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ABSTRACT
We use a Bayesian spatio-temporal model, first to smooth small-area initial life expectancy estimates in
Barcelona for 2020, and second to predict what small-area life expectancy would have been in 2020 in
absence of covid-19 using mortality data from 2007 to 2019. This allows us to estimate and map the small-
area life expectancy loss, which can be used to assess how the impact of covid-19 varies spatially, and to
explore whether that loss relates to underlying factors, such as population density, educational level, or
proportion of older individuals living alone. We find that the small-area life expectancy loss for men and for
women have similar distributions, and are spatially uncorrelated but positively correlated with population
density and among themselves. On average, we estimate that the life expectancy loss in Barcelona in 2020
was of 2.01 years for men, falling back to 2011 levels, and of 2.11 years for women, falling back to 2006 levels.
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1. Introduction

It is difficult to compare the impact of covid-19 in different
locations through covid-19 mortality and case rates, because of
differences in the rates of testing and in the ways of reporting
cause of death. An alternative way to compare that impact that
avoids the need to attribute cause of death is to measure it
through excess mortality, (see e.g., Islam et al. 2021a; Woolf
et al. 2021), but differences in the age pyramid and in the extent
to which covid-19 has affected different age groups in different
places make that comparison also imperfect.

A third way of assessing the impact of covid-19 that takes
into account both excess deaths as well as age of the deceased
is through the effect that excess mortality has on life expectancy
loss. Life expectancy loss, like excess mortality, cannot distin-
guish between primary impact caused by covid-19 itself, and
secondary impact caused by the effect that covid-19 has had on
the mortality rates for other causes, but it serves the purpose of
assessing the overall impact of covid-19 on a population beyond
the number of covid-19 deaths.

Many studies explore how covid-19 has affected life expectancy
at country or large-area level, (see e.g., Aburto et al. 2022;
Andrasfay and Goldman 2021, 2022; Castro et al. 2021; Chan,
Cheng, and Martin 2021; Islam et al. 2021b; Yadav, Yadav, and
Yadav 2021; Mazzuco and Campostrini 2022; Woolf, Masters,
and Aron 2022). These investigations are easy to carry out
thanks to the availability of age-specific mortality data at country
level, and because the size of country populations allow for
fairly precise life expectancy estimation, without the need for
smoothing.

These large-area studies usually estimate life expectancy loss
through the difference between the life expectancy of the year

CONTACT Josep Ginebra josep.ginebra@upc.edu Department of Statistics and O.R., Polytechnic University of Catalonia, Avgda. Diagonal 647, 6a Planta, 08028,
Barcelona, Spain.

before the pandemic started and the life expectancy of the year
when it started, using life expectancy of the first year as if it
was the predicted life expectancy of the second year, disregard-
ing the fact that life expectancy has been steadily increasing
in most countries. Instead, here we advocate for estimating
life expectancy loss through the difference between the life
expectancy predicted for the year when the pandemic started in
absence of a pandemic, and its actual life expectancy.

Hence, exploring how life expectancy loss varies at small-area
level will require life expectancy estimates and predictions based
on small-area single year age-specific mortality data, which
is not easily available and leads to life expectancy estimates
with large variability. As a consequence, one needs accurate
spatio-temporal models that help smooth initial life expectancy
estimates, and predict life expectancy under a steady state
assumption.

Puig and Ginebra (2022) proposes a Bayesian spatio-
temporal model that uses space, time and covariate dependen-
cies together with an area level heterogeneity effect to smooth
annual small-area life expectancy estimates. Here, that model is
proposed as a tool to predict what small-area life expectancies
might have been in absence of covid-19, and its performance
is assessed by checking how well it predicts small-area life
expectancy in Barcelona in 2019, before covid-19 hit, based
on the annual life expectancy estimates from 2007 to 2018. That
model is then used to predict what small-area life expectancies
might have been in 2020 in absence of covid-19, based on
the annual life expectancy estimates from 2007 to 2019. That
model is also adapted to smooth the small-area life expectancy
estimates for 2020 using only age-specific mortality data from
2020.
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Figure 1. Map of Barcelona divided into 73 neighborhoods nested in 10 districts.

The small-area life expectancy loss for 2020 due to covid-
19 is then estimated by subtracting smoothed life expectancy
estimates from predicted ones. By mapping these life expectancy
loss estimates and exploring whether they are related to covari-
ates, one can find whether the impact of covid-19 is related to
underlying socio-economic or demographic factors.

The article is organized as follows. Section 2 presents the
data and Section 3 presents a spatio-temporal model proposed
for smoothing small-area life expectancy estimates, and sum-
marizes how life expectancy varied in Barcelona before 2019.
Section 4 explains how that same model can be used to pre-
dict small-area life expectancy in absence of a pandemic, and
checks its performance when predicting life expectancy in 2019.
Section 5 adapts that model first to predict life expectancy in
2020 in absence of covid-19, and then to smooth initial life
expectancy estimates for 2020. That allows one to map small-
area life expectancy loss for 2020 in Barcelona, and explore
whether that loss relates to underlying factors.

2. Description of the Data

Barcelona, the capital of Catalonia with a population of 792,107
males and of 874,423 females in 2020, is divided into 10 districts

and 73 neighborhoods nested in them, as shown in Figure 1.
Neighborhoods are very heterogeneous in size, with populations
ranging from the least populated neighborhood having only 365
males and 344 females, to the most populated neighborhood
having 27,229 males and 31,392 females.

The total number of deaths in 2018 and 2019 in Barcelona
were of 7161 and 6995 males, and of 8077 and 7673 females,
respectively, while in 2020 the number of deaths increased to
8863 males and 10,105 females.

To obtain the initial small-area annual life expectancy esti-
mates, we used the methodology in Chiang (1968), based on
the annual number of deaths and the population by sex, at
one year intervals of age, starting from 0 years and up to 89,
and aggregating deaths and population at 90 or older. Data was
provided by the Department of Statistics of the Oficina Municipal
de Dades of the Ajuntament de Barcelona.

Figure 2 compares the small-area initial life expectancy esti-
mates for 2019 and 2020 as a function of population. Note that
the estimates for 2020 tend to be smaller, and that the larger
and smaller life expectancy estimates correspond to the smaller
areas, due to the larger variability of these estimates. A quarter of
the neighborhoods have less than 5000 men and 5000 women,
which means that the variability of their initial life expectancy
estimates is far too large for these estimates to be of any use by
themselves.

The socio-economic covariates considered to help smooth
and predict small-area life expectancy are a household income
index, the unemployment rate and the educational level mea-
sured through the proportion of individuals with a university
or a high school degree. Among demographic covariates, we
consider the population density and the proportion of individ-
uals older than 65 living alone. These covariates are intended
to capture their effect and as a proxy for variables that are
not available. Figure 3 displays the maps of the values of the
covariates used in the models. Note that there are strong spatial
patterns in them.

3. Small-Area Life Expectancy Smoothing

In absence of any demographic catastrophe, the initial life
expectancy estimates can be smoothed using the model
proposed in Puig and Ginebra (2022) for that purpose. The
model assumes that the initial annual small-area life expectancy
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Figure 2. Small-area male and female initial life expectancy estimates for 2019 and 2020 as a function of neighborhood population.
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<  22.2

density
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99 −  202
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Figure 3. Maps of the covariates actually used in the models.

2007

males

>  80.2
79.5 −  80.2
78.8 −  79.5
77.7 −  78.8
<  77.7

2012

>  81.3
80.7 −  81.3
79.9 −  80.7
78.9 −  79.9
<  78.9

2018

>  82.8
82.1 −  82.8
81.3 −  82.1
80.3 −  81.3
<  80.3

females

>  86.1
85.7 −  86.1
85.5 −  85.7
84.9 −  85.5
<  84.9

>  86.9
86.6 −  86.9
86.2 −  86.6
85.7 −  86.2
<  85.7

>  87.9
87.5 −  87.9
87.1 −  87.5
86.6 −  87.1
<  86.6

Figure 4. Maps of the smoothed life expectancy estimates for 2007, 2012, and 2018 categorized in five classes through their time specific quintiles, obtained by updating
the full model (3.1) with data from 2007 to 2018.

estimates for males (females) in area i and year t, yit , are normally
distributed. The expected value of yit is split into a constant
term, three components capturing covariates, space, and time
dependencies, and one component capturing the ith area effect
not captured by the other components,

E(yit|β , γi, δ0, δi, αi) = β0+
p∑

j=1
βjxji+γi+(δ0+δi)t+αi, (3.1)

for i = 1, . . . , n and t = 1, . . . , T. The covariates effect, βj,
the mean time slope, δ0, and β0 are considered to be fixed
effects. The area effect on the time slope, δi, and the hetero-
geneity effect, αi, are considered to be random effects with
Normal(0, σ 2

δ ) and Normal(0, σ 2
α) distributions, while the spa-

tial effect, γi, is considered to be a random effect distributed
Normal(

∑
k∈v(i) γk/mi, σ 2

γ /mi), where v(i) is the set of areas
neighboring the ith area, and mi is the number of areas in v(i).
The variance of yit is assumed to be inversely proportional to
the population, pit , of males (females) in that area that year,
var(yit|β , γi, δ0, δi, αi, σ 2) = σ 2/pit .

As a prior distribution for β1, . . . , βp we choose independent
Normal(0, 100) distributions. A variance of 100 is large because
the covariates are centered and standardized. For β0 and δ0
we choose independent Normal(80, 100) and Normal(0, 100)

distributions. Finally, for σ 2
γ , σ 2

α , σ 2
δ , and σ 2, we assume that

their inverses are Gamma distributed with mean 1 and variance
100. For an alternative modeling approach that first smooths age
specific mortality rates, and then uses them to obtain smoothed
life expectancy estimates, see Congdon (2009, 2014) or Rashis
et al. (2021).

In our applications the model is updated using the MCMC
implementation in WinBugs (see Lunn et al. 2000). In them we
run four chains until they converge, keeping each one out of 10
simulated values afterwards. The analysis are based on 80,000
draws, 20,000 from each chain. The posterior expected value
of E(yit|β , γi, δ0, δi, αi) is used as the smoothed life expectancy
estimate for area i and year t.

Figure 4 presents the 2007, 2012, and 2018 life expectancy
maps for Barcelona obtained in this way with data from 2007 to
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2018. The 95% posterior credible intervals for the coefficients of
educational level are (1.11, 1.74) for males and (0.38, 0.78) for
females, the ones for the coefficients of the proportion of older
than 65 living alone are (−1.17, −0.61) and (−0.55, −0.17), and
the ones for density are (0.32, 0.83) and (0.26, 0.61), respectively.
Income and unemployment were not used because they are
correlated with education and do not add anything new to the
model.

According to Figure 4, before 2019 male life expectancy
had a strong persistent spatial dependency, while female life
expectancy was becoming less spatially dependent with time.
The neighborhoods with the largest life expectancies, in districts
4 and 5, are the wealthier and more educated. Note also that
small-area male life expectancies were more variable than female
life expectancies. During that period, male life expectancy
increased by 0.23 years per year, while female life expectancy
increased only by 0.15 years per year, and as a consequence the
gap between male and female life expectancy had been steadily
decreasing.

4. Small-Area Life Expectancy Prediction

To estimate the life expectancy loss due to covid-19, one needs
to predict what that life expectancy would have been in absence
of covid-19. A natural way to do that is through the posterior
predictive distribution of the full model in Section 3, or of one
of the fifteen sub-models obtained by dropping some of the
four components of that model. One can actually select the best
sub-model of (3.1) for any given application, either based on a
model selection criterion, as in Section 5.2, or based on their
performance when predicting small-area life expectancy before
covid-19 started, the way done here.

To decide which one of these 16 models should be used
for prediction in 2020 and to compare the quality of their
predictions, these models are used to predict the small-area
life expectancies in 2019 using the initial small-area annual
life expectancies from 2007 to 2018 to update them. Covid-19
reached Barcelona early in 2020, and so a model will be adequate
only if it provides good predictions for 2019.

Table 1 presents the corresponding cross-validated weighted
mean square errors of these predictions for 2019, using popu-
lation of males (females) as weights, together with the Moran
Index of residuals indicating that, other than for the baseline
model without any of the four components, residuals are close
to being spatially independent.

Each one of the four components separately clearly improve
on the predictions obtained with the baseline model. The tem-
poral component is the most useful one, and among all the
models with the temporal component, the two models that miss
both the spatial and the heterogeneity component are the ones
that perform worse, but having both of these components at
once does not improve predictions. Among the models that have
temporal and either space or heterogeneity components, the
ones without covariates perform best.

Hence, prediction in 2020 will be made with the model that
only has the temporal and the heterogeneity components, which
is the one with the smallest mean square error for the prediction
of both the male and the female 2019 life expectancies.

Table 1. Cross-validated weighted mean squared error when predicting life
expectancies in 2019 with data from 2007 to 2018, and Moran Index of the residuals.

Temp.,
Covar. Spat., γi Heter., αi (δ0 + δi)t MSE Male MSE Fem. MI Male MI Fem.

No No No No 6.40 4.09 0.224 0.096
Yes No No No 4.99 3.65 −0.011 0.026
No Yes No No 4.25 3.61 0.000 −0.017
No No Yes No 4.24 3.57 0.010 0.012
No No No Yes 2.45 1.84 −0.051 −0.059
Yes Yes No No 4.52 3.55 −0.025 −0.016
Yes No Yes No 4.45 3.54 −0.017 −0.001
Yes No No Yes 2.10 1.82 −0.094 −0.067
No Yes Yes No 4.25 3.60 0.000 −0.014
No Yes No Yes 1.99 1.75 −0.079 −0.059
No No Yes Yes 1.99 1.75 −0.081 −0.052
Yes Yes Yes No 4.49 3.54 −0.024 −0.008
Yes Yes No Yes 2.09 1.79 −0.092 −0.065
Yes No Yes Yes 2.05 1.78 −0.094 −0.063
No Yes Yes Yes 1.99 1.75 −0.080 −0.058
Yes Yes Yes Yes 2.07 1.78 −0.093 −0.063

NOTE: Covariates are educational level, proportion of older than 65 living alone and
density.

Figure 5 presents the initial life expectancy estimates for 2019,
yit , together with their 80% posterior predictive intervals for yit
under this model. Actual initial male life expectancies fall out-
side these predictive intervals in 13 out of the 73 neighborhoods,
and the female ones fall outside in 15 out of 73 of them, which
represents about 18% and 21% of the instances.

5. Life Expectancy Loss Estimates for 2020

5.1. Life Expectancy Prediction for 2020 in Absence of
Covid-19

A quick and dirty approach to estimate life expectancy loss in
2020 would subtract the life expectancy in 2020 from the one
in 2019. This usually under-estimates the loss because in most
developed countries life expectancy has been increasing with
time.

Instead of that, here the life expectancies that would have
been observed in 2020 in absence of covid-19 will be estimated
through the posterior predictive distribution of the sub-model
of (3.1) with only temporal and heterogeneity components,
where:

E(yit|β , γi, δ0, δi, αi) = β0 + (δ0 + δi)t + αi, (5.1)

which is the model that performed best predicting life expectan-
cies in 2019. To update that model, here we use the initial annual
life expectancy estimates from 2007 to 2019.

Figure 6 presents the initial life expectancy estimates for 2020
together with the 80% posterior predictive intervals. Male life
expectancies fall outside and below these posterior predictive
intervals in 36 of the 73 neighborhoods, while the female ones
fall outside and below in 44 of them. None of these estimates fall
outside and above the corresponding intervals. That is consistent
with the observed life expectancy being smaller than predicted
in absence of covid-19, and it is in dire contrast with what was
found for 2019 in Figure 5. As a predictive estimate of the life
expectancy in 2020 in absence of covid-19, we use the expected
value of this posterior predictive distribution.
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Figure 5. Dots are the neighborhood initial life expectancy estimates for 2019 and segments are the 80% posterior predictive intervals, obtained updating model (5.1) with
the initial life expectancy estimates from 2007 to 2018.
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Figure 6. Dots are the neighborhood initial life expectancy estimates for 2020 and segments are the 80% posterior predictive intervals, obtained updating model (5.1) with
the initial life expectancy estimates from 2007 to 2019.

5.2. Life Expectancy Smoothing for 2020

Because of covid-19, the effect of the four components of the
model for small-area life expectancy, in (3.1), change in 2020,
and so when smoothing initial life expectancy estimates for 2020
one can only use the data from 2020, and not the data from
previous years.

As a consequence of using only data from a single year,
here the model cannot include the temporal component. As a
consequence of using only a single observation for each area,
the model cannot include the heterogeneity component either,
because one cannot estimate the heterogeneity component apart
from the spatial and noise components.

Table 2 presents the DIC of the models for 2020 including
only the space and/or the covariate component. For male life

Table 2. DIC and Moran Index of the residuals when models with covariates and/or
spatial component are updated with life expectancy estimates of 2020.

Covar. Spat., γi DIC Male DIC Fem. MI Male MI Fem.

No No 319.1 279.4 0.238 0.131
Yes No 293.7 269.2 0.056 0.014
No Yes 300.7 278.0 −0.036 0.055
Yes Yes 289.8 269.7 −0.010 −0.004

NOTE: Covariates are educational level, proportion of older than 65 living alone and
density.

expectancies, the smallest DIC is attained by the model with
both components while for female life expectancies the DIC for
that model is close to being the smallest. Hence, the model, with:

E(yit|β , γi, δ0, δi, αi) = β0 +
p∑

j=1
βjxji + γi, (5.2)
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Figure 7. Dots are the neighborhood life expectancy loss estimates for 2020, and segments are the 80% credible interval for them, using model (5.1) for prediction and
model (5.2) for smoothing.

will be used to smooth male and female initial life expectancy
estimates for 2020.

The 95% posterior credible intervals for the coefficients of
education are (0.65, 1.64) for males and (0.16, 0.91) for females,
the ones for the coefficients of the proportion of older than
65 living alone are (−1.04, −0.15) and (−0.85, 0.12), and the
ones for density are (−0.21, 0.65) and (0.00, 0.71), respectively.
These intervals are similar to the ones found with the full model
and pre-covid-19 mortality data, in Section 3. Note that these
coefficients capture the possible effect of these covariates on life
expectancy, together with the effect of variables not in the model
that are related both with these covariates as well as with life
expectancy.

5.3. Life Expectancy Loss for 2020

Neighborhood level life expectancy losses in 2020 are estimated
by subtracting their smoothed life expectancy estimates from
their predicted life expectancy in absence of covid-19. The
overall life expectancy loss in Barcelona can then be estimated
through the weighted average of these neighborhood level loss
estimates, using male and female population as weights.

Figure 7 presents these life expectancy loss estimates,
together with their 80% credibility intervals. Male life expectancy
losses are positive in all except seven neighborhoods, and female
losses are positive in all of them. The quartiles of these loss
estimates are 1.53, 1.93, and 2.58 years in the male case and
1.61, 2.27, and 2.57 years in the female case, with the largest life
expectancy losses being 4.76 years for males and of 3.85 years
for females. Hence, the distributions of the male and female life
expectancy losses are similar. The correlation between male and
female life expectancy loss is 0.599.

The weighted average of these life expectancy losses is of 2.01
years for males, and of 2.11 years for females. Before 2020, life
expectancy in Barcelona was growing by about 0.23 years per
year for males and 0.15 years per year for females, and so in 2020

male life expectancy lost what it had gained in the last 8.7 years,
falling back to its 2011 level, while female life expectancy lost
what it had gained in the last 14.1 years, falling back to its 2006
level.

Aburto et al. (2022) estimates the 2020 life expectancy loss
in Spain to be of 1.44 years for males and of 1.50 years for
females. Even though these quantities are not completely com-
parable with the estimates for Barcelona, because they define
life expectancy loss as the 2019 minus the 2020 life expectan-
cies, the loss in Barcelona is larger than the one in Spain even
after correcting for the difference in estimation method. On
the other hand, the life expectancy loss in Barcelona is a lot
smaller than the one estimated for Madrid in Diaz-Olalla et al.
(2022), which is of 3.67 years for males and of 2.56 years for
females.

The 2020 life expectancy loss estimates for nearby countries,
in Aburto et al. (2022), are 1.25 years for males and 1.01 years
for females in Italy, 0.83 and 0.69 years in Portugal, 0.67 and 0.60
years in France, and 0.38 and 0.23 years in Germany. In contrast,
in countries like Norway or Denmark the life expectancy in
2020 was larger than in 2019 in spite of covid-19, while in the
United States males lost 2.23 years of life expectancy and females
lost 1.63 years. Different from what is found in all countries in
Europe except for Spain, Slovenia, and Estonia, in Barcelona the
life expectancy loss for females is found to be larger than the one
for males.

Figure 8 maps these male and female life expectancy loss
estimates. Their Moran Index is 0.023 in the male case and 0.051
in the female one, which are small enough to indicate that these
losses are basically spatially uncorrelated. To investigate whether
the impact of covid-19 in Barcelona could be related to underly-
ing factors, we looked for correlations between neighborhood
life expectancy losses and neighborhood level covariates like
unemployment rate, household income, educational level, pop-
ulation density, proportion of individuals older than 65 living
alone and an overall socio-economical index.
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>  2.68
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Figure 8. Map of the life expectancy loss for 2020.

The only significant correlations found were between both
male and female life expectancy loss and population density,
which were of 0.289 in the case of males and of 0.210 in the case
of females. This fact is especially relevant given that Barcelona
is one of the most densely populated cities in Europe. Note
though that these correlations between the two life expectancy
losses and density do not necessarily imply causality, because
they capture the combined effect of density together with the
effect of other variables related both with density as well as with
life expectancy loss, like maybe contamination level, immigrant
population rate or household overcrowding.

The fact that no other significant relationships were found,
coupled with male and female life expectancy loss estimates
turning out to be spatially uncorrelated, seems to indicate that
the impact of covid-19 in 2020 was quite even across neighbor-
hoods in Barcelona. The three months that citizens in Barcelona
spent under strict home confinement during the first covid-19
wave, coupled with the fact that most of the people living there
have universal health coverage, might help in explaining these
results.

6. Discussion

Catalonia was one of the hardest hit regions in Europe by the
first wave of covid-19, despite the fact that it underwent one of
longest and most strict home confinement regimes held outside
China. The impact of covid-19 in the capital of Catalonia during
that first pandemic year was of about two years of life expectancy
lost, and that impact was rather homogeneous in space, with a
slightly larger impact in neighborhoods more densely populated.

It would be interesting to use this approach to map small-area
life expectancy losses elsewhere, across larger and more hetero-
geneous regions. It is likely that in that case, one would find rela-
tionships between life expectancy losses and other underlying
socio-economic, demographic or environmental factors, espe-
cially if the investigation involved regions that, unlike Barcelona,
did not have universal health coverage. Unfortunately small-
area age specific mortality rates and covariates are difficult to
obtain, in part due to confidentiality issues, and without them
one cannot reproduce this analysis.

Studies that estimate life expectancy loss due to covid-19 for
large areas, work with initial life expectancy estimates with a
small enough variability to avoid the need for smoothing. And
since most of these studies treat life expectancy of the first year
as if it was the predicted life expectancy of the second year in
absence of covid-19, they do not use any space-time model for
prediction either. Instead, we advocate for estimating that loss by
subtracting predicted and actual life expectancies for the second
year, taking advantage of the fact that the same model used to
smooth initial small-area life expectancy estimates can also be
used to predict them under steady conditions.

One strength of the space-time model used is the flexibil-
ity and ease of interpretation that comes with separating the
contribution of the space, time, covariates and heterogeneity
components. When it comes to smoothing, our model will only
be needed when the small-area populations fall below 10,000
people, because above that the initial life expectancy estimates
will have small enough variability to be of use by themselves.
When it comes to the prediction part of the problem though,
one will always need the model.

Finally, note that the approach presented here could also be
used to assess the impact of covid-19 on the small-area mortality
rates under causes of mortality other than covid-19 itself. In that
case, the data would be the number of deaths under each cause at
small-area level, and the model would either be binary logistic or
log-linear Poisson. The outcome maps would display mortality
rate gaps under the causes considered.
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