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Abstract

As set systems, hypergraphs are omnipresent and have various representations. In a geometric repre-
sentation of a hypergraph H = (V,E), each vertex v ∈ V is a associated with a point pv ∈ Rd and each
hyperedge e ∈ E is associated with a connected set se ⊂ Rd such that {pv | v ∈ V } ∩ se = {pv | v ∈ e}
for all e ∈ E. We say that a given hypergraph H is representable by some (infinite) family F of sets in
Rd, if there exist P ⊂ Rd and S ⊆ F such that (P, S) is a geometric representation of H. For a family
F , we define Recognition(F) as the problem to determine if a given hypergraph is representable by
F . It is known that the Recognition problem is ∃R-hard for halfspaces in Rd. We study the families
of balls and ellipsoids in Rd, as well as other convex sets, and show that their Recognition problems
are also ∃R-complete. This means that these recognition problems are equivalent to deciding whether a
multivariate system of polynomial equations with integer coefficients has a real solution.

1 Introduction
As set systems, hypergraphs appear in various contexts, such as databases, clustering, and machine learning.
A hypergraph can be represented in various ways. As a generalization of graphs, one can represent vertices by
points and hyperedges by connected sets in Rd such that each set contains exactly the points of a hyperedge.
It is desirable that these sets satisfy additional properties, e.g., being (strictly) convex, similar or even
translates of each other.

For an introductory example, suppose we are organizing a workshop and have a list of accepted talks.
Clearly, each participant wants to quickly identify talks of their specific interest. In order to create a
good overview, we want to find a good representation. To this end, we label each talk by several tags, e.g.,
hypergraphs, graph drawing, complexity theory, planar graphs, etc. Then, we create a representation,
where each tag is represented by a unit disk (or another nice geometric object of our choice) containing points
representing the talks that have this tag, see Figure 1 for an example.. In other words, we are interested in
a geometric representation of the hypergraph where the vertex set is given by the talks and tags define the
hyperedges.

In this work, we investigate the complexity of deciding whether a given hypergraph has such a geometric
representation. We start with a formal definition.
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H = (V,E)

V = {1, 2, 3, 4}

E = { {1, 2, 3}, {1, 4}, {3, 4} }

1

2

3

4

Figure 1: An abstract hypergraph and a geometric representation with unit disks.

Problem Definition. In a geometric representation of a hypergraph H = (V,E), each vertex v ∈ V
is associated with a point pv ∈ Rd and each hyperedge e ∈ E is associated with a connected set se ⊂ Rd

such that {pv | v ∈ V } ∩ se = {pv | v ∈ e} for all e ∈ E. We say that a given hypergraph H is representable
by some (possibly infinite) family F of sets in Rd, if there exist P ⊂ Rd and S ⊆ F such that (P, S) is
a geometric representation of H. For a family F of geometric objects, we define Recognition(F) as the
problem to determine whether a given hypergraph is representable by F .

Next, we give some definitions describing the geometric families studied in this work.

Bi-curved, Difference-separable, and Computable Convex Sets. We study convex sets that are
bi-curved, difference-separable and computable. While the first two properties are needed for ∃R-hardness,
the last one is used to show ∃R-membership.

Let C ⊂ Rd be a convex set. We call C computable if for any point p ∈ Rd we can decide on a real RAM
whether p is contained in C. We say that C is bi-curved if there exists a unit vector v ∈ Rd, such that there
are two distinct tangent hyperplanes on C with normal vector v; with each of these hyperplanes intersecting
C in a single point, and C being smooth at both of these intersection points. Informally, a convex set is
bi-curved, if its boundary has two smoothly curved parts in which the tangent hyperplanes are parallel. Note
that a convex, bi-curved set is necessarily bounded. As a matter of fact, any strictly convex bounded set
in any dimension is bi-curved. For such sets, any unit vector v fulfills the conditions. As can be seen in
Figure 2 (left), being strictly convex is not necessary for being bi-curved.

Figure 2: Left: two parallel tangent hyperplanes of a burger-like set proving its bi-curvedness. Middle: a
hyperplane separating the symmetric difference of two translates of the burger-like set. Right: two cubes in
R3 whose symmetric difference cannot be separated by a plane.

We call C difference-separable if for any two translates C1, C2 of C, there exists a hyperplane which
strictly separates C1 \ C2 from C2 \ C1. Being difference-separable is fulfilled by any convex set in R2, see
Figure 2 (middle) for an example. For a proof of this fact we refer to [32, Corollary 2.1.2.2]. However, in
higher dimensions this is not the case: for a counterexample, consider two 3-cubes as in Figure 2 (right). In
higher dimensions, the bi-curved and difference-separable families include the balls and ellipsoids. We are
not aware of other natural geometric families with those two properties.

We are now ready to state our results.

Results. Our main contribution is to revive the study of recognition of geometric hypergraphs. We
first consider the maybe simplest type of geometric hypergraphs, namely those that stem from halfspaces. It
is known due to Tanenbaum, Goodrich, and Scheinerman [57] that the Recognition problem for geometric
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hypergraphs of halfspaces is NP-hard, but their proof actually implies ∃R-hardness as well. We present a
slightly different proof of this fact due to two reasons. Firstly, their proof lacks details about extensions to
higher dimensions. Secondly, it is a good stepping stone towards our proof of Theorem 2.

Theorem 1 (Tanenbaum, Goodrich, Scheinerman [57]). For every d ≥ 2, Recognition(F) is ∃R-complete
for the family F of halfspaces in Rd.

Next we consider families of objects that are translates of a given object.

Theorem 2. For d ≥ 2, let C ⊆ Rd be a convex, bi-curved, difference-separable and computable set, and let
F be the family of all translates of C. Then Recognition(F) is ∃R-complete.

We note that for d = 1, the Recognition problems of halfspaces and translates of convex sets can be
solved by sorting and thus can be decided in polynomial time.

One might be under the impression that the Recognition problem is ∃R-complete for every reasonable
family of geometric objects of dimension at least two. We show that is not the case by looking at translates
of polygons.

Theorem 3. Let P be a simple polygon with integer coordinates, and F the family of all translates of P .
Then Recognition(F) is contained in NP.

Organization. We give an overview over our proof techniques in Section 1.2. Full proofs of Theorem 3
as well as the membership parts of Theorems 1 and 2 are found in Section 2. We introduce the version of
pseudohyperplane stretchability used in our hardness reductions in Section 3. Full proofs of the hardness
parts of Theorems 1 and 2 can be found in Sections 4 and 5, respectively.

Open problems. As mentioned above, we are not aware of interesting families of bi-curved and
difference-separable sets in higher dimensions beyond balls and ellipsoids. The families of translates of
a given polygon show the need for some curvature in order to show ∃R-hardness. We wonder if it is sufficient
for ∃R-hardness to assume curvature at only one boundary part instead of two opposite ones. Another open
question is to consider families that include rotated copies or homothetic copies of a fixed geometric object.
Allowing for rotation, it is conceivable that ∃R-hardness even holds for polygons.

1.1 Related work
In this section we give a concise overview over related work on the complexity class ∃R, geometric intersection
graphs, and on other set systems related to hypergraphs.

The Existential Theory of the Reals. The complexity class ∃R (pronounced as ‘ER’ or ‘exists R’)
is defined via its canonical complete problem ETR (short for Existential Theory of the Reals) and contains
all problems that polynomial-time many-one reduce to it. In an ETR instance, we are given a sentence of
the form

∃x1, . . . , xn ∈ R : ϕ(x1, . . . , xn),

where ϕ is a well-formed and quantifier-free formula consisting of polynomial equations and inequalities in
the variables and the logical connectives {∧,∨,¬}. The goal is to decide whether this sentence is true.

The complexity class ∃R gains its importance from its numerous influential complete problems. Important
∃R-completeness results include the realizability of abstract order types [40, 52], geometric linkages [45], and
the recognition of geometric intersection graphs, as further discussed below. More results concern graph
drawing [20, 21, 31, 46], the Hausdorff distance [27], polytopes [19, 43], Nash-equilibria [8, 10, 11, 24, 48],
training neural networks [4, 9], matrix factorization [17, 49, 50, 51, 58], continuous constraint satisfaction
problems [38], geometric packing [5], the art gallery problem [2, 56], and covering polygons with convex
polygons [1].
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Geometric Hypergraphs Many aspects of hypergraphs with geometric representations have been
studied. Hypergraphs represented by touching polygons in R3 have been studied by Evans et al. [23].
Bounds on the number of hyperedges in hypergraphs representable by homothets of a fixed convex set S
have been established by Axenovich and Ueckerdt [7]. Smorodinsky studied the chromatic number and
the complexity of coloring of hypergraphs represented by various types of sets in the plane [54]. Dey and
Pach [18] generalize many extremal properties of geometric graphs to hypergraphs where the hyperedges
are induced simplices of some point set in Rd. Haussler and Welzl [25] defined ε-nets, subsets of vertices
of hypergraphs called range spaces with nice properties. Such ε-nets of geometric hypergraphs have been
studied quite intensely [6, 35, 41, 42].

While there are many structural results, we are not aware of any research into the complexity of rec-
ognizing hypergraphs given by geometric representations, other than the recognition of embeddability of
simplicial complexes, as we will discuss in the next paragraph.

Other Representations of Hypergraphs. Hypergraphs are in close relation with abstract simplicial
complexes. In particular, an abstract simplicial complex (complex for short) is a set system that is closed
under taking subsets. A k-complex is a complex in which the maximum size of a set is k. In a geometric
representation of an abstract simplicial complex H = (V,E) each `-set of E is represented by a `-simplex
such that two simplices of any two sets intersect exactly in the simplex defined by their intersection (and
are disjoint in case of an empty intersection). Note that 1-complexes are graphs and hence deciding the
representability in the plane corresponds to graph planarity (which is in P). In stark contrast, Abrahamsen,
Kleist and Miltzow recently showed that deciding whether a 2-complex has a geometric embedding in R3 is
∃R-complete [3]; they also prove hardness for other dimensions. Similarly, piecewise linear embeddings of
simplicial complexes have been studied [13, 14, 15, 33, 34, 37, 53].

Recognizing Geometric Intersection Graphs. Given a set of geometric objects, its intersection
graph has a vertex for each object, and an edge between any two intersecting objects. The complexity of
recognizing geometric intersection graphs has been studied for various geometric objects. We summarize
these results in Figure 3.

unit interval

intervalunit disk

disk circle chord

downward ray

orthogonal ray

ray

orthogonal unit segment

orthogonal segment

unit segmentouter segment

k-polyline

convex

segment

outer string

string

Figure 3: Containment relations of geometric intersection graphs. Recognition of a green class is in P, of a
grey class is NP-complete, of a blue class is ∃R-complete, and of a white class is unknown.

While intersection graphs of circle chords (Spinnrad [55]), unit intervals (Looges and Olariu [30]) and
intervals (Booth and Lueker [12]) can be recognized in polynomial time, recognizing string graphs (Schaefer
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and Sedgwick [47]) is NP-complete. In contrast, ∃R-completeness of recognizing intersection graphs has
been proved for (unit) disks by McDiarmid and Müller [36], convex sets by Schaefer [44], downward rays by
Cardinal et al. [16], outer segments by Cardinal et al. [16], unit segments by Hoffmann et al. [26], segments
by Kratochvíl and Matoušek [29], k-polylines by Hoffmann et al. [26], and unit balls by Kang and Müller [28].

The existing research landscape indicates that recognition problems of intersection graphs are ∃R-
complete in case that the family of objects satisfy two conditions: Firstly, they need to be “geometrically
solid”, i.e., not strings. Secondly, some non-linearity must be present by either allowing rotations, or by
the objects having some curvature. Our results indicate that this general intuition might translate to the
recognition of geometric hypergraphs.

1.2 Overview of Proof Techniques
We prove containment in ∃R and NP using standard arguments, providing witnesses and verification algo-
rithms.

We prove the hardness parts of Theorems 1 and 2 by reduction from stretchability of pseudohyperplane
arrangements. The hypergraph we build from the given arrangement differs from the one built in the proof
of Theorem 1 given in [57], since we wish to use a single construction which works nicely for both theorems.
Given a simple pseudohyperplane arrangement A, we construct a hypergraph H as follows: We double each
pseudohyperplane by giving it a parallel twin. In this arrangement, we place a point in every d-dimensional
cell. These points represent the vertices of H. Every pseudohyperplane ` then defines a hyperedge, which
contains all of the points on the same side of ` as its twin pseudohyperplane. See Figure 6 for an illustration
of this construction.

Because this construction can also be performed on a hyperplane arrangement, it is straightforward to
prove that if A is stretchable, H can be represented by halfspaces. Conversely, we show that the hyperplanes
bounding the halfspaces in a representation of H must be a stretching of A.

For Theorem 2, bi-curvedness of a set C implies that locally, C can approximate any halfspace with
normal vector close to v as in the definition of bi-curved. This allows us to prove that stretchability of
A implies representability of H by translates of C. The set C being difference-separable is used when
reconstructing a hyperplane arrangement from a representation of H.

2 Membership
In this section, we show ∃R- and NP-membership.

Recall that the class NP is usually described by the existence of a witness and a verification algorithm.
The same characterization exists for ∃R using a real verification algorithm. Instead of the witness consisting
of binary words of polynomial length, in addition a polynomial number of real-valued numbers are allowed as
a witness. Furthermore, in order to be able to use those real numbers, the verification algorithm is allowed
to work on the so-called real RAM model of computation. The real RAM allows arithmetic operations with
real numbers in constant time [22].

2.1 Halfspaces
Here, we show the ∃R-membership part of Theorem 1.

Lemma 4. Fix d ≥ 1 and let F denote the family of halfspaces in Rd. Then Recognition(F) is contained
in ∃R.

Proof. We formulate an ETR formula from the hypergraph H as follows. For each vertex/point, we create
variables p = (p1, . . . , pd) to represent the point. Similarly, for each hyperedge/halfspace, we create variables
h = (h1, . . . , hd+1) to represent the coefficients of the halfspace. Then for each point p that is supposed to
be in some halfspace h, we create the constraint:

h1p1 + . . . hdpd ≤ hd+1.
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Similarly, if p is not contained in a halfspace h, we create the constraint:

h1p1 + . . . hdpd > hd+1.

This is a valid ETR sentence that is equivalent to the representability of H. Note that for any fixed dimension
d the ETR sentence is of polynomial size.

2.2 Translates of Computable Sets
Here, we show the ∃R-membership part of Theorem 2.

Lemma 5. For some d ≥ 1, let C ⊆ Rd be a computable set and let F be the family of all translates of C.
Then, Recognition(F) is contained in ∃R.

Proof. We describe a real verification algorithm as mentioned above. The witness consists of the (real)
coordinates of the points representing the vertices and the coefficients of the translation vectors representing
the hyperedges. By definition of computable, a verification algorithm can efficiently check if each point is
contained in the correct set.

2.3 Translates of Polygons – Proof of Theorem 3
Here, we show Theorem 3, i.e., NP-membership of Recognition of translates of some simple polygon P .

Theorem 3. Let P be a simple polygon with integer coordinates, and F the family of all translates of P .
Then Recognition(F) is contained in NP.

Proof. The proof uses a similar argument to the one used to show that the problem of packing translates of
polygons inside a polygon is in NP [5]. For an illustration, consider Figure 4. We first triangulate the convex
hull of P , such that each edge of P appears in the triangulation. Then, a representation of a hypergraph H
by translates of P gives rise to a certificate as follows: For each pair of a point p and a translate o of P , we
specify whether p lies in the convex hull of O, and if it does, in which triangle p lies.

p

Figure 4: The polygon P , its triangulation, and the triangle that p is contained.

Such a certificate can be tested in polynomial time: we create a linear program whose variables describe
the locations of the points p and the translation vectors of each translate of P , and whose constraints enforce
the points to lie in the triangles described by the certificate. This linear program has a number of constraints
and variables polynomial in the size of H, and can be thus solved in polynomial time.

The solution of this linear program gives the location of the points and the translation vectors of the
polygons. This implies that these coordinates are all polynomial and could be used as a certificate directly.

3 Pseudohyperplane Stretchability
A pseudohyperplane arrangement in Rd is an arrangement of pseudohyperplanes, where a pseudohyperplane
is a set homeomorphic to a hyperplane, and each intersection of pseudohyperplanes is homeomorphic to
a plane of some dimension. In the classical definition, every set of d pseudohyperplanes has a non-empty
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intersection. Here, we consider partial pseudohyperplane arrangements (PPHAs), where not necessarily every
set of ≤ d pseudohyperplanes has a common intersection.

A PPHA is simple if no more than k pseudohyperplanes intersect in a space of dimension d − k, in
particular, no d+ 1 pseudohyperplanes have a common intersection. We call the 0-dimensional intersection
points of d pseudohyperplanes the vertices of the arrangement. A simple PPHA A stretchable if there exists
a hyperplane arrangement A’ such that each vertex in A also exists in A’ and each (pseudo-)hyperplane
splits this set of vertices the same way in A and A′. In other words, each vertex of A lies on the correct side
of each hyperplane in A’. We then call the hyperplane arrangement A’ a stretching of A.

The problem d-Stretchability is the problem of deciding whether a simple PPHA in Rd is stretchable.
For d = 2, d-Stretchability contains the stretchability of simple pseudoline arrangements which is known
to be ∃R-hard [39, 52]. It is straightforward to prove ∃R-hardness for all d ≥ 2.

Theorem 6. d-Stretchability is ∃R-hard for all d ≥ 2.

Proof. We reduce from stretchability of simple pseudoline arrangements, which is ∃R-hard as shown in [39,
52].

Consider a simple pseudoline arrangement L in the x1x2-plane. We consider d − 2 pairwise orthogonal
hyperplanes h1, . . . , hd−2 whose common intersection is the x1x2-plane; e.g., the hyperplanes defined xi = 0
for i = 3, . . . , d. The intersection of these hyperplanes serves as a canvas in which we aim to embed L. We
extend each pseudoline of ` to a pseudohyperplane h` by extending it orthogonally to all h1, . . . , hd−2, see
Figure 5.

Figure 5: Extending a simple pseudoline arrangement (dashed) to a partial pseudohyperplane arrangement
in R3. The grey hyperplane is the “canvas” hyperplane h1.

Clearly, the resulting pseudohyperplane arrangement A can be built in polynomial time. Note that all
intersection points of d pseudohyperplanes in A correspond to intersection points of L.

If L is stretchable, A is clearly stretchable, as the above construction can be applied to the stretched line
arrangement of L.

If A is stretchable, L is stretchable, since restricting each hyperplane h` to the intersection of the hyper-
planes h1, . . . , hd−2 yields a line arrangement which is equivalent to L.

As we have thus reduced stretchability of simple pseudoline arrangements to d-Stretchability, this
concludes the proof.

4 Hardness for Halfspaces – Proof of Theorem 1
Proof of Theorem 1. We reduce from d-Stretchability. LetA be a simple PPHA. For an example consider
Figure 6. In a first step, we insert a parallel twin `′ for each pseudohyperplane `. The twin is close enough
to ` such that ` and `′ have the same intersection pattern. Since ` and `′ are parallel, they do not intersect
each other. This yields an arrangement A′.

In a second step, we introduce a point in each d-dimensional cell of A′; each point represents a vertex in
our hypergraph H. Lastly, we define a hyperedge for each pseudohyperplane ` of A′: The hyperedge contains
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all of the points that lie on the same side of the pseudohyperplane as its twin pseudohyperplane. Note that
we define a hyperedge for every pseudohyperplane of A′, including the twins inserted in the first step.

Figure 6: Illustration for the proof of Theorem 1. Construction of the hypergraph H from a simple (partial)
pseudohyperplane arrangement A.

It remains to show that H is representable by halfspaces if and only if A is stretchable. If A is stretchable,
the construction of a representation of H is straightforward: Consider a hyperplane arrangement B which is a
stretching of A. Then, for each hyperplane, we add a parallel hyperplane very close, so that their intersection
patterns coincide. This results in a hyperplane arrangement B′. We now prove that every d-dimensional
cell of A′ must also exist in B′. First, note that each such cell corresponds to a cell of A, which has at
least one vertex on its boundary. All vertices of A exist in B by definition of a stretching. Furthermore, the
subarrangement of the d hyperplanes in B intersecting in this vertex must be simple, since their intersection
could not be 0-dimensional otherwise. In the twinned hyperplane arrangement B′, all 3d of the d-dimensional
cells incident to this vertex (a cell is given by the following choice for each of the hyperplane pairs: above
both hyperplanes, between the hyperplanes, or below both hyperplanes) must exist. This proves that all
d-dimensional cells of A′ also exist in B′. Inserting a point in each such d-dimensional cell and considering
the (correct) halfspaces bounded by the hyperplanes of B′ yields a representation of H.

We now consider the reverse direction. Let (P,H) be a tuple of points and halfspaces representing H.
Let hi,1 and hi,2 be the two halfspaces associated with a pseudohyperplane `i of A. Let pi denote the (d−1)-
dimensional hyperplane bounding hi,1. We show that the family {pi}i of these hyperplanes is a stretching
of A.

For each intersection point q of d pseudohyperplanes `1, . . . `d in A, we consider the corresponding 2d
pseudohyperplanes in A′. The PPHA A′ contains 3d d-dimensional cells incident to their 2d intersections;
each of which contains a point. We first show that the associated halfspaces must induce at least 3d cells, one
of which is bounded and represents the intersection point, see also Figure 7: These 3d points have pairwise
distinct patterns of whether or not they are contained in each of the 2d halfspaces. Thus, these points need
to lie in distinct cells of the arrangement of halfspaces, which proves the claim.

Figure 7: Illustration for the proof of Theorem 1. Representability of H implies stretchability of A.

Moreover, every point in P belongs to exactly one of these 3d cells. In particular, the central bounded
cell, denoted by c(q), contains exactly one point of P .

Now, we argue that the complete cell c(q) (and thus in particular the intersection point of the hyperplanes
representing q) lies on the correct side of each hyperplane p in {pi}i. Note that, by construction of the
hypergraph H, the 3d points of q lie on the same side of p. Suppose for a contradiction that p intersects
c(q). Then there exist two unbounded cells incident to c(q) which lie on different sides of p; these cells can
be identified by translating p until it intersects c(q) only in the boundary. This yields a contradiction to the
fact that the 3d points of q lie on the same side of p.

We conclude that each intersection point of d pseudohyperplanes in A also exists in the arrangement
{pi}i and lies on the correct side of all hyperplanes. Thus, {pi}i is a stretching of A and A is stretchable.
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5 Hardness for Convex, Bi-curved, and Difference-separable Sets –
Proof of Theorem 2

We are now going to prove the hardness part of Theorem 2. To this end, consider any fixed convex, bi-curved,
and difference-separable set C in Rd. Note that we can assume C to be fully-dimensional, since otherwise each
connected component would live in some lower-dimensional affine subspace, with no interaction between such
components. We use the same reduction from the problem d-Stretchability as in the proof for halfspaces
in the previous section and show that the constructed hypergraph H is representable by translates of C if
and only if the given PPHA A is stretchable.

Lemma 7. If A is stretchable, H is representable by translates of C.

Proof. We assume that A is stretchable. We already proved in the previous section that thus there exists
an arrangement of hyperplanes, in which we can create a twin of each hyperplane (with a tiny distance α
between the twins), and in which we can place all the vertices of H in the appropriate d-dimensional cells.
If a vertex is placed between two twin hyperplanes, we assume it to be equidistant to them. As before, we
denote this arrangement of hyperplanes and points by B′.

Let v be the unit vector certifying that C is bi-curved; recall the definition in Section 1. Because C is
smooth at the touching points of the tangent hyperplanes with normal vector v, there exists ε > 0, such that
any unit vector w with ‖w − v‖2 ≤ ε also fulfill the conditions to certify that C is bi-curved.

We now assume that B′ fulfills the following properties:

1. the normal vectors of all hyperplanes have distance at most ε to v or to −v

2. every intersection point of d hyperplanes as well as every point representing a vertex of H, is contained
in [−1, 1]d.

Both properties can be achieved by applying some affine transformation with positive determinant, thus
preserving the combinatorial structure of B′.

To represent the hyperedges of H, we will now use very large copies of C. Note that technically we are
not allowed to scale C, but scaling C by a factor f is equivalent to scaling the arrangement by a factor 1/f .
Let Cf be the set C scaled by factor f .

In order to determine the necessary scaling factor f , we consider the curvature of Cf in all the points
where the tangent hyperplanes of Cf with normal vector w for ‖w − v‖2 ≤ ε intersect Cf . In each such
tangent hyperplane h with (unit) normal vector w, we draw a (d − 1)-ball B of radius 10

√
d around the

touching point h ∩ Cf . Note that 10
√
d is larger than the length of any line segment contained in the

box [−1, 1]d. Now, f has to be large enough such that Cf contains every point p + w · λ, for p ∈ B and
α/10 ≤ λ ≤ 10

√
d. This ensures that the boundary of Cf does not curve away from the tangent hyperplane

too quickly, and that Cf is “thick”. In other words, Cf locally behaves like an only very slightly curved
halfspace. See Figure 8 for an illustration of this requirement on Cf .

We now replace each hyperplane h of the arrangement B′ by a translate Cf
h of Cf , placed such that h is

a tangent hyperplane of Cf
h , the single point h ∩ Cf

h lies within the box [−1, 1]d, and Cf
h lies completely to

the side of h containing its twin hyperplane. It remains to prove that Cf
h contains exactly those points of

B′ which are on this side of h. Firstly, Cf
h cannot contain more points, since Cf

h is a subset of the halfspace
delimited by h containing its twin hyperplane. Second, we claim that Cf

h contains all these points. To
see this, note that within the box [−1, 1]d containing all points, the boundary of Cf

h is close enough to h
that it must contain all points between h and its twin, since these points are located equidistant to the two
hyperplanes. Furthermore, all points on the other side of the twin hyperplane are also contained in Cf

h since
within the box [−1, 1]d, the boundary δ(Cf

h ) lies completely between h and its twin hyperplane.

Lemma 8. If the hypergraph H is representable by translates of C, then A is stretchable.

Proof. Assume H is representable. By construction, the two translates Ci,r, Ci,l of C corresponding to the
two hyperedges of each pseudohyperplane `i must intersect as they contain at least one common point. We
call their convex intersection the lens of this pseudohyperplane. For each pseudohyperplane `i of A, we
consider some hyperplane pi which separates Ci,r \ Ci,l from Ci,l \ Ci,r. Such a hyperplane exists since C is
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h

r = 10
√
d

Cf

w

Figure 8: An illustration of the requirement on the scaling factor f . The set Cf must contain the grey
region.

difference-separable. Let P := {pi}i be the hyperplane arrangement consisting of all these separators. We
aim to show that P is a stretching of A.

To this end, consider d pseudohyperplanes `1, . . . , `d which intersect in A. For an illustration consider
Figure 9. Furthermore, consider one more pseudohyperplane `′, and let p′, C ′r, C ′l denote the separator
hyperplane and translates of C corresponding to `′. We show that the intersection Ip := p1 ∩ . . . ∩ pd is a
single point which lies on the same side of p′ as the point I` := `1 ∩ . . . ∩ `d lies of `′.

ℓ1

ℓ2

ℓ′

p1

p2 p′

Ip

Iℓ

hl

C ′
l C ′

r

hr

Figure 9: Illustration for the proof of Lemma 8. Left: pseudohyperplanes `1, . . . , `d, `′ in A Right: corre-
sponding hyperplanes p1, . . . , pd, p′ in P.

The hyperplane p′ divides the space into two halfspaces hr and hl such that C ′r\C ′l ⊆ hr and C ′l\C ′r ⊆ hl.
By construction, the two hyperedges defined for `′ cover all vertices of H and the vertices in the cells around
I` belong to only one hyperedge. Suppose without loss of generality that these vertices only belong to the
hyperedge represented by C ′l . We will show that the intersection Ip must then be a point in hl.

We first show that the intersection Ip is a point, i.e., 0-dimensional. Consider all 2d d-dimensional cells of
A around I`. The construction of H implies that each such cells contains a distinct point, and these points
must all lie in distinct cells of the sub-arrangement of the involved hyperplanes p1, . . . , pd. Assuming that
Ip is not a single point, this sub-arrangement is not simple, and the hyperplanes divide space into strictly
fewer than 2d cells, which results in a contradiction.

Next we prove that Ip is in hl. Assume towards a contradiction that Ip is in hr, see also Figure 10.
Consider the d lines that are formed by the intersections of subsets of d − 1 hyperplanes among p1, ..., pd.
Each of these lines is the union of two rays beginning at Ip. Observe that the hyperplane p′ can only
intersect one of the two rays forming each line. Let S be the convex cone centered at Ip defined by the d
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p1

p2 p′

Ip

hl hr

S

Figure 10: Illustration for the proof of Lemma 8. The cone S must intersect C ′l \ C ′r, which contradicts Ip
lying in hr.

non-intersected rays. Observe that S does not intersect p′, so S must be fully contained in hr, i.e., S∩hl = ∅.
Note, however, by the construction of the hypergraph, there must be a point that lies in S∩(C ′l \C ′r) ⊆ S∩hl,
which is a contradiction.

We conclude that P is a stretching of A, and thus A is stretchable.

Lemmas 7 and 8 combined now yield hardness of Recognition(F) for the family F of translates of C.
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