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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Through the association of protein complexes to DNA, the eukaryotic nuclear genome is

broadly organized into open euchromatin that is accessible for enzymes acting on DNA and

condensed heterochromatin that is inaccessible. Chemical and physical alterations to chro-

matin may impact its organization and functionality and are therefore important regulators of

nuclear processes. Studies in various fungal plant pathogens have uncovered an associa-

tion between chromatin organization and expression of in planta-induced genes that are

important for pathogenicity. This review discusses chromatin-based regulation mechanisms

as determined in the fungal plant pathogen Verticillium dahliae and relates the importance

of epigenetic transcriptional regulation and other nuclear processes more broadly in fungal

plant pathogens.

Introduction

Arguably, one of the most important transition towards eukaryotic evolution has been cell

compartmentalization, which allowed physical separation of diverse cellular processes [1]. One

of the organelles that arose from this compartmentalization is the nucleus, the organelle that

harbors most of the DNA of the eukaryotic cell. Nuclear processes include those that are

required for short-term cell response, such as transcription, as well as processes that ensure

long-term survival and inheritance, such as DNA replication and DNA repair.

Regulation of DNA-templated processes involves the histone code, made up of posttransla-

tional chemical modifications to DNA-interacting histone proteins that help regulate genome

functionality [2,3]. Eukaryotes have 4 canonical histone proteins (histone 2A, histone 2B, his-

tone 3, and histone 4) that form globular octameric protein complexes by incorporation of 2

monomers of each histone protein [4]. By binding 145–147 bp of DNA, these protein com-

plexes form nucleosomes that provide the packaging that is required to fit DNA into the con-

fined space of the nucleus [4,5]. Each histone protein carries a flexible N-terminal tail that

extends away from the nucleosome complex. These histone tails are enriched for amino acid

residues that can undergo chemical modification, such as methylation, acetylation, and phos-

phorylation [6]. In addition to modifications to canonical histones, eukaryotes can also
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incorporate histone variants that substitute the core canonical histones in their nucleosomes

[7,8]. The combination of histone modifications and variants cannot only locally regulate

nuclear processes, but also more globally. Locally, nuclear processes can be regulated through

histone modifications or variants that serve as recognition sites for enzymes that act on DNA

[2,9–11], whereas they can affect DNA-accessibility over larger chromosomal regions and

shape three-dimensional (3D) genome arrangements within the nucleus, leading global effects

[12,13].

In filamentous fungi, the histone code was initially studied in the saprophyte Neurospora
crassa [14,15]. In this species, histone modifications affect transcription, DNA replication,

DNA repair, and chromosome segregation [14,16–21]. The impact of histone modifications

have been studied in other filamentous fungi, including saprophytes as well as human patho-

gens, such as Aspergillus species [22,23], and in various plant pathogens [24–28]. One such

plant pathogenic fungus is Verticillium dahliae, which causes vascular wilt disease in hundreds

of host plants [29]. V. dahliae is an ascomycete, haploid fungus that reproduces predominantly

asexually [30]. Genomic analyses on various strains uncovered that V. dahliae harbors a

genome that evolved through large-scale chromosomal rearrangements, including duplica-

tions that have been followed by reciprocal gene losses [30–34]. Eventually, these processes

resulted in a genome structure that can be characterized by core genomic regions that are

shared by all strains and so-called adaptive genomic regions (AGRs, previously called “lineage-

specific,” LS) that show a considerable degree of plasticity among strains [27,31]. Recently, we

explored epigenetic features in relation to transcriptional regulation and genome evolution in

V. dahliae, resulting in novel insights into the role of epigenetic modifications (Fig 1) [27,35–

38]. In this review, we discuss epigenetic regulation of nuclear processes in plant pathogenic

fungi, based on our recent findings for V. dahliae.

Epigenetic mechanisms affect transcription

To colonize their plant hosts, plant pathogens secrete so-called effector molecules to support

host colonization, often through tampering with host immunity [39,40]. The coordinated

expression of effectors requires specific transcriptional regulation, likely balancing the need to

subvert the host immune system with the potential cost of triggering immunity or other nega-

tive consequences of transcription [41,42]. Regulation of transcription in eukaryotes involves

binding of transcription factors to promoter regions, followed by recruitment of DNA-depen-

dent RNA polymerases that generate mRNA molecules [43]. In plant pathogenic fungi, only a

few transcriptional regulators have been identified that are involved in effector gene expres-

sion. For instance, the transcriptional regulator Sge1 of Fusarium oxysporum f. sp. lycopersici is

required for expression of particular proteinaceous effector genes during infection, and dele-

tion of Sge1 compromises pathogenicity on tomato [44]. Homologs of Sge1 were shown to also

control expression of pathogenicity-related genes in several other plant pathogens [45–48].

Similarly, the transcription factor Pf2 regulates expression of some pathogenicity-related genes

in various necrotrophic fungal plant pathogens [49–51]. The Magnaporthe oryzae regulator of

G-protein signaling RGS1 acts as a transcriptional regulator by repressing the expression of

numerous effector genes before plant penetration [52]. In these examples, the transcriptional

regulators globally coordinate effector gene expression upon infection; however, it is impor-

tant to note that individual effector genes are often expressed during specific stages of infection

[41,42,53]. Therefore, additional transcriptional regulatory mechanisms are required to accu-

rately express effector genes during infection.

The binding and recruitment of transcriptional machinery is influenced by chromatin con-

densation over broad genomic regions [10,54] and more locally by particular histone
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modifications that recruit or inhibit local protein binding [55,56]. Thus, epigenetic mecha-

nisms are involved in the regulation of transcription. The chromatin at actively expressed

genes is often hyperacetylated, while silent chromatin is hypoacetylated [57]. Therefore, his-

tone acetylation may regulate transcription through activity of histone acetyl transferases

(HATs) and histone deacetylase complexes (HDACs) [58,59]. Various fungal plant pathogens

utilize HATs during infectious life stages [60–62], including the corn smut fungus Ustilago
maydis, the banana pathogen Fusarium oxysporum f. sp. cubense, and the wheat pathogen

Fusarium graminearum. In these fungi, deletion of genes encoding HAT family members

affected fungal virulence as well as lifestyle switches [60–62]. In U. maydis, activity of the

HDAC member Sir2 is involved in pathogenic development, although it is unclear whether

Sir2 is truly active in deacetylation [63]. Recent results in Saccharomyces cerevisiae have raised

concerns about the role of histone acetylation in transcriptional regulation, as temporal experi-

ments show that transcriptional activation occurs before histone acetylation, which suggests

that even though histone acetylation may be involved in transcriptional regulation during dis-

ease development, it may not directly activate transcription [64].

During axenic cultivation of numerous plant pathogenic fungi, when effector genes are gen-

erally repressed, DNA regions coding effector genes were enriched for H3K9me3 and

H3K27me3, and mutants in genes encoding the histone lysine methyltransferases KMT1 and

Fig 1. A model of genome organization and epigenetic modifications in V. dahliae. AU : AnabbreviationlisthasbeencompiledforthoseusedinFig1:Pleaseverifythatallentriesarecorrect:Chromosomal regions

differentially display distinct chromatin features, associated with differences in 3D genome organization. (A)

Representation of the chromatin structure on a linear V. dahliae chromosome. AGRs (green blocks) display a distinct

open (uncondensed) chromatin profile, in which the nucleosomes are marked by tri-methylation of histone 3 lysine 27

(H3K27me3, green circles) [27]. H3K27me3-marked regions, consisting of AGRs, as well as particular regions of the

core genome, are enriched for differentially expressed genes in vitro and in planta (DEGs, blue blocks) [35].

Centromeres (orange blocks) in V. dahliae, but not in all sister species are specifically associated with the LTR

retrotransposon LTRE9 (pink blocks) [37]. The chromatin profile at centromeres consists of tightly packed

nucleosomes that are marked by tri-methylation of histone 3 lysine 9 (H3K9me3, red circles) and by DNA-methylation

(5mC, red stars) [36,37]. Besides LTRE9 TEs at the centromere, additional inactive TEs in the core genome are marked

by H3K9me3 and 5mC, while active TEs in the AGRs are not associated with these marks. (B) Schematic 3D

representation of the organization of 3 chromosomes in V. dahliae. Locally, genomic regions form TADs (indicated by

dotted circles) that interact more strongly within the domain than with other domains. Intriguingly, TADs within

AGRs are less well insulated and interact more freely with neighboring TADs [38]. Centromeres often form single

TADs and display strong inter-centromeric interactions [37]. AGR, adaptive genomic region; TAD, topologically

associating domain; TE, transposable element.

https://doi.org/10.1371/journal.ppat.1011525.g001
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KMT6, respectively, that are responsible for the deposition of these marks displayed de-

repressed effector gene expression [24–26,28,65–68]. As the histone modifications H3K9me3

and H3K27me3 are generally associated with inaccessible heterochromatin, these findings led

to the hypothesis that genomic regions containing effector genes are heterochromatic, and

therefore, inaccessible to the transcriptional machinery, when the pathogen grows outside of

the host plant (Fig 2). Consequently, in order to express the effector genes that facilitate infec-

tion, pathogens are generally hypothesized to require chromatin de-condensation at effector

gene-containing regions, possibly through depletion of H3K9me3 and H3K27me3 (Fig 2)

[25,69,70].

To study epigenetic regulation of effector gene expression, analyses are preferably per-

formed in planta, the niche where fungal plant pathogens naturally occur and the context in

which they are most studied. However, epigenetic studies of fungal chromatin during plant

infection are typically impeded by the usually low pathogen-to-plant biomass, resulting in

excessive amounts of plant-derived sequences from interaction samples [69]. Consequently, to

our knowledge, no analyses on genome-wide presence of histone modification dynamics dur-

ing infection have yet been reported. Current reports that discuss epigenetic regulation of tran-

scription in planta rely on association with H3K27me3 in vitro, genetic perturbation altering

global H3K27me3 deposition, or the analysis of only a few representative genes in planta

[25,28,65,67,68]. Therefore, the full scope of epigenetic regulation and histone modification

dynamics that occur during fungal-host infection remains unknown.

In agreement with the notion that effectors are heterochromatically silenced in vitro, V.

dahliae genomic regions harboring effector genes and other environmentally regulated genes

are enriched for H3K27me3 in vitro, and loss of H3K27me3 in the Set7 deletion mutant, leads

to transcription of previously marked genes [27,35]. These results are consistent with the idea

that transcriptional regulation of effector gene expression in V. dahliae may also occur in a

similar fashion as proposed in other filamentous plant pathogens [27,35]. However, experi-

ments to test the link between histone modification status and transcriptional activity between

different axenic conditions reveal a different situation [35]. Here, we find that although

H3K27me3 is enriched at effector loci, and it is required for repression, our results do not sug-

gest that depletion of H3K27me3 is the major event leading to transcriptional activation [35].

Fig 2. Hypothesis on epigenetic regulation of effector gene expression in fungal plant pathogens. (A)

Chromosomal regions containing effector genes (yellow blocks) are marked by heterochromatin-associated histone

modifications (green circles) and the chromatin is condensed and inaccessible to transcription machinery (colored

ellipses) when the pathogen does not require effector gene expression. (B) Upon plant recognition, chromosome

regions containing effector genes lose their heterochromatin-associated histone modifications and the chromatin

decondenses and becomes accessible to the transcription machinery.

https://doi.org/10.1371/journal.ppat.1011525.g002
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This is because differential expression of genes located in H3K27me3-marked domains do not

require concomitant changes in H3K27me3 status [35], although we cannot fully exclude that

H3K27me3 is lost in only a subset of fungal nuclei during effector gene activation and that

chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq), which

is used to determine the presence of this marks, does not have sufficient sensitivity to detect

such small differences within the population. Loss of H3K27me3 in the plant pathogenic fungi

Fusarium graminearum, Fusarium fujikuroi, and M. oryzae similarly leads to induction of only

a subset of previously H3K27me3-associated genes [24,26,65], showing that other factors are

involved in transcriptional regulation as well. Interestingly, the lack of concomitant removal of

H3K27me3 and transcriptional activation may have to do with the finding in V. dahliae that

H3K27me3-marked chromatin is not nearly as condensed as H3K9me3-marked regions dur-

ing fungal cultivation in vitro (Fig 1A) [27]. Thus, our results in V. dahliae, combined with the

results in other fungi, indicate that the previously postulated hypothesis does not fully describe

the role of H3K27me3 in regulation of effector gene expression. Rather, H3K27me3 presence

may serve to help repress transcription during unwarranted conditions and serve as a binding

site or nucleation point to regulate transcriptional activation upon detection of particular envi-

ronmental signals.

Proteins recognizing and binding to histone modifications are generally known as histone

readers and can function in various cellular processes, including transcriptional regulation

[71]. For instance, the TAF3 subunit of the basal transcription complex TFIID specifically

binds H3K4me3 in a human cell line [72]. In response to genotoxic stress, TAF3 is recruited to

H3K4me3-marked genes to stimulate formation of the preinitiation complex and thereby reg-

ulates initiation of gene expression [73]. In contrast, binding of H3K4me3 in another human

cell line by the histone reader ING2, a subunit of the mSin3a histone deacetylase complex,

leads to rapid repression of gene expression [74]. It is also possible for a single histone reader

to recognize multiple histone marks and elicit different transcriptional activity depending on

the other present histone marks. For instance, the Arabidopsis histone reader EARLY BOLT-

ING IN SHORT DAY (EBS) recognizes both H3K4me3 and H3K27me3 and can switch

between binding those histone marks to balance gene expression [75]. As the histone code in

plant pathogens has only been partially scrutinized, it is possible that H3K4me3 or another,

perhaps yet unidentified, histone modification works in conjunction with H3K27me3 to regu-

late transcription of effector genes. Although cooperation between histone marks as target of a

histone reader is unknown in fungi, it is clear that histone marks themselves do affect each oth-

er’s deposition. An interesting example of such interaction between histone modifications

occurs between H3K36me3 and H3K27me3 [20,76]. H3K36me3 deposition by the F. fujikuroi
histone methyltransferase Ash1 occurs predominantly in the transcriptionally inactive subtelo-

meric regions, and this presence of H3K36me3 antagonizes deposition of H3K27me3 [76]. In

contrast, experimentally induced H3K27me2/3 deposition in N. crassa prevalently occurred at

Ash1-deposited H3K36me3 domains [20]. In both fungi, H3K36me3 deposited by another his-

tone methyltransferase, Set2, occurs at transcriptionally active genes [20,76]. These examples

indicate that the genomic context, and the accompanying epigenetic context, matters for the

functionality of histone marks, and that this may differ between fungal species. Thus, the rela-

tively stable presence of H3K27me3 observed in V. dahliae may lead to different transcrip-

tional outputs depending on the co-occurrence of other histone marks and on specific

interactions with opposing histone readers. Interestingly, the recently described H3K27me3

histone readers, EPR-1 and BP1, contribute to transcriptional repression in the filamentous

fungi F. graminearum and N. crassa [77,78]. As these histone readers inhibit binding of tran-

scriptional machinery, it is conceivable that dynamic presence of such readers over stable

H3K27me3 domains regulates transcription.
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Besides potentially functioning as a direct regulator of transcription, H3K27me3 may also

affect transcriptional regulation through shaping 3D organization of the genome within the

nucleus. In other systems, including animals, plants, and fungi, genomes have been shown to

display long-range intra-chromosomal and inter-chromosomal interactions [79–82]. At

smaller genomic distances, 3D organization results in the formation of topologically associat-

ing domains (TADs), which are local genome regions that interact preferentially within them-

selves, but not with adjacent genomic regions [13,83]. The exact functionality of TADs is still

under debate [84–87], but TADs have frequently been associated with transcriptional regula-

tion, for instance, by facilitating enhancer–promoter interactions [83,88–90]. Connecting the

epigenome to the 3D genome, H3K27me3 has been shown to affect both local and global 3D

chromosome organization [91–93]. Thus, H3K27me3 may be involved in structuring the 3D

genome to help regulate transcription, for instance, by providing conducive local 3D-chroma-

tin micro-environments containing components of the transcriptional machinery. Our obser-

vations in V. dahliae indicate that genes within the H3K27me3-associated TADs in AGRs are

more likely to be transcriptionally co-regulated than genes in core TADs [38]. This suggests

that H3K27me3 may be involved in organizing the local 3D genome to help direct the diver-

gent transcriptional profiles seen for TADs in AGRs compared to the core genome. The local

3D genome organization in N. crassa also differs between genomic regions, with transcription-

ally silent regions displaying random internal contacts, while organization of active chromatin

is more reminiscent of TAD structure [94]. However, this is mostly H3K27me2/3 indepen-

dent, as H3K27me3 is not present on all the regions that display such random internal contacts

[81,92,94]. Recently, such differences in 3D genome organization were investigated and dis-

cussed with respect to their impact on genome-wide DNA-templated processes [95].

Epigenetic mechanisms affect genome evolution

To survive over evolutionary timescales as a species, organisms need to gain, lose, or alter pro-

teins performing particular functions through genome evolution. This may be particularly rel-

evant for plant pathogens, because plants recognize the presence of potential pathogens, or

their activity, through intra- and extracellular immune receptors that bind non-self or modi-

fied-self ligands, collectively named invasion patterns [40]. Such invasion patterns can be

structural components of pathogen cells, also known as microbe-associated molecular patterns

(MAMPs), signatures of pathogen-induced plant damage, termed damage-associated molecu-

lar patterns (DAMPs), or proteins or metabolites produced by the pathogen during host inva-

sion [40,96]. In order to circumvent recognition by the host plant, successful pathogens evolve

to secrete novel proteins that inhibit recognition or evolve to lose or mutate the recognized

molecule [40]. In turn, plants evolve novel immune receptors to again restrict pathogen dis-

semination, leading to a co-evolutionary arms-race between plants and their pathogens, where

single gene loss, gain, or mutation can alter the outcome of the interaction from compatible to

incompatible or vice versa [39,96,97].

Genetic variation occurs via a combination of mechanisms, including DNA replication

errors, external mutagens, chromosomal crossover events, transposable element (TE) activity,

partial or whole-genome duplications, chromosome gain or loss, large-scale chromosome rear-

rangements, etc. [98]. In some cases, the generated genome variation leads to increased cell or

organism viability, potentially affecting their frequency in the population, ultimately leading to

evolution. Even though genome evolution is considered a stochastic process, it was found that

various plant pathogens harbor genomic regions that display increased frequencies of genetic

variation, while the majority of the genome, which is typically designated as the core genome,

remains evolutionary rather stable [33,99–106]. This compartmentalization can generally be
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described as regions that differ more frequently between strains of a species compared to

regions that are more highly conserved, often termed the two-speed genome in pathogenomics

[99,100]. The “fast-evolving,” plastic compartments of a two-speed genome are typically TE-

rich [100], indicating that TE activity may be one of the more important drivers for evolution.

The plastic compartments of V. dahliae are represented by the TE-rich AGRs that evolved

through large-scale chromosome rearrangements and segmental duplications, followed by

reciprocal gene losses [31,33]. Interestingly, the TEs located in AGRs are relatively young, tran-

scriptionally active, and more frequently polymorphic when compared with TEs in the core

genome, suggesting that these TEs actively contribute to shaping of the AGRs [33,34,106].

Additionally, the polymorphic TEs in AGRs are associated with in planta highly expressed

pathogenicity-related genes, suggesting that TEs may be involved in transcriptional regulation

as well [34,106].

Even though TE activity is beneficial to a certain extent, TE overactivity can be detrimental

to genome stability, and, therefore, TEs are generally epigenetically silenced [107–110]. In

fungi, genomic regions that are enriched for TEs are often epigenetically silenced by

H3K9me3 and cytosine methylation (5-methylcytocine, 5mC) [111–115]. Similarly, in V. dah-
liae we found that H3K9me3 and 5mC co-localize on TE-rich genomic regions (Fig 1A)

[27,36,37]. However, even though 5mC is generally thought to be involved in transcriptional

silencing, we observed that loss of 5mC did not induce TE transcription, whereas loss of

H3K9me3, and the accompanying loss of 5mC, leads to the induction of numerous TEs [36].

Thus, 5mC is not strictly necessary for TE silencing. Instead, 5mC may be subject to spontane-

ous deamination, causing C to T mutations, and thus potentially rendering affected TEs per-

manently inactive [116]. Cytosine deamination as a driver of genome evolution is well

accepted in various taxonomic groups [117–119]. For instance, simulations of DNA sequence

evolution indicated that mutational pressure by cytosine deamination was vital for the evolu-

tion of isochore structures in the mammalian genomes [118]. Additionally, cytosine deamina-

tion has been proposed to constitute one of the main evolutionary forces in generating new

transcription factor-binding sites in the human genome [120]. However, as cytosine methyla-

tion is mainly restricted to genomic regions containing TEs in V. dahliae, spontaneous deami-

nation is likely mainly involved in the inactivation of TEs and less so in genome evolution

more broadly. It needs to be noted that there is no evidence for repeat-induced point mutation

(RIP) in the presumed asexual fungus V. dahliae, which could alternatively cause C to T muta-

tions instead of spontaneous deamination [27,31,33].

Previous studies in V. dahliae indicated that relatively young and active TEs are associated

with the evolution of AGRs [27,33]. Interestingly, the TEs in these AGRs have a lower fraction

of C to T mutations (represented by the composite repeat-induced point mutation index, CRI)

and display lower association with H3K9me3 and 5mC [27,33,34]. This indicates that C to T

mutations happen more frequently in TEs that are marked with 5mC, and thus that spontane-

ous deamination may be a true end result of DNA methylation, but also that a particular subset

of TEs is devoid of H3K9me3 and 5mC. It is interesting to speculate that this contributes to TE

activity and helps drive evolution within the AGRs, but further direct experimental evidence is

needed.

It remains unclear what dictates the disparate TE silencing observed in V. dahliae, but also

other fungi [121,122]. One explanation is simply that of natural selection, where fungal cells

with active TEs in the core genome suffer fitness penalty and do not flourish, while cells with

active TEs in the AGRs experience less detrimental effects, and thus survive more frequently.

Alternatively, the presence of specific epigenetic features of AGRs may constrain the deposi-

tion of H3K9me3 and 5mC on TEs in the plastic genome, thereby permitting elevated TE

activity within AGRs. Furthermore, it is very intriguing that pairwise clustering of AGRs in the
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3D genome corresponds with segmental duplications underlying their evolution [38]. More

generally, we observed in V. dahliae that TADs in the H3K27me3-associated AGRs are weaker

insulated than TADs in the core genome, meaning that TADs in AGRs are less well separated

from their neighboring TADs (Fig 1B) [38]. We speculate that this organization may allow

more promiscuous interactions and may promote higher genome instability. It is unclear what

makes that AGRs cluster in the 3D genome, nor what the function of these membrane-less

nuclear sub-compartments, so-called nuclear bodies, may be [123–125]. Various types of

nuclear bodies have been described, including nucleoli, Cajal bodies, nuclear speckles, nuclear

stress bodies, and polycomb bodies, of which some are formed on chromatin and embed

DNA, while others form in the nucleosol and do not contain DNA, but rather interact with

chromatin [125,126]. Chromatin-containing nuclear bodies are proposed to form by a process

called phase separation through the activity of self-aggregating chromatin-binding molecules

or through the activity of individual chromatin bridging factors that cross-link separate chro-

matin sections, without self-aggregation [126]. Nuclear bodies formed with the non-aggregat-

ing bridging factors are usually less stable, as these molecules can more readily disperse into

the nucleoplasm, whereas nuclear bodies formed with self-aggregating molecules are more sta-

ble, and can exist independent of chromatin [126]. Interestingly, the Drosophila H3K9me3-in-

teracting protein HP1 was shown to aggregate in vitro and to nucleate into foci during early

heterochromatin domain formation, suggesting that aggregation of HP1 may drive hetero-

chromatin domain formation [127]. As such, H3K9me3-marked heterochromatin at distal

genomic regions may cluster in the nucleus through the presence of HP1, for instance, at cen-

tromeres [128]. Similarly, H3K27me3-marked heterochromatin is bound by the polycomb

repressive complex 1 (PRC1), of which the CBX2 protein member is capable of assembly

through phase separation [129]. PRC1 components are absent from most fungi [130,131], yet

other H3K27me3-readers may have an analogous function in fungi. Thus, it is possible that

epigenetic differences between the AGR and core segments of V. dahliae [38] function to seg-

regate core and AGR regions to promote the activity of TEs in AGRs in such a way that the

core genome remains largely unaffected. In addition to histone modifications influencing TE

activity, there is also mounting evidence that histone modifications impact the generation of

DNA variation. Two recent studies used mutation accumulation experiments in fungi, subcul-

turing the strains under minimal selection, allowing subsequent identification of de novo

genome variation [132,133]. In the plant pathogen Zymoseptoria tritici, the causal agent of Sep-

toria leaf blotch, heterochromatin defined by the presence of H3K9me3 and H3K27me3

impacted the accumulation of DNA variation. The genetic loss of H3K9me3 led to a signifi-

cantly higher base mutation rate, as well as more frequent loss of specific accessory chromo-

somes, while genetic loss of H3K27me3 accounted for a small reduction in base accumulation

in some genomic regions [132]. In the filamentous fungal saprophyte Neurospora crassa, muta-

tion accumulation was found to be higher in both H3K27me3- and H3K9me3-marked regions

[133]. Further research is needed to understand the mechanisms leading to increased variation

accumulation rates, but the results clearly indicate that the epigenome is playing an important

role in this nuclear process.

All organisms evolved DNA repair mechanisms that correct damage to the genome. Vari-

ous DNA repair mechanisms exist, including double-strand break repair by homologous

recombination or by nonhomologous end joining, and nucleotide and base-excision repair

pathways [134,135]. Interestingly, the histone code has been implicated in these DNA repair

mechanisms. For instance, histone methylation of lysine 79 on the tail of histone 3, and of

lysine 20 on histone 4, as well as phosphorylation and ubiquitination of histone variant H2AX

are involved in recruitment of double-strand break machinery [135]. Additionally, budding

yeast mutants lacking the N-terminal tails of histones H2A and H3 displayed increased
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mutation rates due to deficient base-excision repair, indicating that chromatin plays an impor-

tant role in this DNA repair mechanism [136]. Analysis of CRISPR-Cas–induced DNA dou-

ble-strand breaks in M. oryzae indicated that multiple DNA repair pathways may function

differently across the genome during DNA repair [137]. As such, the creation and repair of

DNA lesions may be a significant driver of DNA variation fueling fungal pathogen evolution

[138]. In fact, research in V. dahliae identified sequence signatures of double strand-break

repair machinery at sites of chromosomal rearrangements, indicating that the evolution of the

two-speed genome in V. dahliae involved erroneous double-strand break repair (Faino and

colleagues). As these mechanisms are in part regulated on chromatin, there is increasing evi-

dence that epigenetics is important for genome evolution [139].

Epigenetic mechanisms affect cell division

For mitotic and meiotic replication, organisms first require DNA replication, followed by seg-

regation of chromosome pairs, and finally cell division [140]. DNA replication starts with

unwinding and separation of DNA strands, resulting in formation of replication forks in

which DNA-polymerases attach to the DNA. The formation of replication forks is favored in

genomic regions with hyperacetylated euchromatin [141,142], and the timing of replication is

further regulated on chromatin [142–144]. Heterochromatic regions generally replicate later

during the mitotic S-phase and this process involves histone acetylation and methylation, as

well as the activity of histone readers recognizing heterochromatin-associated histones [145–

147]. Interestingly, an exception to late replicating heterochromatic regions are the centro-

meres in the fungus Schizosaccharomyces pombe, which are heterochromatic yet were shown

to replicate relatively early [148].

After DNA replication, the generated chromosome pairs segregate through formation of

microtubule spindles that attach to centromeric regions present on each chromosome [149].

Fungal centromeres vary significantly in composition and size between species, ranging from

point centromeres of approximately 125 bp in size to regional centromeres of a few kb up till a

few hundreds of kb [150,151]. Even though fungal centromeres vary widely, their chromatin is

always characterized by presence of nucleosomes carrying the histone H3 variant CenH3

[150,151]. CenH3 is essential for centromere function, as it is the chromatin component that

connects chromosomes to the microtubule spindle via the proteinaceous kinetochore complex

[149]. Besides CenH3, fungal centromeres are often epigenetically characterized by H3K9me3

and 5mC [151,152], which we also found to be present at V. dahliae centromeres (Fig 1A) [37].

Additionally, in various plants and animals, a large set of histone modifications have been

associated with centromeres [153]. The conservation of epigenetic profiles at centromeres in

different organisms indicates that the epigenetic landscape likely plays a crucial role in centro-

mere function, and thus in cell division. Such role of the epigenetic landscape, and perhaps

especially of H3K9me3, may entail the formation of a nuclear sub-compartment and thereby

drive the physical clustering of centromeres. Interestingly, incorporation of the S. pombe
CenH3 homolog CENP-A is promoted by nearby heterochromatin, and heterochromatin-

bearing minichromosomes in S. pombe localize close to centromeres, suggesting that hetero-

chromatin formation drives the nuclear positioning of centromeres [154]. The crucial role of

the epigenetic landscape in centromere functioning is further supported by studies into neo-

centromere formation, occurring upon centromere defects, showing that neocentromeres

often form in H3K9me3-marked genomic regions [155]. However, neocentromeres in the

human pathogenic fungus Cryptococcus deuterogattii are formed in genic regions that are not

associated with H3K9me3 and 5mC [156,157], suggesting that these heterochromatic features

are not essential. Moreover, C. deuterogattii chromosomes lacking their original centromere
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are unstable and undergo chromosomal fusions, after which the neocentromere loses its func-

tion [156,157]. These results suggest that although H3K9me3 and 5mC may not be essential

for centromere function and cell viability in short-term, they are important for genome stabil-

ity over longer evolutionary timescales.

Concluding remarks

In this review, we have highlighted the importance of epigenetics in the regulation of nuclear

processes in fungal plant pathogens. Moreover, we describe experimental evidence that geno-

mic regions containing effector genes are characterized by the presence of heterochromatic

features, but it remains to be seen if in planta transcriptional activation requires chromatin de-

condensation or epigenome remodeling. As we show that differential gene expression in vitro

for only a subset of genes located in H3K27me3 domains involves local H3K27me3 depletion,

we postulate that gene expression in planta may display local H3K27me3 depletion, but that it

is not strictly required. To demonstrate this, future studies will require a functional and reliable

procedure to perform in planta chromatin immunoprecipitation assays or other types of

nuclear capture or single-cell interrogation.

Histone proteins are not only found in eukaryotes, but are also common in archaea

[158,159], indicating that the potential for epigenetic regulation using histones is evolutionary

ancient. As such, it is not surprising that nuclear processes have evolved to heavily rely on epi-

genetic regulation. This evolution resulted in an intricate mechanism, the histone code, in

which particular histone modifications may have multiple different functions depending on

their genetic localization and the co-occurrence with additional modifications. Therefore, it

will be difficult to predict how the function of the genome is affected by specific changes in the

histone code. Advances in single-cell sequencing and epigenome analyses [160,161] will

deepen the understanding of epigenetics by providing increasingly more fine-grained informa-

tion about the regulation and output of the epigenome. While the major focus of epigenetic

research has been on transcriptional regulation, there is substantial evidence that the epigen-

ome impacts the evolution of genomes, including that of fungal pathogens. This will be an

important area to develop a mechanistic understanding in order to predict and intervene on

the development of emergent fungal pathogens of plants and animals.
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