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In Brief
We provide an extensive
overview of FGF-regulated
kinome signaling in breast
cancer cells, enabled via a
custom-made targeted kinome
activity assay. We apply logic-
based dynamic modeling to
verify literature-derived
biological pathways. This in-
depth comparison between
FGF2, FGF3, FGF4, FGF10, and
FGF19 signaling revealed
differential response and
involvement of kinases hitherto
undescribed in the FGF context.
Moreover, we expanded on the
existing FGF-signaling
knowledge, for example, by
revealing differential activation of
ARAF and BRAF for FGF4 and
FGF2, respectively.
Highlights
• Treatment with different FGFs activate distinct signaling pathways in cancer cells.

• A targeted kinome activity assay enables the quantification of kinome dynamics.

• Different FGF stimulations generate disparate kinome dynamics.

• Logic-based dynamic modeling provides biological pathway validation.

• FGF2 treatment induces BRAF activation and FGF4 results in ARAF activation.
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RESEARCH
Elucidating Fibroblast Growth Factor–Induced
Kinome Dynamics Using Targeted Mass
Spectrometry and Dynamic Modeling
Tim S. Veth1,2, Chiara Francavilla3 , Albert J. R. Heck1,2, and Maarten Altelaar1,2,*
Fibroblast growth factors (FGFs) are paracrine or endo-
crine signaling proteins that, activated by their ligands,
elicit a wide range of health and disease-related pro-
cesses, such as cell proliferation and the epithelial-to-
mesenchymal transition. The detailed molecular pathway
dynamics that coordinate these responses have remained
to be determined. To elucidate these, we stimulated MCF-
7 breast cancer cells with either FGF2, FGF3, FGF4, FGF10,
or FGF19. Following activation of the receptor, we quan-
tified the kinase activity dynamics of 44 kinases using a
targeted mass spectrometry assay. Our system-wide ki-
nase activity data, supplemented with (phospho)prote-
omics data, reveal ligand-dependent distinct pathway
dynamics, elucidate the involvement of not earlier re-
ported kinases such as MARK, and revise some of the
pathway effects on biological outcomes. In addition, logic-
based dynamic modeling of the kinome dynamics further
verifies the biological goodness-of-fit of the predicted
models and reveals BRAF-driven activation upon FGF2
treatment and ARAF-driven activation upon FGF4
treatment.

Fibroblast growth factors (FGFs) and cofactors heparin/
heparin-sulfate or beta-klotho induce trans-autophospho-
rylation upon binding to FGF receptors (FGFRs), thereby
activating signaling pathways and regulating diverse biological
processes (1–5). There are 18 FGF ligands known so far that can
activate the seven alternatively spliced isoforms of four FGFR
genes. Specific combinations of receptor and ligand result in
the regulation of a plethora of diverse cellular processes,
including cell differentiation, cell proliferation, and epithelial-
mesenchymal transition (EMT) (6, 7).
Besides the role of FGFs in health, during development and

adult life, dysregulated FGF-FGFR signaling is implicated in
various types of cancer, including breast cancer (8–11). FGF2
is commonly detected in the tumor microenvironment of
breast cancer and can induce tumor growth (12, 13). FGF3,
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FGF4, and FGF19 are located on the 11q13 amplicon, which is
amplified in 15 to 20% of breast cancer patients and are all
linked to increased tumor progression (14–17). FGF10 can
drive type III EMT in breast cancer, promoting invasiveness
(18). These unfavorable effects in breast cancer patients result
from diverse and complex FGF-driven cellular signaling (10).
The fine-tuned coordination of the diverse FGF-driven

cellular processes is thought to be regulated by the MAPK/
ERK pathway, the PI3K pathway, the PLCγ pathway, and the
JAK-STAT pathway (19–23). For example, the MAPK/ERK
pathway is thought to drive cell proliferation, and the PI3K
pathway is believed to regulate EMT (24, 25). These pathways
are highly dependent on multiple kinases that relay signals by
adding phosphate groups to proteins or other molecules. Ki-
nase activity is often determined by phosphorylation in the
kinase activation loop, which can be measured and quantified
using a targeted mass spectrometry–based kinome assay (26,
27). Even though the main pathways involved in FGF signaling
are elucidated, molecular mechanistic insights into the regu-
lations of the differential cellular processes are still largely
lacking (28, 29).
FGF2, FGF3, FGF4, FGF10, and FGF19 are all associated

with breast cancer; however, insights into the differential
signaling of these FGFs are lacking. It is unclear what path-
ways and kinases are regulated by the different FGFs. Also, no
mechanistic signaling comparisons are investigated to eluci-
date the importance of each of the FGFs and their possible
roles in breast cancer. Gaining these biological insights is key
to understanding the implications of FGF signaling in breast
cancer.
Here, we aim to broaden our understanding of FGF

signaling by quantifying temporal kinase activation dynamics
using a selected reaction monitoring (SRM) assay with broad
coverage of kinases that are involved in the FGFR signaling
pathway. To verify the biological results from the longitudinal
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FGF-Induced Kinome Dynamics
SRM data, we created a dynamic mechanistic model of the
signaling pathway using logic-based ordinary differential
equations. To explain discrepancies in our developed model,
we used modeling-guided analysis of shotgun phosphopro-
teomics data. Our approach successfully mapped FGF2,
FGF3, FGF4, FGF10, and FGF19 signaling in breast cancer
cell lines and allowed us to add hitherto unknown involved
kinases and signaling dynamics to FGF stimulations.
EXPERIMENTAL PROCEDURES

Cell Culture

MCF-7 (ATCC), BT-474 (ATCC), and EFM-192a (DSMZ) cells were
grown in Dulbecco's modified Eagle's medium supplemented with
10% fetal bovine serum (Sigma) and 2 mM glutamine. Cells were
regularly tested for mycoplasma. All cells were cultured in a humidified
incubator equilibrated with 5% CO2 at 37 ◦C. Experiments were
performed after the fifth passage and before the 20th passage to limit
cell heterogeneity between experiments.

Sample Preparation for Mass Spectrometry

For mass spectrometry experiments, ~5 million cells were plated in
triplicates in 10 cm plates in regular medium. After 24 h, the medium
was changed to serum-starved medium supplemented with 5 μg/ml
heparin (Thermo Fisher Scientific). After 24 h, cells were incubated
with 50 ng/ml of either FGF2 (Peprotech), FGF3 (KyvoBio), FGF4
(Peprotech), FGF10 (Peprotech), or FGF19 (Peprotech). Cells were
washed three times with ice-cold PBS, scraped, and snap-frozen until
further sample preparation.

Cell Growth Assay

Triplicate groups of ~0.1 million cells were plated in 12-well plates
again first in regular medium and subsequently in medium with either
5 μg/ml heparin or without. After 24 h, one of the five different FGF
ligands was added, and the plate was incubated in an IncuCyte ZOOM
at 37 ◦C/5% CO2 until the end of the experiment. Pictures of each well
were taken every hour, of which the percentage plate coverage was
determined. Significance between groups was determined using an
ANOVA and Tukey’s range test (p < 0.05).

Scratch Wound-Healing Assay

In 12-well plates, triplicates of 3e5 cells were plated in a regular
medium; after 24 h, the medium was changed to starved medium
supplemented with 5 μg/ml heparin. Subsequently, the cells were
verified to be confluent when the scratch assay was performed (30).
The scratch assay was analyzed as described before (31). In short,
using the ImageJ/Fiji script “Wound Healing Size Tool”, the percent-
age of wound closure was calculated between t = 24 h and t = 0 (32).
Significance between groups was determined using an ANOVA and
Tukey’s range test (biological triplicates, p < 0.05).

Spectral Library Generation

Spectral libraries were used to determine peptide fragmentation
characteristics and their indexed retention time, which are key for
identifying peptides in the tier 2 SRM assay. The custom mix of heavy-
labeled peptides (JPT or Thermo Fisher Scientific) was mixed with iRT
peptides (Biognosys) and analyzed using an Orbitrap Q-Exactive HF
(Thermo Fisher Scientific). An unscheduled parallel reaction moni-
toring method scanned for the +2 and +3 charged peptides, including
all possible methionine oxidations. Peptides were separated using a
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2 h gradient; a 120 k resolution was used for the parallel reaction
monitoring assay, resulting in a minimum of five spectra per peptide.
Raw files were processed with MaxQuant (version 1.6.10.43). As a
library, the verified human proteome from UniProtKB (release 09-2019)
was used, with the addition of the Biognosys iRT peptides, resulting in
20,370 proteins in total. The digestion mode was set to “specific”
using Trypsin/P and a maximal number of miscleavages of 1. Car-
bamidomethyl cysteine was set as fixed modification, and the variable
modifications were set to serine/threonine/tyrosine phosphorylation,
methionine oxidation, and isotope labels. The first peptide tolerance
was set to 20 ppm, and the main peptide tolerance was set to
4.5 ppm. MS2 tolerance was set to 20 ppm. The search results were
filtered using a 1% peptide and protein false discovery rate cut-off; the
minimal Andromeda score for modified peptides was set at a
threshold of 40 and a minimal delta score of 6. Subsequently, using
Skyline (version 20.1.1.83), spectra were manually validated, and
when deemed reliable, pseudo-MS2 spectra were generated, which
were used as the peptide library.

SRM Assay Development

The SRM assay was developed using previously described
methods (27). The assay was developed on a TSQ Altis (Thermo Fisher
Scientific). In brief, the 10 most intense fragment ions from the library
were used as initial transitions. These transitions were used to opti-
mize multiple parameters, such as retention time and collision energy.
The collision energy was optimized per transition using Skyline, with
the TSQ Vantage CE formula as starting point (CE = 0.03 m/z + 2.905
for doubly charged precursors and CE = 0.038 m/z + 2.281 for pre-
cursor charges of 3 and higher) and optimized using steps of 1
voltage.

Protein Digestion SRM Assay

Snap-frozen protein pellets were lysed, reduced, and alkylated in
lysis buffer (1% sodium deoxycholate (SDC), 10 mM tris(2-
carboxyethyl)phosphine hydrochloride), 40 mM chloroacetamide,
and 100 mM TRIS, pH 8.0 supplemented with phosphatase inhibitor
(PhosSTOP, Roche) and protease inhibitor (cOmplete mini EDTA-free,
Roche). Cells were heated at 95 ◦C and sonicated with a Bioruptor
Plus (Diagenode) for 15 cycles of 30 s. Bradford protein assay (Bio-
Rad Protein Assay Kit I, Bio-Rad) was used to determine the protein
amount, after which samples were split into 200 μg aliquots. Proteins
were digested overnight at 37 ◦C with trypsin (1:50 μg/μg) (Sigma-
Aldrich) and lysyl endopeptidase (1:75 μg/μg) (Wako). Heavy-labeled
phosphopeptides were added to the samples. The SDC was precipi-
tated with 2% formic acid (FA) twice, after which samples were
desalted and enriched in an automated fashion using the AssayMap
Bravo platform (Agilent Technologies) with corresponding AssayMap
C18 (Agilent Technologies) reverse-phase column as previously
described (33). The enrichment of phosphorylated peptides, in short,
samples were dissolved in 80% ACN/0.1% TFA. Fe3+ IMAC car-
tridges were used, using 80% ACN/0.1% TFA as washing buffer and
10% Na4OH as elution buffer.

SRM LC-MS/MS Setup

Samples were analyzed on a TSQ Altis (Thermo Fisher Scientific)
coupled to an UltiMate 3000 (Thermo Fisher Scientific) and an easy
spray analytical column (ES802A, 25 cm, 75 mm ID PepMap RLSC,
C18, 100 Å, 2 mm particle size column (Thermo Fisher Scientific)).
First, samples were reconstituted in 2% LC-MS grade FA. Samples
were loaded on a trap column (Acclaim PepMap 100 C18 HPLC
Column 0.3 × 5 mm with 5 μm particles (Thermo Fisher Scientific)) with
2.2% buffer A (0.1% FA) for 3 min and subsequently separated using
0 to 32% buffer B (99.9% ACN, 0.1% FA) in 35 min at 300 nl/min and
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followed by a 20 min column wash with 80% buffer B at 300 nl/min
and 10-min column equilibration at 2.2% B. The TSQ Altis spray
voltage was set at 1.9 kV and fragmented at 1.5 mTorr in the second
quadrupole. The first quadrupole was set at 0.7 da FWHM, and the
third quadrupole was set at 1.2 da FWHM. All transitions were
measured with optimized collision energy without scheduling and a
cycle time of 1.5 s.

SRM Data Assessment

All experiments were analyzed using Skyline-Daily (version
20.2.1.404) (34). The quality of the peptides was assessed mainly on
the signal similarity between the heavy and the light peptides. The
most important aspects were perfect co-elution, peak shape, and
relative contributions of each transition between the heavy and the
light peptide. A rdotp >0.95 was maintained to indicate the similarity
between the heavy and the light peptide. In-house R scripts were used
for further data visualization and analysis.

Experiment Design and Statistical Rationale

All treated and untreated cellular groups used in this study entailed
n = 3 biological replicates. Samples for phosphoproteomic analyses
were enriched for phosphorylated peptides, and all samples were
injected separately into the LC-MS/MS system. Each raw file was
separately processed using the MaxQuant software. This number was
sufficient to evaluate reproducibility and quantitatively compare the
various conditions.

Logic-Based Dynamic Modeling

Logic-based dynamic modeling was performed as described earlier
(35). In short, first, a prior knowledge network (PKN) was generated
using Omnipath and converted to a simple interaction file (36).
Normalization was done per kinase across all the FGFs. The average
fold change to t = 0 was scaled between 0 to 1 using the 99%
interquartile range (biological triplicates) described in Equation 1.

X = x−x.005
x.995−x.005

(1)

Values <0 or >1 were set to 0 or 1, respectively. The different FGFs
were set to 0.75 for their modeling.

The model was trained using the freely available CNORode for all
FGFs simultaneously (37). Each kinase can be described using a
continuous update function Bi where the activity of a kinase xi is
predicted {0,1} using the associated upstream effectors, as shown in
Equation 2 (38).

xi = τi(Bi(f(x1,i)f(x2,i),…f(xn,i))− xi) (2)

τi can be interpreted as the kinase responsiveness to upstream
effectors where a small value indicates a slower response. Each
transfer function is a Hill-type function, as previously described and
presented in Equation 3 (39).

fij(x) =1−
(1−x)nij

(1−x)nij−knijij

(1+ knijij ) (3)

The sigmoidal shape curve is determined by parameters n and k.
The k parameter can be interpreted as the strength of the interaction
where a high k value describes a high signal throughput.

Kinase Dynamic Parameter Estimation

Each kinase is assigned a fixed n value of 3 and a k and τ value
determined by the dynamic modeling. CNORode and the MEIGOR
toolkit were used, which uses the normalized kinase activity data and
the PKN to determine the best k and τ values based on the smallest
root-mean-square error (RMSE) (40). The method entails L2 normali-
zation to prevent overfitting, which was set to a value of 10−5. The
update function was verified to have achieved optimal performance
based on the RMSE response curves. Model goodness-of-fit was
determined using Pearson’s r and the RMSE of all measured and
predicted time points of all kinases. The biological RMSE was deter-
mined using the deviation between the measured values and the
mean.

Peptide Work-Up Phosphoproteomics

Peptide work-up was performed identically to the SRM peptide
workup except that no heavy-labeled peptides were added after
digestion.

Peptide Work-Up Proteomics

Snap-frozen protein pellets were lysed, reduced, and alkylated in
lysis buffer (1% SDC, 10 mM tris(2-carboxyethyl)phosphine hydro-
chloride), 40 mM chloroacetamide, and 100 mM TRIS, pH 8.0 sup-
plemented with protease inhibitor (cOmplete mini EDTA-free, Roche).
Cells were heated at 95 ◦C and sonicated with a Bioruptor Plus
(Diagenode) for 15 cycles of 30 s. Bradford protein assay (Bio-Rad
Protein Assay Kit I, Bio-Rad) was used to determine the protein
amount, after which samples were split into 10 μg aliquots. Proteins
were digested overnight at 37 ◦C with 1:50 trypsin (Sigma-Aldrich) and
1:75 and lysyl endopeptidase (Wako), after which samples were
desalted using an Oasis platform, dried down, and stored at −80 until
further use.

Data-Dependent Analysis of Phosphoproteomics

Samples were suspended in 2% FA and analyzed on an Exploris
(Thermo Fisher Scientific) coupled to an UltiMate 3000 (Thermo Fisher
Scientific), fitted with a μ-precolumn (C18 PepMap100, 5 μm, 100 Å,
5 mm × 300 μm; Thermo Fisher Scientific), and an analytical column
(120 EC-C18, 2.7 μm, 50 cm × 75 μm; Agilent Poroshell). Peptides are
loaded in 9% buffer A (0.1% FA) for 1 min and separated using 9 to
36% buffer B (80% ACN, 0.1% FA) in 97 min at 300 nl/min and fol-
lowed by a 6 min column wash with 99% buffer B at 300 nl/min and a
10-min column equilibration at 9% B. The mass spectrometer (MS)
was operated in data dependent acquisition mode, with the MS1
scans in a range of 375 to 1600 m/z acquired at 60 k, using an
automatically set automatic gain control target. MS2 scans were ac-
quired with a 16 s dynamic exclusion at a 30 k resolution, 28%
normalized collision energy, and an isolation window of 1.4 m/z.

Raw files were processed via MaxQuant version 1.6.17.0 using the
verified human proteome from UniprotKB (release 09-2019) containing
20,369 proteins (41). A maximum of five modifications and two mis-
cleavages were set using fixed carbamidomethyl modification, and the
variable modifications oxidized methionine, protein N-terminal acety-
lation, and serine/threonine/tyrosine phosphorylation. The protein and
peptide false discovery rates were set to <0.01 and conducted with
match between runs enabled. The first MS1 peptide tolerance was set
to 20 ppm, the main MS1 peptide tolerance to 4.5 ppm, and MS2
match tolerance to 20 ppm. No normalization or imputation was
applied.

Shotgun Proteomics Analysis

Samples were suspended in 2% FA and analyzed on a Q-Exactive
HF (Thermo Fisher Scientific) coupled to an UltiMate 3000 (Thermo
Fisher Scientific), fitted with a μ-precolumn (C18 PepMap100, 5 μm,
100 Å, 5 mm × 300 μm; Thermo Fisher Scientific), and an analytical
column (120 EC-C18, 2.7 μm, 50 cm × 75 μm; Agilent Poroshell).
Mol Cell Proteomics (2023) 22(8) 100594 3
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Peptides are loaded in 9% buffer A (0.1% FA) for 1 min and separated
using 9 to 44% buffer B (80%ACN, 0.1% FA) in 155 min at 300 nl/min
and followed by a 6 min column wash with 95% buffer B at 300 nl/min
and a 10-min column equilibration at 9% B. The MS was operated in
data dependent acquisition mode, with the MS1 scans in a range of
375 to 1600 m/z acquired at 60 k, using an automatic gain control
target of 3e6. MS2 scans were acquired with a 24 s dynamic exclusion
at a 30 k resolution, 27% normalized collision energy, and an isolation
window of 1.4 m/z.

Raw files were processed via MaxQuant version 1.6.17.0 using
the verified human proteome from UniprotKB (release 09-2019)
containing 20,369 proteins (41). A maximum of five modifications
and three miscleavages was set using fixed carbamidomethyl
modification, and the variable modifications oxidized methionine
and protein N-terminal acetylation. The protein and peptide false
discovery rates were set to <0.01 and conducted with match be-
tween runs enabled. The first MS1 peptide tolerance was set to
20 ppm, the main MS1 peptide tolerance to 4.5 ppm, and MS2
match tolerance to 20 ppm. Further analysis was performed using
artMS version 1.12.0 building on MSstats (http://artms.org) (42).
MSstats imputation was done using accelerated failure time
modeling, and the samples were median normalized after
imputation.

FGFR Quantitative Polymerase Chain Reaction Quantification

MCF-7 cells were plated in triplicates. Subsequently, the samples
were lysed and prepared for quantitative polymerase chain reaction
(qPCR) analysis using the protocol adapted from (43). In short, sam-
ples were lysed and isolated using the vendor’s instructions of
NucleoSpin RNA plus (Macherey-Nagel) with the addition of a DNase
removal step using RNase-Free Dnase (Qiagen). Next, 500 ng of RNA
was used to obtain complementary DNA using the vendor’s in-
structions of AH iScript (Bio-Rad). The qPCR was performed at 95 ◦C
for 10 min, followed by (95 ◦C for 30 s, 55 ◦C for 30 s, and 72 ◦C for 30
s), a total of 40 times. Normalization was performed using beta-actin
and glyceraldehyde-3-phosphate dehydrogenase following (44). The
primers used are listed in supplemental Table S2.

RAP1 Activation Assay

RAP1 activity was determined following the supplier’s instructions
(Merck, Cat# 17-321). In short, MCF-7 cells were plated in 15 cm
plates and incubated for 60 min with FGF2, FGF3, FGF4, FGF10,
FGF19, or without FGF and lysed using the provided lysis buffer. After,
equal amounts of protein were used for the RAP1 pulldown, including
one positive control consisting of MCF-7 cell lysates incubated with
GTPγS. Subsequently, a Western blot was conducted using the pro-
vided RAP1 antibodies. Linear adjustments were performed using
Fiji (32).

RESULTS

Dynamic Kinase Activity Quantification

Here, we performed (phospho)proteomics experiments to
elucidate the specific effect of different FGF ligands on
FGFR activation and downstream signaling. Thereby we
focused on FGFR signaling in breast cancer cells induced
by either FGF2, FGF3, FGF4, FGF10, or FGF19. To under-
stand FGF signaling, we quantified temporal system-wide
kinase activity using a dedicated SRM assay targeting the
activation loops of a widespread panel of kinases (Fig. 1A).
We performed extensive literature mining of the FGFR
signaling pathway to increase coverage of the kinases
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involved, resulting in the addition of nearly 200 phospho-
peptides spanning 50 kinases to the original assay devel-
oped by Schmidlin et al. (2019), generating an assay
comprising 484 phosphopeptides on 197 kinases
(supplemental Table S1) (27).
To select an appropriate cell line, this SRM assay was

initially used to monitor the system-wide kinome activity
response of a set of breast cancer cell lines, namely MCF-7,
BT-474, and EFM-192a cells, upon FGF2 and FGF4 stim-
ulation as these bind the majority of FGFR spliceoforms.
From these data, we concluded that MCF-7 cells especially
displayed a broad kinome response after stimulation
(supplemental Fig. S1). We reasoned this would be
explained by FGFR expression; however, surprisingly, qPCR
quantification of FGFR expression in the panel of tested
cells showed that the MCF-7 cells exhibited an overall low
expression of FGFRs (Fig. 1B and supplemental Fig. S2 and
supplemental Table S2). This highlights that FGFR expres-
sion alone does not solely determine the extent of down-
stream signaling. Due to the observed broad kinome
response, we did proceed with the MCF-7 cells, which were
incubated with either FGF2, FGF3, FGF4, FGF10, or FGF19
and the cofactor heparin for 0, 5, 15, 30, and 60 min (45,
46). Using the kinase activation loop SRM assays, we
quantified kinase activity profiles of 46 phosphorylated sites
spanning 44 kinases (supplemental Table S3). Of these, 35
kinases displayed significant regulation over time (ANOVA p
< 0.05) upon stimulation with at least one of the five tested
FGF ligands. Each of the tested ligands resulted in differ-
ential regulation of kinases across most kinase families
(Fig. 1C) that were primarily members of the MAPK/ERK,
PKA, and/or PLCγ pathways (Fig. 1, D and E) (1, 47).

Fine-Tuned Activation of the MAPK/ERK Signaling
Pathway

As the MAPK/ERK pathway is known to be involved in
FGF signaling, we first compared the kinase activity pro-
files acquired with the SRM assays of kinases involved in
this pathway. FGF-stimulated MAPK/ERK activation is
commonly regarded to be directed via the RAS-RAF-MEK-
ERK signaling cascade (25, 48–53). In MCF-7 cells,
only FGF2, FGF4, and FGF10 treatments significantly
activated several of the kinases in the MAPK/ERK pathway
(Fig. 2A).
Investigating the kinases involved in the MAPK/ERK

pathway after either FGF2, FGF4, or FGF10 treatment
showed rapid and high regulation of especially the main
signaling hub of the MAPK/ERK pathway, namely MEK
(MEK1 and MEK2) and ERK (ERK1 and ERK2) (Fig. 2B)
(54). FGF2 and FGF4 treatment resulted in an >10-fold
increase of MEK- and ERK-activating phosphorylation
and FGF10 resulted in an >2-fold increase. Notably, MEK
and ERK activation was about 10-fold higher than the
other kinases in the MAPK/ERK pathway, supporting their

http://artms.org
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FIG. 1. Stimulation with FGF2, FGF3, FGF4, FGF10, or FGF19 results in differential kinome regulation. A, schematic overview of the
experimental approach, whereby a targeted kinase activation loop SRM assay was used to monitor system-wide kinase activity upon treatment
of MCF-7 cells with distinct FGF ligands. B, qPCR experiments were performed to monitor FGFR expression on three different cell lines. FGFR
expression was normalized to beta-actin and glyceraldehyde-3-phosphate dehydrogenase. C, kinome tree with kinases significantly regulated
by at least one of the tested FGF ligands represented by black dots (ANOVA p < 0.05, triplicate measurements). D, principal component analysis
(PCA) of the kinase activity data at different time points and with the different tested FGFs. Mean values were used for the independent triplicate
measurements. E, heatmap through unsupervised hierarchical clustering of all significantly (ANOVA p < 0.05) regulated phosphorylated peptides
over all time points and FGFs (with each experiment performed in triplicate). Not identified phosphorylated peptides are represented in gray.
FGF, fibroblast growth factor; FGFR, FGF receptor; qPCR, quantitative polymerase chain reaction; SRM, selected reaction monitoring.
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central role as signaling hub (Fig. 2B). MEK and ERK dy-
namics per FGF treatment showed high correlation, dis-
playing direct regulation of ERK as the target of MEK.
However, MEK and ERK signaling dynamics showed a
lower correlation between different FGF stimulations, also
in the case of strong activation via FGF2 and FGF4. FGF4
treatment resulted in fast activation peaking at 15 min and
showing an additional increase after the 30-min time point.
FGF2 treatment on the other hand showed slightly slower
activation with also the maximum at 15 min that plateaus
from 30 min onwards (Fig. 2B). This suggests differential
MAPK/ERK pathway regulation.
Even though FGF2, FGF4, and FGF10 all activated MEK

and ERK, all ligands resulted in unique downstream acti-
vation, which could either be the result of different activa-
tion mechanisms and feedback loops or due to different
activation dynamics of the same pathway (55, 56). After
FGF2 and FGF4 treatment, but not FGF10, MEK and ERK
dynamics highly correlated with RSK1 and RSK2 dynamics,
which are regulators of cell proliferation and cell survival
(Fig. 2B) (57–59). FGF2 incubation resulted in the activation
of CDK12 and a transient 1.5-fold increase in activating
phosphorylation of PRAK, of which the role in the context of
FGF has remained elusive (60, 61). FGF4 incubation resulted
in the activation of CDK1 and CDK2. Interestingly, cyclin
dependent kinase (CDK) activation dynamics are relatively
modest, with a maximum increase in activating phosphor-
ylation of 60% (Fig. 2B). Uniquely, FGF10 treatment did not
activate kinases downstream of ERK but inactivated CDK2,
CDK7, CDK11a, CDK11b, and PRAK. Inactivation of these
kinases occurred concurrently after 30 min, which may
originate from a negative feedback loop (62). FGF10 may
initiate this feedback loop by recycling its receptor FGFR2b
to the cell membrane, or FGFR2b intracellular transport may
expose the receptor to the substrates responsible for the
feedback loop (63). Notably, only FGF10 showed sustained
PRAK inactivation, which has been associated with
decreased tumor progression (64, 65).
FGF3 and FGF19 have been described to activate the

MAPK/ERK pathway in a subset of cell lines through
FGFR4 activation (66–69). In contrast, in our dataset, we
did not observe any activation of the MAPK/ERK pathway
after FGF3 and FGF19 stimulations, although, in our
proteome profiles of MCF-7 cells after 24 h of incubation
with different FGFs, we did clearly identify the FGFR4
receptor.
In the context of FGF stimulation, MAPK/ERK pathway

activation is considered to drive cell growth and increase
is color-coded by the FGF ligand used, and only plots are depicted when
lines represent a 1.5 fold change, and 90% confidence intervals are pre
ligand and heparin on cellular growth. Growth curves of MCF-7 cells, inc
5 μg/ml of heparin. The confluency percentage was taken as a readout to
the SDs per time point and ligand used). FGF, fibroblast growth factor.
tumor progression (52, 70, 71). To verify whether cell
growth was indeed induced in our experimental conditions,
we monitored cell growth after FGF stimulations using an
IncuCyte ZOOM. Only after stimulation with FGF2 and
FGF4, we temporarily observed significantly increased cell
growth (two-tailed t test, p < 0.05) (Fig. 2C). This finding
was in line with the high MAPK/ERK pathway activation
quantified in FGF2- and FGF4-stimulated cells. FGF10
stimulation did not substantially increase cell growth even
though the MAPK/ERK pathway was activated. This sug-
gests that a signaling threshold must be reached to acti-
vate proliferation or that alternative signaling is required for
cell growth. Notably, adding heparin significantly increased
the proliferation rate of FGF2- and FGF4-treated MCF-
7 cells, while only adding heparin did not increase cell
proliferation (Fig. 2C).
Consistent Downregulation of the PKA Pathway

Next, we examined the PKA pathway. In our analysis, in-
cubation with each of the tested FGFs, except FGF3, resulted
in the significant inactivation of the PKA pathway (Fig. 3A). We
quantified the change in phosphorylation of the upstream
regulator PDPK1, which directly regulates PKA activity by
phosphorylating Thr-197 (72). All measured kinases involved
in the PKA pathway highly correlated with PDPK1 dynamics
for all FGF stimulations in our dataset.
PDPK1 can also initiate PI3K pathway activation. Thus,

we examined changes in substrate phosphorylation of the
central regulators of the PI3K pathway, namely AKT1 and
AKT2, using shotgun phosphoproteomics analysis of FGF-
stimulated MCF-7 cells. All FGF treatments resulted in
minimal changes in AKT1 and AKT2 substrate phosphory-
lation (supplemental Fig. S4). Only FGF2 and FGF4 treat-
ments increased the phosphorylation of two and four
substrates, respectively. However, these phosphorylated
residues are also downstream targets of the MAPK/ERK
pathway. Therefore, minimal changes in the PI3K pathway
activity were observed.
All tested FGFs, except for FGF3, resulted in the inactivation

of PKA pathway kinases PKA, GSK3A, and MARK kinases
(Fig. 3B). Inactivation was consistent but modest. The most
significant decrease was a 2-fold decrease on two phos-
phorylated sites in the activation loop of MARK1, MARK2, and
MARK3, respectively (supplemental Fig. S3). Notably, no
relation has been described between MARK kinases and FGF
signaling up to this day. MARK kinases control cell polarity by
regulating microtubules, and reduced MARK kinase activity
the ligand changed the phosphorylation at that site significantly. Gray
sented per phosphopeptide. C, influence of incubation with the FGF
ubated with 50 ng/ml of each of the tested FGF ligands with or without
analyze cell growth and plotted (data was acquired in triplicate showing
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has been linked to EMT, which is in line with the EMT-inducing
effects of FGFs (73, 74).
Besides the similar PKA pathway dynamics by FGF2, FGF4,

FGF10, and FGF19 quantified by the targeted kinome assay,
solely FGF10 stimulation led to a decrease in phosphorylation
of the downstream kinases PAK4, DYRK1A, DYRK1B, and
PKN (Fig. 2B). This reveals broad FGF10-induced negative
regulatory mechanisms. Notably, the inhibited PAK4, which
plays a role in cell adhesion, can be regulated via ERK, the
PI3K pathway, and direct binding by PKA (75–78). The
observed kinase activity dynamics of PAK4 strongly corre-
lated with the rest of the PKA pathway while opposing the
MAPK/ERK pathway activity dynamics. This observation
suggests that PAK4 is linked to the PKA pathway, not the
MAPK/ERK pathway.
All herein quantified kinases in the PKA pathway are impli-

cated in EMT, a key process in regulating tumor metastasis
(79, 80). FGF2, FGF4, FGF10, and FGF19 have all been
described to induce EMT. To investigate whether the tested
FGFs induced EMT, we next performed a wound-healing
assay that assays cell migration capabilities, which is a key
process in EMT (81, 82). These assays revealed that only
FGF2 and FGF4 showed a significant increase in wound-
healing capacity of 15 and 5% compared to unstimulated
MCF-7 cells, respectively (Fig. 3C). Interestingly, with the
addition of heparin, this dampened to 10% for FGF2 and
increased to 40% for FGF4, revealing a modest role for hep-
arin in regulating EMT. To find further support for FGF-induced
EMT, we extracted proteins from the EMTome database
associated with EMT, specifically focusing on proteins that
directly trigger EMT or are key markers for EMT (83). In their
proteomic profiles (supplemental Tables S4 and S5), FGF2
and FGF4 stimulations showed an identical profile of 15 EMT-
associated proteins significantly regulated after 24 h (Fig. 3D),
supporting an EMT-like phenotype downstream of FGF2 and
FGF4. FGF10 stimulation resulted in less pronounced
expression changes in 7 of the 15 observed EMT proteins, in
part confirming the role of FGF10 in inducing EMT, whereas
FGF3 and FGF19 showed no significant expression changes
in EMT-related proteins (84). This is further supported by gene
set enrichment analysis of the hallmarks of EMT as provided
by MSigDB, which in our proteome data are only significantly
upregulated after FGF2 and FGF4 treatment (supplemental
Fig. S5) (85). Altogether, these findings show that FGF2,
FGF4, FGF10, FGF19 all inactivated numerous kinases
involved in EMT. However, only FGF2 and FGF4 treatment
resulted in increased wound-healing capacities and an EMT-
lines represent a 1.5 fold-change, and 90% confidence intervals are prese
wound assay, and after 24 h, percentage closure of the scratch was
stimulated cells with or without 5 μg/μl heparin. A two-sided t test wa
were extracted from the shotgun dataset. Significantly regulated prote
mesenchymal transition; FGF, fibroblast growth factor.
like phenotype on proteome level, FGF10 treatment only
resulted in a more EMT-like phenotype on proteome level, and
FGF19 did not show either. Further mechanisms must thus be
regulated to induce EMT.

Undistinguished PLCγ Signaling Along the FGF–FGFR Axis

Next, we explored the measured activity profiles of the ki-
nases within the PLCγ pathway. The PLCγ pathway is rela-
tively understudied in the context of FGFR stimulation and
regulates specialized functions (86–91). In our current study,
PKD1, PKD2, PKD3, PKCδ, and PKCγ showed significant
regulation when incubated with at least one of the tested FGFs
(supplemental Fig. S6). Kinase activation dynamics were
nonlinear, hinting at the presence of multiple feedback loops
(62). Moreover, kinases in the PLCγ pathway showed a rela-
tively low correlation in their activation dynamics, and all
tested FGFs showed distinct kinase regulation (supplemental
Fig. S6).
Indeed, only FGF2 transiently activated PKCα/β/γ by acti-

vating phosphorylation Thr-514, yet no other PLCγ pathway
kinases were regulated (92). FGF4, FGF10, and FGF19 all
activated PKD1 and PKD3, whereas FGF4 and FGF10 also
showed the inactivation of PKCδ and PKD2 or only PKCδ,
respectively.

Distinct FGF Ligands Induce Distinct and Diverse Temporal
Dynamics in Phospho-Signaling

Not only does FGF specificity to the various FGFRs deter-
mine the biological outcome, but also the affinity for the
various FGFRs is crucial. In receptor tyrosine kinases biology,
it is known that ligands with high affinity to the receptor can
lead to fast, transient activation, while lower affinity ligands,
binding to the same receptor, lead to a slower sustained
activation, resulting in a different biological outcome (93, 94).
To evaluate whether each FGF differentially regulated
signaling dynamics, OmniPath was used to construct biolog-
ical networks in which kinases are ordered based on the initial
time point when regulation was observed (Fig. 4) (36).
Indeed, in our data, each of the tested FGFs did lead to

distinct timing of initial pathway regulation. FGF2 induced a
fast initial activation within 5 min of all measured pathways.
This is expected as FGF2 binds to most FGFRs with high
affinity (21). Although FGF4 binds the same FGFR subset as
FGF2, except for FGFR1b, it does so with different affinity. As
a potential consequence, and in contrast to FGF2, FGF4
stimulation inactivated the PKA pathway in our experiments
only after 15 min (Fig. 4). FGF10 stimulation activated the
nted per phosphopeptide. C, MCF-7 cells were subjected to a scratch
measured. The boxplots represent triplicate measurements of FGF-
s used to validate the significance. D, proteins associated with EMT
ins are displayed using an asterisk (FDR <0.05). EMT, epithelial-to-
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FIG. 4. Temporal kinome dynamics following FGF treatment. MCF-7 cells were treated with either FGF2, FGF3, FGF4, FGF10, or FGF19,
together with heparin. The resulting temporal kinome dynamics were quantified using the targeted activation loop assay and normalized to the
t = 0 time point. The presented kinome signaling dynamics are separated per FGF used for stimulation, and kinases are ordered based on
significant initial activation (ANOVA + Tukey’s range test, p < 0.05, biological triplicates). Black and red arrows indicate whether measured kinase
activity increased or decreased over time, respectively. The fold change compared to the t = 0 time point is represented by the thickness of the
arrows. MARK1/2/3 phosphorylated site T215/T208/T211 is ambiguous to T219/T212/T215. PKAa/b/g phosphorylation site T196/T198/T198 is
ambiguous to T200/T202/T202. FGF, fibroblast growth factor.

FGF-Induced Kinome Dynamics
MAPK/ERK pathway within 5 min, similar to FGF2 and FGF4.
However, this was followed by a strong downregulation after
30 min of more downstream targets. Last, FGF3 and FGF19
resulted in relatively slow (and modest) activation only 30 min
after stimulation (Fig. 4).

Logic-Based Dynamic Modeling Validates the Known FGF
Pathways but also Identifies Putative New Players

Pathway models such as in Figure 5 are based on existing
knowledge and are thus inherently biased towards well-
characterized pathways. Therefore, validation of the biolog-
ical model is needed to identify either missing or inaccurate
connections between kinases or missing signaling nodes. To
verify our biological model, predict signaling dynamics be-
tween kinases, and find possible gaps, we used a dynamic
mechanistic model based on logic-based ordinary differential
equations (95). First, a PKN was built using information
available via OmniPath using only kinases quantified in all FGF
stimulations (Fig. 4) (36). Next, the logistic-based ordinal dif-
ferentiations were calculated using the quantitative longitudi-
nal kinase activity data of all FGF stimulations together. For
each node, a speed factor (τ) was calculated to represent the
responsiveness of a kinase’s activation to upstream kinases
activation (38). Low values indicate a slow transfer of activa-
tion from kinases’ upstream activators. For each node, also an
edge-specific transmission parameter (k) was calculated,
which represents the quantitative signal that is transferred
between kinases (38). High values of the nonlinear k
10 Mol Cell Proteomics (2023) 22(8) 100594
parameters indicate that relatively little quantitative signal is
transferred via the edge. To evaluate the quality of the pre-
dicted τ and k values, Pearson’s r and the RMSE of all the
quantitative kinome values in the model were assessed and
compared to the RMSE between biological replicates (Fig. 5, A
and B). The RMSE of the model (0.18) is almost as low as the
RMSE observed between the biological replicates (0.1). The
model thus successfully predicts most of the kinase activity,
with a small error likely due to unknown entries in the PKN.
To explore these unknowns in the PKN, the RMSE of indi-

vidual phosphopeptides was evaluated (Fig. 5C). High RMSE
suggests that the model is insufficient to predict a kinase
activation state, which results from missing or erroneous
connections between nodes in the network. Therefore, a high
predictive error can be used to find novel biological connec-
tions or nodes. The model showed no highly contradictive
prediction errors for single kinases (RMSE error >0.5), which
occurs when activation of one kinase leads to activation of the
next kinase, but inactivation is measured. However, some ki-
nases showed errors that were higher than the biological
variance.
Kinases with a relatively high error are part of the PLCγ and

MAPK/ERK pathways. Error in kinases regulated by the PLCγ
pathway is expected due to the low pathway coverage (Fig. 4).
Surprising, however, is the substantial error in MEK activity
prediction after FGF2 stimulation (Fig. 5C). The model failed to
predict the fast activation of MEK and ERK and did not
incorporate the oscillatory patterns typical for feedback loops
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FIG. 5. Logic-based dynamic modeling reveals unknowns in FGF-induced signaling. A, logic-based dynamic modeling was used to
predict a speed factor (τ) and a transmission parameter (k) for the kinases across the PKA, PLCγ, and MAPK/ERK pathways. These represent the
signal transduction speed and the quantitative signal transferred between kinases, respectively. B, the root-mean-squared error (RMSE) of the
predicted values by logic-based dynamic modeling and the measured values by the targeted kinome loops assay. The values were normalized
using the 99% interquartile range. The light gray area represents the biological variation in the measurements. The dots represented are the
mean values of the replicates and all time points. C, mean RMSE values for the measured versus predicted kinase activity values. The modeling
was performed using identical networks, meaning downstream kinase-kinase relations constitute the same predictive k and tau values.
Therefore, predictive downstream errors may indicate differential regulation between FGFs. D, line plots of the measured and predicted kinase
activity using the function with the lowest error across all FGF stimulations. Before the logic-based dynamic modeling, the average of the
quantified kinome values was taken (biological triplicates) and normalized using the 99% interquartile range. The blue line represents the model
prediction, and the black line represents the quantified kinase activity using the targeted kinome assay. FGF, fibroblast growth factor; RMSE,
root-mean-square error.
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(Fig. 5D). Further, following MEK-ERK signaling downstream,
all measured CDKs, including CDK1, CDK2, CDK7, CDK11a,
and CDK11b, show a relatively high predictive error. This
suggests differential MEK-ERK signaling to their downstream
effectors. We, therefore, hypothesized that the error in MEK-
ERK-CDK signaling is indicative of unknown links between
kinases or missing nodes in the current model. We will focus
on this more in the next section.

Modeling-Guided Analysis Unveils Differential FGF
Signaling

With the aim to explain the predictive modeling errors for
MEK, ERK, and CDKs, we expanded the model using manu-
ally curated literature mining, shotgun phosphoproteomics
analysis of FGF-stimulated MCF-7 cells (supplemental
Table S6), and our targeted kinome data. Significantly regu-
lated proteins were used to construct a more refined pathway
(Fig. 6A) (96–98).
A potential missing link came from the phosphoproteomics

data that suggested a RAP1 activation signature exclusively
for FGF2. RAP1 is an alternative activator of MEK-ERK, whose
activators include EPAC2 and proto-oncogene tyrosine-pro-
tein kinase (SRC), and its main negative regulator is RAP1gap
(Fig. 6A) (99–101). Uniquely, FGF2 treatment abolished the
signal of Tyr-284 and Thr-301 phosphorylation of EPAC2,
which is important for EPAC2 membrane localization. More-
over, FGF2 treatment increased activating phosphorylation
Ser-17 of SRC about 4-fold and resulted in a 1.6-fold increase
in regulating phosphorylation Ser-484 on RAP1gap (102–107).
These phosphorylations highlight possible RAP1 activation.
Therefore, we conducted a RAP1 activity assay. However, this
RAP1 activation assay showed no significant RAP1 activation
in all tested ligands (supplemental Fig. S7). From these data,
we concluded that although pathways commonly involved in
RAP1 activation were regulated, RAP1 was not activated and
thus was not the cause of differential MEK-ERK dynamics.
Next, we compared FGF2- and FGF4-induced signaling

along a more detailed RAS-RAF-MEK-ERK signaling axis
(Fig. 6, A and B). FGF2 and FGF4 treatment resulted in fine-
tuned and distinct regulation along this signaling axis,
especially of the RAF family members (serine/threonine-
protein kinase Raf, A-Raf, B-Raf (ARAF, BRAF, RAF1)) that
coordinate MEK-ERK activation (108). Only FGF2 treatment
enabled BRAF activity by abolishing the signal of the inhibi-
tory ERK target site Ser-151 on BRAF (Fig. 6B) (109). More-
over, FGF2 treatment resulted in reduced activity of ARAF
following significant downregulation of Ser-582 phosphory-
lation, which is needed for 14-3-3 binding to increase the
activity of ARAF (110). FGF2 also resulted in a reduced active
state of RAF1 implied by an 8-fold lower signal of Ser-621
phosphorylation, necessary for 14-3-3 activation, and by
the negative feedback phosphorylation of Ser-642 by ERK on
RAF1 (Fig. 6B) (111–113). Contrarily, FGF4 stimulation
showed an activating signature for ARAF, indicated by the
12 Mol Cell Proteomics (2023) 22(8) 100594
phosphorylation of the regulatory site Ser-186 on ARAF
(114). Further, FGF4 stimulation resulted in inhibitory phos-
phorylation on BRAF and RAF1, with a two-fold increase in
Ser-151 phosphorylation on BRAF and a strong increase in
Ser-642 phosphorylation on RAF1, which was absent in the
control (Fig. 6B). In conclusion, the RAF family members
showed differential regulation as FGF2 treatment indicated
BRAF-driven activation, while FGF4 treatment indicated
ARAF-driven activation.
To further validate these signaling differences, we again

applied logic-based dynamic modeling using the data from
the targeted kinome assay. In the updated model, FGF2
signaling was directed via BRAF and FGF4 via ARAF. More-
over, to model the negative feedback loops, one negative
feedback loop between ERK and the FGF activation of ARAF
and BRAF was added, as well as a negative feedback loop
from ERK to RKIP and from RKIP to ARAF and BRAF acti-
vation of MEK (115). The updated pathway showed improved
modeling accuracy (Fig. 6C). Especially the FGF2 signaling
prediction now has high accuracy that follows the measured
feedback loops, giving confidence to the predicted biological
pathway. Prediction of FGF4 signaling dynamics was also
improved over the initial model, with more accurately modeled
activation dynamics, however, is not optimal yet (Fig. 6C).
Indeed, the updated model supports the two different modes
of ERK activation downstream of FGF2 and FGF4,
yet alternative regulators need to be identified to fully explain
FGF signaling dynamics.
Following ERK activation further downstream, we set

out to use the shotgun phosphoproteomics data to
confirm predictive errors for the CDKs and validate dif-
ferential regulation downstream of ERK. Cumulatively, 17
different phosphorylated sites on proteins that regulate
the cell cycle were quantified, including CDKs, cyclins that
regulate CDK activity, and RB1, which are all central to
cell cycle progression (Fig. 6D) (116, 117). FGF3, FGF10,
and FGF19 showed little CDK regulation in our model, in
line with the targeted kinome data and the modeling re-
sults. FGF2 and FGF4 showed distinct activation patterns
of CDKs (Fig. 6D), agreeing with the targeted kinome data
and the modeling error. These distinct activation patterns
confirm the predictive error of the dynamic model and
show that FGF2 and FGF4 regulate cell cycle progression
differently.
DISCUSSION

By investigating the FGF-induced dynamic kinome
regulation using a targeted kinome assay, we quantified
and compared the signaling responses of FGF2, FGF3,
FGF4, FGF10, and FGF19. All FGF stimulations resulted in
a unique biological response in MCF-7 cells, with FGF2
and FGF4 having the broadest kinome response, FGF10
having a moderate response, and FGF3 and FGF19



FIG. 6. Regulation of RAF family kinases modulates ERK signaling. A, mapping of phosphorylations of proteins involved in ERK activation
shows tight regulation of the RAF kinase family members. The regulation does occur in the RAP1 activation pathway of ERK, yet no RAP1
activation was measured, suggesting this does not contribute to ERK activation. B, quantified peptide abundances corresponding to (A).
Significance is depicted using * (p < 0.05) or *** (p < 0.001) using a two-sided t test (biological triplicates). If all values are below the detection
limit, this is shown using a ↓. Abundances are acquired using shotgun phosphoproteomics after 60-min stimulation with the different FGFs. C,
line plots of the measured kinase activity and the predicted kinase activity using the function with the lowest error across all FGF stimulations.
The PKN used is the updated biological pathways, also presented in (A). The average of biological triplicates was taken and normalized using the
99% interquartile range. Model predictions are shown in blue, and quantified kinase activity is shown in black. D, phosphorylation of cell cycle–
regulating proteins from the phosphoproteomics data. Significant regulated sites are displayed (two-sided t test, p < 0.05, biological triplicates).
Scores represent log2 fold changes. FGF, fibroblast growth factor; PKN, prior knowledge network.
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showing a modest response. We find complex activation
mechanisms that initiate FGF signaling as biological re-
sponses upon FGF stimulation vary between cell lines, do
not correlate with FGFR expression level, and are influ-
enced by heparin.
Looking at the FGFs in a breast cancer context, FGF-

stimulated cells activate biological pathways that can
contribute to the hallmarks of cancer (7, 118). The MAPK/
ERK pathway is thought to drive cell proliferation, and the
PI3K pathway is believed to regulate EMT (51). However,
we find that simply activating these pathways does not per
se lead to cell proliferation or EMT, respectively. Impor-
tantly, this irregularity between kinome or pathway activa-
tion and predicted biological outcome emphasizes the
complexity of these processes and their incomplete un-
derstanding. FGF2 and FGF4 increased cell proliferation
and EMT in MCF-7 cells. However, FGF3, FGF10, and
FGF19 are reported to regulate cell proliferation and EMT
but were not able to regulate these processes in our sys-
tem. Additional signaling factors may be needed to sensi-
tize or costimulate the cells for a more pronounced
biological response (15, 66, 119).
The quantification of dynamic kinase responses instead of

single time points is highly advantageous for understanding
FGF-stimulated signaling because these dynamics expose
unknown signaling routes and improve the reliability of the
predicted signaling network. Often, biological networks are
deduced from literature without proper validation. For this
purpose, logic-based dynamic modeling provides a suitable
solution. Logic-based dynamic modeling of the FGF stimula-
tions resulted in an overall low network error implying feasible
network predictions. Mainly the PLCγ pathway showed higher
predictive errors due to a higher sparsity of the network, partly
due to limited insights into PLCγ signaling in the FGF context.
This highlights the importance of further studying PLCγ
signaling to understand its functions in FGF signaling (120).
The dynamic modeling highlighted differential and fine-

tuned regulation of the MAPK/ERK pathway. Regulating
phosphorylations of the RAF kinases indicate that FGF2
stimulation is directed via BRAF, while FGF4 stimulation is
directed via ARAF. Literature on RAF kinase family regulation
by FGFs is limited; however, understanding RAF regulation is
essential because different RAF kinases perform different
biological functions (121, 122). Moreover, understanding RAF
signaling provides targeted insights that can be exploited to
successfully deploy RAF-specific inhibitors in various dis-
eases, such as cancer (123). For example, Metzner et al. show
that FGF-driven melanoma is, in some cases, sensitive to the
BRAF inhibitor RG7204 (124).
To conclude, this study highlights the differential signaling

of FGFs and adopts existing logic-based dynamic modeling
techniques to direct, strengthen, and increase the discovered
biological knowledge.
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A., Sequeira, G., et al. (2019) FGF2 induces breast cancer growth
through ligand-independent activation and recruitment of ERα and
PRBΔ4 isoform to MYC regulatory sequences. Int. J. Cancer 145, 1874–
1888

13. Sharpe, R., Pearson, A., Herrera-Abreu, M. T., Johnson, D., Mackay, A.,
Welti, J. C., et al. (2011) FGFR signaling promotes the growth of triple-
negative and basal-like breast cancer cell lines both In Vitro and In Vivo.
Clin. Cancer Res. 17, 5275–5286

14. Karlsson, E., Waltersson, M. A., Bostner, J., Pérez-Tenorio, G., Olsson, B.,
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