person videos on Charades-EGO. This shows that a
difference in video perspectives does not prohibit the net-
work from learning a shared representation when other
aspects of the datasets such as the environment and the per-
formed actions are related.

In Section 4.3 we trained an SD model on EGTEA where
we used weights pretrained on EPIC for initialization. Even
though EPIC-Kitchens is not as large as the video datasets
that are usually employed for pretraining video recognition
models, (e.g., [1], [2]) we expected that the similarity
between the source and the target domain would prove ben-
eficial, and it did. We also showed that our multi-dataset
approach outperforms pretraining, while retaining all tasks.

We showed in Sections 4.2 and 4.4 that MD training
drives classification layers to reuse feature sets for similar
classes across tasks. This is an important element of these
models, as it occurs without additional supervision, i.e., we
do not specify which labels across datasets are related. Our
experiments show that this is a typical phenomenon in MD-
MTL. It also reinforces the basic concept of multitask learn-
ing that related tasks, even from varied sources, support
each other by affecting the shared parameters.

However, class correlations are not so strong to suggest
full reuse of features for the same classes. This leads to
two distinct observations. First, the capacity of a network
when trained for a single dataset is not fully utilized. We
showed that the underlying weights can be adapted to
accommodate additional information. Hence, whatever
minimum is reached with SD training does not necessarily
correspond to an optimal exploitation of the millions of
parameters of modern neural network architectures.
Instead, our experiments show that their capacity is larger
than SD fitting initially suggests. Second, adaptive training
mechanisms that substitute hard parameter sharing, such
as explicit task-attention mechanisms [81], [84] or implicit
weight assignment to tasks [85] are simulating larger net-
work capacity not by inducing better associations among
the shared weights, which MD-MTL seems to be achieving,
but by establishing mechanisms to mask noisy features that
otherwise find their way to the task-specific prediction
layers. We believe a soft parameter sharing mechanism is a
promising way forward for MD-MTL as the two concepts
are complementary.

TABLE 9
Action Recognition Accuracy on EGTEAGaze+

Split 1 Avg. Splits 1-3

Method Modalities Top1 Mean cls Top1 Mean cls

Li et al. [14] RGB+F - 47.71 - -
MCN [72] RGB+F 55.63 - - -
RU [71] RGB+F+O - - 60.20 -
ego-rnn [70] RGB+F 62.17 - 60.76 -
LSTA [73] RGB+F - - 61.86 -
SAP [99] RGB+O 64.10 - 62.70 -
STAM [77] RGB+F 68.60 60.54 65.97 57.02
MTL RGB 68.99 61.40 65.70 57.60
MD-MTL RGB 70.38 62.61 68.44 59.90
VNMapping RGB 71.37 62.23 - -

Refer to Table 8 for the used abbreviations and number of parameters.
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6 CONCLUSION

In this work we introduced a deep learning training
scheme that allows a single network to assimilate tasks
from diverse datasets and tasks simultaneously. By com-
bining samples across datasets within every batch, we
effectively approximate having individual batches per
dataset on every training iteration. We applied our scheme
in the context of egocentric action classification, on EPIC-
Kitchens, EGTEA Gaze+ and ADL datasets and the first-
and third-person splits of Charades-EGO. Our results
show that multi-dataset multitask (MD-MTL) training
offers consistent improvements to classification tasks
across datasets when the underlying data distributions are
related. Furthermore, we demonstrated that networks
acquire similar representations for semantically similar
classification tasks without being instructed to do so.
Results on EPIC-Kitchens show that our method is able to
compete with the state-of-the-art. On EGTEA Gaze+ we
outperform more complex networks, surpassing the state-
of-the-art by 2.47 percent. We highlight that MD-MTL is an
efficient technique to combine data from multiple sources
without sacrificing the distinctive characteristics of one
dataset in order to classify on another.
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