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Abstract. The origin of dark energy driving the accelerated expansion of the universe is
still mysterious. We explore the possibility that dark energy fluctuates, resulting in spatial
correlations. Due to these fluctuations, the Hubble rate itself becomes a fluctuating quantity.
We discuss the effect this has on measurements of type Ia supernovae, which are used to
constrain the luminosity distance. We show that the luminosity distance is affected by
spatial correlations in several ways. First, the luminosity distance becomes dressed by the
fluctuations, thereby differing from standard ΛCDM. Second, angular correlations become
visible in the two-point correlation function of the luminosity distance. To investigate the
latter we construct the angular power spectrum of luminosity distance fluctuations. We then
perform a forecast for two supernova surveys, the ongoing Dark Energy Survey (DES) and the
upcoming Legacy Survey of Space and Time (LSST), and compare this effect with relativistic
lensing effects from perturbed ΛCDM. We find that the signal can rise above the lensing
effects and that LSST could test this effect for a large part of the parameter space. As an
example, a specific realisation of such a scenario is that quantum fluctuations of some field
in the early universe imprint spatial correlations with a predictable form in the dark energy
density today. In this case, the Hubble rate fluctuates due to the intrinsic quantum nature of
the dark energy density field. We study whether the signal of this specific model would be
measurable, and conclude that testing this model with LSST would be challenging. However,
taking into account a speed of sound cs < 1 of the dark energy fluid can make this model
observable.
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1 Introduction

Since cosmic acceleration was discovered in 1998 [1, 2], its physical origin has provided a great
challenge to physicists and astronomers alike. The standard cosmological model ΛCDM, with a
cosmological constant Λ, has so far been the most successful model to explain this acceleration.
However, the success of ΛCDM comes at a cost, as the dark sector (dark energy and dark
matter) is physically ill understood. Recent observations have also shown tensions between
parameters measured when probed at different scales, most notable are the measurements of
the Hubble constant H0, where the tension has now overcome 4σ [3, 4]. Another, somewhat
weaker tension has also appeared between the σ8 measurements by Planck [5] and cosmic
shear data from e.g. KiDS [6] or DES [7], this discrepancy is now about 2.5σ.

In light of these problems, considerable work has been done on models of dark energy
(DE). Options ranging from modifying gravity to matter condensates [8–11]. Predictions
usually focus on the dynamic aspect of dark energy. For example, modifying dark energy at
late time [12–15], or by altering the early universe [16–19]. We pursue another route, focusing
on the spatial correlations dark energy may exhibit. These correlations naturally arise in
some classes of models. An example is the model previously considered by [20–25]. In this
model dark energy arises from quantum fluctuations in the early universe. It has recently
been shown that this model, due to the spatial fluctuations in dark energy, can reduce the
Hubble tension towards 1σ [24]. This is a consequence of the spatial correlations that dark
energy exhibits in this model, which lead to a fluctuating Hubble rate.

In the near future telescopes such as the Rubin Observatory, which will deliver the
Legacy Survey of Space and Time (LSST) [26], will obtain maps of the sky with unprecedented
detail. This will allow us to discriminate in the wide range of models currently available. It
is therefore of importance to have predictions of a certain class of models containing these
spatial fluctuations.

To this end we propose a phenomenological model of dark energy with spatial fluctuations,
causing the background to fluctuate. This leads to a fluctuating Hubble rate, where at each
point the effect of dark energy is such that the Hubble rate obeys the following operator
Friedmann equation,

3M2
P Ĥ

2(z, n̂) = ρC(z)̂I + ρ̂Q(z, n̂). (1.1)

Here, MP = 2.435 × 1018 GeV /c2 is the reduced Planck mass, ρC is the energy density of
classical matter and ρ̂Q is the energy density operator containing the dark energy field, Î is
the identity operator. These operators can be understood as acting on a Hilbert space of
quantum states and describe the fluctuating fields. Ĥ, ρc and ρ̂Q are functions of the redshift
z, the operators also depend on the unit vector on the celestial sphere n̂. For the correlations
we use a phenomenological power law ansatz, which is described in more detail in section 2,
but in section 7 we study a simple inflationary model [20–24] where a scalar field produces
such spatial correlations [24].

A fluctuating Hubble rate would induce correlations in a wide variety of Large Scale
Structure observables. In this paper, we focus on the luminosity distance. Observationally,
the luminosity distance is obtained from the ‘known’ luminosity of a standard candle and
the observed flux. Theoretically, this distance can be expressed in terms of spacetime
geometry. In ΛCDM this leads to the well known expression in terms of the Hubble rate,
dL(z) = (1+z)

∫ z
0 dz

′H(z′)−1 (see e.g. [27]). However, our Hubble rate is a fluctuating quantity
determined by (1.1), therefore dL(z) also becomes a fluctuating quantity. Consequently, we
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turn the luminosity distance into an operator:1

d̂L(z, n̂) = (1 + z)
∫ z

0
dz′Ĥ−1(z′, n̂). (1.2)

Local fluctuations in Ĥ(t, ~x) can be explained, for example, by the amplified quantum
fluctuations of the scalar field φ̂(t, ~x), introduced in section 2, in the early Universe, which
plays the role of dark energy. We make predictions for the correlations our model produces
and assess its detectability, comparing it with the expected noise and with effects that would
be expected to be seen in perturbed ΛCDM, where these fluctuations come from relativistic
effects such as convergence and the Doppler effect.

These relativistic effects on the luminosity distance have been well studied [28–30], with
some work also having been done on these fluctuations in theories with dynamical dark
energy/modified gravity [31] or in the case of inhomogeneous dark energy [32]. In the latter
case the convergence effect of inhomogeneities was studied for a phenomenological model of
dark energy. These papers, however, do not study the effects of a fluctuating Hubble rate but
rather the effect of density perturbations between the emitter and the observer. Both effects
result in a non zero power spectrum for the luminosity distance fluctuations.

Another way to conceptualize spatial fuctuations of luminosity distances is as “Hubble
residuals”. These are defined as the difference between the observed magnitudes of supernovae
and the ones predicted from the best-fit distance-redshift relation. While we focus in this
work on residuals of cosmological origin, it is also known that measured Hubble residuals
correlate with intrinsic host galaxy properties like stellar mass, e.g. [33]. Such residuals could
also lead to spatially correlated luminosity distances, especifically if host galaxy properties
exhibit intrinsic correlations. However, we do not consider this possibility in this work.

This paper is organised as follows. In section 2 we describe the specifics of our phe-
nomenological model, in section 3 we develop the equations needed to make predictions for
correlators of the luminosity distance. In section 4 we then calculate the corresponding angular
power spectrum. Section 5 discusses the forecasting methods, the relativistic effects, and how
we obtain our model parameters. Section 6 contains our results and forecasts for this angular
power spectrum. Lastly, in section 7, we apply our formalism specifically for the previously
discussed model where dark energy arises from quantum fluctuations in the early universe.

2 The model

To develop equations for the luminosity distance, we first need to specify the correlations
that we are considering. For our phenomenological model we assume the following equal time
ansatz for the correlations:

〈ρ̂Q(z, n̂)ρ̂Q(z, n̂′)〉 = 〈ρ̂Q(z)〉〈ρ̂Q(z)〉s(‖~x− ~y‖). (2.1)

Here, ~x and ~y are comoving positions associated with the relevant coordinates and 〈. . .〉
denotes an ensemble average. As a result of the statistical homogeneity and isotropy, the
function s only depends on the relative distance between the coordinates. We consider two
forms of the function s(‖~x − ~y‖), motivated by different hypothesis of how the quantum

1Equation (1.2) is obtained from the long wave length limit of the (00) Einstein (energy conservation)
equation and canonical quantization is performed by assuming that the fields can be approximated by classical
stochastic fields in which the issues of operator ordering are immaterial.
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dark energy density field depends on the fundamental fields that build it. For simplicity, we
suppose that the quantum dark energy density field originates from a single fundamental
quantum field φ̂.

The first hypothesis we consider can be understood from a theory where ρ̂Q ∝ φ̂2. We
assume the field φ̂ to be Gaussian, making the density field ρ̂Q inherently non-Gaussian. Such
theories would naturally arise when the corresponding field has a zero vacuum expectation
value (vev), which we assume in Case I, in which case the energy momentum tensor relates the
energy density to φ̂2. An example of such a theory is the previously mentioned non minimally
coupled scalar field theory [24, 25]. In this case a natural ansatz for the correlations would be

s1(‖~x− ~y‖) =

3− 2
(
r
r0

)nDE
, r ≤ r0,

1, r > r0.
Case I. (2.2)

Here, r = ‖~x − ~y‖ is the comoving distance between the coordinates. The factor 3 can be
understood from Wick’s theorem, as we assumed our field φ̂ to be Gaussian: if 〈ρ̂Q(x)ρ̂Q(y)〉 ∝
〈φ̂2(x)φ̂2(y)〉 then the appropriate contractions give a factor 3 at coincidence. From Wick’s
theorem we expect that at r →∞ the function s(‖~x− ~y‖) approaches 1, as two out of three
contractions contain correlators decay with distance. This is a consequence of the expectation
that at ‖~x− ~y‖ → ∞ the fields decouple. In the intermediate regime we assume power law
behaviour with slope2 nDE decaying with distance until at r = r0 the fields are completely
decoupled. Hereafter the correlations would saturate, only producing white noise.

Another possibility would be that the dark energy density field would be connected to
a scalar field via ρ̂Q ∝ φ̂. The density is then directly related to the vacuum expectation
value of the field, which in this case we assume to be non zero. In this case Wick’s theorem is
of no help, as we do not have a 4-point correlator. We then assume that at coincidence the
field φ̂ has a local variance σ2(z) = 〈φ̂2〉(z)− 〈φ̂〉2(z) and assume the fields decouple at large
distances to the square of the vev. In the intermediate regime we again assume power law
behaviour decaying with distance. For the energy density ρ̂Q we then obtain the following
s-functions:

s2(‖~x− ~y‖) =

σ̃2
Q

[
1−

(
r
r0

)nDE
]

+ 1, r ≤ r0,

1, r > r0,
Case II. (2.3)

r0 and nDE are in principle different constants from Case I. σ̃2
Q = B(z)2σ2

〈ρQ〉2 , with B(z) the
proportionality constant defined by ρ̂Q = B(z)φ̂. We keep the variance σ2 as an independent
variable. A specific theory could give a prediction for this variance. After r > r0 we assume
the fluctuations to saturate. We note two special cases: first, in the case the local variance
goes to zero the classical limit is recovered. Second, when σ̃2

Q = 2 the s-functions of both
cases are the same. The latter does not mean the theories are the same; in fact, the theories
are still very different as in Case I the density field is fundamentally non-Gaussian while in
Case II the density field is Gaussian.

The function s1(r) for Case I is shown in figure 1. The function s2(r) has a similar
shape, but goes from 1 + σ̃2

Q at coincidence to 1 at r = r0.

2When calculating the 3D power spectrum associated to this correlation function, one sees that it is similar
to the power spectrum from inflation where nDE would be similar to the spectral index with a minus sign.
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Figure 1. The function s1(r), describing the form of the spatial correlations in Case I, for several
values of the index nDE. The figure gives r in units of r0. We expect r0 to be of order H−1

0 or larger.

3 Fluctuations in the luminosity distance

In this section we develop the equations for the luminosity distance in our setting including
spatial correlations in dark energy. To see the effect of a fluctuating Hubble rate we first
expand it in fluctuations ρ̂Q = 〈ρ̂Q〉 + δρ̂Q, where again the brackets denote an ensemble
average, with this we obtain:

3M2
P Ĥ

2(z, n̂) = ρtot(z) + δρ̂Q(z, n̂) = ρtot(z)
(

1 + δρ̂Q(z, n̂)
ρtot(z)

)
. (3.1)

Where ρtot(z) = ρc(z) + 〈ρ̂Q(z)〉, is the total energy budget. Note that in this way taking the
state average of this equation reduces it to the Friedmann equation in semi-classical gravity.
In this treatment we thus go beyond semi-classical gravity by also including fluctuations on
this. To be precise, this 〈Ĥ2〉 is the square of the Hubble rate given by a state average defined
over a spacelike hypersurface of constant time. Due to causality we can only observe over
our past lightcone, which prohibits us from directly observing this H, as we cannot directly
observe all of the structure on this hypersurface.

To connect with observations, we take the state average 〈. . .〉 of the operator luminosity
distance as defined by (1.2):

〈d̂L〉(z)
(1 + z) =

∫ z

0
dz′

〈
Ĥ2(z′, n̂)−

1
2
〉

=
∫ z

0

dz′

H̄(z′)

〈(
1 + δρ̂Q(z′, n̂)

ρtot(z′)

)− 1
2
〉
. (3.2)

Here,
√

3M2
P H̄ = √ρtot is the root mean squared of (3.1) and we also defined H̄(z) =√

〈Ĥ2〉(z). The second equality follows from substituting the square root of (3.1) for Ĥ(z, n̂).
We assume photon number to be conserved, as the production of photons is negligible in our
model because the scalar field sourcing dark energy is electrically neutral, and because the
induced local expansion rate Ĥ(t, ~x) varies over very large spatial distances. We can Taylor
expand the term in brackets, as the ratio δρ̂Q(z,n)

ρtot(z) should be small. The linear term is per
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definition zero, thus we go to quadratic order in δρ̂Q. This formal Taylor series diverges as a
consequence of the Wick contractions of the higher n-point correlators going to infinity, but
this does not give any problems as up to quadratic order it can still be trusted. In appendix A
we derive via an alternative route the expansion for both cases up to all orders, from this we
conclude that the error made by truncating at quadratic order is reasonable. This expansion
gives us:

〈d̂L〉(z)
(1 + z) =

∫ z

0

dz′

H̄(z′)

(
1 + 3

8
〈ρ̂Q(z′, n̂)2〉 − 〈ρ̂Q(z′)〉2

ρtot(z′)2

)
(3.3)

=
∫ z

0

dz′

H̄(z′)

(
1 + 3

8ΩQ(z′)2 (si(0)− 1)
)
. (3.4)

Here, we defined ΩQ(z) = 〈ρQ(z)〉
ρtot(z) . The factor si(0) − 1, where the subscript i can take

the values 1 or 2, referring to the case, can be interpreted as a normalised variance of the
density field, as it is proportional to the variance of ρ̂Q. When si(0) = 1 the local variance is
zero and we recover the classical expression. This is the classical limit σ̃2

Q → 0 of Case II.
However, in Case I it is inevitable that the local variance is naturally large due to Wick’s
theorem and our density field being inherently non-Gaussian (ρ̂Q ∝ φ̂2). In both cases
a deviation from the classical s(0) = 1 results in an extra contribution to the luminosity
distance, as the luminosity distance becomes dressed by the fluctuations. An interesting
consequence of this is that the observed values do not necessarily match the global values
of the underlying Friedmann-Lemaître-Robertson-Walker (FLRW) universe. We thus need
to make the distinction between the local values and the global, or bare, quantities. Indeed,
as we show in section 5.1 for Case I these quantities can be quite different as the dressed
luminosity distance differs significantly from the classical one. In Case II these values can
also be different, however, the difference from the classical result is dictated by the parameter
σ̃2
Q, which in principle could be small.

Spatial correlations become visible in the two-point correlation function, defined as:

〈d̂L(z1, n̂1)d̂L(z2, n̂2)〉
(1 + z1)(1 + z2) =

∫ z1

0
dz′

∫ z2

0
dz
〈
Ĥ(z, n̂1)−1Ĥ(z′, n̂2)−1

〉
. (3.5)

Following the same procedure of Taylor expanding and using the results in appendix B we
obtain:

〈d̂L(z1, n̂1)d̂L(z2, n̂2)〉
(1 + z1)(1 + z2) =

∫ z1

0
dz

∫ z2

0
dz′

1
H̄(z)H̄(z′)

[
1 + 3

8
(
ΩQ(z)2 + Ω2

Q(z′)
)

(si(0)− 1)

+1
4

(
H4

0
H̄(z)2H̄(z′)2 Ω2

Q,0

(
1 + (∆t(z) + ∆t(z′))〈

˙̂ρQ〉0
〈ρ̂Q〉0

)
si(‖~x− ~y‖)

− ΩQ(z)ΩQ(z′)
)]

, (3.6)

where ∆t(z) = t(z) − t0, t(z) denotes the cosmological time at redshift z, the subscript 0
means it is evaluated today. ˙̂ρQ(t0) denotes the time derivative of ρ̂Q evaluated today. We
can now see that the correlation function s(‖~x− ~y‖) has appeared, meaning this signal has
angular dependence. When si(0) 6= 1, as in Case I, we can also identify another contribution
representing the contribution of the local variance.
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4 Angular power spectrum

In this section we calculate the angular power spectrum related to the fluctuations of the
luminosity distance. The angular power spectrum C` relates the correlations to a multipole
expansion and provides a useful way to quantify the fluctuations in a way that is measurable [31,
32]. We are mainly interested in the largest scales, as the dark energy correlations are strongest
in this regime (which can be traced to the large characteristic length scale coming from inflation,
see section 7.3). To study this regime consistently, we need a function that can be measured
on the full sphere without approximations (e.g. the flat sky approximation). The C`’s fulfill
this need as we are able to calculate them including wide angle effects.

In our case the relevant field is the field corresponding to the luminosity distance
fluctuations with respect to the mean. This is a scalar function and can be expanded in
spherical harmonics Y`m:

d̂L(z, n̂)− 〈d̂L〉(z)
〈d̂L〉(z)

= ∆(z, n̂) =
∞∑
`=0

∑̀
m=−`

∆`m(z)Y`m(n̂). (4.1)

This expansion defines the coefficients ∆`m. Assuming the process generating the fluctuations
is statistically isotropic, the ensemble average of the ∆`m’s takes the following form:

〈∆`m(z)∆∗`′m′(z′)〉 = C`(z, z′)δ``′δmm′ , (4.2)

where C`(z, z′) is the angular power spectrum. Because of statistical isotropy we can assume
that independent m’s do not contain individual information and we can average over them.
This gives us the following expression for the power spectrum:

C`(z1, z2) = 1
2`+ 1

∑̀
m=−`

〈∆`m(z1)∆∗`m(z2)〉. (4.3)

Due to the symmetries of the FLRW background the angular dependence only appears
through the relative angle. Using the addition formula for spherical harmonics the C`’s can
be written as:

C`(z1, z2) = 2π
∫ 1

−1
dµ 〈∆(z1)∆(z2)〉(µ)P`(µ). (4.4)

Here, µ = n̂ · n̂′ = cos θ, where θ is the relative angle between n̂ and n̂′ and P`(µ) are the
Legendre polynomials. Using the results from section 3 we can write the C`’s for ` ≥ 1 as:3

C`(z1, z2) = −aiπ
Ω2
Q,0H

4
0

2
(1 + z1)(1 + z2)
〈d̂L〉(z1)〈d̂L〉(z2)

(4.5)

×
∫ 1

−1
dµ

∫ z1

0
dz

∫ z2

0
dz′

(
1 + (∆t(z) + ∆t(z′)) 〈

ˆ̇ρQ〉0
〈ρ̂Q〉0

)
H̄(z)3H̄(z′)3

(
r(z, z′, µ)nDE

rnDE
0

)
P`(µ).

We introduced the constant ai to distinguish between the two cases, a1 = 2 in Case I and
a2 = σ̃2

Q in Case II. It is now possible to switch order of integration and integrate out the

3Here we assumed the regime where the fluctuations saturate is never reached. For our predictions later on
this means we consider H0r0 > 2.
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angular dependence µ, using the results of appendix C we then obtain:

C`(z1, z2) = −ai2 π
3
2 Ω2

Q,0H
4
0

2−`
(
−nDE

2
)
`

Γ(3
2 + `)

(1 + z1)(1 + z2)
〈d̂L〉(z1)〈d̂L〉(z2)

×
∫ z1

0
dz

∫ z2

0
dz′

(
1 + (∆t(z) + ∆t(z′)) 〈

ˆ̇ρQ〉0
〈ρ̂Q〉0

)
H̄(z)3H̄(z′)3

(
χ(z)2 + χ(z′)2

r2
0

)nDE
2

(4.6)

× µ0(z, z′)−`2F1

(
`

2 −
nDE

4 ,
1
2 + `

2 −
nDE

4 ; 3
2 + `;µ0(z, z′)−2

)
.

Here, χ(z) =
∫ z

0 dz
′H̄−1(z′) is the comoving coordinate. We used the short notation µ0(z, z′) =

χ(z)2+χ(z′)2

2χ(z)χ(z′) . 2F1 is Gauss’ hypergeometric function and (a)` = Γ(a+`)
Γ(a) is the Pochammer symbol.

This power spectrum cannot yet be compared with observations. Observations can infer
spatial fluctuations with respect to the best-fit mean distance-redshift relation, d̂L(z,n̂)−d̄L(z)

d̄L(z) ,
where

d̄L =
∫
d2n̂

4π d̂L(z, n̂) (4.7)

is the luminosity distance averaged over all directions. This is akin to estimating “Hubble
residuals” and computing their spatial correlations. If the angular averaging is the same as
the ensemble averaging, the field is said to be ergodic. In our case, however, this is not the
case. It is possible to relate our power spectrum to the one that would be observationally
available. This can be approximated as a simple rescaling of our power spectrum and is
derived in detail in appendix D. The result is

C̃`(z1, z2) = −
ai
2

1 + C0(z1,z2)
4π

π
3
2 Ω2

Q,0H̄
4
0

2−`
(
−nDE

2
)
`

Γ(3
2 + `)

(1 + z1)(1 + z2)
〈d̂L〉(z1)〈d̂L〉(z2)

×
∫ z1

0
dz

∫ z2

0
dz′

(
1 + (∆t(z) + ∆t(z′)) 〈

ˆ̇ρQ〉0
〈ρ̂Q〉0

)
H̄(z)3H̄(z′)3

(
χ(z)2 + χ(z′)2

r2
0

)nDE
2

(4.8)

× µ0(z, z′)−`2F1

(
`

2 −
nDE

4 ,
1
2 + `

2 −
nDE

4 ; 3
2 + `;µ0(z, z′)−2

)
,

where C0(z, z′) is the monopole of our angular power spectrum, which can be derived from (4.4)
and C̃` is the observable angular power spectrum. This effect can be shown to only change the
result by a few percent, depending on the redshift the angular power spectrum is evaluated at.

Our angular power spectrum is a function of `, z and z′. Observationally, however, the Cl’s
are split into redshift bins and integrated over some redshift distribution that traces the field

Ci,j` =
∫ ∞

0
dzpi(z)

∫ ∞
0

dz′p j(z′)C̃`(z, z′). (4.9)

Here, pi(z) = 1
N i

dN i

dz , where N i is the number of supernovae in the redshift bin, de-
notes the normalised supernovae number distribution as a function of redshift. The su-
perscript i denotes the redshift bin that is being used. After we switch order of integration
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(
∫∞

0 dz
∫ z

0 dz
′ →

∫∞
0 dz′

∫∞
z′ dz), our C`’s take the following form:

Ci,j` = −ai2 π
3
2 Ω2

Q,0H
4
0

2−`
(
−nDE

2
)
`

Γ(3
2 + `)

×
∫ ∞

0
dz

∫ ∞
0

dz′
W i,j(z, z′)
H̄(z)3H̄(z′)3

(
1 + (∆t(z) + ∆t(z′))〈

ˆ̇ρQ〉0
〈ρ̂Q〉0

)(
χ(z)2 + χ(z′)2

r2
0

)nDE
2

× µ0(z, z′)−`2F1

(
`

2 −
nDE

4 ,
1
2 + `

2 −
nDE

4 ; 3
2 + `;µ0(z, z′)−2

)
, (4.10)

where W i,j(z, z′) is defined as:

W i,j(z, z′) =
∫ ∞
z

dz1

∫ ∞
z′

dz2
(1 + z1)(1 + z2)pi(z1)p j(z2)
〈d̂L〉(z1)〈d̂L〉(z2)

(
1 + C0(z1,z2)

4π

) . (4.11)

5 Connecting with observations

In this section we present the tools needed to connect this to observations. We relate the
quantities in our model, which are bare quantities related to the underlying non perturbed
FLRW universe, to measured quantities. We also consider other perturbation effects that
would be contributing to this power spectrum, which we refer to as contaminant effects. These
effects arise due to the interplay between the observed matter perturbations and general
relativity. We then present the supernovae distributions used to make forecasts and describe
the formalism used for the expected noise of these power spectra, which is crucial to assess its
measurability.

5.1 Connecting the bare parameters to observed ones

In the previously discussed Case I, we obtained luminosity distance predictions which differ
from the standard ΛCDM. Because of this the Hubble parameter and the density fraction
measured locally differs from the one that would be measured on a spacelike hypersurface of
equal time. Due to causality we can only perform measurements along our past light cone,
thus we cannot access this global Hubble parameter and density fraction directly.

To estimate these bare parameters one would ideally fit our model to current data sets.
For example, comparing it with current supernovae samples. We proceed in a similar fashion,
we obtain our values by comparing it to the local low redshift distance ladder measurements
from the SH0ES collaboration [34]. This gives the following constraint up to cubic order:

〈d̂L〉(z) = z

HL

{
1 + 1

2 [1− qL] z − 1
6
[
1− qL − 3q2

L + jL
]
z2
}
. (5.1)

Here, qL is known as the deceleration parameter and jL the jerk parameter, the subscript
reminds that the values are locally measured. This expansion is model independent and
therefore well suited for our approach. This can then be matched power by power. To this
end we need to expand our luminosity distance (3.4) as well, including the extra term due to
the included fluctuations. We assume that the background is well captured by flat wCDM
and that the classical part of our model scales like non-relativistic matter as it contains the
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contributions from cold dark matter and baryons. Due to this parametrization our luminosity
distance and energy density fraction take the following form:

〈d̂L〉(z) = 1 + z

H0

∫ z

0
dz′

1 + 3
4ΩQ(z)2√

Ωc,0(1 + z)3 + ΩQ,0(1 + z)3(wQ+1)
, (5.2)

ΩQ(z) = ΩQ,0(1 + z)3(wQ+1)

Ωc,0(1 + z)3 + ΩQ,0(1 + z)3(wQ+1) . (5.3)

Here Ωc,0 = 1− ΩQ,0. Expanding this and matching it power by power with (5.1) then gives
the following three equations:

1
HL

= 1
H0

(
1 + 3

4Ω2
Q,0

)
, (5.4)

1
2HL

[1− qL] = 1
4H0

(
1 + 3

4Ω2
Q,0 −

3
4wQ

(
4− 12ΩQ,0 + 15Ω2

Q,0

))
, (5.5)

− 1
6HL

[
1− qL − 3q2

L + jL
]

= − 1
8H0

(
1 + 3

4Ω2
Q,0 −

wQ
2
(
4− 12ΩQ,0 + 15Ω2

Q,0

)
+

3w2
Q

4 ΩQ,0
(
8− 60ΩQ,0 + 150Ω2

Q,0 − 105Ω3
Q,0

))
. (5.6)

Once the local parameters are fixed by measurements, we can numerically solve this system
of equations for ΩQ,0, H0 and wQ. For the local parameters we use the values found by [34],
these are obtained by fitting the low redshift expansion over the redshift range spanning from
z = 0.023 to z = 0.15. They find that HL = 74.1± 1.3 km s−1Mpc−1, qL = −0.55 and jL = 1.
The solutions for the bare parameters are then H0 = 118.0 km s−1Mpc−1, ΩQ,0 = 0.89 and
wQ = −0.97. We stress that this is not an actual fit, but an estimate to obtain predictions
for the measurability in upcoming datasets.

5.2 Contaminants from perturbed ΛCDM

To know whether or not our signal is measurable, it is crucial to compare it with the signal
that would be observed in a null experiment, i.e. a universe without spatial correlations in
dark energy. In this section we calculate the signal that would be measured in a such an
universe. We do this in the framework of a perturbed ΛCDM, although one could envisage
that satial fluctuations of the Hubble rate of quantum origin would in principle have an
impact on these predictions.

Fluctuations in the luminosity distance have been well studied in this setting [28–31].
These fluctuations are intrinsically relativistic effects known as convergence, Doppler, (in-
tegrated) Sachs-Wolfe, volume dilation and time delay [28–31, 35–37]. These effects affect
the magnitude of the supernova observed and thus alter the luminosity distance observed.
These effects depend on the large scale structure and thus also lead to a non zero angular
power spectrum. It has been shown that all effects are subdominant to the convergence and
Doppler effects [29]. Therefore we focus only on these effects. Both of these contributions are
well studied, albeit mostly in the context of galaxy surveys [35–39]. The effect in a supernova
survey is in a sense more direct, as the observable is directly the magnitude of the source. Both
Doppler and convergence are called lensing effects, as they affect the magnitude of the source.
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Schematically we can write the Doppler and convergence contributions as

dL(z, n̂)
d̄L(z)

− 1 = κc + κv. (5.7)

These contributions are then given in standard ΛCDM. Here, d̄L is the angular averaged
luminosity distance (4.7).

The convergence contribution is given by [28]:

κc(z, n̂) =
∫ z

0

dz′

H(z′)
χ(z)− χ(z′)
χ(z)χ(z′) ∆⊥

(
Φ(z,~k) + Ψ(z,~k)

)
. (5.8)

Here ∆⊥ is the Laplacian evaluated transverse to the line of sight and Φ and Ψ are the
Bardeen potentials. The convergence term expresses how certain overdense regions between
the observer and the supernova magnify the source, thereby increasing (or decreasing) the
supernova’s luminosity. We note that this effect depends on the full line of sight and thus
becomes stronger with redshift.

The second term in (5.7) is known as the Doppler term, it is given by [29]:

κv(z, n̂) =
( 1
χ(z)H(z) − 1

)
~v · n̂. (5.9)

Here H(z) is the conformal Hubble parameter a(z)H(z). The Doppler term reflects the effect
given by the peculiar velocities of supernovae. The supernova is moving with respect to the
observer, as a result of this the supernova appears (de)magnified. This effect depends on the
velocity’s direction, ~v · n̂, reflecting the fact that the effect is opposite if it is either moving
from or towards the observer. At low redshift the first term in (5.9) dominates, due to the
small comoving distance χ. If we assume the supernova is moving towards the observer,
meaning ~v · n̂ < 0. Then the Doppler term demagnifies the supernova at low redshift. At high
redshift the second term dominates and as a result the supernova is magnified in this regime.
This can be explained as follows [37]: when fixing the redshift, a supernova moving towards
us is in reality more distant in comoving coordinates than it appears. At low redshift this
gives a negative contribution, due to the smaller angle it is observed under. At high redshift,
however, this is not the case. In this regime the dominant contribution comes from the
universe having a smaller scale factor when the photons were emitted. The bundle of photons
is then stretched under the expansion of the universe when moving towards us, increasing the
observed magnitude. For a Planck cosmology [5] the effects are equal at z ≈ 1.6 and cancel
out. For the values of z that we consider, the low redshift contribution always dominates.
This effect then becomes smaller with redshift.

To connect the velocity field to the matter density field δ(~k, z), which in turn can be
connected to the power spectrum, we need the continuity equation [40]:

~v(~k, z) = iH(z)f(z)
~k

k2 δ(~k, z). (5.10)

Here, f(z) = d lnD(z)
d ln a is the growth rate with D(z) being the growth function.

To compare with our main effect we calculate the angular power spectra Cv` and Cc` ,
the power spectra coming from the auto correlation functions of both effects. We expect the
cross-correlation between the Doppler and convergence effect to be zero, as the Doppler effect
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selects modes along the line of sight, while the convergence effect selects modes perpendicular
to the line of sight. The power spectra are derived in appendix E [28, 29, 37, 38]. For the
Doppler effect the spectrum is given by:

Cv,i,j` = 2
π

∫ ∞
0

dz1p
i(z1)

∫ ∞
0

dz2p
j(z2)

( 1
χ(z1) −H(z1)

)
f(z1)

( 1
χ(z2) −H(z2)

)
f(z2)

×
∫ ∞

0
dkPm(k, z1, z2)j′`(kχ(z1))j′`(kχ(z2)). (5.11)

While for the convergence spectrum the result takes the following form:

Cc,i,j` = 2
π

(`(`+ 1))2
∫ ∞

0

dz1
H(z1)W

i
L (z1)

∫ ∞
0

dz2
H(z2)W

j
L (z2)

×
∫ ∞

0
dkk2TΦ+Ψ(k, z1)TΦ+Ψ(k, z2)Pm(k, z1, z2)j`(kχ(z1))j`(kχ(z2)). (5.12)

With W i
L(z̃) being the lensing kernel defined as:

W i
L(z̃) =

∫ ∞
z̃

dzpi(z)χ(z)− χ(z̃)
χ(z)χ(z̃) . (5.13)

i and j denote the redshift distribution the field is sampled over. Pm(k, z1, z2) is the matter
power spectrum as a function of wavenumber k and redshift z1 and z2 and is defined by
〈δ(~k, z)δ∗(~k′, z′)〉 = (2π)3Pm(k, z, z′)δ3(~k− ~k′). TΦ+Ψ is the transfer function relating the dark
matter field to the Bardeen potentials. To simplify the computations we use the linear power
spectrum at the largest scales instead of the non linear spectrum. After ` = 15 we switch
to the non linear power spectrum. To still efficiently calculate these integrals we then adopt
the Limber approximation [41]. Switching at ` = 15 ensures an almost smooth transition
(< 1%) between the calculation methods. The power spectrum, growth rate, growth function
and transfer functions are obtained by using the publicly available Core Cosmology Library
(CCL [42], v2.1.0), CCL uses CAMB [43] to obtain predictions for the power spectra.

For these quantities we assume the following flat Planck ΛCDM cosmology [5]: Ωb = 0.045,
ΩCDM = 0.27, h = H0/(100 km s−1Mpc−1) = 0.67, As = 2.1 × 10−9 on a pivot scale of
kp = 0.05 Mpc−1 and ns = 0.96. In ΛCDM Ωb and ΩCDM are the fractional energy densities
of baryonic and cold dark matter, h is the dimensionless Hubble constant, As is the variance
of curvature perturbations in a logarithmic wavenumber interval centered around the pivot
scale kp, and ns is the scalar tilt.

Lastly, we note that in principle we could also have correlations coming from surveys
being magnitude limited. This induces a bias known as the Malmquist bias, which affects the
distribution p(z). The lensing effect magnifies or demagnifies supernovae and can thus push
stars that are otherwise to faint to observe over the magnification threshold. This effect depends
on the large scale structure and thus induces non zero correlations. Specifically the observed
number of supernovae N in a redshift shell z would be altered by N(z,n̂)

N̄(z) = 1 + 5s(κc + κv),
where s is the effective number count slope [44, 45]. This would then be a correction to the
distribution pi(z) → pi(z)(1 + 5s(κc + κv)). However, this correction is higher order as it
multiplies (5.7), which is already leading order in perturbation theory.

5.3 Forecasts
We aim to predict the overall detectability of the signal. To this end we provide a forecast
for the signal to noise ratio (SNR). The SNR of an angular power spectrum C` between two
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redshift bins i and j is defined as:

SNRij =

√√√√√√l=`max∑
l=`min

(
Cij`

)2

Var
[
Cij`

] . (5.14)

Here, Var [C`] is the variance of the power spectrum. Assuming all the perturbations are
statistically homogeneous, isotropic and Gaussian the variance of a power spectrum is given
by [46]:

Var
[
Cij`

]
= C̃ii` C̃

jj
` + C̃ij` C̃

ji
`

(2`+ 1)fsky
, (5.15)

where C̃ij` is the angular power spectrum between two redshift bins including noise and fsky is
the observed fraction of the sky. We consider noise for the auto-power spectra and we assume
this to be white noise. This noise is a result from the fact that we do not measure a smooth
field, but a finite number of supernovae. We refer to this noise as shot noise. For our power
spectrum it takes the following form [31]:

C̃ii` = Cii` + 4πfsky
NSNe

(
σdL
dL

)2
. (5.16)

NSNe is the amount of supernovae in the redshift bin and σdL
dL

is the intrinsic dispersion of
luminosity distance measurement, this can be related to the intrinsic magnitude dispersion
of the supernova via σdL

dL
= ln 10

5 σm. The intrinsic uncertainty in the magnitude is usually
estimated to be roughly 0.1–0.2 [47–49]. We assume an ` range of 2 ≤ ` ≤ 100. However, we
explore the dependence of the SNR on `min later as well.

5.4 Supernova sample

For the predictions of the C`’s and the noise we need estimates of fsky, p(z), NSNe and σdL .
We obtain predictions for two different surveys: the ongoing Dark Energy Survey (DES) and
the upcoming Legacy Survey of Space and Time (LSST). For DES we use the simulated
supernova distribution as described by ref. [49], which makes predictions for the year 5 sample
DES will produce for different strategies. The relevant strategy that produces the final year 5
sample is the Hybrid-10 strategy [50]. In this case the telescope will visit 10 regions of 3 deg2,
covering a total area of 30 deg2, corresponding with a fraction of the sky fsky = 0.0007. Two
of these regions will have a longer exposure time, performing ‘deep drills’ into redshift space.
This strategy is expected to find ≈ 3482 supernovae with accurate redshifts. This sample is
shown in figure 2.

Separately we also make forecasts in a more futuristic setup, with the goal of mimicking
the year 10 (Y10) LSST data. This sample will improve significantly on current samples for
several reasons: it will have a significantly higher number count, with an expected number of
supernovae with well measured redshift of about 105 [51], almost two orders of magnitudes
more than DES. Secondly, LSST will observe a much larger region of the sky, as LSST will
produce the first all sky supernova survey, with fsky = 0.5 [51]. This will significantly reduce
the cosmic variance. We assume the total LSST sample to be similar in shape as the DES
sample, therefore we use the same redshift distribution p(z).

For both surveys we estimate the intrinsic uncertainty in magnitude σm as 0.13, in
accordance with [49].

– 12 –



J
C
A
P
0
3
(
2
0
2
3
)
0
1
6

0.0 0.2 0.4 0.6 0.8 1.0 1.2
z

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

p(
z)

NLSST=105

NDES = 3482

Normalised redshift distribution

Figure 2. The supernova distribution expected to be obtained by the Dark Energy Survey (DES) [49].
This survey will observe 30 square degrees of the sky repeatedly, 6 of which will be allocated more
observing time for so called ‘deep drilling’. This survey will be used to make forecasts for the
observability of our dark energy signal.

6 Results

In this section we present the results for the angular power spectra. We analyse which range
of the model parameters H0r0 and nDE would lead to a possible positive detection, and assess
what is the best strategy to detect this signal. We consider H0r0 instead of r0 as this is a
dimensionless quantity, the length scale of the fluctuations with respect to the Hubble length
today. We only consider lengths r0 larger than twice the Hubble length, thus we never reach
the regime where the fluctuations saturate. The general shape of the angular power spectrum
does not significantly change as the factor (H0r0)−nDE mostly affects the general amplitude,
therefore not changing the form of the spectrum.

Our predictions are made in the context of Case I. Generalising the results to Case II
is in principle straightforward once σ̃2

Q is fixed. A simple comparison can be made in the
following cases, when σ̃2

Q = 2 the results are the same and when σ̃2
Q < 2 (σ̃2

Q > 2) Case II
would be harder (easier) to detect than the results in this section.

6.1 Overall detectability

First, we assess the detectability over the full redshift distribution. In figure 3 the angular
power spectrum (4.10) is shown. It is clear that the signal is mostly located at the lower `’s
and then decays very rapidly. This decay is steepest in the case where spectral index is larger,
which is the case shown in figure 3(b). We understand the fact that a higher nDE gives a
smaller signal as follows: due to always considering large scales, indicated by H0r0 ≥ 2, the
fluctuations we are probing are those with a relatively small distance with respect to the
length scale r0. When we consider the profiles of the correlations, figure 1, the profiles with a
small spectral index change significantly more rapidly at smaller r. This then results in a
higher C`.
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Figure 3. The angular power spectra C` shown with characteristic fluctuation scale H0r0 = 2 (solid
green line) and 10 (solid blue line). We also show the spectra for the lensing effects (convergence
in red and Doppler in orange). The left panel shows the dark energy signal with a spectral slope of
nDE = 0.1 and the right panel the spectra for nDE = 1. The figures also include the expected noise,
including shot noise and cosmic variance for the two survey set ups (LSST Y10 — dashed and DES —
dot-dashed). This gives four curves, as the noise depends both on the survey and the power spectrum
via (5.15). In the legend the expected signal to noise ratio SNR corresponding to this noise is given in
bold for DES and LSST Y10.

In the low ` regime, the main contribution of noise is the cosmic variance. The cosmic
variance is especially large for DES due to the small fraction of the sky it includes (only 30
deg2). LSST does not have this problem as it includes all of the southern hemisphere for the
Y10 survey. When comparing the noise for the power spectra (dashed (LSST)/dot-dashed
(DES)) with the green and blue lines) we see that the prospects of detecting this effect with
the dark energy survey (DES) are very small, as the low ` regime is drowned in cosmic
variance. Even though the total amount of supernovae observed is significantly larger for
LSST, the number density is actually quite similar to DES. The shot noise is thus comparable
for both surveys. For LSST the signal rises above the noise for `max = 20 when nDE ≈ 1 and
`max ≈ 100 when nDE = 1.

In this regime we also observe that both the convergence as the Doppler effect are
subdominant to the dark energy spectrum and are thus not a nuisance. In the case nDE = 1,
around ` ≈ 40 the convergence effect does surpass the dark energy signal; however, in this
regime the signal is located below the shot noise, so it would not contribute to a detection.
The Doppler signal is similar to the dark energy signal as it is mainly relevant at large scales.
However, even at these scales it is several orders of magnitude below the dark energy signal
and thus can safely be neglected. We also note that in general the lensing effects are below
the shot noise, thus in the regime where our signal would be of the same order as the lensing
effects (large H0r0) the signal is not measurable in any case.

The large scales that we want to probe are challenging to extract from the data. On
these scales the details of the survey strategy, survey mask and the galactic foreground can
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Figure 4. The left panel shows the signal to noise ratio for LSST Y10 depending on the lowest
multipole measured. A range of values for the spectral indices nDE is explored. We fix the scale of the
fluctuations H0r0 = 10. In the right panel we show the dependency of the SNR on the scale of the
fluctuations for LSST Y10. We consider the same spectral indices.

make this signal harder to extract. Because of this we have explored how the signal to noise
ratio depends on the lowest multipole probed. This is shown in figure 4(a). Here we see that
for most of the values for nDE a LSST measurement would also be possible for `min ≈ 20, but
for the case where nDE = 1 this would be a challenge. In this case it would be worth the
effort to constrain these lower multipoles.

We also studied how the signal to noise ratio depends on the scale H0r0. This is shown
in figure 4(b). We observe that as long as the spectral index is not close to one, the signal
is measurable even if H0r0 becomes relatively large. However, in the case where nDE = 1
the signal decays rapidly. Measuring this signal when H0r0 > 100 would probably pose a
considerable challenge for observationalists.

Overall, comparing the signal to noise predicted in figure 3, we expect a positive
measurement in DES would be very challenging. This is because that even in the case with a
very small slope and a relatively small typical length scale of H0r0 = 2, we still find a signal
to noise SNR of 1.8. However, due to the very large area of the sky LSST covers, it does not
suffer from these effects and could potentially measure even the ‘harder’ case with H0r0 = 10
and nDE = 1.

6.2 Redshift dependence

We perform a study of the redshift dependence of our signal. To this end we show the redshift
dependence of C̃`=10(z, z′), which can be calculated from (4.8). This is shown for several
values of the spectral slope nDE in figure 5. We see that the signal is mostly located at equal
redshift, however, it is good to note that the signal does not decay rapidly at unequal redshift.
This is also clearly visible in figure 6, in which we show the signal calculated over several
redshift bins, also including cross-correlations between bins. The relatively strong signal at
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Figure 5. The angular power spectrum (4.8) as a function redshift C̃`=10(z, z′) shown for several
values of the spectral slope nDE. These figures are obtained using H0r0 = 10 and nDE = 0.1 (left), 0.5
(middle) and 1 (right). The power spectrum is calculated for the values z, z′ ∈ (0, 2) on a 100×100 grid.

unequal redshift distinguishes itself from the regular cold dark matter power spectrum, which
is strongly peaked at equal redshift. This would be beneficial if the value of H0r0 is large
enough for this effect to be comparable with the Doppler effect. The Doppler effect is negligible
at unequal redshifts, as it requires two objects to be physically close together in order for their
velocities to be correlated. This is not true for the convergence spectrum, as this depends on
all perturbations along the line of sight and therefore naturally has correlations at unequal
redshift. From figure 6 we can also conclude that binning the signal in different redshift bins
is not beneficial for the signal to noise, as in every bin the SNR is significantly lower than the
SNR obtained for the full distribution (figure 3). We explain this by the fact that the signal
has correlations even when considering very different redshifts, therefore considering a broad
redshift distribution does not water down the signal. The proper strategy is then reducing
the shot noise as much as possible by including the full distribution. However, the unequal
redshift signal could be used as a cross-check for the detection.

From figure 5 we can also see that when the spectral index is smaller, the signal resides
more at low redshift. Again, this can be understood from figure 1. Low redshift means
probing smaller scales, therefore the part that is most relevant is the small r behaviour in
figure 1. A small spectral index means that the function s(r) varies more rapidly when r is
small, thereby giving a better signal at low redshift.

7 Dark energy of quantum origin

In this section we explore a specific physical model which includes such spatial fluctuations. The
scenario that we are considering consists of a quantum field that is spectator during inflation.
When quantised, the quantum backreaction of this field sources dark energy at late times. As
dark energy has a quantum origin in this case it inherently has spatial fluctuations encoded.

7.1 Non minimally coupled scalar field and the stochastic formalism

This scenario was previously explored by [20–25]. We follow the approach by [22–25] and
consider a light scalar field with a non minimal coupling. This is then described by the

– 16 –



J
C
A
P
0
3
(
2
0
2
3
)
0
1
6

10−8
10−7
10−6
10−5
10−4
10−3

SNR1=0.5
SNR2=5.6

DE, H0r0=10, nDE=1
 oise DES: SNR1
 oise LSST: SNR2
Co verge ce
Doppler

10−8
10−7
10−6
10−5
10−4
10−3

ℓ(ℓ
+
1)
/(2

π)
ℓ ℓ

SNR2=4.8
SNR1=0.4 SNR1=0.6

SNR2=7.6

101 102
10−8
10−7
10−6
10−5
10−4
10−3 SNR2=2.8

SNR1=0.3

101 102
ℓ

SNR2=6.1
SNR1=0.5

101 102

SNR1=0.6
SNR2=6.8

0.
1<

z
≤
0.
4

0.1< z≤0.4

0.
4<

z
≤
0.
7

0.4< z≤0.7

0.
7<

z
≤
1

0.7< z≤1

Figure 6. The angular power spectra C` calculated over several redshift bins. We use three bins
with width ∆z = 0.3 between z = 0.1 and z = 1, using these bins we then consider all auto- and
cross-correlations. This then gives the six panels shown above. We also include the lensing effects
(convergence — red, Doppler — orange) and the noise expected from both surveys (DES — dot-dashed
line, LSST — dashed line). In the top right the expected signal to noise ratio corresponding to this
noise is given: SNR1 denotes the signal to noise ratio expected for DES, SNR2 gives the SNR expected
for LSST Y10.

following action

S[Φ] =
∫
d4x
√
−g

{
−1

2g
µν∂µΦ∂νΦ− 1

2m
2Φ2 − 1

2ξRΦ2
}
, (7.1)

where R is the Ricci curvature scalar of the metric gµν and g = det [gµν ]. It is clear that due
to the non minimal coupling this field has an effective mass given by M2 = m2 + ξR. Due to
the Ricci scalar R this is directly dependent on the cosmological background. Previous work
by refs. [22, 23] showed that the field-correlators grow during inflation and are subsequently
translated into an effective dark energy at late times. This enhancement during inflation
is larger when considering the scenario where the non minimal coupling is negative and
dominates over the bare mass m. The quantum fluctuations of this field are mostly built from
super-Hubble modes, so their evolution is frozen after inflation. Therefore these quantum
fluctuations can play the role of dark energy.

In this model the fields are quantized in the standard way using canonical quantization.
The canonical momentum is Π = a3Φ̇, then the fields are promoted to operators obeying the
canonical commutation relations.
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The effect of the scalar field on the cosmology is determined by the energy momentum
tensor, Tµν(x) = −2√

−g(x)
δSm

δgµν(x) . In operator form this is given by:

T̂µν = ∂µΦ̂∂νΦ̂− 1
2gµνg

αβ∂αΦ̂∂βΦ̂− m2

2 gµνΦ̂2 + ξ [Gµν −∇µ∇ν + gµν�] Φ̂2. (7.2)

Gµν denotes the Einstein tensor and � is the box operator or d’Alembertian. With respect
to a homogeneous and isotropic state defined on a FLRW background the energy momentum
tensor takes the perfect fluid form. From this the energy density can be found. When
neglecting spatial gradients this is given by:

ρ̂Q(t, ~x) ≡ −T̂ 0
0 (t, ~x) (7.3)

= H2

2

{[(
m

H

)2
+ 6ξ

]
Φ̂2(t, ~x) + 6ξ

a3H
{Φ̂(t, ~x), Π̂(t, ~x)}+ 1

a6H2 Π̂2(t, ~x)
}
. (7.4)

The brackets are defined as {Â, B̂} ≡ ÂB̂ + B̂Â. Similarly, the pressure is obtained as the T ij
element of the energy momentum tensor. The problem now reduces to finding the coincident
correlators in (7.4) at late times. This work was done by [23] by suitably adopting the
stochastic formalism [52]. In this approach one realises that the dominant contribution to
the fields come from super horizon modes (H > k). The field operators are then split into a
long and short wavelength part, separated by the comoving scale µH. µ is a UV cutoff, it
selects the lowest scale at the beginning of inflation for which the modes are still nearly scale
invariant. We take it to be one in our calculations. Hereafter one focuses on the equations
of motion for the long wavelengths, where the short wavelength modes enter as a stochastic
noise term.

Using this formalism ref. [23] was able to show that the backreaction of this field can
indeed result in a viable candidate for dark energy.

7.2 Density and pressure
In recent work by [25], it was shown that, assuming a negative non minimal coupling ξ < 0,
in the matter dominated era the density and pressure of these fields can be approximated as
follows:

〈ρ̂Q(t, ~x)〉 = H̄2

2

[(
m

H̄

)2
− 6|ξ|

]
H2
I

32π2|ξ|
e8|ξ|NI+4|ξ|NM , (7.5)

〈p̂Q(t, ~x)〉 = −m
2

2
H2
I

32π|ξ|e
8|ξ|NI+4|ξ|NM . (7.6)

Here, H̄ is the Hubble rate during the matter-dominated epoch at time t. Due to spatial
homogeneity, the expectation value of ρ̂Q does not depend on the comoving position ~x. HI

denotes the constant Hubble rate during inflation, NI the number of inflationary e-folds, while
NM is the number of e-folds after matter domination. Indeed, the first part of the energy
density scales as 〈ρ̂Q〉 = −〈p̂Q〉. This is exactly the behaviour of a cosmological constant.
Apart from this it also includes a contribution behaving as dark matter with negative energy.
Matching the cosmological constant-like term to the observed amount of dark energy today
then gives a constraint for the length of inflation, as inflation needs to take long enough to
produce the required amount of dark energy [23, 25].

NI = 1
8|ξ| ln

[
24π|ξ|

(
mP

HI

)2 (HDE

m

)2
]
− NM

2 , (7.7)
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where mP =
√

8πMP is the Planck mass, HDE =
√

ΩΛH0 and NM is the number of e-folds
starting from matter-radiation equality. ΩΛ is the fraction of energy density today due to the
cosmological constant. For this scenario to unfold, several constraints need to be satisfied:

|ξ| < 1
6

(
m

HDE

)2
, ξ < 0 and m/HDE < 1. (7.8)

The first constraint is the result from the need that the cosmological constant-like part of
〈ρ̂Q〉 has to dominate over the dark matter-like part. The assumptions of light field and
negative non-minimal coupling are those which allow a better enhancement of quantum
fluctuations [23, 25]. This can be seen from the effective potential of the scalar field V (φ) =
1
2M

2φ2 with M2 = m2 + 6ξ(2− ε)H2. A light field and negative non-minimal coupling are
the conditions for which a minimum length of inflation is needed to amplify the quantum
fluctuations of the scalar field, which will later manifest as dark energy in matter-dominated
epoch and eventually lead the expansion.

The equation for the densities can be rewritten using the Ω parametrization as

ΩQ(z) = 〈ρ̂Q〉(z)
3M2

P H̄
2(z)

, Ωc(z) = ρc(z)
3M2

P H̄
2(z)

. (7.9)

Note that these sum up to one due to the Friedmann equation (7.12). The redshift dependence
of 〈ρ̂Q〉 can be derived from (7.5) and is given by,

〈ρ̂Q〉(z)
〈ρ̂Q〉0

=
ΩΛ − 1

α
H̄2(z)
H2

0

ΩΛ − 1
α

, (7.10)

where we neglected the growth in matter domination. The subscript 0 means the density 〈ρ̂Q〉
is evaluated at zero redshift. We defined α for notational convenience as α = 1

6|ξ|

(
m
HDE

)2
.

The constraints given by (7.8) then require |ξ| < 1
6α and α > 1 for a fixed α. Using these

expressions, and assuming the classical matter scales as non-relativistic matter we obtain,

1 = Ωc(z) + ΩQ(z) = Ω0,c(1 + z)3 H2
0

H̄2(z)
+
[
ΩΛ

H2
0

H̄2(z)
− 1
α

]
. (7.11)

This equation can then be solved for the Hubble parameter to give

H̄2

H2
0

=

(
ΩM + 1

α

)
(1 + z)3 + ΩΛ

1 + 1
α

, (7.12)

where we used that Ω0,c = ΩM + 1
α , which follows from (7.9) and from ΩM = 1−ΩΛ, where ΩM

is the matter energy density fraction today. In the limit where α→∞, indicating the minimally
coupled limit, this indeed reduces to the regular Friedmann equation. Using (7.9), (7.10)
and (7.12) we write down an expression for ΩQ(z):

ΩQ(z) =
ΩΛ − 1

α

(
ΩM + 1

α

)
(1 + z)3

ΩΛ +
(
ΩM + 1

α

)
(1 + z)3

. (7.13)
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7.3 Spatial correlations
Since the origin of dark energy in this model is quantum fluctuations of matter fields during
inflation, it is expected that this model produces inhomogeneous dark energy of a predictable
form. This was later confirmed by refs. [24, 25], which used the same stochastic formalism to
calculate the off-coincidence correlators in this theory.

This model produces spatial correlations of the same form as Case I using the following
identifications [24], comparing with (2.2), we see that the spectral slope can be related to the
non minimal coupling by nDE = 16|ξ| and the reference scale r0 is connected to the energy
scale of inflation by r0 = 1

µaIHI
:

s(‖~x− ~y‖) =
{

3− 2 (µaIHIr)16|ξ| , µaIHIr < 1,
1, µaIHIr > 1.

(7.14)

Here, aI and HI are the scale factor and Hubble parameter at the start of inflation.
We are mostly interested in the value for the ratio H0r0, so we can use (7.7) in the

following form, where we assumed an instantaneous reheating after inflation [24]:

H0r0 = µ−1eNI
(
HI

H0

)− 1
2

Ω−
1
4

R . (7.15)

Here, ΩR is the energy density fraction in radiation today, which we take as 9.1 · 10−5.
Similar to Case I in the previous sections, the quantities ΩM and H0 are still the

unobservable bare quantities. To obtain values for these we match them analogously to the
phenomenological model in section 5.1, with the difference being that for H̄(z) and ΩQ(z) we
now use (7.12) and (7.13). As the redshift dependence is determined by the model parameters,
we expand up to the deceleration parameter,

1
HL

= 1
4H0α2

(
3 + 6α(ΩM − 1) + α2(7 + 3(ΩM − 2)ΩM ))

)
, (7.16)

1
2HL

[1− qL] =
(
16H0α

2(1 + α)
)−1 (

3 + α(42− 39ΩM ) + α2(3ΩM (48− 29ΩM )− 53)

+α3(28− 3ΩM (27 + ΩM (15ΩM − 34))
)
, (7.17)

where we used ΩΛ = 1−ΩM . We then solve these equations numerically in the bare variables
H0 and ΩQ for several values of α. Again, we use the values for qL and HL from [34], as
explained in 5.1. The results are shown in table 1. Values smaller than α = 8 result in a
negative ΩM , thus we choose α larger than this. Again, we stress that this gives an estimate
for the bare parameters, ideally one would fit this model to supernovae data.

Using this knowledge we can calculate the C`’s. For this model (4.10) takes the following
form:

Ci,j` = −π
3
2 Ω2

Q,0H
4
0

2−` (−8|ξ|)`
Γ(3

2 + `)

×
∫ ∞

0
dz

∫ ∞
0

dz′

 W i,j(z, z′)
H̄(z)3H̄(z′)3

[
1− (z + z′) 3

1 + α

1 + αΩM

α(1− ΩM )− 1

]
(7.18)

×
(
χ(z)2 + χ(z′)2

r2
0

)8|ξ|

µ0(z, z′)−`2F1

(
`

2 − 4|ξ|, 1
2 + `

2 − 4|ξ|; 3
2 + `;µ0(z, z′)−2

) .
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H0
[

km s−1Mpc−1
]

ΩM

α = 10 116.6 0.03
α = 25 116.8 0.08
α = 50 116.9 0.1

Table 1. The values for the bare energy fraction of non-relativistically scaling matter and the bare
Hubble constant, calculated for several values of the model constant α.

7.4 Prospects for measurability
Before calculating the C`’s it is useful to work on the factor (H0r0)−16|ξ|, as this term
can be factored out of the power spectrum, see (7.18), and acts as an effective amplitude.
Combining (7.7) and (7.15) yields the following expression:

(H0r0)16|ξ| =
(

4π
α

m2
p

H2
I

)2(
H0
√

ΩR

HIΩM

)8|ξ|

. (7.19)

For HI we adopt the value of 1016 GeV, this is around the GUT scale and still below the
observational constraint of about 2× 1016 GeV [40, 53]. The signal is only measurable when
(H0r0)nDE is not too big, as if this factor becomes too large the signal starts to be drowned
in the shot noise. From (7.19) we see that this is mostly determined by the ratio between
the Hubble rate today and during inflation, with exponential dependence on |ξ|. We also
note that |ξ| is limited by α via |ξ| ≤ 1

6α . This turns out to be very restricting. The regime
where (H0r0)nDE lies between 2 and 104 mostly lies in the range that is forbidden by this
constraint, as can be seen in figure 7(a). The factor (H0r0)nDE grows exponentially with |ξ|,
effectively pushing the signal to scales we cannot probe anymore with upcoming surveys such
as LSST. This is confirmed by figure 7(b). In this figure one can observe that in the best
case a SNR of 0.48 can be obtained, which means that it would not be measurable by LSST
Y10. A smaller α would free up the parameter space to ranges where the signal would be
measurable; however, a smaller α leads to a negative ΩM in our matching. Alternatively, if
the scale of inflation HI was higher, it would also be possible to obtain a measurable result.
Yet, this range of HI would already have led to a positive detection of the tensor spectrum,
therefore this range is already ruled out by observations.

From this we conclude the following. To match the results of the 〈d̂L〉(z), the amount
of negative matter that this model predicts has to be small, this then leads to a relatively
large α. To still be able to ensure that the mass of the field m stays small throughout the
evolution of the universe, the non minimal coupling ξ also has to be small. Then, to be able
to produce enough dark energy to match the amount today, inflation has to take a long time.
As our characteristic length scale H0r0 grows with the length of inflation this then leads to
scales we cannot probe with upcoming experiments.

However, in this analysis we did not take into account the possible effect of a reduced
speed of sound cs. A speed of sound cs < 1 would reduce (H0r0)16ξ. In [25] it was shown
that introducing a speed of sound cs enters as a multiplicative factor of c6

s to (7.19). This
enhances the signal significantly, as can be seen in figure 7(b). When cs = 0.1, both the cases
α = 10 and α = 25 are possibly detectable. We note that when the SNR becomes larger,
the cosmic variance becomes a relevant noise contribution, resulting in the upper SNR lines
exhibiting a bend.
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Figure 7. The left panel shows the factor (H0r0)nDE shown as a function of |ξ|. The right panel
shows the SNR of the model, calculated for the LSST Y10 survey. We keep the scale of inflation fixed
at HI = 1016 GeV and explore several values of α. We also include predictions assuming a speed of
sound cs = 0.1, which rescales (H0r0)nDE with a factor c6

s. We only show the values that are allowed
by the constrained |ξ| ≤ (6α)−1.

We also point out that the redshift evolution of the model discussed in this section was
tested by [54]. They found that this model is slightly favored over ΛCDM, although not at a
statistically significant level.

8 Conclusion and discussion

In this paper we explored a simple phenomenological model for dark energy containing spatial
correlations and considered its implication for the luminosity distance. We considered two
specific instances of this model, related to the way the dark energy density relates to the
fundamental quantum fields that build it. We assume that the energy density of dark energy
depends either quadratically (Case I ) or linearly (Case II ) on a single underlying field φ̂ with
Gaussian statistics. In Case I this means the statistics of the density perturbations δρ̂Q are
inherently non-Gaussian.

Our first observation is that in the case that the local variance of the density field is non
zero, the expectation value of the luminosity distance becomes dressed by local fluctuations.
In the case that the density depends quadratically on the field φ̂, this variance is obtained
via Wick’s theorem and is naturally large. The result of this is that the locally measured
parameters (i.e. H0) might not be equal to the ‘bare’ parameters describing the underlying
FLRW universe. The idea that parameters measured do not equal the underlying parameters
is not a new idea, as it was previously studied in the context of relativistic universes containing
inhomogeneities [29, 55]. But to our knowledge it has to this date not yet been studied from
a quantum perspective, where the fluctuations arise due to quantum effects.

Hereafter we constructed the power spectrum for the fluctuations in the luminosity
distance. Using this power spectrum we assessed its measurability for DES and LSST,
taking into account contaminants from relativistic effects such as the Doppler effect and
the convergence effect. From figure 3 we find that detecting this signal with DES would be
very challenging: the signal is mostly located at the largest scales, making cosmic variance
a significant noise contribution. DES only observes a very small patch of the sky, resulting
in a large contribution of cosmic variance. On the other hand, LSST will observe the full
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sky on the southern hemisphere, which greatly reduces the cosmic variance. We then find
that depending on the scale of the fluctuations r0 and the spectral index of dark energy nDE,
defined in (2.2), the signal would be measurable. From figure 4(b) we conclude that when
nDE = 1, the signal is measurable when H0r0 . 102, while for nDE = 0.1 the signal would
still easily be measurable when H0r0 ≈ 1010. For the case that nDE = 1 it would be useful to
go through the effort of measuring the lowest multipoles `, as the signal is mostly located
in the lower ` region (see figure 4(a)). We also find that the contaminant signal, coming
from relativistic effects, does not alter these conclusions. In the regime where these effects
become of the same order of our signal, the signal is not measurable as it would be located
well below the shot noise contribution (see figure 3). We also find this model has relatively
strong correlations at unequal redshift, this could be used as a cross-check for the signal in a
tomographic approach.

With these conclusions in mind we then considered a specific model for dark energy
fluctuations [20–25]. In this model dark energy is linked to a non minimally coupled spectator
field during inflation and has subsequently quantum fluctuations imprinted in it. We explored
the parameter space of this model. We find that if we want this model to be consistent, the
allowed values are such that inflation needs be long (see (7.19) and (7.7)), thereby pushing
the signal to scales we cannot probe anymore with upcoming experiments such as LSST, as
can be seen in figure 7. Taking into account a speed of sound cs < 1 lowers the characteristic
length scale H0r0 [25] and could thereby make it measurable (see figure 7(b)).

To summarize, we found that a fluctuating Hubble rate due to a fluctuating dark energy
fluid can have some profound implications for the luminosity distance. As a result of the
fluctuating Hubble rate, the luminosity distance itself becomes a fluctuating parameter.
Even at the level of the one-point function, the luminosity distance becomes dressed by the
fluctuations, resulting in a difference from ΛCDM. The spatial correlations in the dark energy
fluid become visible in the two-point correlator of the luminosity distance. We constructed
the angular power spectrum for these fluctuations and studied its detectability. We find that
these fluctuations are mostly visible on very large scales (` ≤ 50) and that for a large part of
the models parameter space, this model would be testable by LSST Y10 data.

We can propose several avenues in continuing this research. In our work we calculated
the relativistic effects in the context of perturbed ΛCDM to obtain an estimate of this effect.
Implicitly this assumes that fluctuating dark energy does not alter this effect. A complete
treatment would calculate these effects in our model. For this, one would need to know how
the gravitational potential is affected by quantum fields containing spatial correlations. This
would be an interesting extension of our work. Similarly, it would be interesting to study how
the growth of structure would be affected by such models. In the light of the σ8 tension, a
tension between the CMB [5] and shear measurements [6, 7] of σ8, being a major problem in
ΛCDM, we would be interested to see whether it would persist in a model with a fluctuating
dark energy candidate. Recently it was shown that such models can alleviate the Hubble
tension [24], which is one of the most pressing issues in current cosmology [3, 4]. This shows
promise for the σ8 tension as well.

In principle, not only dark energy, but also dark matter could have a quantum nature. It
would be interesting to see how this would influence causal observables such as the luminosity
distance. There has been some progress on the study of dark matter from a fundamental field
theoretic perspective [56–58], but as of yet, a study of such effects on the luminosity distance
has not been carried out to our knowledge. Another interesting route would be studying how
a coupling between dark matter and dark energy would affect our analysis.

– 23 –



J
C
A
P
0
3
(
2
0
2
3
)
0
1
6

We would also be interested in the effect this model has on gravitational waves. In
general this would be interesting in the light of upcoming gravitational wave experiments.
This would also have another advantage, because the relativistic lensing effects affect both
the electromagnetic luminosity distance and the gravitational wave luminosity distance. By
considering the difference between the electromagnetic distance and the gravitational wave
distance, these would thus drop out [31].

The implications of this model on other observables is also a natural route to consider.
Observables related to the Hubble parameter would be especially promising, for example, time
delays from strongly lensed objects. Other interesting probes would be the cosmic microwave
background or lensing studies.
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A Non pertubative approach

In the main text we derived the following expression (3.2) for the luminosity distance,

〈d̂L〉(z)
1 + z

=
∫ z

0
dz′

〈
1

Ĥ(z′, n̂)

〉
=
∫ z

0

dz′

H̄(z′)

〈(
1 + δρ̂Q(z, n̂)

ρtot(z)

)− 1
2
〉
. (A.1)

We then proceeded with expanding in fluctuations of ρ̂Q. However, this series diverges in both
cases, having a zero radius of convergence. To understand until which order we can trust this
expansion, and to obtain some insights in the behaviour up to all orders of these fluctuations
we derive an exact analytic solution for the one-point functions in both cases by using our
assumption that they are fundamentally built out of fields φ̂ obeying Gaussian statistics.

A.1 Case I

We assume the density relies on the fields squared, i.e. ρ̂Q(z) = B(z)φ̂2(z, n̂), where B(z)
is a proportionality constant depending on the specifics of the model. For example, in the
quantum origin model discussed previously we have an expression (7.4) for this constant
depending on the model parameters ξ and m. Written in this way, the perturbation written
in terms of the fields is given by δρQ(z, n̂) = B(z)

(
φ̂2(z, n̂)−A(z)

)
, where A(z) = 〈φ̂2〉(z).

We note that because of this δρ̂Q obeys non-Gaussian statistics. In the spirit of the stochastic
formalism [52], we define a classical stochastic variable φ whose statistical properties are
the same as those of the quantum operator φ̂. We know this field obeys Gaussian statistics
with vacuum expectation value 〈φ〉(z) = 0 and variance σ2(z) = 〈φ2〉(z) − 〈φ〉2(z) = A(z).
Using this knowledge we can replace the ensemble brackets by an integral over the Gaussian
distribution,

〈(
1 + δρ̂Q(z, n̂)

ρtot(z)

)− 1
2
〉

= 1√
2πA(z)

∫ ∞
−∞

dφ
e
− 1

2
φ2(z)
A(z)√

1 + B(z)
ρtot(z) (φ2(z)−A(z))

. (A.2)
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Figure 8. The left panel shows both the perturbative (1 + 3
4 Ω2

Q(z), red line) and the re-
summed ((A.5),black line) results for the fluctuations in Case I. We note that in a universe
without perturbations this factor is one. The panel on the right shows the relative difference
(100× (Perturbative /Resummed−1)) between the perturbative and the resummed results, we observe
this to be at most roughly 10 percent.

We can make a change of variables φ(x) =
√
A(z)ψ(x) and recognize that A(z)B(z)

ρtot(z) = 〈ρQ〉(z)
ρtot(z) =

ΩQ(z). Then we obtain,〈(
1 + δρ̂Q(z, n̂)

ρtot(z)

)− 1
2
〉

=
√
A(z)√

2πA(z)

∫ ∞
−∞

dψ
e−

1
2ψ

2√
1 + ΩQ(z) (ψ2(z)− 1)

(A.3)

= 1√
2πΩQ(z)

∫ ∞
−∞

dψ
e−

1
2ψ

2√
1

ΩQ(z) − 1 + ψ2
. (A.4)

When ΩQ(z) ∈ [0, 1) this integral can be solved as a Bessel function yielding,〈(
1 + δρ̂Q(z, n̂)

ρtot(z)

)− 1
2
〉

= 1√
2πΩQ(z)

e
1
4

(
1

ΩQ(z)−1
)
K0

(
1
4

(
1

ΩQ(z) − 1
))

. (A.5)

K0 denotes the modified Bessel function of the second kind. In figure 8 we show both the
truncated result at quadratic order in density fluctuations and the resummed result and
compare the two. We see that the relative error is at most 10 percent. This justifies using our
expansion (3.4), which we used to derive the expectation values for the luminosity distance.

A.2 Case II
We now extend our treatment to Case II, where ρ̂Q ∝ φ̂. Then, when assuming the field φ̂ to
be Gaussian, δρ̂Q = B(z)

(
φ̂− 〈φ̂〉

)
also obeys Gaussian statistics. We note that this B(z) is

a different B(z) than the one in Case I. In this case the expectation value is given by,

〈(
1 + δρ̂Q(z, n̂)

ρtot(z)

)− 1
2
〉

= 1√
2πσ

∫ ∞
−∞

d (δρ) 1√
1 + δρQ

ρtot

e
− 1

2
δρ2
Q

σ2
Q . (A.6)

Since the RMS Hubble parameter needs to be positive to make physical sense, we change the
lower limit. Which is allowed when the Gaussian is sharply peaked, meaning σ2

Q

ρ2
tot
� 1, where
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Figure 9. The term describing the enhancement or decrease due to the fluctuations in the case where
the density depends on the fields in a linear fashion (Case II ). The left panel gives the comparison
with our expansion, the black line shows (A.9), the red line shows 1 + 3

8
σ2

Q

ρ2
tot

(see (3.4)). The right
panel shows (A.9) for a large range of σQ

ρtot
.

σ2
Q = B(z)2σ2 is the variance of ρ̂Q. This results in:〈(

1 + δρ̂Q(z, n̂)
ρtot(z)

)− 1
2
〉

= 1√
2πσQ

∫ ∞
−ρtot

d (δρQ) 1√
1 + δρQ

ρtot

e
− 1

2
δρ2
Q

σ2
Q . (A.7)

We can first observe that in the case where σQ → 0 the Gaussian distribution becomes the
Dirac delta function δ(δρQ). As a consequence the integral reduces to one, matching the
classical result. Now we substitute x = δρQ

ρtot
+ 1 such that we obtain,〈(

1 + δρ̂Q(z, n̂)
ρtot(z)

)− 1
2
〉

= 1√
2πc

∫ ∞
0

dxx−
1
2 e−

(x−1)2
2c . (A.8)

Here, the constant c is the ratio between the total amount of matter and the fluctuations
c =

(
σQ
ρtot

)2
. This integral can also be solved in terms of Bessel functions, the result is:

〈(
1 + δρ̂Q(z, n̂)

ρtot(z)

)− 1
2
〉

=
√
π

8
ρtot
σQ

e
− ρ

2
tot

4σ2
Q

(
I− 1

4

(
ρ2

tot
4σ2

)
+ I 1

4

(
ρ2

tot
4σ2

Q

))
. (A.9)

Where In is the modified Bessel function of the first kind. The behaviour of this function
is shown in figure 9(b). We see that, indeed, it starts at one. This is to be expected: when
σQ = 0, then the matter does not fluctuate. We also notice that when the dispersion becomes
sufficiently large, the fluctuations make the effective Hubble parameter larger, however, in
this regime σ2

Q

ρ2
tot

is not small so we cannot fully trust this result. In figure 9(a) the result is
compared with the perturbative result, the agreement is excellent for small σQ

ρtot
. After this

ratio surpasses 0.2 the two solutions start to diverge from each other.

B The unequal time correlator

In the literature correlators are often calculated at equal time, or equivalently, at equal
redshift. In general it is possible to have correlations at different times. It is thus important
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to calculate the effects of the correlator at different times, a so called ‘unequal time’ correlator.
In this appendix we derive this correlator, which in the main text is used to obtain (3.6).

To obtain such a correlator we expand the equal time correlator around t = t0.

〈ρ̂Q(t1, n̂1)ρ̂Q(t2, n̂2)〉 = 〈ρ̂Q(t0, n̂1)ρ̂Q(t0, n̂2)〉
+ ∆t1 〈 ˙̂ρQ(t0, n̂1)ρ̂Q(t0, n̂2)〉+ ∆t2〈ρ̂Q(t0, n̂1) ˙̂ρQ(t0, n̂2)〉. (B.1)

With ∆ti = ti − t0 and the dot indicating a partial derivative ∂t. This expansion is good
even if t− t0 becomes relatively large: dark energy varies slowly with time and therefore the
correlator between ˙̂ρQ and ρ̂Q is small.

We also write, analogously to (2.1).

〈 ˙̂ρQ(t, n)ρ̂Q(t, n′)〉 = 〈ρ̂Q(t, n)ˆ̇ρQ(t, n′)〉 = B(t)〈ρ̂Q(t)〉〈ρ̂Q(t)〉s(‖~x− ~y‖). (B.2)

We know that:

∂t〈ρ̂Q(t, n)ρ̂Q(t, n′)〉 = 〈 ˙̂ρQ(t, n)ρ̂Q(t, n′)〉+ 〈ρ̂Q(t, n)ˆ̇ρQ(t, n′)〉 (B.3)
= 2B(t)〈ρ̂Q(t)〉〈ρ̂Q(t)〉s(‖~x− ~y‖). (B.4)

However, we can also calculate the left hand side by inserting (2.1). We then obtain:

∂t〈ρ̂Q(t, n)ρ̂Q(t, n′)〉 =
(

2〈
˙̂ρQ(t)〉
〈ρ̂Q(t)〉

)
〈ρ̂Q〉(t)2s(‖~x− ~y‖). (B.5)

We can now obtain B(t) by comparing (B.4) and (B.5). This gives us:

B(t) = 〈
˙̂ρQ(t)〉
〈ρ̂Q(t)〉 . (B.6)

In total we then get as our result for the correlator in (B.1):

〈ρ̂Q(t1, n̂1)ρ̂Q(t2, n̂2)〉 ≈ 〈ρ̂Q(t0, n̂1)ρ̂Q(t0, n̂2)〉 ·
(

1 + (∆t1 + ∆t2)〈
˙̂ρQ〉(t0)
〈ρ̂Q〉(t0)

)
. (B.7)

C A hypergeometric integral

We are interested in solving the following integral, which appears in our expression for the
angular power spectrum (4.5),

I =
∫ 1

−1
dµ

(
r(z1, z2, µ)nDE

rnDE
0

)
P`(µ), (C.1)

with r being the comoving distance between two points. We can rewrite r(z1, z2, µ)nDE =(
χ2

1 + χ2
2 − 2χ1χ2µ

)nDE
2 , where χi = χ(zi), the comoving distance to the point zi. We can

then rewrite the integral as

I = (2χ1χ2)
nDE

2
µ
nDE

2
0
rnDE

0

∫ 1

−1
dµ

(
1− µ

µ0

)nDE
2
P`(µ) = (2χ1χ2)

nDE
2

rnDE
0

Ĩ . (C.2)
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Here, we defined Ĩ as the integral over µ and µ0 = χ2
1+χ2

2
2χ1χ2

. As the ratio µ
µ0

is smaller than one
we can write it as a series using Newtons binomium, then commute the sum and the integral,

Ĩ = µ
nDE

2
0

∫ 1

−1
dµ

(
1− µ

µ0

)nDE
2
P`(µ) = µ

nDE
2

0

∞∑
n=0

(
nDE

2
n

)
1

(−µ0)n
∫ 1

−1
dµµnP`(µ). (C.3)

We have now replaced our integral with a summation and a more tractable integral. A very
similar integral is given in ref. [59], namely:∫ 1

0
dµxnP`(µ) =

√
π

21+n
Γ(1 + n)

Γ(1 + n−`
2 )Γ(3

2 + n+`
2 )

. (C.4)

Here, Γ(z) is Eulers Gamma function. To calculate the integral on the other half of our
domain we make use of the fact that P`(−x) = (−1)`P`(x). For the complete domain the
integral is then given by∫ 1

−1
dµxnP`(µ) =

(
1 + (−1)`+n

) √π
21+n

Γ(1 + n)
Γ(1 + n−`

2 )Γ(3
2 + n+`

2 )
. (C.5)

We can insert this in (C.3), yielding

Ĩ = µ
nDE

2
0
√
π

2

∞∑
n=0

(
nDE

2
n

)(
1 + (−1)`+n

)(
− 1

2µ0

)n Γ(1 + n)
Γ(1 + n−`

2 )Γ(3
2 + n+`

2 )
. (C.6)

Now, we rewrite the binomial coefficient to obtain:

Ĩ = µ
nDE

2
0
√
π

2Γ(−nDE
2 )

∞∑
n=0

(
1 + (−1)`+n

)( 1
2µ0

)n Γ(n− nDE
2 )

Γ(1 + n−`
2 )Γ(3

2 + n+`
2 )

. (C.7)

Our goal is to rewrite this in terms of Pochammer symbols, (a)n = Γ(a+n)
Γ(a) , which do not

include factors n
2 . However, we can first consider the even part of this integral:

Ĩeven = µ
nDE

2
0
√
π

Γ(−nDE
2 )

∞∑
n=0

( 1
2µ0

)2n Γ(2n− nDE
2 )

Γ(1 + n− `
2)Γ(3

2 + n+ `
2)
. (C.8)

We have now gotten rid of the factors n/2, but we have obtained factors 2n. To remove
these we use Gauss’ multiplication theorem to rewrite these in terms of Gamma function with
factors n. This yields:

Ĩeven = µ
nDE

2
0 2−

nDE
2 −1

Γ(−nDE
2 )

∞∑
n=0

( 1
µ2

0

)n Γ(n− nDE
4 )Γ(n− nDE

4 + 1
2)

Γ(1 + n− `
2)Γ(3

2 + n+ `
2)

(C.9)

Now we may note that Γ(1 + n− `
2) hits a pole if `

2 ≥ 1 + n, which means that all terms up
to and including n = `

2 − 1 do not contribute. This allows us to relabel the starting index of
the summation to n = `

2 , after this we can relabel everything to make the summation start at
0 again. This yields

Ĩeven = µ
nDE

2 −`
0 2−

nDE
2 −1

Γ(−nDE
2 )

∞∑
n=0

(
1
µ2

0

)n
n!

Γ(n+ `
2 −

nDE
4 )Γ(n+ `

2 −
nDE

4 + 1
2)

Γ(3
2 + n+ `)

. (C.10)
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We can now recognise Gauss’ hypergeometric function in (C.10). Therefore we can write the
integral as

Ĩ = µ
nDE

2 −`
0 2−

nDE
2 −1

Γ(−nDE
2 )

Γ( `2 −
nDE

4 )Γ(1
2 + `

2 −
nDE

4 )
Γ(3

2 + `)

× 2F1

(
`

2 −
nDE

4 ,
1
2 + `

2 −
nDE

4 ; 3
2 + `; 1

µ2
0

)
, (C.11)

where we dropped the even label, as going through the same steps in the odd case yields the
same answer. For the total integral we have:

I = (2χ1χ2)
nDE

2

rnDE
0

√
πµ

nDE
2 −`

0 2−`
Γ
(
−nDE

2 + `
)

Γ(−nDE
2 )Γ(3

2 + `)

× 2F1

(
`

2 −
nDE

4 ,
1
2 + `

2 −
nDE

4 ; 3
2 + `; 1

µ2
0

)
, (C.12)

where we have used Gauss’ multiplication theorem to simplify the prefactor slightly.

D Angular and ensemble averaging

We derived an expression for the residuals of the luminosity distance, however, we obtained
this expression in terms of ensemble averages. In practice observations are done over the past
light cone, invoking an angular average. The relationship between these two averages is in
principle complicated and depends on the specific observable [60–63]. Differences between
these two can have several origins; a state average is for example defined over a space like
hypersurface of constant time, while the angular average is an average over the past light cone.
However, we focus on another aspect, namely the fact that due to cosmic variance the average
we observe is different from the true background average. The true background average is in
principle not measurable, due to the fact that we can only access our past light cone. We,
therefore, have no way of knowing if our measured average is the true one, as for this we
would have to do different measurements at different positions. This problem was discussed
in the context of the Cosmic Microwave Background by [62]. We extend this treatment and
apply it to our own case.

The problem becomes clear when considering the observed luminosity distance:

d̄L =
∫
d2n̂

4π d̂L(z, n̂), (D.1)

this is still a stochastic quantity: a measurement on a different location could give a different
value, as our measurement could be influenced by fluctuations. Formally we can write this
statement as d̄L = 〈d̂L〉+

(
d̄L − 〈d̂L〉

)
, where the term in brackets is not necessarily zero. We

can now define the cosmic variance δcv = d̄L
〈d̂L〉
− 1. If δcv = 0, then the two averages are the

same. In terms of this cosmic variance we have d̄L = 〈d̂L〉(δcv + 1).
As we are interested in the observational accessible average, we want to make predictions

for the fluctuations with respect to the angular mean ∆̃, while theoretically we have predictions
for the fluctuations with respect to the ensemble average ∆. These are defined as:

∆̃(z, n̂) = d̂L

d̄L
− 1, ∆(z, n̂) = d̂L

〈dL〉
− 1. (D.2)
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Fluctuations become visible in the two-point functions, for these two quantities these are
given by:

〈∆̃(z, n̂)∆̃(z′, m̂)〉 = 〈d̂L(z, n̂)d̂L(z′, m̂)〉
d̄L(z)d̄L(z′)

− 1, (D.3)

〈∆(z, n̂)∆(z′, m̂)〉 = 〈d̂L(z, n̂)d̂L(z′, m̂)〉
〈dL〉(z)〈dL〉(z′)

− 1. (D.4)

The task at hand is then expressing the first quantity in terms of the theoretically available
second quantity. To this end we can express ∆ in terms of ∆̃ and the cosmic variance δcv,

∆(z, n̂) = ∆̃(z, n̂) + δcv(z) + ∆̃(z, m̂)δcv(z) (D.5)

Using this we can express the ensemble correlator in terms of correlation functions including
∆̃ and δcv:

〈∆(z, n̂)∆(z′, m̂)〉 = 〈∆̃(z, n̂)∆̃(z′, m̂)〉+ 〈∆̃(z, n̂)δcv(z′)〉+ 〈∆̃(z′, m̂)δcv(z)〉
+ 〈δcv(z)δcv(z′)〉+ 〈∆̃(z, n̂)δcv(z′)∆̃(z′, m̂)〉 (D.6)
+ 〈∆̃(z′, m̂)δcv(z)∆̃(z, n̂)〉+ 〈δcv(z)∆̃(z, n̂)δcv(z′)〉
+ 〈δcv(z′)∆̃(z′, m̂)δcv(z)〉+ 〈∆̃(z, n̂)δcv(z)∆̃(z′, m̂)δcv(z′)〉.

We now assume Wick’s theorem, Wick’s theorem is valid for Gaussian distributed functions.
Which we take to be approximately true. Because 〈∆̃〉 = 〈δcv〉 = 0 the three-point functions
vanish. The four-point function can be expressed in three products of two-point functions.
This yields:

〈∆(z, n̂)∆(z′, m̂)〉 ≈ 〈∆̃(z, n̂)∆̃(z′, m̂)〉+ 〈∆̃(z, n̂)δcv(z′)〉+ 〈∆̃(z′, m̂)δcv(z)〉
+ 〈δcv(z)δcv(z′)〉+ 〈δcv(z′)∆̃(z′, m̂)〉〈δcv(z)∆̃(z, n̂)〉 (D.7)
+ 〈δcv(z′)∆̃(z, n̂)〉〈δcv(z)∆̃(z′, m̂)〉+ 〈δcv(z)δcv(z′)〉〈∆̃(z, n̂)∆̃(z′, m̂)〉.

The remaining task is now finding the suitable expressions for the correlators involving the
cosmic variance, 〈δcv(z)δcv(z′)〉 and 〈∆̃(z, n̂)δcv(z′)〉. We start with the auto correlator, we
expand the definition to obtain:

〈δcv(z)δcv(z′)〉 =
〈(

d̄L(z)
〈d̂L〉(z)

− 1
)(

d̄L(z′)
〈d̂L〉(z′)

− 1
)〉

= 〈d̄L(z)d̄L(z′)〉
〈d̂L〉(z)〈d̂L〉(z′)

− 1. (D.8)

We can now factor the angular averaging integrals out of the ensemble brackets. This gives us:

〈δcv(z)δcv(z′)〉 =
∫
d2n̂

4π

∫
d2m̂

4π

[
〈d̂L(z, n̂)d̂L(z′, m̂)〉
〈d̂L〉(z)〈d̂L〉(z′)

− 1
]

(D.9)

= 1
2

∫ 1

−1
dµ

[
〈d̂L(z)d̂L(z′)〉(µ)
〈d̂L〉(z)〈d̂L〉(z′)

− 1
]

(D.10)

= C0(z, z′)
4π , (D.11)

where we used the fact that the correlator only depends on the relative angle. This angle is
contained in µ = n̂ · m̂ = cos(θ) with θ being the relative angle. In the last step we recognise
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the angular power spectrum (4.4). This is an expression we can calculate and we thus have a
prediction for the auto correlator of the cosmic variance.

Inserting this in (D.7) we obtain:

〈∆(z, n̂)∆(z′, m̂)〉 ≈ 〈∆̃(z, n̂)∆̃(z′, m̂)〉
(

1 + C0(z, z′)
4π

)
+ 〈∆̃(z, n̂)δcv(z′)〉

+ 〈∆̃(z′, m̂)δcv(z)〉+ C0(z, z′)
4π + 〈δcv(z′)∆̃(z′, m̂)〉〈δcv(z)∆̃(z, n̂)〉

+ 〈δcv(z′)∆̃(z, n̂)〉〈δcv(z)∆̃(z′, m̂)〉. (D.12)

By integrating this equation over the Legendre polynomials we obtain C` on the left hand
side. This gives us the constraint equation:

C`(z,z′) = C̃`(z,z′)
(

1+C0(z,z′)
4π

)
+C0(z,z′)δ`,0

+4π
[
〈∆̃(z, n̂)δcv(z′)〉+〈∆̃(z′, m̂)δcv(z)〉+〈δcv(z′)∆̃(z′, m̂)〉〈δcv(z)∆̃(z, n̂)〉

]
δ`,0.

(D.13)

The Kronecker delta arises when the Legendre polynomials are integrated over a constant.
The 〈∆̃δcv〉 correlators cannot depend on angle as ∆̃(z, n̂)δcv(z′) only depends on one angle,
which disappears due to the ensemble averaging.

Per definition C̃0 = 0. Then, from considering ` = 0 we can deduce that the cross
correlation terms have to be zero. Without these terms we can rewrite (D.12) in terms of
power spectra as:

C`(z, z′) = C̃`(z, z′)
(

1 + C0(z, z′)
4π

)
+ C0(z, z′)δ`,0. (D.14)

The complete expression for C̃`(z, z′) in terms of our predicted power spectrum C`(z, z′)
is then:

C̃`(z, z′) = C`(z, z′)− C0(z, z′)δ`,0
1 + C0(z,z′)

4π
. (D.15)

From this we learn two things: first, indeed for ` = 0 this gives zero by construction. Second,
we can account for the different normalisation in the power spectrum by dividing (4.6) by a
factor 1 + C0(z,z′)

4π .
As an independent approach we can show that the 〈∆̃δcv〉 correlator is zero when

expanding in the cosmic variance.

〈∆̃(z, n̂)δcv(z′)〉 =
〈(

d̂L(z, n̂)
d̄L(z)

− 1
)
δcv(z′)

〉
(D.16)

=
〈(

d̂L(z, n̂)
〈d̂L〉(z)(1 + δcv(z))

+ 1
)
δcv(z′)

〉
(D.17)

≈
〈(

d̂L(z, n̂)
〈d̂L〉(z)

(1− δcv(z))− 1
)
δcv(z′)

〉
+O(δ3

cv). (D.18)
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Here, we expanded the cosmic variance up to linear order, assuming it is small. We can now
rewrite (D.18) in terms of the tracers again,

〈∆̃(z, n̂)δcv(z′)〉 ≈
〈(

d̂L(z, n̂)
〈d̂L〉(z)

(1− δcv(z))− 1
)
δcv(z′)

〉
+O(δ3

cv) (D.19)

= 〈∆(z, n̂)δcv(z′)〉 − 〈δcv(z)δcv(z′)〉
+ 〈∆(z, n̂)δcv(z)δcv(z′)〉+O(δ3

cv). (D.20)

Now we drop the three point function as a consequence of their assumed Gaussianity. We can
also derive an expression for the 〈∆δcv〉 correlator by using the same trick as in deriving (D.9).
We factor out the angular integral out of the ensemble brackets to obtain:

〈∆(z, n̂)δcv(z′)〉 =
∫
d2m̂

4π

[
〈d̂L(z, n̂)d̂L(z′, m̂)〉
〈d̂L〉(z)〈d̂L〉(z′)

− 1
]

(D.21)

= 1
2

∫ 1

−1
dµ

[
〈dL(z)dL(z′)〉(µ)
〈d̂L〉(z)〈d̂L〉(z′)

− 1
]

(D.22)

= C0(z, z′)
4π . (D.23)

This is precisely the same as (D.11). Inserting both (D.11) and (D.23) in (D.20) then gives us:

〈∆̃(z, n̂)δcv(z′)〉 = 0. (D.24)

Using this to simplify (D.12) and then rewriting it as power spectra then also results in (D.15).
We note that we have now obtained that the angular averaged monopole is zero without
demanding this.

E Power spectra for Doppler and convergence effects

In this appendix we derive the power spectra for the convergence and Doppler effects, discussed
in section 5.2. We derive these in the context of perturbed ΛCDM, where these fluctuations
are well studied [28–31]. We use these spectra as contaminant effects, which to be measurable
our dark energy signal should rise above.

E.1 Doppler
For the Doppler effect we have (5.9):

κv(z, n̂) =
( 1
χ(z)H(z) − 1

)
~v · n̂. (E.1)

Here, H = aH is the conformal Hubble parameter. We can now insert the Fourier transform
of ~v(n̂, z) and use the continuity equation (5.10) to obtain:

κv(z, n̂) = i

∫
d3k

(2π)3

( 1
χ(z) −H(z)

) ~k · n̂
k2 f(z)δ(~k, z)ei~k·n̂χ(z). (E.2)

The factor ~k · n̂ei~k·n̂χ(z) can now be written using spherical harmonics to give us:

κv(z, n̂) = 4π
∑
`m

∫
d3k

(2π)3

( 1
χ(z) −H(z)

)
f(z)δ(

~k, z)
k

i`+1j′`(kχ(z))Y`m(k̂)Y`m(n̂). (E.3)
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Now, we can recognise this as an expansion in spherical harmonics, the expansion coefficients
being given by

κv,`m = 4πi`+1
( 1
χ(z) −H(z)

)
f(z)

∫
d3k

(2π)3
δ(~k, z)
k

j′`(kχ(z))Y`m(k̂). (E.4)

The quantity of interest is the angular power spectrum 〈κv,`m(z)κ∗v,`m(z′)〉 = Cv` (z, z′). We
relate this to the matter power spectrum, defined as:

〈δ(~k, z)δ∗(~k′, z′)〉 = (2π)3Pm(k, z, z′)δ3(~k − ~k′), (E.5)

where Pm(k) is the matter power spectrum and δ3 is the three dimensional Dirac-delta
function. Combining (E.4) and (E.5) we obtain

C`(z, z′) = 2
π

( 1
χ(z) −H(z)

)
f(z)

( 1
χ(z′) −H(z)

)
f(z′)

×
∫ ∞

0
dkPm(k, z, z′)j′`(kχ(z))j′`(kχ(z′)). (E.6)

Integrating this over a redshift distribution p(z) then gives us the following angular power
spectrum:

Cv,i,j` = 2
π

∫ ∞
0

dz1p
i(z1)

∫ ∞
0

dz2p
j(z2)

( 1
χ(z1) −H(z1)

)
f(z1)

( 1
χ(z2) −H(z2)

)
f(z2)

×
∫ ∞

0
dkPm(k, z1, z2)j′`(kχ(z1))j′`(kχ(z2)). (E.7)

E.2 Convergence

We can now go through the same treatment for the convergence term:

κc(z, n̂) =
∫ z

0

dz′

H(z′)
χ(z)− χ(z′)
χ(z)χ(z′) ∆⊥

(
Φ(z,~k) + Ψ(z,~k)

)
. (E.8)

∆⊥ is the Laplacian transverse to the line of sight and Φ and Ψ the Bardeen potentials. Again,
we start with going to Fourier space and writing the exponent in spherical harmonics. We
can use that the spherical harmonics are an eigenbasis of ∆⊥ with eigenvalues `(`+ 1). We
then obtain:

κc(z, n̂) = 4π
∑
`m

`(`+ 1)
∫

d3k

(2π)3

∫ z

0

dz′

H(z′)

{
χ(z)− χ(z′)
χ(z)χ(z′)

×
(
Φ(z,~k) + Ψ(z,~k)

)
i`j`(kχ)Y`m(k̂)Y`m(n̂)

}
. (E.9)

The coefficients of the spherical harmonics expansion can now seen to be:

κc,`m(z) = 4π`(`+ 1)
∫

d3k

(2π)3

∫ z

0

dz′

H(z′)

{
χ(z)− χ(z′)
χ(z)χ(z′)

×
(
Φ(z,~k) + Ψ(z,~k)

)
i`j`(kχ(z))Y`m(k̂)

}
. (E.10)
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We want to make the connection to the matter power spectrum Pm(k, z, z′), therefore we need
to connect the Bardeen potentials to the overdensity δ(k, z). This is done with the following
transfer function, which can be derived from the Poisson equation [40],

TΦ+Ψ(k, z) = −3H2
0 ΩM

k2a(z) . (E.11)

We now have all the ingredients to calculate the desired angular power spectrum. Combin-
ing (E.5), (E.10) and (E.11) we obtain:

C`(z, z′) = 2
π

(`(`+ 1))2
∫ z

0

dz1
H(z1)

χ(z)− χ(z1)
χ(z)χ(z1)

∫ z′

0

dz2
H(z2)

χ(z′)− χ(z2)
χ(z′)χ(z2)

×
∫ ∞

0
dkk2TΦ+Ψ(k, z1)TΦ+Ψ(k, z2)Pm(k, z1, z2)j`(kχ(z1))j`(kχ(z2)). (E.12)

This can now be integrated over some redshift distribution. Then, the order of integration
can be changed in the following way:

∫∞
0 dz

∫ z
0 dz

′ →
∫∞

0 dz′
∫∞
z′ dz. This then gives the total

power spectrum:

Cc,i,j` = 2
π

(`(`+ 1))2
∫ ∞

0

dz1
H(z1)W

i
L (z1)

∫ ∞
0

dz2
H(z2)W

j
L (z2)

×
∫ ∞

0
dkk2TΦ+Ψ(k, z1)TΦ+Ψ(k, z2)Pm(k, z1, z2)j`(kχ(z1))j`(kχ(z2)). (E.13)

With W i
L(z̃) being the lensing kernel defined as:

W i
L(z̃) =

∫ ∞
z̃

dzpi(z)χ(z)− χ(z̃)
χ(z)χ(z̃) . (E.14)
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