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Logical argumentation is a well-known approach to modeling non-monotonic reasoning 
with conflicting information. In this paper we provide a comprehensive postulate-based 
study of properties of logical argumentation frameworks and a full characterization of 
their semantics and inference relations. In this way we identify well-behaved formal 
argumentative models of drawing logically justified inferences from a given set of possibly 
conflicting defeasible, as well as strict assumptions. Given some desiderata in terms of 
rationality postulates, we consider the conditions that an argumentation framework should 
fulfill for the desiderata to hold. One purpose of this approach is to assist designers to 
“plug-in” pre-defined formalisms according to actual needs. To this end, we present a 
classification of argumentation frameworks relative to the types of attacks they implement. 
In turn, for each class we determine which desiderata are satisfied. Our study is highly 
abstract, supposing only a minimal set of requirements on the considered underlying 
deductive systems, and in this way covering a broad range of formalisms, including 
classical, intuitionistic and modal logics.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Logical argumentation is a common AI-based method for making inferences in the presence of arguments and counter-
arguments (see [8] for an overview). Its setting, called an argumentation framework, consists of two ingredients:

• arguments, which are pairs 〈�,ψ〉 of a set of formulas (the argument’s support, �) and a formula (the argument’s con-
clusion, ψ ) in some propositional language, such that ψ follows from � according to some underlying logic, and

• attacks, which are instances of a binary relation on the set of arguments, relating arguments and counter-arguments.

Given such a framework, an argumentation semantics [40] determines what arguments can be mutually accepted, and so 
what conclusions can be drawn from this setting.

The nature of an argumentation framework thus depends on several factors. This includes, among others, the following 
elements:

• The underlying languages and logics (consequence relations), on top of which the arguments are specified: For instance, 
the works in [24,25,45,48] are based on classical logic as the underlying logic, while those in [4,13,15] consider ar-

* Corresponding authors.
E-mail addresses: oarieli@mta.ac.il (O. Arieli), a.borg@uu.nl (A. Borg), christian.strasser@rub.de (C. Straßer).
https://doi.org/10.1016/j.artint.2023.103966
0004-3702/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

https://doi.org/10.1016/j.artint.2023.103966
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artint.2023.103966&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:oarieli@mta.ac.il
mailto:a.borg@uu.nl
mailto:christian.strasser@rub.de
https://doi.org/10.1016/j.artint.2023.103966
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


O. Arieli, A. Borg and C. Straßer Artificial Intelligence 322 (2023) 103966
gumentation frameworks that are based on any Tarskian logics and arbitrary propositional languages (see Definition 1
below).

• The nature of the attack relations, that is: what triggers conflicts between arguments (see, e.g., [24,48,74] for some pro-
posals of attack relations in different contexts).

• The semantics of the framework, namely: criteria for selecting extensions [19,40] of the argumentation framework, which 
are sets of arguments that can be collectively accepted (without, e.g., attacking each other).

• The induced entailment relation that indicates what conclusions can be drawn, based on the arguments at hand, the 
attacks among them, and the chosen semantics.

The fact that there are so many possibilities to define logical argumentation frameworks raises the question how to 
choose the most appropriate framework for specific needs. The purpose of this work is to put some order in this ‘jungle’ of 
argumentation frameworks and to provide some guidelines on how to construct robust frameworks for particular purposes. 
For this, we first specify some criteria for choosing among the candidate frameworks. A common way to do so is by checking 
the satisfiability of rationality postulates, that is, to consider formal properties that the intended framework should satisfy. 
In the sequel we consider several types of such postulates, like those that refer to the properties of the extensions of 
the logical argumentation framework at hand (see, e.g., [29]), and postulates that refer to the properties of the induced 
entailment relations (see [30,54,55]).

The essence of this work is, therefore, to investigate the interplay between the basic ingredients of logical argumentation 
frameworks on one hand, and the properties of the frameworks and their entailment relations on the other hand. This 
allows us to assemble logical argumentation frameworks according to the desired properties that they and their entailment 
relations should have. As a result, we form an argumentative basis for what Prakken and Vreeswijk [66,77] (inspired by 
Rescher [70]) call plausible reasoning, namely: “sound (i.e., deductive) reasoning from uncertain premises” [66, p. 286].1

In our study, logical argumentation is investigated in the context of sequent-based argumentation [13], a simple and 
modular deductive argumentation setting, borrowing the proof-theoretic notion of sequents [47] for representing arguments. 
The incorporation of such notions provides a solid abstract representation of logical argumentation (in the sense that will 
be described in Section 2, see e.g., Note 1), and furthermore allows to properly construct and reason with arguments (see 
also [15]).

This paper is a revised and largely extended version of the conference papers in [11,12]. It provides a different perspec-
tive to earlier works on the subject (e.g., [2,5,48]) in several senses.

1. More postulates are considered2 and their compatibility (i.e., their mutual satisfaction) is shown.
2. We cover many known Dung-based semantics for argumentation frameworks, including those (like stage or eager seman-

tics) whose postulate-based behavior with respect to some attack relations has not been investigated before.3

3. Unlike some previous studies on logical argumentation (e.g., [11,48]), we do make a distinction between two types of 
premises. Strict premises are considered to be certain and therefore they cannot be attacked. Defeasible premises, on the 
other hand, are plausible yet uncertain assumptions. As such, they can be attacked. Distinguishing between these two 
types of assumptions has a significant effect on the form of the attack rules and their consequences.

4. We provide new results on how the nature of the attack rules (subset attacks versus direct attacks) affects the properties 
of the framework. This is done while avoiding some conditions that are used elsewhere, but which are problematic since 
they are hard to verify or too restrictive (see Notes 12 and 15).

5. We provide some new characterizations of the form of extensions for different Dung-style semantics (Theorems 1 and 3), 
as well as representations of the induced entailment relations in terms of inferences by maximally consistent subsets of 
the premises (Theorems 4 and 5).

6. Several assumptions that are made elsewhere are lifted in our case. For instance, in [2,5] it is assumed that the supports 
of the arguments are minimal and consistent, (that is, 〈�,ψ〉 is an argument only if � is consistent and there is no set 
�′ � � such that 

〈
�′,ψ

〉
is a valid argument), and in [48] it is further assumed that the base logic is classical logic. None 

of these assumptions are made here. See [13,16,39] for a discussion on the advantages of avoiding these assumptions.

It is important to note that each one of the above 6 items is already (partially) addressed in the literature. This paper 
fills several gaps in the known results. Furthermore, against the background of a uniform setting, it provides an in-depth 
coverage of properties (in terms of different rationality postulates) and characterizations (of extensions and entailment 
relations) of logical argumentation frameworks. This is done with respect to a variety of base logics, different kinds of 

1 This is contrasted with defeasible reasoning (in the technical sense) as “unsound (i.e., defeasible) reasoning from firm premises” [65, p. 262] that is for 
instance modeled in Reiter’s default logic [69] or in instantiations of ASPIC+ , in which genuinely defeasible rules are used (see [57,64] for a comparative 
study of default logic and ASPIC+).

2 Exhaustiveness (Definition 12), for example, was only defined and justified so far, but it was not characterized elsewhere, in the sense that the precise 
conditions for its satisfaction were not known (cf. Propositions 18–20 and Corollaries 15–17). Moreover, we define variants of some postulates (dubbed 
“limited” versions), fine-tuned to our generalized setting with strict and defeasible assumptions.

3 The number of Dung-style semantics for argumentation frameworks is continuously growing, thus some semantics of lesser centrality, or those that are 
heavily based on graph-theoretic intuitions, such as the recursive CF2 [21], are left out.
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assumptions (strict or defeasible), arguments (whose supports need not be minimal or consistent), several types of attack 
rules gathered according to their nature (direct attack, subset attacks, etc.), and all the main Dung-style semantics, where 
the corresponding extensions may be considered as individuals (credulous approach) or as a collective (skeptical or weakly 
skeptical approach). This allows us to compare logic-based argumentation frameworks with respect to different contexts and 
settings, demonstrating the advantages and shortcomings in each case.

The rest of the paper is organized as follows. The next section contains some basic notions and notations that are related 
to (sequent-based) logical argumentation, as well as further definitions concerning these frameworks, needed to configure 
the setting of this work and obtain its results. We then turn to the heart of the paper, which is divided to three parts:

1. Section 3 is an evaluation of logical argumentation frameworks from a postulate-based perspective. We distinguish be-
tween postulates concerning individual extensions (Section 3.1), and those that are concerned with sets of extensions 
(Section 3.2). At the end of each section we provide a table that summarizes the results in the section and shows what 
postulates are satisfied by which frameworks. These tables clearly indicate the large diversity among different argumen-
tation frameworks and the crucial role of their ingredients in determining their properties.

Section 4 provides some further examples that demonstrate the results of the above-mentioned study in case of 
argumentation frameworks based on non-classical logics.

2. Section 5 contains a sequence of characterization theorems that are obtained from the propositions in Section 3. These 
theorems are of two kinds: those that characterize the extensions according to different semantics of the logical argumen-
tation frameworks (Section 5.1), and those that characterize the entailment relations that are induced by the frameworks 
(Section 5.2).

3. Section 6 further relies on insights gained in the previous sections for providing some results on the behavior of the 
argumentation-based entailments. Again, we conduct a postulate-driven study that mainly considers two types of prop-
erties: those that are related to the non-monotonic nature of the inferences (Section 6.1) and those that are related to 
the way inconsistency is tolerated (Section 6.2). As a by-product, we also provide in this section some new results on 
reasoning with maximal consistency with strict and defeasible premises and abstract base logics.

In Section 7 we discuss related work, and in Section 8 we conclude.

2. Preliminaries

In this section we describe the setting of our work and its context. In Section 2.1 we review some basic notions concern-
ing logical argumentation frameworks, and in Section 2.2 we express some minimal assumptions on these frameworks that 
are needed for our results.

2.1. Logical argumentation

In what follows we shall assume that the underlying language L is propositional. Atomic formulas in L are denoted by 
lower-case letters (p, q, r), formulas are denoted by lower-case Greek letters (φ, ψ, δ, γ ), sets of formulas are denoted by 
upper-case (calligraphic) letters (S, T , X ), and finite sets of formulas are denoted by upper-case Greek letters (�, �, �, 	), 
all of which can be primed or indexed. The set of atomic formulas of L (respectively, the set of atomic formulas appearing 
in the formulas of S) is denoted Atoms(L) (respectively, Atoms(S)). The set of the (well-formed) formulas of L is denoted 
WFF(L). The power set of a set S is denoted ℘(S).

Definition 1 (logic). A logic for a language L is a pair L = 〈L,�〉, where � is a (Tarskian) consequence relation for L, i.e., it is 
a relation on ℘(WFF(L)) × WFF(L), satisfying:

• reflexivity: if φ ∈ S then S � φ;
• transitivity: if S � φ and S ′, φ � ψ , then S, S ′ � ψ4;
• monotonicity: if S ′ � φ and S ′ ⊆ S , then S � φ.

Given a logic L, it is usual to assume the following properties:

• non-trivialilty: S � φ for some nonempty S and formula φ;
• structurality (closure under substitutions): if S � φ then {θ(ψ) | ψ ∈ S} � θ(φ) for every L-substitution θ ;
• compactness: if S � φ then � � φ for a finite � ⊆ S .

4 Following the usual convention, here and in what follows commas in the context of � stand for the union operator and singletons on the left hand 
side of � are written without set brackets.
3
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In what follows, we shall assume that L contains at least a �-negation operator (¬), satisfying p � ¬p and ¬p � p
(for atomic p),5 and a �-conjunction operator (∧), for which S � ψ ∧ φ iff S � ψ and S � φ.6 Also, we denote by 

∧
�

the conjunction of all the formulas in �. Besides ¬ and ∧, L may contain other logical operators, such as disjunction, 
implication, modal operators, logical primitives, etc.

Definition 2 (closure and consistency). Let L = 〈L,�〉 be a logic and let S be a set of L-formulas. The �-closure of S is the set 
CNL(S) = {φ | S � φ}. We say that S is �-consistent, if it does not have any subset whose negation follows from an empty 
set of assumptions, namely: there are no formulas φ1, . . . , φn ∈ S for which � ¬(φ1 ∧ · · · ∧ φn).7

Having a logic L = 〈L,�〉 at our disposal, we can now define the notion of an argument, based on that logic. In its most 
general form, such an argument is just a pair 〈�,ψ〉, the first component of which (�) is a finite set of L-formulas which 
are the argument’s premises (or supports), and the other component (ψ ) is an L-formula, called the argument’s conclusion. 
A minimal requirement from an argument is that it should be logically valid, that is: its conclusion should follow, according 
to L, from the premises. In the above notations, this means that � � ψ . Using a well-known terminology from proof theory, 
this is what is called there a sequent [47]. In our case, the set of premises of a sequent may consist of two kinds of formulas: 
strict and defeasible ones. Intuitively, the former are formulas that are ‘taken for granted’ while the latter are formulas that 
may be challenged (i.e., attacked by other arguments).

Definition 3 (arguments). Let L = 〈L,�〉 be a logic, X a �-consistent set of L-formulas (the strict assumptions), and S an 
arbitrary set of L-formulas (the defeasible assumptions), such that X ∩ S = ∅.

• An L-sequent (sequent for short) is an expression of the form � ⇒�, where � and � are finite sets of formulas in L and 
⇒ is a symbol that does not appear in L.

• An L-argument (argument for short) is an L-sequent of the form � ⇒ ψ ,8 where � � ψ . We say that � is the support 
set of � ⇒ ψ (also denoted by Supp(� ⇒ ψ)) and that ψ is its conclusion (also denoted Conc(� ⇒ ψ)). For a set S of 
arguments, we let Supps(S) = ⋃{Supp(a) | a ∈ S} and Concs(S) = {Conc(a) | a ∈ S}.

• An L-argument based on S and X is an L-argument � ⇒ ψ , where � ⊆ S ∪ X . We denote by ArgXL (S) the set of all the 
L-arguments based on S and X .

• An argument �′ ⇒ ψ ′ is a sub-argument of � ⇒ ψ if �′ ⊆ �. The set of all the sub-arguments of � ⇒ ψ is denoted 
Sub(� ⇒ ψ).

Note 1. Sequents are a general representation of arguments in the sense that the only requirement on these expressions 
is that their conclusions will logically follow from their supports (according to the underlying logic). In addition to this 
requirement, it is sometimes also assumed that the argument’s support is �-consistent and/or that none of its proper 
subsets �-entails the arguments’ conclusion (see, e.g., [5,25]). As our goal here is to keep the discussion as general as 
possible, we do not make such restrictions. We refer to [13,16] and the discussion below for further justifications of this 
choice. Other works on sequent-based argumentation without these restrictions appear, e.g., in [10,15,26,74].

Formal systems for constructing sequents (and so arguments) for a logic L = 〈L,�〉 are called sequent calculi [47], denoted 
here by C. The construction of arguments from simpler arguments is done by means of derivations via the inference rules
of the sequent calculus. A sequent is provable (or derivable) in C if there is a derivation for it in C.9 In what follows we 
shall assume that the calculus C is sound and complete for its logic (i.e., � ⇒ ψ is provable in C iff � � ψ ). Note that this 
implies, in particular, that for given sets S and X , all the elements in ArgXL (S) are C-provable.

Just as arguments are constructed by inference rules in C, conflicts (attacks) between arguments are represented in a 
rule-like manner. Such an attack (or, sequent-elimination) rule consists of an attacking argument (the first condition of the 
rule), an attacked argument (the last condition of the rule), conditions for the attack (the other conditions of the rule) and 
a conclusion (the eliminated attacked sequent). The outcome of an application of such a rule is that the attacked sequent 
is ‘eliminated’ (or ‘invalidated’, see below the exact meaning of this). The elimination of a sequent � ⇒ φ is denoted by 
� � φ. In sum, the general scheme for attack rules is as follows:

5 In the context of structurality and monotonicity, the presence of a negation renders the logic non-trivial.
6 By the definition of ∧ we have that φ ∧ ψ � φ; φ ∧ ψ � ψ and φ, ψ � φ ∧ ψ , so S, φ, ψ � γ iff S, φ ∧ ψ � γ .
7 Following the usual convention, we write � φ as an abbreviation of ∅ � φ.
8 Set signs in arguments are omitted.
9 This usually means a finite sequence of sequent-based tuples, constructed according to the inference rules of C, that culminates with a tuple that 

contains the derived sequent. The exact details vary from one calculus to another.
4
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attacker︷ ︸︸ ︷
�1 ⇒ φ1

conditions︷ ︸︸ ︷
. . .

attacked︷ ︸︸ ︷
�2 ⇒ φ2

�2 � φ2︸ ︷︷ ︸
eliminated argument

where [additional conditions].

We now define the attack rules that are central to our study.

Definition 4 (attack rules). Given a set X of strict (non-attacked) formulas, we consider the following attack rules:

• Defeat (DefX ): 
�1 ⇒ ψ1 ψ1 ⇒ ¬∧

�2 �2,�
′
2 ⇒ ψ2

�2,�
′
2 �ψ2

where �2 �= ∅, �2 ∩X = ∅

• Direct Defeat (DDefX ): 
�1 ⇒ ψ1 ψ1 ⇒ ¬γ �2, γ ⇒ ψ2

�2, γ � ψ2
where γ /∈X

• Undercut (UcutX ): 
�1 ⇒ ψ1 ψ1 ⇒ ¬∧

�2 ¬∧
�2 ⇒ ψ1 �2,�

′
2 ⇒ ψ2

�2,�
′
2 � ψ2

where �2 �= ∅, �2 ∩X = ∅

• Direct Undercut (DUcutX ): 
�1 ⇒ ψ1 ψ1 ⇒ ¬γ ¬γ ⇒ ψ1 �2, γ ⇒ ψ2

�2, γ �ψ2
where γ /∈X

• Consistency Ucut (ConUcutX ): 
�1 ⇒ ¬∧

�2 �2,�
′
2 ⇒ ψ

�2,�
′
2 � ψ

where �2 �= ∅, �2 ∩X = ∅, �1⊆X

The rules above indicate different cases in which the attacker challenges the attacked argument. For instance, when 
{p, ¬p} ⊆ S and classical logic (CL) is the core logic, the sequents p ⇒ p and ¬p ⇒ ¬p attack each other according to 
(Direct) Defeat and (Direct) Undercut. In contrast, the tautological sequent ⇒ ψ ∨ ¬ψ is not (direct) defeated or (direct) 
undercut by any argument in ArgXCL(S), since it has an empty support set. We also note that the attack rules differentiate 
between defeasible and strict assumptions by only allowing attacks in the former. E.g., when {¬p} ⊆ S and X = {p} the 
attack is uni-directional from p ⇒ p to ¬p ⇒ ¬p, since an argument cannot be attacked in its strict premises.

Note 2. In the particular case where �1 is empty, Consistency Undercut indicates that arguments with an inconsistent set 
of premises are attacked by tautological arguments. In relation to Note 1, then, support inconsistency may be handled by 
attack rules of the frameworks rather than simply ruled out (we refer to [16] for a further discussion on this).

Note 3. When X = ∅, the rules in Definition 4 coincide with those of [13,74]. There, the reader can also find many other 
attack rules. In [26] sequent-based argumentation has been generalized along similar lines, where the left side of a sequent 
is a pair � | � consisting of a set of defeasible premises � and a set of strict premises �.

An argumentation framework is now defined as follows:

Definition 5 (argumentation frameworks). A (sequent-based) argumentation framework (AF), based on a logic L and a set A of 
attack rules, for a set of defeasible premises S and a �-consistent set of strict premises X such that S ∩ X = ∅, is a pair 
AFX

L,A(S) =
〈
ArgXL (S),A

〉
, where A ⊆ ArgXL (S) × ArgXL (S) and (a1, a2) ∈ A iff there is an R ∈ A such that a1 R-attacks a2

(that is, (a1, a2) is an instance of the relation R).10 A pair (a1, a2) is an instance of an attack rule R in case that R can be 
instantiated in such a way that a1 is the attacking sequent, a2 is the attacked sequent, and the sequents in the condition of 
R (if any) can be derived in the underlying calculus C (in particular, they need not be in ArgXL (S)).

The subscripts L, A and/or the superscript X will be omitted when they are clear from the context or arbitrary. Note 
that the attacking and the attacked arguments must be elements of ArgXL (S), to prevent “irrelevant attacks”, in which, e.g., 
¬p ⇒ ¬p attacks p ⇒ p although p ∈ S and ¬p /∈ S ∪X .

Example 1. Let AFX
CL,A(S) =

〈
ArgXCL(S),A

〉
be an argumentation framework for S = {q, ¬p ∨ ¬q, r} and X = {p}, classical 

logic (CL) as the base logic, and A is obtained from the attack rules in A, where {ConUcut} � A ⊆ {DDef, DUcut, ConUcut}. 
Among others, the following sequents are in ArgXCL(S):

10 Thus, A consists of the rule names, and A is their applications on ArgXL (S).
5
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a⊥

a3

a6

a7

a8

a9 a4

a1

a�

a5

a2

a⊥a3

a6

a7

a8

a9

a4

a2

a5

a1

a�

Fig. 1. Part of the frameworks from Example 1. In both frameworks A = {DDef, ConUcut}. On the left side S = {q, ¬p ∨ ¬q, r} and X = {p}, on the right 
side S = {p, q, ¬p ∨ ¬q, r} and X = {}. The dashed arrows denote the differences between the two frameworks.

a1 = r ⇒ r a7 = p,q ⇒ p ∧ q
a2 = p ⇒ p a8 = ¬p ∨ ¬q,q ⇒ ¬p
a3 = q ⇒ q a9 = ¬p ∨ ¬q, p ⇒ ¬q
a4 = ¬p ∨ ¬q ⇒ ¬p ∨ ¬q a� = ⇒ ¬(p ∧ q ∧ (¬p ∨ ¬q))

a5 = p ⇒ ¬((¬p ∨ ¬q) ∧ q) a⊥ = p,q,¬p ∨ ¬q ⇒ ¬r
a6 = q ⇒ ¬((¬p ∨ ¬q) ∧ p)

The left part of Fig. 1 is a graphical representation of the argumentation framework AFX
CL,A(S) restricted to the argu-

ments above, and where direct defeat and consistency undercut are the attack rules. The right part of the figure represents 
the framework with the same attack rules, but when p is a defeasible assumption rather than a strict assumption (i.e., when 
S = {p, q, ¬p ∨ ¬q, r} and X = ∅). In the figure, nodes represent arguments, and directed edges represent attacks from the 
attacking to the attacked arguments. Dashed arrows designate the differences between the two parts of the figure.

Given an argumentation framework AF , Dung-style semantics [19,40] can be applied to it, to determine what combina-
tions of arguments (called extensions) can collectively be accepted from AF .

Definition 6 (extensions). Let AF = AFX
L,A(S) =

〈
ArgXL (S),A

〉
be an argumentation framework and let S ⊆ ArgXL (S) be a 

set of arguments. It is said that:

• S attacks a if there is an a′ ∈ S such that (a′, a) ∈ A. The set of all arguments attacked by S is denoted by S+ . The set 
S ∪ S+ is called the range of S.

• S defends a if S attacks every a′ such that (a′, a) ∈A.
• S is conflict-free if for no a1, a2 ∈ S it holds that (a1, a2) ∈A.
• S is naive (nav) if it is a ⊆-maximal conflict-free set.
• S is a stage (stg) extension of AF if it is conflict-free and S ∪ S+ is ⊆-maximal among the ranges of the conflict-free sets.
• S is admissible in AF if it is conflict-free and defends all of its elements.
• S is a complete (cmp) extension of AF if it is an admissible set that contains all the arguments that it defends.
• S is the grounded (grd) extension of AF if it is the ⊆-minimal complete extension of ArgXL (S).
• S is a preferred (prf) extension of AF if it is a ⊆-maximal complete extension of ArgXL (S).
• S is the ideal (idl) extension of AF if it is the ⊆-maximal admissible set that is included in each preferred extension.
• S is a stable (stb) extension of AF if it is a conflict-free set in ArgXL (S) that attacks every argument not in it (that is, the 

range of S is the whole set of arguments, ArgXL (S)).
• S is a semi-stable (sstb) extension of AF if it is a complete extension whose range is ⊆-maximal.
• S is the eager (egr) extension of AF if it is the ⊆-maximal admissible set that is included in every semi-stable extension.

We denote by Extsem(AF) the set of all the extensions of AF of type sem for some sem∈{nav, stg, cmp, grd, prf, idl, stb, sstb,

egr}.

Note 4. As shown in [40], the grounded extension is unique for a given framework, and as shown in [19], the ideal and 
the eager extensions are unique complete extensions for a framework. Furthermore, a stable extension is also a semi-stable 
6



O. Arieli, A. Borg and C. Straßer Artificial Intelligence 322 (2023) 103966
[Ref]
φ ⇒ φ

[Cut] �1 ⇒ ψ,�1 �2,ψ ⇒ �

�1,�2 ⇒ �1,�

[LMon] � ⇒ �

�,φ ⇒ �
[RMon] � ⇒ �

� ⇒ �,φ

[¬⇒] � ⇒ �,ϕ

¬ϕ,� ⇒ �
[⇒¬] ϕ,� ⇒ �

� ⇒ �,¬ϕ

[∧⇒] �,ϕ,ψ ⇒ �

�,ϕ ∧ ψ ⇒ �
[⇒∧] �1 ⇒ �1,ϕ �2 ⇒ �2,ψ

�1,�2 ⇒ �1,�2,ϕ ∧ ψ

Fig. 2. Rules that are part of (or admissible in) the calculus C (in case that C is single-conclusion, thus sequents may have at most one formula in their 
right-hand sides, �, �1 and �2 should be empty, and � contains at most one formula).

extension, which in turn is a preferred extension. Other extensions and their properties are discussed, e.g., in [18–20]. A 
graphical representation of the relations among alternative extension-based semantics can be found, e.g., in [19, Figure 13].

On the basis of argumentation frameworks and their semantics we can define two general types of entailment relations: 
skeptical and credulous ones.

Definition 7 (entailments). Given an argumentation framework AFX
L,A(S) and a semantics sem for it, the following entail-

ment relations are induced from them:

• Skeptical entailment: S |∼∩
L,A,X ,sem φ if there is an argument a ∈ ⋂

Extsem(AFX
L,A(S)) such that Conc(a) = φ.

• Weakly skeptical entailment: S |∼�
L,A,X ,sem φ if for every E ∈ Extsem(AFX

L,A(S)) there is an argument a ∈ E such that 
Conc(a) = φ.

• Credulous entailment: S |∼∪
L,A,X ,sem φ iff there is an argument a ∈ ⋃

Extsem(AFX
L,A(S)) such that Conc(a) = φ.

For fixed L, A, X and sem, we clearly have that |∼∩
L,A,X ,sem ⊆ |∼�

L,A,X ,sem ⊆ |∼∪
L,A,X ,sem . The subscripts L, A, X and sem (or 

some of them) are omitted when they are clear from the context or arbitrary. Since the grounded, ideal and eager extensions 
are unique, |∼∩

sem , |∼�
sem and |∼∪

sem coincide for a fixed sem∈{grd, idl, egr}, so all three are denoted by |∼sem .

Example 2. Let AF∅
CL,{Ucut}(S) be an argumentation framework for S = {p,¬p,q}, based on CL and Undercut as the sole 

attack rule. As noted in the paragraph below Definition 4, the sequent ⇒ p ∨ ¬p belongs to every complete extension 
of AF∅

CL,{Ucut}(S), since it cannot be Undercut-attacked.11 Similarly, q ⇒ q belongs to every complete extension of the 
framework, since ⇒ p ∨ ¬p counter-attacks any attacker of q ⇒ q that belongs to Arg∅

CL(S) (given that any attacker of 
q ⇒ q has an inconsistent support set). This implies that p, ¬p, q |∼

sem q for every sem∈{stg, cmp, grd, prf, idl, stb, sstb, egr}
and  ∈ {∩, �, ∪}. On the other hand, for each sem ∈{nav, stg, cmp, grd, prf, idl, stb, sstb, egr} and  ∈ {∩, �} it holds that 
p, ¬p, q |�

sem p and p, ¬p, q |�
sem ¬p.

Example 3. Consider again the excerpt of the argumentation framework AFX
CL,A(S) of Fig. 1 (left), i.e., when X = {p}. In 

this figure, the grounded extension consists only of the arguments a1, a2, a5 and a� , and the preferred/stable extensions 
are E1 = {a�, a1, a2, a3, a5, a6, a7} and E2 = {a�, a1, a2, a4,a5, a9}. It follows that a1 = r ⇒ r and a2 = p ⇒ p belong to every 
complete extension of the argumentation framework of Example 1, and so r and p are concluded in that case by |∼

X ,sem
for every sem∈{cmp,grd,prf, idl, stb, sstb,egr} and  ∈ {∩, �, ∪}. Note that this is possible by the availability in Example 1 of 
ConUcut, otherwise a1 would not be defended from the attack by a⊥ .

2.2. The scope of the study

Interestingly, despite the diversity of logics and their sequent calculi covered in this work, only a few assumptions on 
the sequent calculi are necessary for our results. In fact, we only need to assume that the rules of the basic calculus from 
Fig. 2 are part of (or admissible in) C.

The first four (structural) rules correspond to the properties of consequence relations (Definition 1): reflexivity [Ref], 
transitivity [Cut] and monotonicity [LMon, RMon]; the other four (logical) rules refer to the behavior of the negation in the 
left-hand side of the sequents [¬ ⇒], in the right-hand side [⇒¬], and similar rules for the conjunction ([∧ ⇒] and [⇒∧], 
respectively).

11 We note that ⇒ p ∨ ¬p does not belong to every naive extension. Although an argument a such as p, ¬p ⇒ q cannot be defended from the Undercut 
attack by ⇒ p ∨ ¬p, since a is not self-attacking, it belongs to a conflict-free set and so also to a maximal conflict-free (i.e., naive) set.
7
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Example 4. Gentzen’s calculus LK for classical logic, its single-conclusion variation LJ for intuitionistic logic, as well as their 
extensions to modal logics, are some well-known calculi for base logics that are covered by our study.

We start with some simple lemmas that will be needed for the proofs in what follows.

Lemma 1. For a formula φ and a finite set of formulas �, the sequents φ ⇒ ¬¬φ and � ⇒ ∧
� are C-derivable.

Proof. For φ ⇒ ¬¬φ, note that by reflexivity φ ⇒ φ is C-derivable, and by [¬⇒] so is φ, ¬φ⇒. Then, by [⇒¬], we get 
φ ⇒ ¬¬φ. The sequent � ⇒ ∧

� is derivable by reflexivity on every formula in � and then applications of [⇒∧]. �
Lemma 2. If � ⇒¬ 

∧
� is C-derivable, then also � ⇒¬ 

∧
�, � ⇒¬ 

∧
(� ∪ �′), �, � ⇒ and �, � \{δ} ⇒¬δ (for every δ ∈ �) 

are C-derivable.

Proof. By [¬⇒], �, ¬¬ 
∧

� ⇒ is C-derivable. By Lemma 1 and [Cut], �, 
∧

� ⇒ is C-derivable. Since ∧ is a �-conjunction, 
by the completeness of C and by [LMon], the sequents �, � ⇒; �, �, �′ ⇒; �, 

∧
(� ∪�′) ⇒; and 

∧
�, � ⇒ are C-derivable. 

By [⇒¬], the sequents � ⇒ ¬ 
∧

�; � ⇒ ¬ 
∧

(� ∪ �′); and �, � \ {δ} ⇒ ¬δ are all C-derivable (where δ ∈ �). �
Lemma 3. For every L-formulas φ, ψ , the sequent φ, ¬φ ⇒ ψ is C-derivable.

Proof. By [Ref], φ ⇒ φ is C-derivable. By [¬⇒] we get φ, ¬φ ⇒, and by [RMon], φ, ¬φ ⇒ ψ is C-derivable. �
Since C is sound and complete for the underlying logic, by the last two lemmas we have the following corollary:

Corollary 1. All the logics L = 〈L,�〉 considered in what follows are explosive (�, ψ, ¬ψ � φ) and contrapositive (�, ψ � φ iff 
�, ¬φ � ¬ψ).

By Lemma 2, we also have the following result:

Lemma 4. (i) � is inconsistent iff � ⇒ is derivable. (ii) � is inconsistent iff � \ {γ } ⇒ ¬γ is derivable for any γ ∈ �.

Proof. To see (i), note that � is inconsistent iff � ¬ 
∧

�′ for some �′ ⊆ �, iff (by the adequacy of the sequent calculus) 
⇒¬ 

∧
�′ is C-derivable for some �′ ⊆ �, iff (by Lemma 2) �′ ⇒ is C-derivable for some �′ ⊆ �, iff (by [LMon]) � ⇒ is 

C-derivable.
The proof of (ii) is left to the reader. �
The rules of Fig. 2 also imply the following necessary requirement for an attack between two arguments:

Lemma 5. For any attack rule in Definition 4 it holds that � ⇒ γ attacks � ⇒ δ only if � ∪ � is inconsistent.

Proof. Suppose that � ⇒ γ attacks � ⇒ δ. By [Cut] together with the condition of any of the attack rules in Definition 4, it 
is easy to see that there is a �′ ⊆ � for which � ⇒ ¬ 

∧
�′ is C-derivable. By Lemma 2, ⇒ ¬ 

∧
(� ∪ �′) is also C-derivable. 

Hence, by the soundness of C, � ∪ � is inconsistent. �
In what follows we distinguish between three types of attacks in argumentation frameworks, denoted set, dir and con.

Definition 8 (types of attack rules). Attack rules are categorized in the sequel as follows:

set: A ∩ {Def, Ucut} �= ∅ (i.e., attack rules in which an argument is attacked on a subset of its support, and where at 
least one of the rules is Undercut or Defeat),

dir: ∅ �= A ⊆ {DDef,DUcut} (that is, nonempty sets of direct attack rules),
con: {ConUcut} � A ⊆ {ConUcut,DDef,DUcut} (that is, nonempty dir-type sets of attack rules that also contain ConUcut).

Note 5. Any framework with the attack rules of Definition 4, for which A \ {ConUcut} �= ∅, falls in one of the three categories 
above. Moreover, these categories are disjoint.

Note 6. In the presence of the inference rules in Table 2, Consistency Undercut is admissible if Defeat or Undercut are part 
of the attack rules. To see this, consider the following two derivations, where we assume that ConUcut can be applied and 
therefore that �1 ⇒ ¬ 

∧
�2 and �2, �′ ⇒ ψ can be derived for some �1 ⊆X .
2

8
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ConUcut Assumption

�1 ⇒ ¬∧
�2

¬∧
�2 ⇒ ¬∧

�2
Ref

¬∧
�2 ⇒ ¬(

∧
�2 ∧ ∧

�′
2)

Lemma 2
ConUcut Assumption

�2,�
′
2 ⇒ ψ

�2,�
′
2 � ψ

Def

ConUcut Assumption

�1 ⇒ ¬∧
�2 ¬∧

�2 ⇒ ¬∧
�2

Ref ¬∧
�2 ⇒ ¬∧

�2
Ref

ConUcut Assumption

�2,�
′
2 ⇒ ψ

�2,�
′
2 � ψ

Ucut

Concerning the categorization of the semantics in our setting, many of the results in what follows will apply to 
completeness-based semantics, as defined next:

Definition 9 (completeness-based semantics). A semantics sem (e.g., one of those in Definition 8) is completeness-based rel-
ative to attack type †, iff for every argumentation framework AF with attack rules of type †, it holds that Extsem(AF) ⊆
Extcmp(AF).

Definition 10 (semantics classes). In what follows we denote by CMP the set of completeness-based semantics, by ME the 
subset of multiple-extension semantics, and by SE the subset of single-extension semantics, namely: CMP = {cmp, prf, stb,

sstb, stg, grd, idl, egr}, ME = {prf, stb, sstb, stg},12 and SE = {grd, idl, egr}.

Note 7. By their definitions, complete, grounded, and preferred semantics are all completeness-based relative to any type of 
attacks. Since it can be shown that every stable, semi-stable, ideal, and eager extension is always complete (see, e.g., [19]), 
the same holds for these semantics. In general, naive and stage extensions need not be complete. We will show below 
(Proposition 1) that for the three types of attacks in Definition 8 (i.e., for every † ∈ {dir, con, set}) also stage semantics is 
completeness-based.13

Definition 11 (CSX
L (S), MCSX

L (S), FreeXL (S)). For a logic L = 〈L,�〉 a set S of L-formulas, and a �-consistent set X of 
L-formulas, we say that S is �X -consistent if S ∪X is �-consistent. We denote:

• CSX
L (S): the set of the �X -consistent subsets of S ,

• MCSX
L (S): the ⊆-maximal sets in CSX

L (S),

• FreeXL (S): the formulas in S that are not part of any ⊆-minimal �X -inconsistent subset of S .14

Lemma 6. Let AFX
L,A(S) be a framework with attack rules of one of the types in Definition 8 and let T ∈ MCSX

L (S). Then ArgXL (T ) ∈
Extstb(AFX

L,A(S)).

Proof. The conflict-freeness of ArgXL (T ) follows from Lemma 5. Consider now an argument a ∈ ArgXL (S) \ ArgXL (T ). If there 
is no such argument then ArgXL (T ) is clearly stable. We show that a is attacked by ArgXL (T ). Indeed, by the choice of a, 
there is a formula φ ∈ Supp(a) \ T . By the maximal �X -consistency of T , by the compactness of L and by Lemma 4 (ii), 
there is a � ⊆ T ∪X for which � ⇒ ¬φ ∈ ArgXL (T ). The latter attacks a according to (D)Ucut and DDef (note that ¬φ ⇒ ¬φ

is derivable by Reflexivity). �
Proposition 1. If AF is a framework with attacks of one of the types in Definition 8, then Extstb(AF) = Extstg(AF) = Extsstb(AF).

Proof. The directions Extstb(AF) ⊆ Extstg(AF) and Extstb(AF) ⊆ Extsstb(AF) are trivial. For the converse, let sem ∈
{stg, sstb} and suppose that E ∈ Extsem(AF). By Lemma 6, there is a E ′ ∈ Extstb(AF).15 Since E ′ is conflict-free and 
E ′ ∪ E ′+ = Arg(AF), also E ∪ E+ = Arg(AF), and so E ∈ Extstb(AF). �

Fig. 3 summarizes the relations between Dung-style semantics (Definition 6) and their classes (Definition 10). Strict lines 
indicate inclusion relations that hold in general (see, e.g., [19,40]). Dashed arrows indicate additional relations that hold 
in our logic-based setting (as shown in Theorem 1 below). As we shall see in the sequel, the main insight concerning 

12 The exclusion of cmp from ME is explained in Note 22.
13 We note that naive semantics is not completeness-based (see, for instance, Footnote 11 for a counter-example).
14 It is well-known (and easily verified) that FreeX

L (S) consists exactly of those formulas in S that are contained in every maximal �X -consistent subset 
of S , namely: FreeX

L (S) = ⋂
MCSX

L (S) (see, for instance, [71, p. 186], [23, p. 24]).
15 It is easy to verify that every consistent subset of some S (including ∅) has a maximal �-consistent superset T ⊆ S .
9
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complete
CMP

naive

grounded
CMP,SE

ideal
CMP,SE

preferred
CMP,ME

stage
CMP,ME

semi-stable
CMP,ME

stable
CMP,ME

eager
CMP,SE

Fig. 3. Semantics, their classes, and inclusion relations among them. Strict lines indicate inclusion relations that hold in general and dashed arrows indicate 
additional relations that hold in the logic-based setting.

extension-based semantics in logic-based argumentation, is that the standard multiple-extension semantics (respectively, 
the standard single-extension semantics) collapses to a single type.

To summarize, in what follows we consider argumentation frameworks based on any propositional logic L with a sound 
and complete sequent calculus C, in which the rules in Fig. 2 are admissible, the set of premises may contain both strict 
(X ) and defeasible (S) formulas, the set of attack rules A may be of any of the three types given in Definition 8, and the 
semantics sem may be any completeness-based ones. To the best of our knowledge, this variety has not been considered 
previously in systematic studies of meta-theoretic properties of logical argumentation. In the next sections we evaluate 
these frameworks with respect to different rationality postulates, divided according to their nature.

3. Evaluation of logical argumentation frameworks

As indicated previously, the definitions of sequent-based argumentation frameworks and the entailment relations induced 
by them leave plenty of choices to be made in their construction, as the base logic L, the attack rules A, the underlying 
semantics sem, and the inference method (skeptical, weakly skeptical, and credulous) may vary from one case to another. 
In this section we check how these choices affect the properties of the frameworks that are obtained and their entailment 
relations. For this, we consider several desirable properties and then check in what setting they can be warranted. In this 
section, we consider rationality postulates for the extensions of the frameworks, in Section 5 we show some characterization 
results, and in Section 6 the properties of the induced entailment relations are investigated.

3.1. Postulates concerning individual extensions

First, we consider rationality postulates for completeness-based semantics that are concerned with the properties of 
individual extensions.

Definition 12 (rationality postulates I). Let AFX
L,A(S) =

〈
ArgXL (S),A

〉
be an argumentation framework, sem a semantics for 

it, E ∈ Extsem(AFX
L,A(S)), and a ∈ ArgXL (S). In Table 1 we list properties that AFX

L,A(S) may have.16,17

Table 1
Rationality postulates for individual extensions.

Property Definition

closure of extensions CNL(Concs(E)) = Concs(E).
closure under support If Supp(a) ⊆ Supps(E) then a ∈ E .
sub-argument closure If a ∈ E then Sub(a) ⊆ E .
support inclusion Supps(E) ⊆ Concs(E).
(conclusion) consistency Concs(E) is �X -consistent.
support consistency Supps(E) is �X -consistent.
pairwise support consistency For each a, b ∈ E , Supp(a) ∪ Supp(b) is �X -consistent.
exhaustiveness If Supp(a) ∪ {Conc(a)} ⊆ Concs(E) then a ∈ E .
strong exhaustiveness If Supp(a) ⊆ Concs(E) then a ∈ E .
free precedence ArgXL (FreeXL (S)) ⊆ E .
strong free precedence E = ArgXL (FreeXL (S)).
limited [free prec. / exhaus. / str. exhaus.] [Free precedence / exhaustiveness / strong exhaustiveness] restricted to extensions E

with ⋃Supps(E) \X �= ∅.

16 Each of the properties in the table is defined with respect to sem. In what follows sem will be clear for the context.
17 With the exceptions of pairwise support consistency and the limited versions of the postulates, all the other postulates are taken from [2,28,29].
10
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conclusion
consistency

dir/con:CMP,
set:SE

pairwise
support

consistency

dir/con:CMP,
set:CMP

closure
of

extensions

dir/con:CMP,
set:SE

closure
under

support

dir/con:CMP,
set:SE

sub-argument
closure

dir/con:CMP,
set:CMP

support
inclusion

dir/con:CMP,
set:CMP

support
consistency

dir/con:CMP,
set:SE

exhaustiveness

dir:ME,con:CMP,
set:SE

strong
exhaustiveness

dir:ME,con:CMP,
set:SE

free
precedence

dir:ME,con:CMP,
set:CMP

strong
free

precedence

dir:-,con:SE,
set:SE

Fig. 4. Some relations between the postulates for individual extensions in our setting. If a property at the origin of an arrow in the diagram holds relative 
to classes of argumentation frameworks for a given semantics sem and a given attack type † ∈ {dir, con, set}, then also the property at the end of the same 
arrow holds (for the specified semantics and attack type). For the dashed arrows sub-argument closure, resp. closure under support, is supposed. In each 
node label, the lower part indicates for which combinations of attack types † and semantics sem the property holds (as is proved in the propositions in 
this section).

Note 8. The postulates in Table 1 indicate some desirable properties of a framework’s extensions.

• The first three postulates state different closure properties. For instance, the first postulate expresses that the set of 
conclusions of the arguments in an extension is logically closed.

• Support inclusion is a kind of reflexivity condition, demanding that anything that is assumed can be inferred.
• The next three postulates are consistency requirements regarding the supports and the conclusions of an extension. 

Violations of these postulates mean that contradictory conclusions may be inferred. Pairwise support consistency is a 
weaker version of support consistency, assuring that the support sets of each pair of arguments in an extension are 
mutually consistent. We shall see that only this form of consistency can be guaranteed in all circumstances.

• Exhaustiveness and strong exhaustiveness, like the closure postulates, state that what is expected to be in the extension 
is indeed there and is not left out. In [2], exhaustiveness is justified by the aspiration that ‘if each step in an argument 
[namely, each sub-argument]18 is good enough to be in a given extension, then so is the argument itself’.

• Free precedence and strong free precedence refer to the containments of the ‘safe arguments’, that is: those that are 
based on the formulas in (the intersection of) the consistent subsets of the premises. In other words, these postulates 
state that any argument that is supported only by formulas that are not involved in any minimal conflict, is included in 
the extension. The stronger postulate, requiring an absolute identity between the elements of an extension and the safe 
arguments, might be regarded as too strong, but when it is satisfied all the other postulates are guaranteed (see Fig. 4).

• Finally, we also consider limited versions of some of the postulates, restricted to ‘non-tautological’ extensions.

The postulates in Table 1 are particularly useful in credulous reasoning, which is based on the content of specific exten-
sions. In such cases these postulates assure the plausibility of the conclusion making process (being consistent, closed under 
logical inferences, etc.). For further descriptions of the postulates in Table 1 and discussions on the intuition behind them, 
we refer e.g. to [2,28,29].

Note 9. Clearly, some postulates in Definition 12 are related to each other. For instance, sub-argument closure follows from 
closure under support, pairwise support consistency follows from support consistency, exhaustiveness follows from strong 
exhaustiveness, free precedence follows from strong free precedence, and the limited version of a postulate follows from 

18 The text in square brackets is our clarification and not part of the original quotation.
11
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a8

a7

a3

a6

a9

a4

a2

a5

Fig. 5. The argumentation framework for Example 11. Highlighted is a stable extension with inconsistent support.

the non-limited version of the same postulate. These relations, as well as some other relations between the postulates are 
presented in Fig. 4. Further conditions for relating some of the postulates in Definition 12 are given in [2].

Let us now check the satisfiability of the postulates in Definition 12 (Table 1), in relation to the underlying semantics 
and the type of the attack rules. In what follows E denotes a sem-extension, for some sem ∈ CMP. When the results are 
restricted to specific types of attacks or semantics, we assume that E is a sem-extension of frameworks satisfying such 
restrictions.

Proposition 2 (support consistency). Frameworks with attacks of type dir or con satisfy support consistency for all the completeness-
based semantics: Supps(E) is �X -consistent for every complete extension E ∈ Extcmp(AF).

Proof. Assume for a contradiction that there is a ⊆-minimal set 	 = {φ1, . . . , φn} ⊆ Supps(E) for which X � ¬ 
∧

	. Note 
that 	 \ X �= ∅, since X is assumed to be �-consistent. By the completeness of C, X ⇒ ¬ 

∧
	 is C-provable and by 

Lemma 2, a = X , φ1, . . . , φn−1 ⇒ ¬φn is C-provable, where without loss of generality, φn /∈ X . By the minimality of 	 and 
the soundness of C, a is not ConUcut-attacked. Since for each φi ∈ 	 there is an ai ∈ E for which φi ∈ Supp(ai), any attacker 
of a is an attacker of some ai ∈ E . By the admissibility of E , a is defended by E and by the completeness of E , a ∈ E . This 
contradicts the conflict-freeness of E since a attacks an (according to both DDef and DUcut). �
Note 10. Proposition 2 does not hold for the naive semantics. To see this, note that in the argumentation framework from 
Example 1, part of which is shown in Fig. 1 (left), the set of arguments S = {a2, a3, a4, a5, a6} is a conflict-free set (and is 
therefore also part of a ⊆-maximal conflict-free set). However, Supps(S) = {p, q, ¬p ∨ ¬q} is not consistent. We will see 
that the same counterexample also applies to Corollary 2, Proposition 12, Corollary 13, and Proposition 19.

Note 11. A variation of Example 1 can also be used to show that support consistency does not hold for frameworks 
with attack rules of type set, thus in Proposition 2 it is essential to consider direct attacks. Indeed, let CL be the base 
logic, S = {p, q, ¬p ∨ ¬q}, X = ∅, and Defeat or Undercut rather than their direct versions is the attack rule. A graphical 
representation of the framework with the attack rule Defeat (using the same notations for the arguments as in Example 1) 
is presented in Fig. 5.

Note that Arg∅
CL({p}) ∪ Arg∅

CL({q}) ∪ Arg∅
CL({¬p ∨ ¬q}) is a stable (and hence also semi-stable, stage, and preferred) ex-

tension, yet Concs(E) and Supps(E) are not consistent, neither is CNCL(Concs(E)) ⊆ Concs(E) nor Arg∅
CL(Supps(E)) ⊆ E .

For frameworks with attack rules of type set we get a weaker version of support consistency.

Proposition 3 (pairwise support consistency). Frameworks with set-type attacks satisfy pairwise support consistency for all com-
plete extensions: for all a, b ∈ E , Supp(a) ∪ Supp(b) is �X -consistent.

Proof. Suppose that E ∈ Extcmp(AF). Assume for a contradiction that there are a, b ∈ E for which Supp(a) ∪ Supp(b) is �X -
inconsistent. Hence, by Lemma 2, a′ = Supp(a) ⇒ ¬ 

∧
Supp(b) is derivable. Note that a′ has the same attackers as a, and is 

therefore defended by E . By the completeness of E , a′ ∈ E as well. Since a′ Def-attacks and Ucut-attacks b, this contradicts 
the conflict-freeness of E . �

Next we show that with respect to single-extension semantics, support consistency holds for any framework in our 
setting (including those with attack rules of type set).
12
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Lemma 7. Let AFX
L,A(S) be an S-based framework with any type † ∈ {dir, con, set} of attacks considered in Definition 8, and let 

Extsem(AFX
L,A(S)) = {E} for sem ∈ SE. Then E ⊆ ArgXL (FreeXL (S)).

Proof. Assume for a contradiction that Supps(E) contains a minimally �X -inconsistent subset {φ1, . . . , φn} of S (by �-
compactness, this set is finite). Let T be a maximal �X -consistent subset of S . Then there is an 1 ≤ i ≤ n for which 
φi /∈ T ∪X . Note that (a): there is an argument a ∈ E with φi ∈ Supp(a), and (b): by Lemma 6, ArgXL (T ) ∈ Extstb(AF). Since 
Extstb(AF) ⊆ Extsstb(AF) ⊆ Extprf(AF) ⊆ Extcmp(AF) and a /∈ ArgXL (T ), necessarily a /∈ E , a contradiction. �
Proposition 4 (support consistency II). Any framework AF with set-type attacks satisfies support consistency for every sem ∈ SE: 
If E is a sem-extension of AF , then Supps(E) is �X -consistent.

Proof. Follows immediately from Lemma 7. �
Note 12. The condition ArgXL (Supps(E)) = E (for every sem-extension E ) is frequently assumed in, e.g., [2] for assuring some 
rationality postulates (in the case where X = ∅). Yet, this condition is not easily verified, and, as Note 11 indicates, it is 
rather strict, since, in general, frameworks with set-type attacks do not satisfy it for multi-extension semantics.19 We thus 
do not assume it for our results (see also Note 15 below).

For showing further results concerning the consistency postulates, we next relate some postulates.

Proposition 5 (support consistency → consistency). Any framework AF with any type † ∈ {dir, con, set} of attacks and any complete 
semantics sem ∈ CMP satisfies consistency if it satisfies support consistency.

Proof. We show the contraposition. Suppose that consistency does not hold for AF . Then there is a E ∈ Extsem(AF) for 
which Concs(E) is �X -inconsistent. By compactness, there are a1, . . . , an ∈ E for which 	 = {Conc(a1), . . . , Conc(an)} ⊆
Concs(E), and �¬ 

∧
	. By the completeness of C, the sequent ⇒¬ 

∧
	 is provable, and by Lemma 4, so is the sequent 

	 ⇒. By [Cut], we have that Supp(a1), . . . , Supp(an) ⇒ is also provable in C. By Lemma 4 and the soundness of C, Supps(E)

is �-inconsistent. �
Proposition 6 (consistency and closure under support → support consistency). Any framework AF with any type † ∈ {dir, con, set} of 
attacks and any complete semantics sem ∈ CMP satisfies support consistency if it satisfies consistency and closure under support.

Proof. We show a contraposition of the statement. Suppose that closure under support is satisfied for AF and 
that for some E ∈ Extsem(AF), Supps(E) is �X -inconsistent. By �-compactness, there are a1, . . . , an ∈ E for which ⋃{Supp(a1), . . . , Supp(an)} is �X -inconsistent. By closure under support and Lemma 1, a = Supp(a1), . . . , Supp(an) ⇒∧n

i=1 Supp(ai) ∈ E . Thus, Concs(E) is �X -inconsistent. �
The following corollaries are a consequence of Propositions 2, 4 and 5.

Corollary 2 (consistency). Frameworks with attack rules of type dir or con satisfy consistency for any complete semantics sem ∈ CMP: 
For every E ∈ Extsem(AF), Concs(E) is �X -consistent.

As the example in Note 10 shows, Corollary 2 does not hold for naive semantics.

Corollary 3 (consistency II). Frameworks with attack rules of type set satisfy consistency for every semantics sem ∈ SE: Concs(E) is 
�X -consistent for every E ∈ Extsem(AF).

As shown in Note 11, consistency does not hold for frameworks with attack rules of type set under multiple extension 
semantics. By Note 10, it does not hold for naive semantics as well.

We turn now to (strong) free precedence. First, we need the following lemma.

Lemma 8. Let � ⊆ S and � ⊆ FreeXL (S). Then � is �X -inconsistent iff � ∪ � is �X -inconsistent.

Proof. Suppose that � ∪ � is �X -inconsistent. Thus, there is a minimally �X -inconsistent 	 ⊆ � ∪ �, and since � ⊆
FreeXL (S), 	 ⊆ �. Thus, � is �X -inconsistent. The converse holds by �-monotonicity. �
19 See Corollaries 8 and 9 below for some cases in which this condition is satisfied.
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We first show that a limited version of free precedence is satisfied by frameworks with direct attacks under any complete 
semantics:

Proposition 7 (limited free precedence). Frameworks with attack rules of type dir or con satisfy limited free precedence for any 
complete semantics sem ∈ CMP: If E is an extension of such a framework and Supps(E) \X �= ∅, then ArgXL (FreeXL (S)) ⊆ E .

Proof. Let AF be an S-based framework, and let E ∈ Extcmp(AF) with Supps(E) \X �= ∅. Then there is an a′ ∈ E for which 
there is a σ ∈ Supp(a′) \X . Let a = � ⇒ φ ∈ ArgXL (FreeXL (S)). Suppose that either b = � ⇒ ψ attacks a or a attacks b. Then 
� ∪ � is �X -inconsistent by Lemma 5 and so � is �X -inconsistent by Lemma 8. By Proposition 2, b /∈ E . Thus, E ∪ {a}
is conflict-free. Also, since � is �X -inconsistent, by Lemma 2 and [RMon], c = � ⇒ ¬σ ∈ ArgXL (S), and by its definition, 
c attacks a′ . Since a′ ∈ E and E is admissible, E defends a′ by attacking c, and so E also attacks b. As a consequence, E
defends a. Thus, a ∈ E by the completeness of E . �

To check (unlimited) free-precedence, the next lemma is useful.

Lemma 9. Let AF = 〈
ArgXL (S),A

〉
be an argumentation framework with attack rules of any type † ∈ {dir, con, set} considered in 

Definition 8, and let E ∈ Extprf(AF). If Supps(E) ⊆X then E = ArgXL (∅) and all the formulas in S are �X -inconsistent.

Proof. By Lemma 6, for any maximal �X -consistent subset T of S , ArgXL (T ) ∈ Extstb(AF) and thus ArgXL (T ) ∈ Extprf(AF). 
Hence, since Supps(E) ⊆ X , by the ⊆-maximality of E , the only maximal �X -consistent subset T of S is empty, and so 
E = ArgXL (∅). �
Proposition 8 (free precedence). Any framework AFX

L,A(S) with dir- or con-type attacks satisfies free precedence with respect to 
every sem ∈ ME: for every E ∈ Extsem(AFX

L,A(S)), ArgXL (FreeXL (S)) ⊆ E .

Proof. Let E ∈ Extprf(AF). By Proposition 7, we only need to consider the case that Supps(E) ⊆ X . By Lemma 9, E =
ArgXL (∅) and FreeXL (S) = ∅. Thus, ArgXL (FreeXL (S)) = E . We have shown, then, that Extprf(AF) = {E} and ArgXL (FreeXL (S)) =
E . Hence, we also have that ArgXL (FreeXL (S)) ⊆ E ′ for every E ′ ∈ Extsem(AF) (where sem ∈ ME), since by Proposition 1 it 
holds that Extstg(AF) = Extstb(AF) ⊆ Extsstb(AF) ⊆ Extprf(AF). �
Note 13. For frameworks with only dir-type attack rules (that is, when ConUcut is not one of the attack rules), free prece-
dence does not hold for grounded, ideal and eager semantics (thus, strong free precedence does not hold for these semantics 
either in this case). To see this, let S = {p ∨ ¬p, p, ¬p}, X = ∅, A = {DDef}, and suppose that the underlying logic is CL. In 
that case, the grounded (which is also the ideal and eager) extension is ArgXCL(∅). Note that p ∨ ¬p ⇒ p ∨ ¬p is attacked 
by p, ¬p ⇒ ¬(p ∨ ¬p). In the absence of ConUcut the latter is not attacked by the grounded argument ⇒ ¬(p ∧ ¬p). Yet, 
Free∅

CL(S) = {p ∨ ¬p}.

We now show that (unlike the case where there are only dir-type attack rules) frameworks with set or con attack rules 
satisfy unlimited free precedence with respect to every complete semantics.

Proposition 9 (free precedence II). Any framework AFX
L,A(S) whose attack rules are of type set or con satisfies free precedence for 

every complete semantics sem ∈ CMP, that is: ArgXL (FreeXL (S)) ⊆ E for all E ∈ Extsem(AFX
L,A(S)).

Proof. Consider an argument a = � ⇒ φ in ArgXL (FreeXL (AF)) and an argument b = � ⇒ ψ in ArgXL (S) that attacks a
or is attacked by a. By Lemmas 5 and 8, � is �X -inconsistent and so by Lemma 2 (and [RMon] and �-compactness), 
c = 	 ⇒ ¬ 

∧
� is in ArgXL (∅) for some 	 ⊆ X . Since c has no attackers it is defended by E and by the completeness of E , 

c ∈ E . Also, c ConUcut-attacks and Def-attacks b. Thus, E defends a and again by the completeness of E , a ∈ E . �
By Lemma 7 and Proposition 9, we obtain the following corollary:

Corollary 4 (strong free precedence). Any framework AFX
L,A(S) whose attack rules are of type set or con satisfies strong free prece-

dence with respect to every single extension semantics sem ∈ SE. That is: for every E ∈ Extsem(AFX
L,A(S)), E = ArgXL (FreeXL (S)).

Corollary 5 (SE collapse I). For any S-based framework AF whose attack rules are of type set or con, we have: Extgrd(AF) =
Extidl(AF) = Extegr(AF).

We now consider a special case under which strong free precedence holds for all complete semantics and any attack-
types.
14
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Lemma 10. Let AFX
L,A(S) be a framework with attack rules of type † ∈ {dir, con, set}. If there are no ⊆-minimal �X -inconsistent 

subsets of S of size greater than 1 (namely, every formula in S is either free or inconsistent with X ), then Extsem(AFX
L,A(S)) =

{ArgXL (FreeXL (S))} for all sem ∈ CMP.

Proof. By the supposition we have two types of arguments: (1) those that contain �X -inconsistent formulas in their sup-
port, and (2) those whose support is a subset of FreeXL (S) ∪X . Note that where �, φ ⇒ ψ is an argument of type (1) with 
φ being a �X -inconsistent formula, it is attacked by 	 ⇒ ¬φ of type (2) for some 	 ⊆ X . We also note that 	 ⇒ ¬φ

has no attackers. That means that all arguments of type (2) are defended by arguments without attackers, while arguments 
of type (1) cannot be defended. That means every completeness-based semantics has a unique extension consisting of all 
arguments of type (2). The rest follows immediately. �
Corollary 6 (strong free precedence II). Let AF be an S-based framework with attack rules of type † ∈ {dir, con, set}. AF satisfies 
strong free precedence for any complete semantics, if there are no ⊆-minimal �X -inconsistent subsets of S of size greater than 1.

When strong free precedence is satisfied, several other postulates are met.

Proposition 10 (strong free precedence → closure under support, support consistency, free precedence). Any framework AF with 
attack type † ∈ {dir, con, set} and any complete semantics sem ∈ CMP satisfies closure under support, support consistency and
free precedence, if it satisfies strong free precedence.

Proof. Immediate from the definitions of the postulates. �
Proposition 11 (strong free precedence → strong exhaustiveness). Any framework AF with attack type † ∈ {dir, con, set} and any 
complete semantics sem ∈ CMP satisfies strong exhaustiveness if it satisfies strong free precedence.

Proof. Let E ∈ Extsem(AF) and suppose that Supp(a) ⊆ Concs(E). By strong free precedence, Supp(a) ∈ CNL(FreeXL (S)). We 
note that CNL(FreeXL (S)) ∩ S = FreeXL (S) and therefore a ∈ E . �

Next, we consider the closure properties.

Proposition 12 (closure under support). Any framework AF = 〈
ArgXL (S),A

〉
with attack rules of type dir or con is closed under 

supports for all the complete semantics sem ∈ CMP: If E ∈ Extsem(AF), a ∈ ArgXL (S), and Supp(a) ⊆ Supps(E), then a ∈ E .

Proof. Assume that for a ∈ ArgXL (S), Supp(a) ⊆ Supps(E). If a is not attacked then obviously a ∈ E . Suppose that some 
b ∈ ArgXL (S) attacks a. By Proposition 2, a is not ConUcut-attacked. Thus, b either DUcut- or DDef-attacks a, and so there is 
a φ ∈ Supp(a) for which Conc(b) ⇒ ¬φ is derivable in C. Since Supp(a) ⊆ Supps(E), there is a c ∈ E for which φ ∈ Supp(c)
and so b also attacks c. Since E is complete, it defends c, thus E must attack b. It follows that a is also defended by E , and 
by the completeness of E , a ∈ E . �
Note 14. Note 10 provides a counterexample to Proposition 12 in case of naive semantics.

By Corollary 4 and Proposition 10 we have:

Corollary 7 (closure under support II). Any framework AF = 〈
ArgXL (S),A

〉
with attack rules of type set is closed under supports for 

every sem ∈ SE: If E ∈ Extsem(AF), a ∈ ArgXL (S), and Supp(a) ⊆ Supps(E), then a ∈ E .

Two other immediate corollaries are the following:

Corollary 8. For any framework AF = 〈
ArgXL (S),A

〉
with attack rules of type dir or con and any complete semantics sem ∈ CMP, we 

have: If E ∈ Extsem(AF) then E = ArgXL (Supps(E)).

Corollary 9. For any framework AF = 〈
ArgXL (S),A

〉
with attack rules of type set and any sem ∈ SE, we have: If E ∈ Extsem(AF)

then E = ArgXL (Supps(E)).

Closure under support implies some other postulates:

Proposition 13 (closure under support → sub-argument closure). Any framework AF for any attack type † ∈ {dir, con, set} and any 
complete semantics sem ∈ CMP satisfies sub-argument closure, if it satisfies closure under support.
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Proof. By the definitions of closure under support and sub-argument closure. �
Proposition 14 (closure under support → closure of extensions). Any framework AF for any attack type † ∈ {dir, con, set} and any 
complete semantics sem ∈ CMP satisfies closure of extensions, if it satisfies closure under support.

Proof. Let E ∈ Extsem(AF). To see that Concs(E) ⊆ CNL(Concs(E)), suppose that φ ∈ Concs(E). By the reflexivity of �, 
φ ∈ CNL(Concs(E)).

For the converse, suppose that φ ∈ CNL(Concs(E)). Then there are a1, . . . , an ∈ E with �i = Supp(ai) and φi = Conc(ai)

(1 ≤ i ≤ n) such that φ1, . . . , φn � φ. (Note that n is finite by the compactness of L (Definition 1)). By the completeness of C, 
φ1, . . . , φn ⇒ φ is C-derivable, and by [Cut] so is a = ⋃n

i=1 �i ⇒ φ. By closure under support, a ∈ E . �
Corollary 10 (sub-argument closure). Any framework AF = 〈

ArgXL (S),A
〉

with attack rules of type dir or con is closed under sub-
arguments for any complete semantics sem ∈ CMP: For every E ∈ Extsem(AF) and a ∈ E it holds that Sub(a) ⊆E .

Proof. By Propositions 12 and 13. �
Proposition 15 (sub-argument closure II). Any framework AF = 〈

ArgXL (S),A
〉

with attack rules of type set is closed under sub-
arguments for any complete semantics sem ∈ CMP: For every E ∈ Extsem(AF) and a ∈ E it holds that Sub(a) ⊆E .

Proof. Let a ∈ E and b ∈ Sub(a). Suppose that c attacks b. Note that every attacker of b is an attacker of a. (Indeed, the 
only non-trivial case is Defeat. In this case, let a = �, �′ ⇒ δ′ , b = � ⇒ δ and c = � ⇒ γ where γ ⇒ ¬ 

∧
�. By Lemma 2, 

γ ⇒ ¬ 
∧

(� ∪ �′) is C-derivable. Thus, c attacks a.) Thus, b is defended by E and by the completeness of E , b ∈ E . �
Corollary 11. Any framework AF = 〈

ArgXL (S),A
〉

with attack rules of type set or dir or con is closed under sub-arguments for any 
complete semantics sem ∈ CMP. For every E ∈ Extsem(AF) and a ∈ E it holds that Sub(a) ⊆E .

Proof. Follows from Corollary 10 and Proposition 15. �
Note 15. Sub-argument closure does not hold for sem = nav and any of the types of attacks in Definition 8. To see this, 
consider an argumentation framework constructed from classical logic and the set S = {p ∧ ¬q, q}. Some of the arguments 
in this case are:

a1 = p ∧ ¬q ⇒ p a2 = p ∧ ¬q ⇒ ¬q a3 = p ∧ ¬q ⇒ p ∧ ¬q a4 = q ⇒ q.

One possible conflict-free set of arguments is {a1, a4}. Note that a2, a3 ∈ Sub(a1). However, a2 and a3 (Direct) Defeat a4, 
thus {a1, a2, a3, a4} would no longer be conflict-free. By similar arguments, support inclusion (Proposition 12) does not hold 
either for maximal conflict-free semantics.

In [2] sub-argument closure for naive semantics is shown, under the assumption that the support set of each extension 
is consistent (note that S = Supps({a1, a4}) is not consistent). To keep our results as general as possible, we do not make 
that assumption here (see also Note 12).

Proposition 16 (sub-argument closure → support inclusion). Any framework with any attack type † ∈ {dir, con, set} and any complete 
semantics sem ∈ CMP satisfies support inclusion if it satisfies sub-argument closure.

Proof. Let E ∈ Extsem(AF) and suppose that sub-argument closure holds for AF . Let φ ∈ Supps(E). Then φ ∈ Supp(b) for 
some b ∈ E . By Reflexivity, a = φ ⇒ φ ∈ ArgXL (S) ∩ Sub(b). By sub-argument closure, a ∈ E . Thus, φ ∈ Concs(E). �
Corollary 12 (support inclusion). Let AF be an argumentation framework with attack rules of any type † ∈ {dir, con, set} considered 
in Definition 8. Then AF is closed under support inclusion for every complete semantics sem ∈ CMP: If E ∈ Extsem(AF) then 
Supps(E) ⊆ Concs(E).

Proof. By Corollary 10 and Propositions 15 and 16. �
Corollary 13 (closure of extensions). Any framework AF with attack rules of type dir or con satisfies closure of extensions for any 
complete semantics sem ∈ CMP: If E ∈ Extsem(AF) then Concs(E) = CNL(Concs(E)).

Proof. By Propositions 12 and 14. �
Note 16. Again, by Note 10, the last corollary does not hold for naive semantics.
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Corollary 14 (closure of extensions II). Any framework AF with attack rules of type set satisfies closure of extensions for every 
sem ∈ SE: If E ∈ Extsem(AF) then Concs(E) = CNL(Concs(E)).

Proof. By Proposition 14 and Corollary 7. �
Note 17. As shown in Note 11, closure of extensions does not hold for complete semantics and frameworks with attack rules 
of type set. By Note 10, it also does not hold for naive semantics.

Next, we consider (strong) exhaustiveness. Like free precedence, for assuring strong exhaustiveness for frameworks with 
dir-type attack rules and completeness-based extensions, one has to consider the limited version of the postulate:

Proposition 17 (limited strong exhaustiveness). Any framework AF = 〈
ArgXL (S),A

〉
with attack rules of type dir or con satisfies

limited strong exhaustiveness for every complete semantics sem ∈ CMP: For every E ∈ Extsem(AF) and a ∈ ArgXL (S), if Supp(a) ⊆
Concs(E), and Supps(E) \X �= ∅, then a ∈ E .

Proof. Let a ∈ ArgXL (S) and E ∈ Extsem(AF). Suppose that Supp(a) ⊆ Concs(E) and Supps(E) \X �= ∅. Suppose further that 
some b = � ⇒ γ ∈ ArgXL (S) attacks a. Since Supp(a) ⊆ Concs(E) and by Corollary 2, b does not ConUCut-attack a. Hence, 
there is a φ ∈ Supp(a) for which γ ⇒ ¬φ and by [Cut], � ⇒ ¬φ are derivable. Since φ ∈ Concs(E), there is a c = � ⇒ φ ∈ E . 
By [Cut] and Lemma 2, �, � ⇒ is derivable. By Proposition 2, � �= ∅.

As Supps(E) \X �= ∅, there are d ∈ E and δ ∈ Supp(d) \X . By [LMon], �, �, δ ⇒ is derivable. Let:

(� ∪ {δ}) \X � �′ =
⎧⎨
⎩

∅ if �,� ∩X ⇒ is derivable,
a ⊆-maximal subset of (� ∪ {δ}) \X
such that �,� ∩X ,�′ ⇒ is not derivable otherwise.

By the definition of �′ , (� ∪ {δ}) \ (�′ ∪ X ) �= ∅, and �, � ∩ X , �′, δ′ ⇒ for any δ′ ∈ (� ∪ {δ}) \ (�′ ∪ X ). By [⇒¬], 
b′ = �, � ∩X , �′ ⇒ ¬δ′ . Since b′ attacks c or d, some e ∈ E attacks b′ .

Suppose first that �′ = ∅ and so b′ = �, � ∩X ⇒ ¬δ. If e ConUcut-attacks b′ , Conc(b) = ¬ 
∧

�′ for some �′ ⊆ � \X and 
so e also attacks b. If e DDef- or DUcut-attacks b′ then Conc(b) ⇒ ¬γ for some γ ∈ � \X and so e also attacks b.

Otherwise, �′ �= ∅. Thus, � ∪�′ ∪ (� ∩X ) is �-consistent, and hence there is a β ∈ (� \X ) ∪�′ such that Conc(e) ⇒ ¬β

is derivable. Hence, e DDef- resp. DUcut-attacks b′ . By the conflict-freeness of E , β ∈ (� \X ), since otherwise e attacks c or 
d. But then e attacks also b.

In both cases E defends a, and by completeness, a ∈ E . �
Proposition 18 (strong exhaustiveness). Any framework AF = 〈

ArgXL (S),A
〉

with attack rules of type dir satisfies strong exhaus-
tiveness with respect to any semantics sem ∈ ME: For every E ∈ Extsem(AF) and a ∈ ArgXL (S), if Supp(a) ⊆ Concs(E) then a ∈ E .

Proof. Since Extstb(AF) = Extstg(AF) ⊆ Extsstb(AF) ⊆ Extprf(AF), we need to show the proposition only for sem = prf. Let 
E ∈ Extprf(AF) and let a ∈ ArgXL (S) with Supp(a) ⊆ Concs(E). By Proposition 17 we only need to consider the case in 
which Supps(E) \ X = ∅. By Lemma 9, E = ArgXL (∅) and all φ ∈ S are �X -inconsistent. Since by Corollary 2, Concs(E) is 
�-consistent, Supp(a) ⊆X , and hence a ∈ E . �

By Proposition 18 and Note 9, we get:

Corollary 15 (exhaustiveness). Frameworks with attack relations of type dir satisfy exhaustiveness with respect to any multiple-
extension semantics.

Note 18. The example in Note 13 illustrates also the failure of exhaustiveness (thus also the failure of strong exhaustiveness) 
for grounded, complete, ideal and eager extensions for frameworks with dir-type attack relations. Indeed, let AF be such 
a framework with the base logic CL. Then p ∨ ¬p ∈ Concs(Arg∅

CL(∅)), but p ∨ ¬p ⇒ p ∨ ¬p /∈ Arg∅
CL(∅). For sem ∈ {idl, egr}, 

note that Extprf(AF) = Extsstb(AF) = {Arg∅
CL({p, p ∨ ¬p}), Arg∅

CL({¬p, p ∨ ¬p})}. It follows that, for E ∈ Extsem(AF), E ⊆
Arg∅

CL({p ∨ ¬p}). However, the argument p ∨ ¬p ⇒ p ∨ ¬p is not defended against the argument p, ¬p ⇒ ¬(p ∨ ¬p) in 
Arg∅

CL({p ∨ ¬p}).

Proposition 19 (strong exhaustiveness II). Frameworks with attack rules of type con satisfy strong exhaustiveness for any complete 
semantics sem ∈ CMP: If E ∈ Extsem(AF) and Supp(a) ⊆ Concs(E) then a ∈ E .

Proof. Let E ∈ Extsem(AF) and a ∈ ArgXL (S) with Supp(a) ⊆ Concs(E). By Proposition 17 we only need to consider the 
case in which Supps(E) ⊆ X . Consider an argument b = � ⇒ γ ∈ ArgXL (S) that attacks a. Since Supp(a) ⊆ Concs(E) and by 
17
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Corollary 2, b does not ConUCut-attack a. By [Cut], � ⇒ ¬φ is derivable for a φ ∈ (Supp(a) \X ). Since Supp(a) ⊆ Concs(E), 
we have that φ ∈ Concs(E), and so there is a c = 	 ⇒ φ ∈ E for some finite 	 ⊆ X . By [Cut] and Lemma 2, 	, � ⇒ and 
d = 	, � ∩X ⇒ ¬ 

∧
(� \X ) are derivable, and since X is �-consistent, we get that (� \X ) �= ∅. Since d has no attackers, by 

the completeness of E , d ∈ E . Since d ConUcut-attacks b, it defends a from b. Altogether, E defends a and by completeness, 
a ∈ E . �
Note 19. Note 10 provides a counterexample to Proposition 19 in case of naive semantics.

By Proposition 19 and Note 9 we get:

Corollary 16 (exhaustiveness II). Frameworks with attack rules of type con satisfy exhaustiveness with respect to every complete 
semantics sem ∈ CMP: If Supp(a) ∪ {Conc(a)} ⊆ Concs(E) for some E ∈ Extsem(AF) and a ∈ ArgXL (S), then a ∈ E .

By Corollary 4 and Proposition 11 we have:

Proposition 20 (strong exhaustiveness III). Frameworks with attack rules of type set satisfy strong exhaustiveness for every semantics 
sem ∈ SE: If E ∈ Extsem(AF) and Supp(a) ⊆ Concs(E) then a ∈ E .

Corollary 17 (exhaustiveness III). Frameworks with attack rules of type set satisfy exhaustiveness with respect to every semantics 
sem ∈ SE: If Supp(a) ∪ {Conc(a)} ⊆ Concs(E) for some E ∈ Extsem(AF) and a ∈ ArgXL (S), then a ∈ E .

As shown in Note 11 above, (limited) exhaustiveness does not hold for argumentation frameworks with non-direct at-
tacks.

Table 2 summarizes the results in this section. It indicates the properties of individual extensions of argumentation 
frameworks in relation to the type of the attack rules and the semantics classes. For instance, it shows that (strong) exhaus-
tiveness of extensions is satisfied with respect to every completeness-based extension when using con-type attack rules, but 
for dir-type (respectively, set-type) attack rules, this property is met only with respect to multiple-extension (respectively, 
single-extension) semantics.

Table 2
Properties of extensions according to the type of attack rules and the semantics 
classes.

Properties of individual extensions dir-attacks con-attacks set-attacks

closure of extensions CMP CMP SE
closure under support CMP CMP SE
sub-argument closure CMP CMP CMP
consistency CMP CMP SE
support consistency CMP CMP SE
pairwise support consistency CMP CMP CMP
exhaustiveness ME CMP SE
limited exhaustiveness CMP CMP SE
strong exhaustiveness ME CMP SE
limited strong exhaustiveness CMP CMP SE
support inclusion CMP CMP CMP
free precedence ME CMP CMP
strong free precedencea − SE SE
limited free precedence CMP CMP CMP

a Strong free precedence holds for every sem ∈ CMP and attack rules of type † ∈
{dir, con, set}, if there are no ⊆-minimal �X -inconsistent subsets of the defeasible 
premises of size greater than 1.

The results in Table 2 show that in general the set-based attack rules are inferior to the direct attack rules (with or 
without ConUcut), since for frameworks with set-based attack rules some important properties, like consistency, closure, 
and exhaustiveness of the extensions, cannot be guaranteed unless the semantics is a single extension one. In contrast, all 
the properties of Definition 12 (excluding strong free precedence) can be assured for frameworks with direct attacks under 
either the stable, semi-stable, preferred, or stage semantics. When ConUcut is also part of the attack rules, these properties 
can be guaranteed for all the complete semantics.

The analysis above should be taken with care, though, for several reasons. First, as we shall see in what follows, the 
entailment relations induced by direct attacks are preferential and rational (Definition 18) for a larger set of semantics than 
the entailments induced by subset attacks (see Section 6.1), while for some postulates (e.g., non-interference) subset-based 
attacks have some advantages over direct attacks (see Section 6.2). Second, this analysis cannot necessarily be applied to base 
logics that are not explosive or not contrapositive (recall Corollary 1). For such logics we note the following:
18
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1. Not all the attack rules considered here (in Definition 4) may be applicable. For instance, while reflexivity, [⇒¬] and 
[⇒∧] assure that ConUcut is applicable in case that all the rules in Fig. 2 are admissible, this is not guaranteed in other 
cases. For instance, in Dunn-Belnap’s logic of first-degree entailments (FDE) [22,42] no sequent with an empty left-hand 
side is valid (i.e., derivable in a sound and complete sequent calculus for FDE), thus ConUcut is not applicable in a setting 
with FDE as the base logic and X = ∅.

2. Even in cases that the attack rules are applicable, they may yield results that are considerably different than those that 
are obtained with logics that meet the conditions in Section 2.2. For instance, in Example 1, using the same set S and 
the same attack rule, but when Priest’s 3-valued logic LP [67,68] is the base logic (instead of CL), both a2 and a3 are not 
attacked, simply because a8 and a9 (respectively) are not derivable (the Disjunctive Syllogism does not hold in LP).

3.2. Postulates concerning sets of extensions and the collapse of the classes

We now turn to properties that refer to sets of extensions of the same type (that is, sets of the same sem ∈
{nav, stg, cmp, grd, prf, idl, stb, sstb, egr}). As a byproduct of establishing these properties we obtain the following theorem, 
which expresses that all multiple-extension, respectively all single-extension semantics, coincide in the logic-based setting 
studied in this paper (recall Fig. 3).

Theorem 1. Let AF be a sequent-based argumentation framework with attack rules of type dir, con, or set. Then:

1. Extprf(AF) = Extstb(AF) = Extsstb(AF) = Extstg(AF), and
2. Extgrd(AF) = Extidl(AF) = Extegr(AF).

Proof. Item 1 follows by Corollary 19 (below) and Item 2 by Corollaries 5 and 20 (below). �
Definition 13 (rationality postulates II). Let AFX

L,A(S) =
〈
ArgXL (S),A

〉
be an argumentation framework and sem a semantics 

for it. In the remainder of this section we consider the postulates in Table 3.20

Table 3
Rationality postulates for sets of extensions.

Property Definition

maximal consistency Extsem(AFX
L,A(S)) = {ArgXL (T ) | T ∈ MCSX

L (S)}.

weak maximal consistency Extsem(AFX
L,A(S)) ⊇ {ArgXL (T ) | T ∈ MCSX

L (S)}.

stability Extstb(AFX
L,A(S)) �= ∅.

strong stability Extsem(AFX
L,A(S)) = Extstb(AFX

L,A(S)).

Note 20. The postulates in Table 3 refer to some properties of the extensions of a framework, given some semantics.

• Maximal consistency requires that the set of the sem-extensions coincides with the set of the maximal consistent subsets 
of the premises. Although the link between logical argumentation and reasoning with maximal consistency is well-
known (see, e.g. [6,7,10,32,76]) we note that this requirement is a rather strong demand (see a discussion on this in [7, 
Section 7.1], pointing out that this requirement is violated in several settings). This is one of the reasons for introducing 
in Definition 13 a weaker postulate, weak maximal consistency.

• Stability and strong stability refer to the existence of stable extensions, a property that does not hold for every argumen-
tation framework.21 These properties will be useful for the crash-resistance result in Section 6.

• When strong stability is satisfied for preferred semantics, we have that

Extstb(AFX
L,A(S)) = Extprf(AFX

L,A(S)) = Extsstb(AFX
L,A(S)),

since (see [30, Theorems 2 and 3]) it always holds that

Extstb(AFX
L,A(S)) ⊆ Extsstb(AFX

L,A(S)) ⊆ Extprf(AFX
L,A(S)).

Stability follows immediately from Lemma 6. However, we will show that the considered frameworks also satisfy strong 
stability. For this we need the following lemma and proposition.

20 For these postulates we need some notions from Definition 11.
21 When sem = prf, strong stability is sometimes called coherence; see [44, Def. 31].
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Lemma 11. Any argumentation framework AF , based on any attack type † ∈ {dir, con, set} and any complete semantics sem ∈ CMP, 
satisfies Extsem(AF) ⊆ {ArgXL (T ) | T ∈ CSX

L (S)}, if it satisfies support consistency and closure under support.

Proof. Let E ∈ Extsem(AF). By closure under support, E = ArgXL (Supps(E)). By support consistency, Supps(E) ∈CSX
L (S). �

Proposition 21 (support consistency & closure under support → strong stability, maximal consistency). Any AF based on any at-
tack type † ∈ {dir, con, set} and any semantics sem ∈ ME satisfies strong stability and maximal consistency, if it satisfies support 
consistency and closure under support.

Proof. By Lemma 6, for any T ∈ MCSX
L (S), ArgXL (T ) ∈ Extstb(AF). Since Extstb(AF) ⊆ Extsem(AF) for all sem ∈

{stg, stb, sstb, prf}, also ArgXL (T ) ∈ Extsem(AF).
Let now E ∈ Extprf(AF). By Lemma 11, E = ArgXL (T ), where T = Supps(E) ∈ CSX

L (S). By Lemma 6, ArgXL (T ′) ∈
Extstb(AF), where T ′ ⊇ T is a maximal �X -consistent superset of T . By the ⊆-maximality of E , T ′ = T . Since 
Extstg(AF) = Extstb(AF) ⊆ Extsstb(AF) ⊆ Extprf(AF) this completes the proof. �
Corollary 18 (strong stability and maximal consistency). If AF = 〈

ArgXL (S),A
〉

is an argumentation framework whose attack rules 
are of type dir or con, then for every semantics sem ∈ ME it holds that Extsem(AF) = {ArgXL (T ) | T ∈ MCSX

L (S)}.

Proof. Follows directly from Propositions 2, 12 and 21. �
Concerning frameworks with set-type attacks, we have strong stability (but not maximal consistency – see Note 11):

Proposition 22 (strong stability II). Frameworks with attack rules of type set satisfy strong stability for any sem ∈ ME: 
Extsem(AF) = Extstb(AF).

Proof. By [40, Lemma 15], every stable extension is preferred. Moreover, every stable extension is semi-stable (trivially) 
and by Proposition 1 every stable extension is also stage. Thus, we only need to show that every preferred extension is 
stable. For this, let E ∈ Extprf(AF). If E /∈ Extstb(AF) then there is an a = � ⇒ δ ∈ ArgXL (S) \ E and E does not attack 
a. We show towards a contradiction that E ′ = E ∪ Sub(a) is admissible. Note first that since E does not attack a it also 
does not attack any argument in Sub(a) and no argument in Sub(a) attacks an argument in E . So E ′ is conflict-free. 
Suppose that some argument b attacks some a′ ∈ Sub(a). Thus, Conc(b) ⇒ ¬ 

∧
�′ is C-derivable for some �′ ⊆ Supp(a′). By 

[Cut], Supp(b) ⇒ ¬ 
∧

�′ is C-derivable. By Lemma 2, �′ ⇒ ¬ 
∧

Supp(b) is C-derivable and so E ′ attacks b. But then E ′ is 
admissible which is a contradiction to our assumption. Thus, E ∈ Extstb(AF). �

In view of the strong stability shown in Corollary 18 and Proposition 22, we get:

Corollary 19 (ME collapse). If AF is an argumentation framework whose attack rules are of type dir, con or set, then Extprf(AF) =
Esstb(AF) = Estg(AF) = Estb(AF).

We now generalize SE-collapse (Corollary 5) to all attack-forms (completing Fig. 3 and the proof of Theorem 1). For this, 
we first need the next lemma.

Lemma 12. Let AF be an S-based framework with attack rules of type dir. If there is a ⊆-minimal �X -inconsistent subset of S of 
size greater than 1, then Extsem(AF) = {ArgXL (∅)} for all sem ∈ SE.

Proof. Let Extsem(AF) = {E} and sem ∈ {egr, idl, grd}. Assume there is a ⊆-minimal �X -inconsistent subset 	 = {φ1, . . . , φn}
of S , where n ≥ 2. (By compactness this set is finite). Suppose also that for some � ⊆ S ∪X for which � \X �= ∅, it holds 
that � ⇒ φ ∈ E . Let δ ∈ � \ X . Then, 	 ⇒ ¬δ attacks � ⇒ φ. Thus, there is a � ⇒ ψ ∈ E that attacks 	 ⇒ ¬δ, where 
ψ ⇒ ¬φi is C-derivable for some i ∈ {1, . . . , n}. By [Cut], � ⇒ ¬φi is C-derivable. So, (� \X ) ∪ {φi} is �X -inconsistent. Note 
that {φi} is consistent since 	 is ⊆-minimal �X -inconsistent and n ≥ 2. So, there is a ⊆-maximal �X -consistent subset 
�′ ∪ {φi} of (� \ X ) ∪ {φi}, where �′ = {γ1, . . . , γm}. Note that there is a γ ∈ � \ (X ∪ �′) and �′, φi ⇒ ¬γ attacks � ⇒ ψ . 
By Corollary 18, there is a E ′ ∈ Extsstb(AF) = Extprf(AF) ⊆ Extcmp(AF) with �′, φi ⇒ ¬γ ∈ E ′ . But then, by the definition 
of eager and ideal semantics, � ⇒ ψ /∈ E . This is a contradiction to our assumption on � ⇒ ψ . Hence, E = ArgXL (∅). �
Corollary 20 (SE collapse II). For any S-based framework AF whose attack rules are of type dir we have Extgrd(AF) = Extidl(AF) =
Extegr(AF).

Proof. If there is a ⊆-minimal �X -inconsistent subset of S of size greater than 1, the corollary follows by Lemma 12. 
Otherwise it follows by Lemma 10. �
20
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Note 21. Maximal consistency does not hold for set-type attack rules (recall Note 11) and also it is violated in frameworks 
with the other types of attack rules when the semantics is not preferred, stage, stable, or semi-stable:

• For sem = nav this follows from the example in Note 10, where the set of argument S considered there is contained in 
a naive extension, and Supps(S) = {p, q, ¬p ∨ ¬q}.

• For sem ∈ SE this follows immediately since these semantics result in a single extension, while MCSL(S) may contain 
several maximally consistent subsets.

In the next proposition we therefore consider a weaker version of maximal consistency.

Proposition 23 (weak maximal consistency). Frameworks with attack rules of type † ∈ {dir, con, set} satisfy weak maximal consis-
tency with respect to any semantics sem ∈ ME ∪ {cmp}: It holds that {ArgXL (T ) | T ∈ MCSX

L (S)} ⊆ Extsem(AF).

Proof. Follows from Lemma 6, since Extstb(AF) = Extstg(AF) ⊆ Extsstb(AF) ⊆ Extprf(AF) ⊆ Extcmp(AF). �
The results of this section are summarized in Table 4 (The sign � indicates that the property always holds).

Table 4
Summary of the results in Section 3.2.

Properties of extensions sets dir-attacks con-attacks set-attacks

maximal consistency ME ME −
weak maximal consistency ME ∪ {cmp} ME ∪ {cmp} ME ∪ {cmp}
stability � � �
strong stability ME ME ME

We conclude this section by an interesting corollary of the results in Sections 3.1 and 3.2:

Theorem 2. All the postulates in Definition 12 (Table 1) and Definition 13 (Table 3), except for strong free precedence, are compatible 
(i.e., they can be mutually satisfied).

Proof. As shown in Tables 2 and 4, when sem ∈ ME, all of these postulates, excluding strong free precedence, are satisfied 
by every framework whose attack rules are of type con. �
4. Some illustrations

In this section we consider two further examples, based on non-classical core logics, that illustrate some of the results 
in the previous section.

Example 5. Consider again the argumentation framework in Example 2, but this time where the base logic is intuitionistic 
logic (IL). For this, one has to replace the sequent calculus accordingly, e.g., trade LK by its single-conclusion counterpart 
LJ (see [47, page 192]). Clearly, this has far-reaching consequences on the arguments that can be constructed from the 
premises S = {p, ¬p, q}. Yet, this change does not affect the properties of the extensions of the underlying framework, neither 
the properties of the induced entailments relations. For instance, in Example 2 we have argued that q ⇒ q belongs to every 
complete extension of the (original) framework, since it is defended by ⇒ p ∨ ¬p. Now, while the latter is not derivable in 
LJ anymore, we still can derive ⇒ ¬(p ∧¬p), which in turn defends q ⇒ q against an attack from p, ¬p ⇒ ¬q. Moreover, in 
this case we have that MCS∅

IL(S) = {{p, q}, {¬p, q}} and Extprf(AF∅
IL(S)) = {Arg∅

IL({p, q}), Arg∅
IL({¬p, q})} = Extstb(AF∅

IL(S)), 
thus properties such as strong stability remain valid despite the change of the base logic.

The next example (a variation of [74, Example 3]) demonstrates the use of the modal logic S4 as the core logic of a 
framework, and – more generally – the use of modal languages, which allow to qualify statements with modal operators 
for expressing alethic arguments (concerning necessity and possibility), epistemic ones (concerning knowledge and belief ) 
and deontic assertions (concerning obligation and permission).22 A sequent calculus for S4 may be obtained by adding the 
following rules to LK:

[�⇒] �,φ ⇒ �

�,�φ ⇒ �
[⇒�] �� ⇒ φ

�� ⇒ �φ

22 In all of these contexts there are various applications in which distinguishing between strict and defeasible assumptions is useful. For instance, prima 
facia norms in deontic logic are often modeled as defeasible assumptions (e.g., in constrained input-output logic [60]), alethic arguments may be based on 
ceteris paribus regularities, beliefs on default assumptions, etc.
21



O. Arieli, A. Borg and C. Straßer Artificial Intelligence 322 (2023) 103966
a1
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a3a4

a8
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a7a6

Fig. 6. A representation of the framework of Example 6. Note that the argument a8 with conclusion ¬p does not directly defeat arguments that contain p
as a support (such as a1, a3, etc.), since p is a strict assumption.

Example 6. Let S = {q, p ⊃ �r, q ⊃ �¬r} and X = {p}. Some of the arguments in ArgXS4(S) are the following:

a1 = p ⇒ p a4 = q,q ⊃ �¬r ⇒ �¬r
a2 = q ⇒ q a5 = p, p ⊃ �r,q ⊃ �¬r ⇒ ¬q
a3 = p, p ⊃ �r ⇒ �r a6 = p,q, p ⊃ �r ⇒ ¬(q ⊃ �¬r)
a7 = p,q,q ⊃ �¬r ⇒ ¬(p ⊃ �r) a8 = q, p ⊃ �r,q ⊃ �¬r ⇒ ¬p

Fig. 6 is a graphical representation of (part of) the argumentation framework for the above setting with direct defeat as 
the sole attack rule. Fig. 6 is a graphical representation of (part of) the argumentation framework for the above setting with 
direct defeat as the sole attack rule.

The preferred extensions in this case are:

Arg{p}
S4 ({q, p⊃�r}), Arg{p}

S4 ({q,q⊃�¬r}), Arg{p}
S4 ({p⊃�r,q⊃�¬r}).

These extensions are also the stable extensions. Also,

MCS{p}
S4 (S) = {{q, p ⊃ �r}, {q,q ⊃ �¬r}, {p ⊃ �r,q ⊃ �¬r}}.

This corresponds to Proposition 2, Corollary 2, and Proposition 18.

5. Characterization results

We now use the results in Section 3 for characterizing the semantic extensions of the argumentation frameworks from 
Definition 5 (Section 5.1) and the entailment relations induced by them (Section 5.2).

5.1. Characterizations of the semantic extensions

During the investigations of rationality postulates for different argumentation frameworks, we have characterized the 
extensions of some types of attacks and particular semantics (see Corollaries 5, 19 and 20). In this section we recall these 
results and extend them to all the attack types in Definition 8 and all the semantics in Definition 6.

The next definition is required for characterizing all the extensions of a logic-based argumentation framework and the 
entailment relations that are induced from it, which are not represented by maximally consistent subsets (MCS) of the 
premises (see Proposition 24 and Theorem 5 below).

Definition 14 (�X
L (S)). Let L = 〈L,�〉 be a logic and let S and X be two disjoint sets of L-formulas, such that X is �-

consistent. We denote by �X
L (S) ⊆ ℘(℘(S)) the set of subsets of ℘(S), where for every ω ∈ �X

L (S) the following two 
requirements are satisfied:

1. the elements of ω are pairwise �X -consistent: Ti ∪ T j is �X -consistent for every Ti, T j ∈ ω.
2. for every finite set 	 ∈ ℘(S) there is a set T ∈ ω such that either 	 ⊆ T or 	 ∪ T is �X -inconsistent.

For ω ∈ �X
L (S), we let ArgXL (ω) = ⋃

T ∈ω ArgXL (T ).

Intuitively, �X
L (S) contains all subsets ω of ℘(℘(S)) which only contain pairwise consistent subsets of S and that 

satisfy the following closure property: for any finite subset 	 of S for which no superset is contained in ω, there is a set 
	′ in ω that is inconsistent with 	.

We are ready to characterize extension-based semantics in logical argumentation frameworks. The following theorem 
states that for nearly all combinations of multiple and single extension semantics with attack rules in one of the three 
classes set, dir and con, the resulting extensions of an argumentation framework can be characterized by a set ArgXL (T )
22
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where T is an appropriate consistent subset of the given defeasible assumptions. The exception is the combination of 
multiple extension semantics with attack rules in set. In this case, extensions are characterized by sets 

⋃
T ∈ω ArgXL (T )

where for each T , T ′ ∈ ω, T ∪ T ′ is a consistent set of defeasible assumptions.

Theorem 3 (characterization of extensions). Given an argumentation framework AFX
L,A(S) in which attack rules that are of type 

† ∈ {dir, con, set}. It holds that:

1. Extsem(AFX
L,A(S)) = {ArgXL (T ) | T ∈ MCSX

L (S)} where † ∈ {dir, con} and sem ∈ ME.

2. Extsem(AFX
L,A(S)) = {ArgXL (ω) | ω ∈ �X

L (S)} where † = set and sem ∈ ME.

3. Extsem(AFX
L,A(S)) = {ArgXL (FreeXL (S))} where † ∈ {con, set} and sem ∈ SE.

4. Extsem(AFX
L,A(S)) = {ArgXL (T )} where † = dir, sem ∈ SE, S� = {φ ∈ S | φ is �X -consistent}, and where T = S� in case that 

S� is �X -consistent and T = ∅ otherwise.

Proof. Item 1 is maximal consistency (Corollary 18), Item 2 is shown in Proposition 24 (below), and Item 3 is strong 
free precedence (Corollary 4). If there is a ⊆-minimal �X -inconsistent subset of S of size greater than 1, Item 4 follows 
by Lemma 12. Otherwise it follows by Lemma 10. �
Proposition 24. Let AFX

L,A(S) be an argumentation framework in which the attack rules are of type set. Then, for every sem ∈ ME it 
holds that Extsem(AFX

L,A(S)) = {ArgXL (ω) | ω ∈ �X
L (S)}.

Proof. By strong stability (Proposition 22) we only need to show this for stable extensions.
Let ω ∈ �X

L (S). We first show that ArgXL (ω) is conflict-free. Suppose for a contradiction that a = � ⇒ γ , b = � ⇒ δ ∈
ArgXL (ω), and a attacks b. By Lemma 5, � ∪� is �-inconsistent. Since there are Ti, T j ∈ ω for which � ⊆ Ti and � ⊆ T j , this 
implies that Ti ∪ T j is �-inconsistent, which contradicts the first condition in Definition 14. Thus, ArgXL (ω) is conflict-free.

Let now a = � ⇒ γ ∈ ArgXL (S)) \ ArgXL (ω). Then there is some T ∈ ω and some 	 ⊆ T such that �X ¬ 
∧

(� ∪ 	), and 
hence b = 	′, 	 ⇒ ¬ 

∧
� ∈ ArgXL (ω) for some 	′ ⊆ X . Thus b Def-attacks or Ucut-attacks a. This shows that ArgXL (ω) ∈

Extstb(AF).
Let now E ∈ Extstb(AF). By sub-argument closure (Corollary 11), there is a set ω = {Ti | i ∈ I} ⊆ ℘(S) for which E =⋃

i∈I ArgXL (Ti) = ArgXL (ω). We show Items 1 and 2 of Definition 14.

1. Assume for a contradiction that there are i, j ∈ I for which Ti ∪ T j is �X -inconsistent. Thus, there are 	i ⊆ Ti and 
	 j ⊆ T j such that �X ¬ 

∧
(	i ∪ 	 j). By Lemma 2, a = 	i, 	 ⇒ ∧

	 j ∈ E for some 	 ⊆ X , in contradiction to pairwise 
support consistency (Proposition 3).

2. Suppose for a contradiction that there is a set 	 ∈ ℘(S) such that 	 � Ti and 	 ∪ Ti is consistent for all i ∈ I . Let 
a = 	 ⇒ ∧

	 ∈ ArgXL (S). Note that a /∈ E . By the stability of E , there is an argument b = � ⇒ δ ∈ E that attacks a. Since 
b ∈ ⋃

i∈I ArgXL (Ti), there is an i ∈ I for which � ⊆ Ti . But then 	 ∪ Ti is �X -inconsistent by Lemma 5, a contradiction to 
our assumption. �

5.2. Characterizations of the induced entailments

We now turn to characterizations of the entailment relations that are induced by logical argumentation frameworks 
according to Definition 7. Like before, we consider the three types of argumentation frameworks from Definition 8, based 
on a logic L = 〈L,�〉 with a corresponding sound and complete sequent calculus C, in which the rules from Fig. 2 are 
admissible.

Since the results in this section refer to families of argumentation frameworks and not to specific frameworks, in what 
follows we shall somewhat modify the notations of the entailments in Definition 7 and sometimes use the abbreviation 
|∼

L,†,X ,sem , where † ∈ {set, dir, con}, sem ∈ CMP = {cmp, grd, prf, idl, stb, sstb, egr, stg} and  ∈ {∩, �, ∪}. Thus, for instance, 
a result that is applied to |∼∩

L,dir,X ,sem (that is, when  = ∩ and † = dir) covers, in terms of Definition 7, any skeptical 
entailment relation of the form |∼∩

L,A,X ,sem in which ∅ �= A ⊆ {DDef, DUcut} (recall Definition 8). The latter, in turn, covers 
any instance of sem ∈ CMP.

In these notations, Theorem 1 shows that for every fixed † ∈ {dir, con, set} and  ∈ {∩, �, ∪}, we actually have two differ-
ent argumentative entailments of the form |∼

L,†,X ,sem: one for sem ∈ ME and the other one for sem ∈ SE. This is formalized 
in the next corollary.

Corollary 21. Let X be a set of formulas, † ∈ {dir, con, set} and  ∈ {∩, �, ∪}. For every sem ∈ ME the entailments |∼
L,†,X ,sem are the 

same. Likewise, for all sem ∈ SE, |∼ coincide.
L,†,X ,sem
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Note 22. To simplify the presentation, i.e., in order to avoid too many case distinctions, we have not listed cmp among the 
semantics in SE and in ME. However, we note that |∼

L,†,X ,cmp= |∼
L,†,X ,sem either when  = ∪ and sem ∈ ME, or when 

 ∈ {∩, �} and sem ∈ SE. Thus, implicitly, reasoning with sem = cmp is covered (here and in what follows) as well.

Our next result (Theorem 4) shows a correspondence between many argumentative entailments and inference by max-
imally consistent sets of the premises ([71], see also [7,10]). For this, we recall the following entailments known from the 
area of inconsistency-tolerant (non-monotonic) logics.

Definition 15 (MCS-based entailments). Let L = 〈L,�〉 be a logic, S a set of L-formulas and X a �-consistent set of L-
formulas such that S ∩X = ∅. Recall that CNL(S) denotes the �-closure of S (Definition 2) and that MCSX

L (S) denotes the 
set of the ⊆-maximally �X -consistent subsets of S (Definition 11). The following entailments are defined in a way similar 
to those in Definition 7:

• S |∼∩
L,X ,mcs φ iff φ ∈ CNL(

⋂
MCSX

L (S) ∪X )

• S |∼�
L,X ,mcs φ iff φ ∈ ⋂

T ∈MCSX
L (S) CNL(T ∪X )

• S |∼∪
L,X ,mcs φ iff φ ∈ ⋃

T ∈MCSX
L (S) CNL(T ∪X )

We now relate the entailments in Definitions 7 and 15. A similar result to the next proposition was shown in [7] (see 
also [8, Section 2.3.1]), but only for direct undercut with consistency undercut as attack rules and for sem ∈ {grd, prf, stb}
and without the distinction between strict and defeasible assumptions. Here we generalize the setting to sequent calculi in 
which the rules from Fig. 2 are admissible, every complete semantics sem ∈ CMP = {cmp, grd, prf, idl, stb, sstb, egr, stg}, and 
for the three different types of attack relations.

Theorem 4 (characterization of entailments I). The following equivalences hold:

1. S |∼∪
L,†,X ,sem ψ iff S |∼∪

L,X ,mcs ψ for every † ∈ {con, set, dir} and sem ∈ ME.

2. S |∼∩
L,†,X ,sem ψ iff S |∼∩

L,X ,mcs ψ for every † ∈ {con, set} and sem ∈ SE.

3. S |∼∩
L,†,X ,sem ψ iff S |∼∩

L,X ,mcs ψ for † ∈ {con, dir} and sem ∈ ME.

4. S |∼�
L,†,X ,sem ψ iff S |∼�

L,X ,mcs ψ for every † ∈ {con, dir} and sem ∈ ME.

5. S |∼�
L,†,X ,sem ψ iff S |∼∩

L,X ,mcs ψ for every † ∈ {con, set} and sem ∈ SE.

Proof. We first show Item 1. Let sem ∈ ME.
[⇐] Suppose that S |∼∪

L,X ,mcs ψ . Thus, there is a maximal �X -consistent subset T of S for which T ∪ X � ψ . By 
Lemma 6, ArgXL (T ) ∈ Extstb(AF). By Theorem 1, ArgXL (T ) ∈ Extsem(AF). Since L is finitary and by the completeness of C, 
there is an argument � ⇒ ψ ∈ ArgXL (T ). Thus, S |∼∪

L,†,X ,sem ψ .

[⇒] Suppose that S |∼∪
L,†,X ,sem ψ . Thus, there is a set E ∈ Extsem(AF) and an argument � ⇒ ψ ∈ E . By (pairwise) 

support consistency (Proposition 2 resp. Proposition 3), � \ X is a �X -consistent subset of S . By the soundness of C, 
� �X ψ . Thus, there is a maximal �X -consistent subset T of S for which T �X ψ , and so S |∼∪

L,X ,mcs ψ .
The other items directly follow from previous results: Item 2 for sem ∈ SE follows by strong free precedence (Corol-

lary 4). Item 3 follows by maximal consistency (Corollary 18) and since FreeXL (S) = ⋂
MCSX

L (S). Item 4 follows by maximal 
consistency (Corollary 18). Item 5 follows from Item 2 and since the entailments |∼∩

L,†,X ,sem and |∼�
L,†,X ,sem coincide for 

single extension semantics sem. �
To complete the characterization in Theorem 4 to the other argumentative entailments considered here, we need the 

following notations (see also Definition 14):

Definition 16 (�–based entailments). Let L = 〈L,�〉 be a logic, S a set of L-formulas and X a �-consistent set of L-formulas 
such that S ∩X = ∅. We denote:

• S |∼∩
L,X ,�

φ iff φ ∈ CNL
(⋂

ω∈�

⋂
T ∈ω(T ∪X )

)
.

• S |∼�
L,X ,�

φ iff φ ∈ ⋂
ω∈�

⋃
T ∈ω CNL(T ∪X ).

• S |∼∪
L,X ,�

φ iff φ ∈ ⋃
ω∈�

⋃
T ∈ω CNL(T ∪X ).

The following result immediately follows from Definition 16 and Proposition 24.
24
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Theorem 5 (characterization of entailments II). For † = set and every sem ∈ ME and  ∈ {∩, �, ∪}, it holds that S |∼
L,†,X ,sem ψ iff 

S |∼
L,X ,�

ψ

Note 23. The only case that is not covered by Theorems 4 and 5 is when sem = SE and † = dir. The corresponding entailment 
relation is directly obtained by Item 4 in Theorem 3.

Note 24. By Theorem 4, Theorem 5, and Note 23, it follows that all the entailment relations that are obtained in this paper 
can be described in terms of consistent subsets of the premises (albeit not necessarily the maximal ones).

6. Evaluation of the reasoning process

We now examine the properties of the entailment relations which were characterized in the previous section with 
respect to the setting described in Section 2.2. In what follows we divide the entailment properties to two kinds: those that 
are concerned with non-monotonic reasoning, and those for inconsistency handling.

6.1. Inference principles for non-monotonic reasoning

By Definition 1, consequence relations are monotonic, that is: the set of conclusions cannot decrease when the set of 
assumption is increased. Human reasoning, on the other hand, is often non-monotonic, as previously drawn conclusions 
are sometimes retracted in light of new data. In this section we examine the argumentation-based entailment relations in 
Definition 7 relative to the monotonicity property. As it turns out, credulous entailments |∼∪

L,†,X ,sem with respect to multi-
extension semantics (i.e., when sem ∈ {cmp, prf, stb, sstb, stg}) for † ∈ {dir, con, set}, are monotonic (Proposition 25), while 
skeptical entailments are non-monotonic. The latter are further divided according to the general patterns for non-monotonic 
reasoning introduced in [46,54,55,59,72].

We start with some results concerning the (non-)monotonicity of argumentation-based entailments. For this, we need 
the next lemma that generalizes the result in [23] from classical logic to any compact Tarksian logic L.

Lemma 13. Let L = 〈L, �〉 be a compact Tarskian logic. Then |∼∪
L,X ,mcs is monotonic.

Proof. Suppose that S |∼∪
L,X ,mcs ψ . Then, there is a maximal �X -consistent subset T of S for which T ∪X � ψ . Consider 

now S ∪ S ′ . Clearly, T is a �X -consistent subset of S ∪ S ′ , and so there is a maximal �X -consistent subset T ′ of S ∪ S ′
such that T ⊆ T ′ . By the monotonicity of �, we have that T ′ ∪X � ψ , thus S, S ′ |∼∪

L,X ,mcs ψ as well. �
Proposition 25 (monotonicity). Every entailment of the form |∼∪

L,†,X ,sem , where sem ∈ ME and † ∈ {dir, con, set}, is monotonic.

Proof. This follows from Lemma 13 and Theorem 4 (Item 1). �
Not all the credulous entailments (i.e., those of the form |∼∪

L,†,X ,sem for some † and sem) are monotonic. This is demon-
strated in the next example.

Example 7. Let L = CL, S = {p} and X = ∅. Clearly, for every A and sem, Extsem(AF∅
CL,A(S)) = {Arg∅

CL(p)}. Now, let 
S ′ = S∪{¬p} = {p, ¬p}. Let AF be any of the considered argumentation frameworks. We have that there are two preferred 
(and (semi-)stable) extensions: Extprf(AF) = {Arg∅

CL(p),Arg∅
CL(¬p)}. Moreover, Extsem(AF) = {Arg∅

CL(∅)} for sem ∈ SE. This 
shows that for any † ∈ {dir, con, set},  ∈ {∩, �} and any semantics sem in Definition 6, |∼

CL,†,∅,sem is non-monotonic. Fur-
thermore, for every  ∈ {∩, �, ∪} and sem ∈ SE, |∼

CL,†,∅,sem is non-monotonic as well. Indeed, in all the above-mentioned 
cases, we have that p |∼

CL,†,∅,sem p, since p ⇒ p is in the relevant extension(s), however, p, ¬p �|∼
CL,†,∅,sem p, since only 

tautological arguments are in Arg∅
CL(∅).

Note 25. The last example also shows that skeptical entailments (those of the form |∼
L,†,X ,sem for  ∈ {∩, �}) are non-

monotonic.

It is common to examine non-monotonic entailment relations according to the following properties:

Definition 17 (rationality postulates III). Let L = 〈L,�〉 be a propositional logic, X a �-consistent set of L-formulas, and 
|∼ ⊆ ℘(WFF(L) \X ) × WFF(L).23 We say that |∼ satisfies:

23 The reason for excluding the strict assumptions from the premises is to keep our supposition that the strict and the defeasible premises are disjoint, 
and to preserve the similarity to Definition 11, where consistency is taken with respect to subsets of S .
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• �X -cautious reflexivity (�X -cREF): If φ is �X -consistent, then φ |∼ φ.
Absent other information, consistent formulas are entailed.

• �X -right weakening (�X -RW): If S |∼ φ and φ �X ψ , then S |∼ ψ .
Logical consequences of entailed formulas are entailed.

• �X -left logical equivalence (�X -LLE): If ψ �X φ and φ �X ψ and S, φ |∼ σ , then S, ψ |∼ σ .
Substitution of logically equivalent formulas holds on the left side of the entailment relation.

• cautious monotonicity (CM): If S |∼ φ and S |∼ ψ , then S, φ |∼ ψ .
Entailments are preserved under the addition of entailed formulas to the premises.

• cautious cut (CC): If S |∼ ψ and S, ψ |∼ φ, then S |∼ φ.
Transitivity holds for entailments.

• introduction of disjunction (OR): If S, φ |∼ σ and S, ψ |∼ σ , then S, φ ∨ ψ |∼ σ .
Reasoning by cases is validated by entailments.

• rational monotonicity (RM): If S |∼ ψ and S �|∼ ¬φ, then S, φ |∼ ψ .
Entailments are preserved under the addition of information that is |∼-consistent with the given premises.

We refer to [54,59] for a detailed discussion on �X -cREF, �X -RW, �X -LLE, CM and OR, and to [46] for a discussion on
CC. The postulate RM was introduced in [55].24 All of these properties are well-known and have been extensively examined 
in different contexts and for different purposes involving inference in a non-monotonic way.

The properties in Definition 17 are often gathered for defining systems for non-monotonic inference.

Definition 18 (systems for non-monotonic inference). We say that an entailment |∼ is:

• cumulative (w.r.t. �X ), if it satisfies �X -cREF, �X -RW, �X -LLE, CM and CC.

• preferential (w.r.t. �X ), if it is �X -cumulative and satisfies OR.

• rational (w.r.t. �X ), if it is �X -preferential and satisfies RM.

We first give results concerning cumulativity and preferentiality. Given our characterization of the argumentation-induced 
entailments in Theorem 4, the following two lemmas will be useful.

Lemma 14 (mcs cumulativity). For every propositional logic L = 〈L,�〉 and a �-consistent set X of L-formulas, the entailments 
|∼∩

L,X ,mcs and |∼�
L,X ,mcs are �X -cumulative.

Proof. The properties �X -cREF, �X -RW and �X -LLE follow directly from the definitions of |∼∩
L,X ,mcs and |∼�

L,X ,mcs . Note 
that the restriction of �X -cREF to �X -consistent formulas is necessary, since for an �X -inconsistent formula φ it holds that 
MCSX

L ({φ}) = {∅}. We show CM and CC together for |∼∩
L,X ,mcs (the proof for |∼�

L,X ,mcs is similar): Suppose that S |∼∩
L,X ,mcs

ψ . Then the following equivalences hold: S |∼∩
L,X ,mcs φ, iff 

⋂
MCSX

L (S), X � φ, iff (using the fact that S |∼∩
L,X ,mcs ψ thus it 

is easy to verify that MCSX
L (S ∪ {ψ}) = {T ∪ {ψ} | T ∈ MCSX

L (S)}) it holds that 
⋂

MCSL(S ∪ {ψ}), X � φ, iff S, ψ |∼∩
L,X ,mcs

φ. �
The following example, from [23], shows that the entailment |∼∪

L,X ,mcs does not satisfy CC and is therefore neither 
cumulative, preferential nor rational.

Example 8. Let S = {p ∧ q, ¬p ∧ r} and X = ∅. Then MCSX
L (S) = {{p ∧ q}, {¬p ∧ r}} and therefore S |�∪

L,X ,mcs q ∧ r, however, 
S |∼∪

L,X ,mcs q. Let S ′ = S ∪ {q}. Then MCSX
L (S ′) = {{p ∧ q, q}, {¬p ∧ r, q}} and therefore S ′ |∼∪

L,X ,mcs q ∧ r.

In view of this counterexample and Theorem 4 (Item 1), it follows that |∼∪
L,†,X ,sem is not cumulative, and therefore not 

preferential nor rational, for every † ∈ {con, set, dir} and sem ∈ ME.

Lemma 15. For a logic L = 〈L,�〉, a �-consistent set X of L-formulas, and sem ∈ SE, the entailments |∼∩
L,dir,X ,sem and |∼�

L,dir,X ,sem
are �X -cumulative.

24 RM is sometimes considered more controversial than other postulates. For instance, in [73] Stalnaker claims by a counter-example that RM is not a 
desirable property in some application contexts of defeasible reasoning. Nevertheless, also other reasoning principles have been criticized (e.g., CC in [63]), 
and some are not valid in central approaches of non-monotonic inference (e.g., CM does not hold in Reiter’s default logic, see [59, Observation 3.2.4]).
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Proof. Note that for sem ∈ SE, |∼∩
L,dir,X ,sem = |∼�

L,dir,X ,sem = |∼∪
L,dir,X ,sem since sem only gives rise to a single extension. Let 

|∼ = |∼
L,dir,X ,sem where sem ∈ SE and  ∈ {∩, �, ∪}. For a set T of L-formulas, let T� = {σ ∈ T | σ is �X consistent}. Let 

also π(T ) be T� in case that T� is �X -consistent, and ∅ otherwise. By Theorem 4 (Item 4), (†) T |∼ σ iff σ ∈ CNX
L (π(T )).

First, �X -cREF trivially follows from (†).
For CM and CC, suppose that S |∼ φ and let S ′ = S ∪ {φ}. By (†), φ ∈ CNX

L (π(S)). Since � is Tarskian, CNX
L (S�) =

CNX
L (S ′�). So, π(S) = π(S ′). By (†), we have: S |∼ ψ iff ψ ∈ CNX

L (π(S)) iff ψ ∈ CNX
L (π(S ′)) iff S ′ |∼ ψ .

For �X -RW, suppose that S |∼ φ and φ �X ψ . By (†), φ ∈ CNX
L (π(S)) and by �-transitivity, ψ ∈ CNX

L (π(S)). By (†), 
S |∼ ψ .

For �X -LLE, suppose that S, φ |∼ σ , φ �X ψ and ψ �X φ. Then, by (†), σ ∈ CNX
L (π(S ∪ {φ})). Since � is Tarskian, 

σ ∈ CNX
L (π(S ∪ {ψ})). By (†), S, ψ |∼ σ . �

Proposition 26 (cumulativity). Let L = 〈L,�〉 be a logic satisfying the conditions in Section 2.2.

1. For every † ∈ {con, set, dir} and sem ∈ CMP it holds that |∼∩
L,†,X sem is �-cumulative.

2. For every † ∈ {con, dir} and sem ∈ CMP it holds that |∼�
L,†,X ,sem is �-cumulative.

3. For † = set and every sem ∈ SE it holds that |∼�
L,†,X ,sem is �-cumulative.

Proof. We divide the proof according to the different items:

1. For † ∈ {con, set} this item follows from Lemma 14 and Item 3 of Theorem 4. For † = dir and sem ∈ ME it follows from 
Lemma 14 and Item 4 of Theorem 4, while for sem ∈ SE it follows from Lemma 15.

2. This item follows from Lemma 14 and Item 2 of Theorem 4 for sem ∈ ME. For † = con and sem ∈ SE it follows from 
Lemma 14 and Item 5 of Theorem 4. For † = dir and sem ∈ SE it follows from Lemma 15.

3. This item follows from Lemma 14 and Item 5 of Theorem 4. �
While Item 2 of Proposition 26 holds for frameworks with attack rules of type con or dir, it fails for frameworks with 

attack rules of type set. Before giving a counter-example, we present a partially positive result concerning CM, for which 
the following lemma will be useful.

Lemma 16. Let S and X be disjoint sets of L-formulas and suppose that X is �-consistent.

1. If T ∈ MCSX
L (S) then {T } ∈ �X

L (S).

2. If � ∪ {φ} ⊆ S and � ∪ {φ} is �X -inconsistent, then � is �X -inconsistent or φ /∈ FreeXL (S).

3. If φ ∈ S \ FreeXL (S), there is a T ∈ MCSX
L (S) ∩ MCSX

L (S \ {φ}) such that T �X ¬φ .

4. Let sem ∈ ME and S ′ = S ∪ {φ}. If S |∼�
L,set,X ,sem φ then φ ∈ FreeXL (S ′).

Proof. Item 1. Let T ∈ MCSX
L (S). We check the two requirements of Definition 16. The first requirement is clearly satisfied. 

For the second requirement, let 	 ∈ ℘(S) such that 	 � T . By the maximal consistency of T , T ∪ 	 is �X -inconsistent.
Item 2. Suppose that φ ∈ FreeXL (S). Since � ∪ {φ} is �X -inconsistent, there is a ⊆-minimal �X -inconsistent set �′ ⊆

� ∪ {φ}. Since φ ∈ FreeXL (S), φ /∈ �′ , and so �′ ⊆ �. Thus, � is �X -inconsistent.
Item 3. If φ ∈ S \ FreeXL (S), there is a ⊆-minimal �X -inconsistent set � ⊆ S with φ ∈ �. Since � \ {φ} is �X -consistent 

and � \ {φ} �X ¬φ, there is a T ∈ MCSX
L (S) such that � \ {φ} ⊆ T . Clearly, also T ⊆ S \ {φ} and T ∈ MCSX

L (S \ {φ}). By 
�X -monotonicity, T �X ¬φ.

Item 4. Let |∼ = |∼�
L,set,X ,sem . We show the contraposition. Suppose that there is a ⊆-minimal �X -inconsistent set 

{φ1, . . . , φn, φ} of S ′ . So, {φ1, . . . , φn} �X ¬φ and by Item 3 there is a maximal consistent set T ∈ MCSX
L (S) for which 

{φ1, . . . , φn} ⊆ T and T �X φ. By Item 1, {T } ∈ �X
L (S), and so by Theorem 5, S |� φ. �

Proposition 27. For a logic L = 〈L,�〉, a �-consistent set X of L-formulas, and every sem ∈ ME, the entailments |∼�
L,set,X ,sem satisfy 

CM.

Proof. Let |∼ = |∼�
L,set,X ,sem and S ′ = S ∪{φ}. Suppose that S |∼ φ. In case that φ ∈ S the statement is trivial, so we assume 

that φ /∈ S . We have to show that S |∼ ψ implies S ′ |∼ ψ . We show the contraposition.
Suppose that S ′ |� ψ . By Theorem 5 there is a ω = {Ti | i ∈ I} ∈ �X

L (S ′) such that for all T ∈ ω, T �X ψ . Let ω′ =
{T \ {φ} | T ∈ ω}. We show that ω′ ∈ �X (S), which by Theorem 5 proves that S |�ψ .
L
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[∨⇒] �,φ ⇒ � �,ψ ⇒ �

�,φ ∨ ψ ⇒ �
[⇒∨] � ⇒ φ,�′

� ⇒ φ ∨ ψ,�′ [⇒∨] � ⇒ φ,�′

� ⇒ ψ ∨ φ,�′

Fig. 7. Rules for ∨ that are part of (or admissible in) the calculus C (where � is empty or a singleton and �′ is empty, in case that C is a single-conclusion 
calculus).

Assume for a contradiction that there is a 	 ∈ ℘(S) such that for all i ∈ I , (i) 	 � Ti \ {φ} and (ii) 	 ∪ Ti \ {φ} is 
�X -consistent. By (i), and since φ /∈ S , 	 � Ti for all i ∈ I . Since ω ∈ �X

L (S ′), there is an i ∈ I such that Ti ∪ 	 is �X -
inconsistent. By (ii), φ ∈ Ti and Ti \ {φ}, 	 �X ¬φ. By (ii) and Lemma 16 (Item 2), φ /∈ FreeXL (S ′). By Lemma 16 (Item 3) 
there is a T ∈ MCSX

L (S ′) ∩ MCSX
L (S) for which T �X ¬φ. By Lemma 16 (Item 1), {T } ∈ �X

L (S), and so S |� φ, a contra-
diction. �

We now show that CC is violated for |∼�
L,set,X ,sem when sem ∈ ME.

Example 9. Let S = {ψ1, ψ2, ψ3}, where ψ1 = p ∧ s, ψ2 = q ∧ (s ⊃ t), and ψ3 = ¬(p ∧ q) ∧ (q ⊃ s) ∧ (s ⊃ t) and let X = ∅. 
For every S and X -based framework with set-attacks, we have the following stable (preferred, semi-stable, stage) ex-
tensions (recall Proposition 24): E1 = Arg∅

CL({ψ1, ψ2}), E2 = Arg∅
CL({ψ2, ψ3}), E3 = Arg∅

CL({ψ1, ψ3}), and E4 = Arg∅
CL({ψ1}) ∪

Arg∅
CL({ψ2}) ∪ Arg∅

CL({ψ3}). Therefore, S |∼�
CL,set,∅,sem s but S |��

CL,set,∅,sem t .

We now let S ′ = S ∪ {s}. This time, the stable (preferred, semi-stable, stage) extensions are: E ′
1 = Arg∅

CL({ψ1, ψ2, s}), 
E ′

2 = Arg∅
CL({ψ2, ψ3, s}), E ′

3 = Arg∅
CL({ψ1, ψ3, s}), and E ′

4 = Arg∅
CL({ψ1, s}) ∪ Arg∅

CL({ψ2, s}) ∪ Arg∅
CL({ψ3, s}). Therefore, 

S ′ |∼�
CL,set,∅,sem t .

We now turn to checking preferentiality. For this we need to consider the property OR, and thus a disjunction connec-
tive ∨. In what follows we suppose that, in addition to the rules in Fig. 2, the calculus C also has two admissible rules 
characterizing ∨, as shown in Fig. 7.

Lemma 17. �, ¬(φ ∨ ψ) ⇒ ¬φ and �, ¬(φ ∨ ψ) ⇒ ¬ψ are C-derivable.

Proof. By [Ref] and [LMon], �, φ ⇒ φ and by [⇒∨] �, φ ⇒ φ ∨ ψ are C-derivable. By Lemma 2 also �, ¬(φ ∨ ψ) ⇒ ¬φ

and �, ¬(ψ ∨ φ) ⇒ ¬φ are C-derivable. �
Lemma 18 (mcs preferentiality). For every propositional logic L = 〈L,�〉 for which the rules in Figs. 2 and 7 hold,25 the entailment 
|∼�

L,X ,mcs is �X -preferential with respect to every �-consistent X .

Proof. By Lemma 14 it just remains to show that |∼�
L,X ,mcs satisfies OR. Suppose that S, φ1 |∼�

L,X ,mcs ψ and S, φ2 |∼�
L,X ,mcs

ψ . Let T ∈ MCSX
L (S ∪ {φ1 ∨ φ2}) and T ′ = T ∩ S . We have to show that T �X ψ . We consider two cases: (1) φ1 ∨ φ2 /∈ T

and (2) φ1 ∨ φ2 ∈ T .
Case 1. In that case T ′ = T and T ∪ {φ1 ∨ φ2} is �X -inconsistent. By Lemma 4, � ⇒ ¬(φ1 ∨ φ2) is derivable for some 

finite � ⊆ T . By Lemma 17 and Cut, � ⇒ ¬φ1. So, T ∪ {φ1} is �X -inconsistent. So, T ∈ MCSX
L (S ∪ {φ1}). By the supposition 

T �X ψ .
Case 2. Assume for a contradiction that T ∪{φ1} and T ∪{φ2} are �X -inconsistent sets. Then T �X ¬φ1 and T �X ¬φ2. 

By Corollary 1, T \{φ1 ∨φ2}, φ1 �X ¬(φ1 ∨φ2) and T \{φ1 ∨φ2}, φ2 �X ¬(φ1 ∨φ2). So, there are finite �1, �2 ⊆ T \{φ1 ∨φ2}
and 	 ⊆ X for which �1, 	, φ1 ⇒ ¬(φ1 ∨ φ2) and �2, 	, φ2 ⇒ ¬(φ1 ∨ φ2) are derivable. By [∨⇒] and �-monotonicity, 
�1, �2, 	, φ1 ∨ φ2 ⇒ ¬(φ1 ∨ φ2), in view of which T is �X -inconsistent. This is a contradiction. Without loss of generality 
we thus suppose that T ∪ {φ1} is �X -consistent. Let T ′

1 = T ′ ∪ {φ1}. By �-monotonicity, T ′
1 is also �X -consistent.

We show that (†) T ′
1 ∈ MCSX

L (S ∪ {φ1}) and (therefore by the main supposition) T ′
1 �X ψ . Assume for a contradiction 

that there is a σ ∈ S \ T ′
1 such that T ′

1 ∪ {σ } is �X -consistent. Since T ∈ MCSX
L (S ∪ {φ1 ∨ φ2}) and σ /∈ T , necessarily 

T �X ¬σ . So, T ′, φ1 ∨ φ2 �X ¬σ . By Corollary 1, T ′, σ �X ¬(φ1 ∨ φ2) and by Lemma 17, T ′, σ �X ¬φi . So, T ′
1 ∪ {σ } is 

�X -inconsistent. This is a contradiction. So, T ′
1 ∈ MCSX

L (S ∪ {φ1}) and (†) holds. By the main supposition, T ′, φ1 �X ψ .
If T ′ ∪{φ2} is �X -consistent, by the same reasoning T ′ ∪{φ2} ∈ MCSX

L (S∪{φ2}) and T ′, φ2 �X ψ . Otherwise, if T ′ ∪{φ2}
is �X -inconsistent, it trivially holds that T ′, φ2 �X ψ .

So, T ′, φi �X ψ for i ∈ {1, 2}. By compactness and monotonicity of � there are 	 ⊆ T ′ and � ⊆X for which 	, φ1, � ⇒
ψ and 	, φ2, � ⇒ ψ are C-derivable. By [∨⇒], 	, φ1 ∨ φ2, � ⇒ ψ and by the soundness of C and �-monotonicity, T �X
ψ . �
25 We say that inference rules hold in a logic L if the respective rules are admissible in the underlying (presupposed) calculus C.
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Lemma 19. For every  ∈ {∩, �} and sem ∈ SE, OR holds for |∼
L,dir,X ,sem .

Proof. Let |∼ = |∼
L,dir,X ,sem , where sem ∈ SE and  ∈ {∩, �}. Suppose that S, φ |∼ σ and S, ψ |∼ σ . We have to show that 

S, φ ∨ ψ |∼ σ . Using the notations in Item 4 of Theorem 3, we distinguish between the following two cases: (a) (S ∪ {φ})�
or (S ∪ {ψ})� is �X -inconsistent, and (b) (S ∪ {φ})� and (S ∪ {ψ})� are �X -consistent. This case distinction mirrors the 
one in Theorem 3 (Item 4). We now utilize this fact.

Case (a). By Theorem 3 (Item 4), �X σ and by �X -monotonicity, S, φ∨ψ �X σ . So, by Theorem 3 (Item 4), S, φ∨ψ |∼ σ .
Case (b). By Theorem 3 (Item 4), S, φ �X σ and S, ψ �X σ . By �-compactness, �-monotonicity, and the completeness 

of C, there are 	 ⊆ S and � ⊆ X for which 	, φ, � ⇒ σ and 	, ψ, � ⇒ σ are C-derivable. So, by [∨⇒], 	, φ ∨ ψ, � ⇒ σ
in also C-derivable. We now show that S ∪ {φ ∨ ψ} is �X -consistent. Then, by Theorem 3 (Item 4), S, φ ∨ ψ |∼ σ .

Assume for a contradiction that S ∪ {φ ∨ ψ} is �X -inconsistent. Then, S �X ¬(φ ∨ ψ). By �-compactness and the 
completeness of C, there are 	 ⊆ S and � ⊆ X for which 	, � ⇒ ¬(φ ∨ ψ) is C-derivable. By [Cut] and Lemma 17, 
	, � ⇒ ¬φ. Hence, S ∪ {φ} is �X -inconsistent. This is a contradiction to (b). �
Proposition 28 (preferentiality). Let L = 〈L,�〉 be a logic satisfying the conditions in Section 2.2, as well as the disjunction rules in 
Fig. 7.

1. For every † ∈ {con, dir} and sem ∈ ME, the entailment |∼�
L,†,X ,sem is �-preferential.

2. For † = dir and every sem ∈ SE, the entailments |∼∩
L,†,X ,sem and |∼�

L,†,X ,sem are �-preferential.

Proof. Item 1 follows from Theorem 4 (Item 2), and Lemma 18. Item 2 follows from Lemmas 15 and 19. �
We now show that OR fails for the cases not mentioned in Proposition 28 (see Table 5 for an overview). In all the 

examples here we consider classical logic as the base logic L. In Example 10 we give counter-examples for those entailments 
that are with Theorem 4 identical to |∼∩

L,X ,mcs , namely |∼∩
L,†,X ,sem where † ∈ {con, set} and sem ∈ CMP (Item 3), |∼∩

L,dir,X ,sem

where sem ∈ ME (Item 4), and |∼�
L,†,X ,sem for † ∈ {set, con} and sem ∈ SE (Item 5). In Example 11, we consider |∼�

L,set,X ,sem
where sem ∈ ME.

Example 10. We show that OR fails for |∼∩
L,X ,mcs (and therefore, by Theorem 3, also for |∼∩

L,†,X ,sem where † ∈ {con, set}
and sem ∈ CMP (Item 3), for |∼∩

L,dir,X ,sem where sem ∈ ME (Item 4), and for |∼�
L,†,X ,sem , where † ∈ {con, set} and sem ∈ SE

(Item 5)).
Let for this S = {¬p, ¬q, ¬p ⊃ r, ¬q ⊃ r} and X = ∅. Then:

• S, p |∼∩
CL,∅,mcs r,

since MCS∅
CL(S ∪ {p}) = {{p, ¬q, ¬p ⊃ r, ¬q ⊃ r}, {¬p, ¬q, ¬p ⊃ r, ¬q ⊃ r}} and so⋂

MCS∅
CL(S ∪ {p}) = {¬q, ¬p ⊃ r, ¬q ⊃ r},

• S, q |∼∩
CL,∅,mcs r,

since MCS∅
CL(S ∪ {q}) = {{¬p, q, ¬p ⊃ r, ¬q ⊃ r}, {¬p, ¬q, ¬p ⊃ r, ¬q ⊃ r}} and so⋂

MCS∅
CL(S ∪ {q}) = {¬p, ¬p ⊃ r, ¬q ⊃ r}, while

• S, p ∨ q �|∼∩
CL,∅,mcs r,

since MCS∅
CL(S ∪ {p ∨ q}) = {{p ∨ q, ¬p, ¬p ⊃ r, ¬q ⊃ r}, {p ∨ q, ¬q, ¬p ⊃ r, ¬q ⊃ r}, {¬p, ¬q, ¬p ⊃ r, ¬q ⊃ r}}, and so⋂

MCS∅
CL(S ∪ {p ∨ q}) = {¬p ⊃ r, ¬q ⊃ r}.

Example 11. Consider an argumentation framework AFX
L,A(S), where A consists of set-type attack rules, and let S = {p ∧

u, q ∧ v} and X = ∅. Then:

• Consider S1 = S ∪ {¬p ∧ u}. We have the following stable (preferred, semi-table and stage) extensions: E1 = Arg∅
L({p ∧

u, q ∧ v}) and E2 = Arg∅
L({¬p ∧ u, q ∧ v}). Thus, S1 |∼�

L,set,∅,sem u ∧ v .
• Consider S2 = S ∪ {¬q ∧ v}. For an analogous reason, S2 |∼�

L,set,∅,sem u ∧ v .
• Consider now S∨ = S ∪ {(¬p ∧ u) ∨ (¬q ∧ v)}. We now also have the stable (preferred, semi-table and stage) extension 
E∨ = Arg∅

L({p ∧ u}) ∪ Arg∅
L({q ∧ v}) ∪ Arg∅

L({(¬p ∧ u) ∨ (¬q ∧ v)}), which is why S∨ |��
L,set,∅,semu ∧ v .

We now turn to rationality. First, we show that RM fails for |∼�
L,X ,mcs and in view of Theorem 4 it also fails for all the 

entailments |∼�
L,†,X ,sem where † ∈ {con, dir} and sem ∈ ME.

Example 12. To see that RM fails for |∼�
L,X ,mcs , consider again classical logic as the base logic and let S = {r, p ∧ q ∧

¬r, (p ∧ r) ⊃ ¬q, ¬p ∧ q}. We have MCS∅ (S) = {{r, (p ∧ r) ⊃ ¬q, ¬p ∧ q}, {p ∧ q ∧ ¬r, (p ∧ r) ⊃ ¬q}}. Only one of the two 
CL
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sets in MCS∅
CL(S) implies ¬p, while both of them imply q. Thus, S |∼�

L,∅,mcs q and S �|∼�
L,∅,mcs ¬p. Now, MCS∅

CL(S ∪ {p}) =
{{r, (p ∧ r) ⊃ ¬q, ¬p ∧ q}, {p ∧ q ∧ ¬r, (p ∧ r) ⊃ ¬q, p}, {r, p, (p ∧ r) ⊃ ¬q}}. It follows that S, p �|∼�

L,∅,mcs q, and so RM is 
violated.

We continue with a counter-example for |∼∩
L,X ,mcs which, in view of Theorem 4, is also a counterexample for the follow-

ing cases: |∼∩
L,†,X ,sem where † ∈ {con, set} and sem ∈ CMP (Item 3), |∼∩

L,dir,X ,sem where sem ∈ ME (Item 4), and |∼�
L,†,X ,sem

for † ∈ {set, con} and sem ∈ SE (Item 5).

Example 13. Let S = {r, p ∧ q ∧ ¬r, (p ∧ r) ⊃ ¬q, ¬p ∧ q}. Note that Free∅
L(S) = {(p ∧ r) ⊃ ¬q} (recall from Footnote 14

that FreeXL (·) coincides with 
⋂

MCSX
L (·)). Clearly, S |∼∩

L,∅,mcs (p ∧ r) ⊃ ¬q and S|�∩
L,∅,mcs¬(p ∧ q). However, where S ′ =

S ∪ {p ∧ q}, Free∅
L(S ′) = ∅ and so S ′|�∩

L,∅mcs(p ∧ r) ⊃ ¬q.

Finally, we give a counter-example for |∼�
L,set,∅,sem where sem ∈ ME.

Example 14. Let S = {p ∧ s, q ∧ s, ¬(p ∧ q) ∧ (s ⊃ t)}. We have the following stable (which are also preferred, semi-stable 
and stage) extensions: E1 = Arg∅

L({p ∧ s, q ∧ s}), E2 = Arg∅
L({p ∧ s, ¬(p ∧ q) ∧ (s ⊃ t)}), E3 = Arg∅

L({q ∧ s, ¬(p ∧ q) ∧ (s ⊃ t)}), 
and E4 = Arg∅

L({p ∧ s}) ∪ Arg∅
L({q ∧ s}) ∪ Arg∅

L({¬(p ∧ q) ∧ (s ⊃ t)}). Note that S|��
L,set,∅,sem¬¬t and S |∼�

L,set,∅,sem s.
Let now S ′ = S∪{¬t}. Note that we now also have the stable (which is also a preferred, semi-stable and stage) extension 

E = Arg∅
L({¬(p ∧ q) ∧ (s ⊃ t), ¬t}). So, S ′|��

L,set,∅,sems.

Yet, some entailments are rational. The next proposition lists them.

Proposition 29 (rationality). Let L = 〈L,�〉 be a logic satisfying the conditions in Section 2.2 and in Fig. 7, and let sem ∈ SE. Then the 
entailments |∼�

L,dir,X ,sem and |∼∩
L,dir,X ,sem are rational.

Proof. We note that |∼�
L,dir,X ,sem = |∼∩

L,dir,X ,sem since sem ∈ SE. Let now |∼ = |∼�
L,dir,X ,sem . In view of Proposition 28 (Item 

2) we just have to show that RM holds for |∼. Suppose then that S |∼ φ and S |�¬ψ .
Let AFX

L,A(S) be an S and X -based framework whose core logic is L and the set A of attack rules consists only of dir-
type attacks. Based on Theorem 3 (Item 4), and using its notations, we consider two cases: (a) S� is �X -consistent, (b) S�
is �X -inconsistent. Consider (a). Then Extsem(AFX

L,A(S)) = {ArgXL (S�)}. Thus, S� ∪X � ¬ψ and so S� ∪ {ψ} = (S ∪ {ψ})�
is also �X -consistent. Also, by the main supposition, there is an argument � ⇒ φ ∈ ArgXL (S�). Again by Theorem 3 (Item 4), 
Extsem(AFX

L,A(S)) = {ArgXL (S� ∪ {ψ})}. Since � ⇒ φ ∈ ArgXL (S� ∪ {ψ}), S, ψ |∼ φ.

Consider (b). Then, by Theorem 3 (Item 4), Extsem(AFX
L,A(S)) = {ArgXL (∅)}. Thus, also (S ∪ {φ})� is �X -inconsistent, and 

so Extsem(AFX
L,A(S ∪ {ψ})) = {ArgXL (∅)} = Extsem(AFX

L,A(S)). Thus, by the main supposition, S ∪ {ψ} |∼ φ. �
Table 5 summarizes the results in this section.

Table 5
Summary of the results in Section 6.1 (the results concerning sem = cmp follow from 
Note 22).

Postulates for non-monotonic inference |∼∩
L,†,X ,sem |∼�

L,†,X ,sem |∼∪
L,†,X ,sem

cumulativity, † ∈ {con,dir} CMP CMP SE
cumulativity, † = set CMP SE ∪ {cmp} SE
preferentiality, † = con – ME –
preferentiality, † = dir SE ∪ {cmp} CMP SE
preferentiality, † = set – – –
rationality, † ∈ {set, con} – – –
rationality, † = dir SE ∪ {cmp} SE ∪ {cmp} SE
monotonicity, † ∈ {dir, con, set} – – ME ∪ {cmp}

Recall from Table 2 that, in almost all the cases, properties of extensions are satisfied by settings with con-attacks. In 
that respect, con-attacks may be preferred. However, as Table 5 indicates, as far as principles of non-monotonic reasoning 
are concerned, settings with dir-attacks may be superior.

6.2. Inference principles for inconsistency handling

We now consider properties that are related to reasoning with inconsistent assumptions.
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Definition 19 (rationality postulates IV). Let X ⊆ WFF(L) be a �-consistent set of L-formulas, |∼X ⊆ ℘(WFF(L) \ X ) ×
WFF(L) and let � ⊆ ℘(WFF(L)) × WFF(L) be a Tarskian consequence relation.

• We denote by S1 ‖ S2 that S1 and S2 are syntactically disjoint, i.e., Atoms(S1)∩Atoms(S2) = ∅.
• We say that a set S such that Atoms(S ∪X )�Atoms(L) is contaminating (w.r.t. |∼X ), if for every S ′ such that S ∪X ‖ S ′

and for every L-formula φ, it holds that S |∼X φ iff S, S ′ |∼X φ.

A contaminating set of formulas renders every syntactically disjoint set uninformative. For instance, in the context of 
classical logic the singleton {φ ∧ ¬φ} is a contaminating set.

We say that |∼X satisfies:

• conservative �-consistency: for every �X -consistent set S of L-formulas and every L-formula ψ it holds that S |∼X ψ iff 
X , S � ψ .

• paraconsistency: for every distinct p, q ∈ Atoms(L) for which q /∈ Atoms(X ), it holds that p, ¬p �|∼X q.
• non-interference: for every two sets S1, S2 of L-formulas, and every L-formula φ such that S1 ∪ {φ} ∪ X ‖ S2, it holds 

that S1 |∼X φ iff S1, S2 |∼X φ.
• crash-resistance: there is no |∼X -contaminating set of L-formulas.

Conservative �-consistency means that |∼X is a conservative extension of � that coincides with the latter with respect 
to �X -consistent premises. Paraconsistency [35] is a well-investigated logical property, disallowing the inference of every 
conclusion whatsoever from a single contradiction (see, e.g., [17,31] for some surveys on this subject with many references). 
Non-interference and the related notion of crash-resistance were introduced in [30] for similar purposes, and are mainly 
investigated in the context of logical argumentation frameworks. Non-interference expresses that a formula φ should be 
|∼X -entailed by S1 if and only if it is entailed by S1 ∪ S2 where S2 contains only information irrelevant to S1 ∪X and φ
(in the sense that S2 is syntactically disjoint from S1 ∪X ∪ {φ}).

We start with conservative �-consistency:

Proposition 30 (mcs conservative �-consistency). Given a logic L = 〈L,�〉. For every �-consistent set X and  ∈ {∩, �, ∪}, the 
entailment |∼

L,X ,mcs satisfies conservative �-consistency: For every �X -consistent set S and formula ψ , we have: X , S � ψ iff 
S |∼

L,X ,mcs ψ .

Proof. Suppose that S is a �X -consistent set of L-formulas. Then MCSX
L (S) = {S} and, as a result, |∼∩

L,X ,mcs , |∼�
L,X ,mcs

and |∼∪
L,X ,mcs coincide. To show that |∼

L,X ,mcs coincides with � as well, note that: X , S � ψ iff ψ ∈ CNL(S ∪ X ) iff ψ ∈
CNL(

⋂
MCSX

L (S) ∪X ) iff S |∼
L,X ,mcs ψ . �

Proposition 31 (conservative �-consistency). Given a logic L = 〈L,�〉. For every �-consistent set X ,  ∈ {∩, �, ∪}, sem ∈ CMP, and 
† ∈ {set, dir, con}, the entailment |∼

L,†,X ,sem satisfies conservative �-consistency: For every �X -consistent set S and formula ψ , we 
have: X , S � ψ iff S |∼

L,†,X ,sem ψ .

Proof. Suppose that S is a �X -consistent set of L-formulas. Suppose first that there is some a ∈ ArgXL (S) such that b ∈
ArgXL (S) attacks a. Thus Conc(b) ⇒ ¬φ is derivable, where φ ∈ Supp(a) for frameworks with dir or con attacks, and φ =∧

Supp(a) for frameworks with set attacks (note that b cannot be a ConUcut-attacker, since S is supposed to be �X -
consistent). Thus, by [Cut], we derive Supp(b) ⇒ ¬φ. By [¬⇒], Lemma 1 and [Cut], we derive Supp(b), φ ⇒. Hence, by 
[∧⇒] and [⇒¬], ⇒ ¬(

∧
Supp(b) ∧ φ) is derivable, a contradiction to the consistency of S . Thus ArgXL (S) is conflict-free. 

Therefore, Extsem(AFX
L,A(S)) = {ArgXL (S)} for every sem ∈ CMP.

Let now � ⇒ φ ∈ ArgXL (S). Then � � φ by the soundness of C, and by the monotonicity of � (Definition 1), S, X � φ. 
Hence, |∼

L,†,X ,sem ⊆ �. Now, suppose that S, X � φ. Thus, by the completeness of C for L, and since L is finitary, there is 
a � ⊆ S ∪X , such that � ⇒ φ ∈ ArgXL (S). Since for every sem ∈ {nav, stg, cmp, grd, prf, idl, stb, sstb, egr} Extsem(AFX

L,A(S)) =
{ArgXL (S)}, we have that S |∼

L,†,X ,sem φ. Thus � ⊆ |∼
L,†,X ,sem . Altogether, � = |∼

L,†,X ,sem . �
We now turn to paraconsistency. We will show that it holds for uniform logics.

Definition 20 (uniformity). A logic L = 〈L,�〉 is said to be uniform [58,75], if for every two sets of L-formulas S1, S2 and a 
formula φ such that S2 is both �-consistent and syntactically disjoint from S1 ∪ {φ}, it holds that S1 � φ iff S1, S2 � φ.

Note 26. By Łos-Suzsko Theorem [58], a compact propositional logic is uniform and structural, iff, it has a single character-
istic matrix. Thus, classical logic, as well as many other logics, are uniform.
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Lemma 20 (mcs paraconsistency). Given a uniform logic L = 〈L,�〉. For every  ∈ {∩, �, ∪}, the entailment |∼
L,X ,mcs satisfies para-

consistency: for every distinct p, q ∈ Atoms(L) for which q /∈ Atoms(X ) it holds that p, ¬p |�
L,X ,mcs q.

Proof. Let p, q ∈ Atoms(L), p �= q, q /∈ Atoms(X ), and S = {p, ¬p}. Then MCSX
L (S) ⊆ {∅, {p}, {¬p}}. We note that � q by the 

structurality and non-triviality of L. Therefore, for any T ∈ MCSX
L (S), by the uniformity of L and the �X -consistency of T , 

T �X q. Therefore, S |�
L,X ,mcs q. �

Proposition 32 (paraconsistency). Let L = 〈L,�〉 be uniform. For every complete semantics sem ∈ CMP,  ∈ {∩, �, ∪} and † ∈
{set, con}, the entailment |∼

L,†,X ,sem is paraconsistent.

Proof. Let p, q ∈ Atoms(L), p �= q, q /∈ Atoms(X ), sem be a complete semantics sem ∈ CMP and E ∈ Extsem(AFX
L,A({p, ¬p})). 

Suppose that there is an argument a = � ⇒ q ∈ ArgXL ({p, ¬p}). By the uniformity of L and since q /∈ Atoms(�), � is �-
inconsistent or �q. The latter is excluded by the structurality and non-triviality of L. Thus, a is attacked by an argument 
b = � ⇒ ¬ 

∧
�′ where �′ ⊆ � \ X and � ⊆ X . Since b has no attackers (given that � ⊆ X ), a /∈ E . Altogether, this shows 

that there is no a ∈ E with Conc(a) = q and therefore p, ¬p �|∼
L,dir,X ,sem q. �

Proposition 33 (paraconsistency II). Let L = 〈L,�〉 be uniform. For every complete semantics sem ∈ CMP and  ∈ {∩, �, ∪}, the 
entailment |∼

L,dir,X ,sem is paraconsistent.

Proof. Let p, q ∈ Atoms(L), p �= q, q /∈ Atoms(X ). Let sem be a complete semantics and E a sem-extension of AFX
L,A({p,

¬p}). Suppose that there is an argument a = � ⇒ q ∈ ArgXL ({p, ¬p}). Thus, � \X �X q. By the uniformity of L and since q /∈
Atoms(�), � \X is �X -inconsistent or �q. The latter is excluded by the structurality and non-triviality of L. By Proposition 2, 
a /∈ E . This shows that p, ¬p �|∼

L,dir,X ,sem q. �
We turn now to non-interference and crash-resistance. In the remainder of this section, we suppose that L = 〈L,�〉 is a 

uniform logic (as before, with a corresponding sound and complete calculus C in which the rules of the basic calculus from 
Fig. 2 are admissible). We also suppose that S1 and S2 are syntactically disjoint sets of L-formulas (S1 ‖ S2), and that both 
of them are disjoint from the set of strict assumptions (i.e., (S1 ∪ S2) ‖X ). In what follows we denote S = S1 ∪ S2.

Lemma 21. Suppose that S1 ∪ {φ} ‖ S2 . If S2 is �X -consistent, we have that S1 �X φ iff S1, S2 �X φ .

Proof. The direction [⇒] follows from �-monotonicity. The direction [⇐] holds since S1, S2 �X φ and by �-compactness, 
there is a finite 	 ⊆ X for which S1, S2, 	 � φ. By uniformity, S1, 	 � φ, (recall that S1 ∪ S2 ‖ X , thus S1 ∪ S2 ‖ 	), and 
so, by �-monotonicity again, S1, X � φ. Thus, S1 �X φ. �
Lemma 22. If T1 ∈ CSX

L (S1) and T2 ∈ CSX
L (S2) then T1 ∪ T2 ∈ CSX

L (S).

Proof. Suppose for a contradiction that T1 ∈ CNX
L (S1) and T2 ∈ CNX

L (S2), however T1 ∪ T2 is �X -inconsistent. Then, there 
are �1 ⊆ T1 and �2 ⊆ T2 for which �X ¬ 

∧
(�1 ∪ �2). By Lemma 2, �1 �X ¬ 

∧
�2 and by Lemma 21, either X � ¬ 

∧
�2 or 

�1 is �X -inconsistent. But then either T1 or T2 is �X -inconsistent, contradicting our assumption. �
Lemma 23. CSX

L (S) = {T1 ∪ T2 | T1 ∈ CSX
L (S1), T2 ∈ CSX

L (S2)}.

Proof. We show inclusions in both directions. [⊇]: This follows from Lemma 22. [⊆]: Suppose that T ∈ CSX
L (S), and let 

Ti = T ∩ Si for i ∈ {1, 2}. By �-monotonicity, if Ti were �X -inconsistent then also T would be �X -inconsistent. Thus, 
Ti ∈ CSX

L (Si). �
Lemma 24. MCSX

L (S) = {T1 ∪ T2 | T1 ∈ MCSX
L (S1), T2 ∈ MCSX

L (S2)}.

Proof. We show inclusions in both directions.
[⊇]: Suppose that Ti ∈ MCSX

L (Si) for i ∈ {1, 2}. By Lemma 22, T = T1 ∪ T2 ∈ CSX
L (S). Assume for a contradiction that 

there is a T ′ � T such that T ′ ∈ CSX
L (S). By Lemma 23, T ′

i = T ′ ∩ Si ∈ CSX
L (Si) for i ∈ {1, 2}. Since T ′ � T , also T ′

1 � T1
or T ′

2 � T2, which contradicts the ⊆-maximal �X -consistency of T1 and T2.
[⊆]: Suppose that T ∈ MCSX

L (S), and let Ti = T ∩ Si for i ∈ {1, 2}. By Lemma 23, Ti ∈ CSX
L (Si). Suppose that for some 

i ∈ {1, 2} there is a T ′
i � Ti for which T ′

i ∈ CSX
L (Si). By Lemma 22, T ′

i ∪ T ∈ CSX
L (S). Since T ′

i ∪ T � T , this contradicts 
the ⊆-maximality of T . �
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By Lemma 24 and Item 1 of Theorem 3, we get:

Corollary 22. Let AFX
L,A(S) be an argumentation framework with attack rules of type † ∈ {dir, con}, and let sem ∈ ME. Then 

Extsem(AFX
L,A(S)) = {ArgXL (T1 ∪ T2) | T1 ∈ MCSX

L (S1), T2 ∈ MCSX
L (S2)}.

Lemma 25. Let {Ti | i ∈ I1} � {Ti | i ∈ I2} = {Ti ∪ T j | (i, j) ∈ I1 × I2}. Then �X
L (S) = {ω1 �ω2 | ω1 ∈ �X

L (S1), ω2 ∈ �X
L (S2)}.

Proof. We show containments in both directions.
[⊇]: Let ωi = {T j | j ∈ Ii} ∈ �X

L (Si) for i ∈ {1, 2} and let ω = ω1 � ω2. We show that ω satisfies the two requirements 
from Definition 14.

For Item 1, let (i1, j1), (i2, j2) ∈ I1 × I2. Then Ti1 , Ti2 ∈ CSX
L (S1) and T j1 , T j2 ∈ CSX

L (S2). By Item 1 in Definition 14, 
Ti1 ∪ Ti2 ∈ CSX

L (S1) and T j1 ∪ T j2 ∈ CSX
L (S2). Consider T = Ti1 ∪ Ti2 ∪ T j1 ∪ T j2 . By Lemma 23 T is �X -consistent.

For Item 2 let 	 be a finite subset of S and let 	i = 	 ∩Si for i ∈ {1, 2}. Suppose that 	 � Ti ∪T j for any (i, j) ∈ I1 × I2. 
Then, there is an i ∈ {1, 2} such that 	i � T j for all j ∈ Ii . Since ωi ∈ �X

L (Si), 	i ∪ T j is �X -inconsistent for some j ∈ Ii . 
Thus, 	 ∪ T is �X -inconsistent for any T ⊇ T j in ω.

[⊆]: Let {Ti | i ∈ I} ∈ �X
L (S). We show that ω j = {Ti ∩S j | i ∈ I} ∈ �X

L (S j) for j ∈ {1, 2}. Without loss of generality, j = 1. 
We again show that the two conditions of Definition 14 hold for ω1.

For Item 1 let i, k ∈ I . Then (Ti ∩ S1) ∪ (Tk ∩ S1) ⊆ Ti ∪ Tk . Since Ti ∪ Tk is �X -consistent, also (Ti ∩ S1) ∪ (Tk ∩ S1) is 
�X -consistent.

For Item 2 let 	 ⊆ S1. Suppose that 	 � (Ti ∩ S1) for all i ∈ I . Since S1 ∩ S2 = ∅, also 	 � Ti for all i ∈ I . Thus, 	 ∪ Ti
is �X -inconsistent for some i ∈ I . By Lemma 21, 	 ∪ (Ti ∩ S1) is �X -inconsistent. �

By Lemma 25 and Item 2 of Theorem 3, we have:

Corollary 23. Let AFX
L,A(S) be an S and X -based framework with attack rules of type set, and let sem ∈ ME. Then Extsem(AFX

L,A(S))

= {ArgXL (S)(ω1 �ω2) | ω1 ∈ �X
L (S1), ω2 ∈ �X

L (S2)}.

Now we are ready to show non-interference. First, we show this property for MCS-based and �-based entailments, from 
which we can conclude non-interference with respect to argumentative entailments.

Proposition 34 (non-interference for mcs-based entailments). Let L = 〈L,�〉 be a uniform logic satisfying the conditions in Section 2.2. 
Then for every �-consistent set X and  ∈ {∪, ∩, �}, the entailment |∼

L,X ,mcs satisfies non-interference.

Proof. For fixed L and X , we distinguish between the three cases where  ∈ {∪, ∩, �}.
[⇒] Suppose that S1 |∼�

L,X ,mcs φ. Thus, for all T ∈ MCSX
L (S1), T �X φ. Let T ∈ MCSX

L (S). By Lemma 24, T1 = T ∩ S1 ∈
MCSX

L (S1). Thus, T1 �X φ and by monotonicity, T �X φ. So S |∼�
L,X ,mcs φ.

[⇐] Suppose that S |∼�
L,X ,mcs φ. Thus, for all T ∈ MCSX

L (S), T �X φ. Let Ti ∈ MCSX
L (Si) for i ∈ {1, 2}. Then, by 

Lemma 24, T = T1 ∪ T2 ∈ MCSX
L (S). It follows that T1, T2 �X φ and by Lemma 21, T1 �X φ. Since T1 is arbitrary in 

MCSX
L (S1), S1 |∼�

L,X ,mcs φ.

[⇒] Suppose that S1 |∼∩
L,X ,mcs φ. Thus, 

⋂
MCSX

L (S1) �X φ. By Lemma 24, 
⋂

MCSX
L (S) = ⋂

MCSX
L (S1) ∪ ⋂

MCSX
L (S2). 

Hence, by monotonicity, 
⋂

MCSX
L (S) �X φ. So, S |∼∩

L,X ,mcs φ.

[⇐] Suppose that S |∼∩
L,X ,mcs φ. Thus, 

⋂
MCSX

L (S) �X φ. By Lemma 21, 
⋂

MCSX
L (S) ∩ S1 �X φ. By Lemma 24, ⋂

MCSX
L (S1) = ⋂

MCSX
L (S) ∩ S1. Thus, 

⋂
MCSX

L (S1) �X φ, and so S1 |∼∩
L,X ,mcs φ.

[⇒] Suppose that S1 |∼∪
L,X ,mcs φ. Thus, there is a T1 ∈ MCSX

L (S1) for which T1 �X φ. Let T2 ∈ MCSX
L (S2). By Lemma 24, 

T = T1 ∪ T2 ∈ MCSX
L (S). By monotonicity T �X φ, and so S |∼∪

L,X ,mcs φ.

[⇐] Suppose that S |∼∪
L,X ,mcs φ. Thus, there is a T ∈ MCSX

L (S) for which T �X φ. By Lemma 24, T1 = T ∩ S1 ∈
MCSX

L (S1). By Lemma 21, T1 �X φ. Thus, S1 |∼∪
L,Xmcs φ. �

Proposition 35 (non-interference for �-based entailments). Let L = 〈L,�〉 be a uniform logic satisfying the conditions in Section 2.2. 
Then for every �-consistent set X and  ∈ {∩, �, ∪}, the entailment |∼

L,X ,�
satisfies non-interference.

Proof. We show the claim for  = �. The other two cases ( ∈ {∩, ∪}) are similar (using Lemmas 21 and 25) and are left to 
the reader.

[⇒] Suppose that S1 |∼�
L,X ,�

φ. Thus, for every ω1 ∈ �X
L (S1) there is a set T ∈ ω1 for which T �X φ. Let ω ∈ �X

L (S). 
By Lemma 25, there are ω1 ∈ �X

L (S1) and ω2 ∈ �X
L (S2), for which ω = ω1 � ω2. Thus, there is a set T1 ∈ ω1 for which 

T1 �X φ. Let T2 ∈ ω2 be arbitrary. Then T = T1 ∪ T2 ∈ ω, and by monotonicity, T �X φ. Thus, S |∼� φ.
L,X ,�
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[⇐] Suppose that S |∼�
L,X ,�

φ. Thus, for all ω ∈ �X
L (S) there is a set T ∈ ω for which T �X φ. Let ω1 ∈ �X

L (S1). We have 
to show that there is a set T1 ∈ ω1 for which T1 �X φ. Let ω2 be arbitrary in �X

L (S2). By Lemma 25, ω = ω1 �ω2 ∈ �X
L (S). 

Thus, there is a T ∈ ω for which T �X φ. Again, by Lemma 25, T ∩ S1 ∈ ω1 and by Lemma 21, (T ∩ S1) �X φ. Thus, 
S1 |∼�

L,X ,�
φ. �

Corollary 24 (Non-Interference). Let L = 〈L,�〉 be a uniform logic satisfying the conditions in Section 2.2, and let X be a �-consistent 
set of L-formulas. Then entailments of the form |∼

L,†,X ,sem satisfy non-interference in the following cases:

1. † ∈ {con, set},  ∈ {∩, �}, sem ∈ CMP.
2. † ∈ {con, set, dir},  = ∪, sem ∈ ME.
3. † = dir,  ∈ {∩, �}, sem ∈ ME.

Proof. The items are immediate consequences of the results listed in the following table:

Item ∩ � ∪
1, † = con Theorem 4 (3), Proposition 34 Theorem 4 (2,5), Proposition 34 –

1, † = set Theorem 4 (3), Proposition 34 SE: Theorem 4 (5), Proposition 34 –
ME: Theorem 5, Proposition 35

2 – – Theorem 4 (1), Proposition 34

3 Theorem 4 (4), Proposition 34 Theorem 4 (2), Proposition 34 – �
Proposition 36 (crash-resistance). All the entailments relations in Corollary 24 satisfy crash-resistance.

Proof. Let |∼X be any of the entailments relations in Corollary 24 (given a logic L = 〈L,�〉 as in the corollary and a �-
consistent set X ), and let S ′ be any set of L-formulas for which there is a atom p ∈ Atoms(L) \ (Atoms(S ′) ∪ Atoms(X )). By 
the non-triviality of �, necessarily � p. Suppose first that S ′ is �X -consistent. Then by Lemma 21, S ′ �X p and therefore 
S ′ |�X p. Suppose now that S ′ is �X -inconsistent. Then, by Lemma 21, if there is an argument a = � ⇒ p ∈ ArgXL (S ′), � is 
�X -inconsistent. By Proposition 2 and 3, S ′ |�X p.

On the other hand, since p |∼X p (by Proposition 26), by non-interference (shown in Corollary 24), p, S ′ |∼X p. Therefore, 
S ′ cannot be contaminating. Since S ′ was arbitrary this completes the proof. �
Note 27. The only case missing in Corollary 24 and in Proposition 36, which involves skeptical entailments (i.e., when  ∈
{∩, �}), is for † = dir and sem ∈ SE. Indeed, we give a counter-example for this case. Let X = ∅, S1 = {p} and S2 = {q, ¬q}. 
It is easy to see that S1 |∼

L,†,∅,sem p while S1, S2 |�
L,†,∅,sem p.26 Note also that {q, ¬q} is a contaminating set in this case.

We are now ready to summarize the results in this section.

Note 28. Throughout this section we have shown the results first for mcs-based entailments and then applied them to 
argumentation-based entailments. Some of the mcs-based results are novel (also due to the distinction between strict and 
defeasible premises). An overview of the results concerning mcs-based reasoning provided in this paper is given in Ta-
ble 6. (These results may be compared with those regarding simple contrapositive ABFs, provided in [52, Section 6.4], and 
concerning ASPIC and ABA in general, provided in [8, Section 2.3.3].)

Table 6
Summary of the results on mcs-based entailments. For paraconsistency, 
non-interference and crash-resistance L is assumed to be uniform.

Postulates |∼∩
L,X ,mcs |∼�

L,X ,mcs |∼∪
L,X ,mcs

cumulativity � � –
preferentiality – � –
rationality – – –
monotonicity – – �
conservative �-consistency � � �
paraconsistency � � �
non-interference � � �
crash-resistance � � �

Table 7 summarizes the results on inconsistency-tolerance by argumentative entailments.

26 See similar considerations in Example 7.
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Table 7
Summary of the results in Section 6.2. For paraconsistency, non-interference and crash-
resistance L is also assumed to be uniform. (The results concerning sem = cmp follow 
from Note 22.)

Postulates for inconsistency handling |∼∩
L,†,X ,sem |∼�

L,†,X ,sem |∼∪
L,†,X ,sem

conservative �-consistency CMP CMP CMP
paraconsistency CMP CMP CMP
non-interference, † ∈ {con, set} CMP CMP ME ∪ {cmp}
non-interference, † = dir ME ME ME ∪ {cmp}
crash-resistance, † ∈ {con, set} CMP CMP ME ∪ {cmp}
crash-resistance, † = dir ME ME ME ∪ {cmp}

7. Related work

In the context of formal argumentation, postulate-based investigations of argumentation frameworks play a primary 
role, allowing not only to indicate how the ingredients of the framework affect its properties, but also to compare related 
approaches to argumentation-based reasoning. In [48], for instance, Gorogiannis and Hunter study the properties of attack 
relations in logic-based argumentation frameworks. In particular, they consider various necessary and sufficient conditions 
on attack relations similar to those in Definition 4. Unlike our case, however, the discussion in [48] is concentrated on 
classical logic as the base logic of the frameworks, where the supports of the arguments are assumed to be classically 
consistent and the minimal ones that entail the argument’s conclusion (recall Note 1).

Studies on requirements on the attack relations to fulfill rationality postulates are also presented in [3,76], where the 
conditions are somewhat different than the ones presented here, and include, among others,

• conflict-dependence: for each (a, b) ∈A, Supp(a) ∪ Supp(b) � F,27

• conflict-sensitivity: for each a, b ∈ ArgCL(S), if Supp(a) ∪ Supp(b) � F then (a, b) ∈A, and
• validity: for each E ⊆ ArgCL(S), if E is conflict-free, then Supp(E) is consistent.

Again, the discussion is limited to classical logic as the base logic and to arguments whose support sets are both consistent 
and minimal in the sense discussed previously.

The interplay between logical principles about argumentation, on the one hand, and inference principles as studied in 
proof theory, on the other hand, is also considered in [33]. In that paper a series of logical principles of attack relations in 
argumentation frameworks is stated, and their collection leads to a characterization of classical logical consequence relations 
that only involves argumentation frameworks. We refer to [33] and [34] for further details.

Properties of extensions of logic-based argumentation frameworks are studied in, e.g., [2,3,29,48], again with respect to 
restricted supports of arguments. For checking the postulates, the following two properties of attack relations are assumed 
in [2]:

• if Supp(a) ⊆ Supp(b), then (a, c) ∈A implies (b, c) ∈A,
• if Supp(a) ⊆ Supp(b), then (c, a) ∈A implies (c, b) ∈A.

Postulates that are related to reasoning with maximally consistent subsets [71] play a primary role in several works 
and may be traced back to Cayrol [32]. For detailed discussions and surveys on this subject we refer to [7,10]. Rationality 
postulates for other forms of structured argumentation, such as ASPIC+ and ABA systems, can be found, e.g., in [38,61,62]
(for ASPIC+ systems), in [37,53] (for ABA systems), and in [41] (for logic-associated abstract argumentation frameworks). We 
refer to the survey in [8] for some comparisons of the rationality postulates that these approaches to structured argumen-
tation satisfy. Moreover, a variety of ABA frameworks (such as the simple contrapositive ABAs in [51] and (non-prioritized) 
ASPIC systems) can be embedded in sequent-based argumentation frameworks,28 thus the results provided here may be 
carried on to those systems.

Our study involves some ideas and notions from proof theory.29 The main contribution of this work in relation to related 
works such as the ones mentioned above is that it provides a comprehensive presentation of the semantical as well as the 
inferential properties of logic-based argumentation frameworks, where only minimal (proof-theoretical) requirements are 
made on the base logic and very little is assumed on the form of the arguments. This allows to capture a wide range of 
core logics and to base arguments only on deducibility in the core logic. In our study, we avoid the use of further conditions 
(such as conflict dependence, conflict sensitivity and the condition discussed in Notes 12 and 15) that are computationally 
demanding, and so are difficult to verify.

27 Where F is the propositional constant for falsity, satisfying F � ψ for every formula ψ .
28 We refer to [26] and [27] for some translations to sequent-based frameworks and a general approach to structured argumentation, respectively.
29 The incorporation of proof theoretical concepts and techniques in order to investigate and implement specific logical argumentation frameworks is not 

new (see, for instance, [14,15,27,43,49,50]).
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Studies of inferential behavior of logical argumentation, and in particular its relation to non-monotonic reasoning, can 
be found in [15, Section 5], in the context of dynamic proof systems. Similar studies for ABA and ASPIC systems appear, 
respectively, in [36,52,53] and [56]. A comprehensive survey that relates these disciplines and mentions further results 
regarding logic-based approaches to formal argumentation appears in [8]. This survey also cites (without proofs) some 
results from our paper. The main results that were formulated after the writing of the survey (and therefore do not appear 
in it) are related to the extensions characterization according semantics classes (Theorem 1), the evaluation of the induced 
entailments (Section 5.2 and several parts in Section 6), the incorporation of strict premises in addition to the defeasible 
ones, and the coverage of all the Dung-style completeness-based semantics (including stage, eager, and ideal semantics, 
which are not considered in [8]).

8. Conclusion

Postulate-based studies are a common approach to evaluate and compare different formalisms sharing a similar purpose. 
In some cases (like the AGM postulates for belief revision [1]) this is a cornerstone of a formal discipline that serves as a 
standard setting and a trigger for a variety of related works and formalisms. In this work we have provided a comprehensive 
postulate-based study of logical (sequent-based) argumentation frameworks, based on propositional languages and Tarskian 
logics that satisfy some very basic assumptions. This study covers all the central postulates for argumentation frameworks in 
this context (as well as some new ones), and refers to all the completeness-based Dung-style semantics, as well as the main 
(support-based) attack rules between arguments. It therefore lays the foundations for logical argumentation frameworks 
allowing for the making of logically justified inferences in the presence of possibly conflicting defeasible and of strict 
assumptions.

The results of this paper are summarized in Tables 2–7. Our findings also allow us to provide full characterization 
results concerning the extensions of sequent-based frameworks (Theorems 1 and 3) and the induced entailment relations 
(Theorems 4 and 5).

Future work involves, among other, the study of more expressive formalisms, like those that are based on first-order 
logics, or formalisms that incorporate priorities among the arguments (see, e.g., [9] for a description of how this can be 
done in the context of sequent-based argumentation).
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