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Abstract
This work presents a filtered set of equations suit-

able for the large-eddy simulation of high-pressure
transcritical turbulent flows. The formulation is
derived from a novel kinetic-energy- and pressure-
equilibrium-preserving numerical framework, re-
cently proposed to provide physics-compatible (stable
and non-dissipative) simulations of the problem. In
particular, the compressible Navier-Stokes equations
are required to describe the evolution of supercriti-
cal fluids along with adequate real-gas thermodynamic
closures based, for example, on the Peng-Robinson
equation of state. The novelty of this work focuses,
therefore, on (i) deriving the filtered set of equations
based on the kinetic-energy and pressure-equilibrium-
preserving framework, (ii) identifying the sub-filtered
unclosed terms, and (iii) performing exploratory as-
sessments of the resulting framework. In the fu-
ture, these results will potentially enable the design of
physics-based sub-filter scale models for high-fidelity
LES of high-pressure transcritical turbulent flows.

1 Introduction
The study of complex turbulent flows by means of

large-eddy simulation (LES) approaches has become
increasingly popular in many scientific and engineer-
ing applications. The underlying filtering operation of
the approach enables to significantly reduce the spatio-
temporal resolution requirements with respect to direct
numerical simulation (DNS) by means of representing
only large-scale motions. However, the small-scale
stresses and their effects on the resolved flow field
are not negligible, and therefore require supplemen-
tary modeling (Jofre et al 2019). This is especially
challenging in the case of high-pressure transcritical
flows due to the additional hydrodynamic scales aris-
ing from the large localized thermophysical variations
across the pseudo-boiling region, which further com-
plicates the modeling of the subfilter-scale (SFS) terms
arising from the filtered equations of motion.

Only a limited number of studies have focused on
LES modeling for trans/superecritical thermodynamic
conditions. Selle and Ribert (2008) performed a pri-
ori and a posteriori analysis of closure models for ho-
mogeneous isotropic turbulence and jets under vari-

ous thermodynamic regimes. While a priori analy-
ses were encouraging, a posteriori studies provided
poor results. Borghesi and Bellan (2015) performed
a similar analysis for multi-species high-pressure tur-
bulent mixing, and highlighted the need for dedicated
LES models. Recently, Unnikrishnan et al (2022)
have quantified the impact of SFS modeling on the
filtered equation of state (EOS) for supercritical tur-
bulent mixing. It is clear that more efforts are needed
towards a complete and reliable LES formulation for
trans/supercritical turbulent flows.

A physically-relevant LES also requires a non-
dissipative underlying discretization, so that the sub-
filter scale dissipation is entirely provided by the cor-
responding model. This can be achieved by kinetic-
energy preserving (KEP) formulations in conjunc-
tion with summation-by-parts operators (Coppola et
al 2019). In the case of high-pressure transcritical
flows, it is also of fundamental importance to dis-
cretely mimic the property of pressure-equilibrium
preservation (PEP), in order to avoid spurious pres-
sure oscillations at the pseudo-interface. Recently, a
novel method has been developed by Bernades et al
(2023), where the PEP property is achieved by solv-
ing a pressure evolution equation, and the continuity
and momentum equations are expanded according to a
KEP splitting. The resulting method is stable without
any numerical diffusion or stabilization procedure.

Given the novelty of the above-mentioned numeri-
cal formulation, in addition to the inherent challenges
associated with transcritical LES, an a priori analysis
of the pressure-based formulation is highly warranted
to understand the relative importance of each of the
unclosed terms, with the ultimate objective of deriv-
ing physics-based subfilter-scale models. Therefore,
this work aims to (i) develop a filtered set of equa-
tions suitable for LES based on the novel numerical
formulation, and (ii) characterize the properties of the
resulting SFS terms by means of performing a priori
analyses of transcritical wall-bounded turbulence from
DNS data (Bernades et al 2023).

In this regard, the paper is organized as follows.
First, in Section 2, the flow physics modeling and
discretization framework of high-pressure transcriti-



cal turbulence is presented. Then, the LES formula-
tion is described in Section 3, introducing the filter-
ing approach, defining the filtered equations of mo-
tion, with the resulting subfilter-scale terms. Section 4
presents the filter selection applied on the DNS for a
priori analysis. Finally, Section 4 reports concluding
remarks and future directions.

2 Flow physics modeling
The turbulent flow motion of supercritical fluids is

described by the following set of transport equations
of mass, momentum and pressure (see Bernades et al
(2023) for details)

∂ρ

∂t
+∇ · (ρu) = 0, (1)

∂ (ρu)

∂t
+∇ · (ρuu) = −∇P +∇ · σ, (2)

∂P

∂t
+ u · ∇P + ρc2∇ · u = (3)

=
1

ρ

βv

cvβT
(σ : ∇⊗ u−∇ · q),

where ρ is the density, u is the velocity vector, P is
the pressure, σ = µ

(
∇u+∇uT

)
− (2µ/3)(∇ · u)I

is the viscous stress tensor with µ the dynamic vis-
cosity and I the identity matrix, c = 1/

√
ρβs is the

speed of sound with βs = −(1/v) (∂v/∂P )s the isen-
tropic compressibility and v = 1/ρ the specific vol-
ume, βv = (1/v) (∂v/∂T )P is the volume expansiv-
ity with T the temperature, cv is the isochoric specific
heat capacity, βT = −(1/v) (∂v/∂P )T is the isother-
mal compressibility, and q = −κ∇T is the Fourier
heat conduction flux, with κ the thermal conductivity.

Real-gas thermodynamics
The thermodynamic space of solutions for the state

variables pressure P , temperature T , and density ρ of
a single substance is described by an equation of state.
One popular choice for systems at high pressures is the
Peng-Robinson equation of state, written as

P =
RuT

(W/ρ)− b
− a

(W/ρ)2 + 2b(W/ρ)− b2
, (4)

where Ru is the universal gas constant and W is the
molecular weight. The coefficients a and b take into
account real-gas effects related to attractive forces and
finite packing volume, respectively, and depend on
the critical temperatures Tc, critical pressures Pc, and
acentric factors ω. They are defined as

a = 0.457
(RuTc)

2

Pc

[
1 + c

(
1−

√
T/Tc

)]2
, (5)

b = 0.078
RuTc

Pc
, (6)

where coefficient c is provided by

c =

 0.380 + 1.485ω − 0.164ω2 + 0.017ω3

if ω > 0.49,
0.375 + 1.542ω − 0.270ω2 otherwise.

This EOS needs to be supplemented with the
corresponding high-pressure thermodynamic variables
based on departure functions calculated as a differ-
ence between two states. In particular, their usefulness
is to transform thermodynamic variables from ideal-
gas conditions (low pressure only temperature depen-
dent) to supercritical conditions (high pressure). The
ideal-gas parts are calculated by means of the NASA
7-coefficient polynomial, while the analytical depar-
ture expressions to high pressures are derived from the
Peng-Robinson equation of state.

High-pressure transport coefficients
The high pressures involved in the analyses con-

ducted in this work prevent the use of simple relations
for the calculation of the dynamic viscosity µ and ther-
mal conductivity κ. In this regard, standard methods
for computing these coefficients for Newtonian fluids
are based on the correlation expressions mainly func-
tion of critical temperature Tc and density ρc, molecu-
lar weight W , acentric factor ω, association factor κa

and dipole moment M, and the NASA 7-coefficient
polynomial; further details can be found in dedicated
works like the one by Jofre & Urzay (2021).

Numerical method
Simulations of high-pressure transcritical turbu-

lence are strongly susceptible to numerical instabilities
due to the presence of nonlinear thermodynamic phe-
nomena and large density gradients, which can trig-
ger spurious pressure oscillations that may contami-
nate the solution and even lead to its divergence. Con-
sequently, it is highly beneficial that the numerical
schemes utilized, in addition to being KEP, attain the
so-called PEP property (Bernades et al 2023b). The
numerical scheme utilized in this work has been devel-
oped specifically to be simultaneously KEP and PEP.
The latter property is achieved by solving a pressure
evolution equation. A thorough description and vali-
dation of this method can be found in Bernades et al
(2022, 2023b).

In brief, the transport equations are numerically
solved by adopting a standard semi-discretization pro-
cedure; viz. they are first discretized in space and
then integrated in time. In particular, spatial operators
are treated using second-order central-differencing
schemes, and time-advancement is performed by
means of a third-order strong-stability preserving
(SSP) Runge-Kutta explicit approach. The convective
terms are expanded according to the Kennedy-Gruber-
Pirozzoli (KGP) splitting, which has been recently as-
sessed for high-pressure supercritical fluids turbulence
(Bernades et al 2022). As a result, the method utilized
(i) preserves kinetic energy by convection, (ii) is lo-
cally conservative for mass and momentum, (iii) pre-
serves pressure equilibrium and (iv) yields stable and
robust numerical simulations without adding any nu-
merical diffusion to the solution or stabilization proce-
dures.



3 Large-eddy simulation framework
This section presents (i) the filtering approach and

(ii) the filtered equations of fluid motion, whose SFS
and unclosed terms are identified.

The filtering approach
In the classical LES formalism, any flow variable

f is decomposed into a large-scale contribution f and
a small-scale contribution f

′
, i.e., f = f + f

′
. The

filtered part f is defined as follows

f(x) =

∫
Ω

G(x, ξ)f(ξ)dξ, (7)

where x and ξ are vectors in the flow domain Ω. The
filter kernel G depends on the parameter ∆ called the
filter width, which satisfies the condition∫

Ω

G(x, ξ)dξ,= 1 (8)

for every x and Ω. For compressible flows, Favre
(1983) introduced a related filter operation

f̃ =
ρf

ρ
, (9)

which leads to the decomposition f = f̃ + f
′′

.
Typical filters commonly used in large-eddy sim-

ulation correspond to the top-hat (also referred to as
spatial or box filter), Gaussian and spectral cut-off fil-
ters (Vreman et al 1994). The symbol ∆̄i denotes the
filter width in the i-direction, whereas ∆̄ is defined as

∆̄ = (∆̄1∆̄2∆̄3)
1/3

. (10)

Filtered equations of fluid motion
LES formulations based on a real-gas EOS are in-

herently non-trivial due to the non-linearity of the ther-
modynamic relations at play. In this work, inspired by
recent efforts (Unnikrishnan et al 2022) and based on
the proposed novel scheme by Bernades et al (2023b),
the LES equations are carefully derived based on the
classical low-pass filtering formalism. Interestingly,
previously unknown terms arise from the analysis,
which will require specific modeling efforts. In this
regard, it is also worth to emphasize that transcritical
turbulent wall-bounded flow physics profoundly dif-
fers from that observed in subcritical cases, most no-
tably due to the presence of a strong baroclinic insta-
bility and, as a consequence, to the failure of standard
scaling transformations for the velocity at the wall.

The LES equations are written for the transported
variable vector Ψ = [ρ, ρu, P ], which in terms of
Favre-averaging is written as Ψ =

[
ρ, ρũ, P

]
. As-

suming that differentiation and filtering commute, the
LES equations describing the motion of supercritical
fluid turbulence correspond to the following set of low-

pass filtered equations

∂ρ

∂t
+∇ · (ρũ) = 0, (11)

∂ (ρũ)

∂t
+∇ · (ρũũ) +∇P −∇ · σ̆ = −α1 + α2,

(12)

∂P

∂t
+ ũ · ∇P + ρc̆2∇ · ũ− 1

ρ

β̆v

c̆vβ̆T

(σ̆ : ∇⊗ ũ

−∇ · q̆) = α3 + α4 + α5, (13)

where ρ and P are the filtered density and pres-
sure variables, respectively, and ũ corresponds to the
Favre-filtered velocity vector. Equations (11)-(13) are
presented such that the left-hand sides correspond to
the governing equations, Eqs. (1)-(3), expressed with
filtered variables Ψ. Instead, the right-hand sides con-
tain the so-called subfilter-terms, which represent the
effect of the unresolved scales (Vreman 1995) and
cannot be expressed by the filtered flow variables.

In detail, the αi terms in the equations above cor-
respond to the following expressions

α1 = ∇ · ρτ , (14a)
α2 = ∇ · (σ − σ̆), (14b)

α3 = (ũ∇ · P − u∇ · P ), (14c)

α4 = (ρc̆2∇ · ũ− ρc2∇ · u), (14d)

α5 = [
1

ρ

βv

cvβT
(σ : ∇⊗ u−∇ · q)

− 1

ρ

β̆v

c̆vβ̆T

(σ̆ : ∇⊗ ũ−∇ · q̆)], (14e)

where the variables denoted by ·̆ mean that the func-
tional form of the DNS term remains, but these vari-
ables are calculated from Ψ instead of Ψ (Selle & Rib-
ert 2008).

Mass equation. By definition, the Favre-averaged
mass equation, Eq. (11), does not generate any SFS
term as the filtered product ρu is equivalent to ρũ.

Momentum equation. The filtered momentum
equation, Eq. (12) generates two unclosed terms. First,
the α1 SFS from the non-linear convective term, re-
ferred to as turbulent stress tensor, which is written as

ρτ = ρ (ũu− ũũ) , (15)

and corresponds to the interaction between subfilter
and large scales, and consequently its closure requires
modeling.

Second, the resulting subfilter-term from the vis-
cous stress tensor α2 results from the nonlinearity
of the viscous term and the fact that the Favre filter
and partial derivatives do not commute, which is typi-
cally neglected in high-Reynolds-number flows at low-
pressure conditions. In fact, a priori tests confirm that
it is an order of magnitude smaller than the first term



(Vreman 1995), where σ̆ = f(ũ, T̆ ). Nevertheless,
due to the strong non-linearities arisen in transcriti-
cal regimes in the vicinity of the pseudoboiling line,
this term cannot be neglected and needs to be closed
(Borghesi et al 2015) with σ = f(u, T ).

Pressure equation. The filtered pressure equa-
tion has been previously analyzed by Zang et al (1992)
in an ideal-gas framework. In this case, the resulting
subfilter-terms are:

• α3 is the pressure-velocity subfilter-term repre-
senting the effect of sub-filter turbulence on the
conduction of heat at the resolved scales;

• α4 represents the pressure-dilatation due to com-
pressibility effects, which vanishes if the flow
is divergence-free with constant density. In this
case, c̆ = f(ρ, P );

• α5 contains the sub-filter terms associated with
the viscous, Fourier q̆ = f(ρ, T̆ ) and thermo-
physical quantities, where β̆v = f(ρ, P ), β̆T =
f(ρ, P ) and c̆v = f(ρ, P , T̆ ). Unlike total
energy-based formulations, the traditional sub-
filter fluxes, such as the Fourier tensor (Zang et
al 1992) ρQ = ρ

(
ũT − ũT̃

)
, do not appear in

the pressure equation.

Equation of state. The Peng-Robinson equation
of state relates the thermodynamic variables, i.e., P =
P (ρ, T ). Hence, the filtered equation reads

P = P (ρ, T ) =

=
RuT

(W/ρ)− b
− a

(W/ρ)2 + 2b(W/ρ)− b2
. (16)

Analogously to the filtered conservation equations, the
EoS needs to be rearranged based on known filtered
variables, i.e., P (ρ, T̆ ), as follows

P = P (ρ, T̆ ) + α6, (17)

where in this case temperature T̆ = f(P , ρ) is ex-
pressed as a function of filtered density and pressure
from transported variables Ψ, with the filtered coeffi-
cient related to attractive forces defined as ă = f(T̆ ).
As a result, Eq. (17) generates an additional unclosed
term α6, which can be expressed as

α6 = P (ρ, T )− P (ρ, T̆ ). (18)

4 A priori analysis
The a priori analyses are based on the DNS of

transcritical channel flow computed by Bernades et
al (2023). The system operates with N2 at a super-
critical bulk pressure of Pb/Pc = 2 and confined be-
tween bottom (bw) and top (tw) isothermal walls, sep-
arated in this case at a distance H = 2δ with δ =

100µm the channel half-height, at Tbw/Tc = 0.75 and
Ttw/Tc = 1.5, respectively. This configuration forces
the fluid to undergo a transcritical trajectory by operat-
ing within a thermodynamic region across the pseudo-
boiling line. The friction Reynolds number selected at
the bottom wall is Reτ,bw = ρbwuτ,bwδ/µbw = 100
to ensure fully-developed turbulent flow conditions.
The corresponding dimensional parameters are: dy-
namic viscosity µbw = 1.6 · 10−4 Pa · s, density
ρbw = 839.4 kg/m3, and friction velocity uτ,bw =
1.9 · 10−1 m/s. The computational domain is 4πδ ×
2δ×4/3πδ in the streamwise (x), wall-normal (y), and
spanwise (z) directions, respectively. The grid is uni-
form in the streamwise and spanwise directions with
resolutions in wall units (based on bw values) equal to
∆x+ = 9.8 and ∆z+ = 3.3, and stretched toward the
walls in the vertical direction with the first grid point
at y+ = yuτ,bw/νbw = 0.1 and with sizes in the range
0.4 ≤ ∆y+ ≤ 2.3. Thus, this arrangement corre-
sponds to a grid size of 128×128×128 points. Based
on the estimates provided by Jofre and Urzay (2021),
the characteristic length scale for density gradients in
this case is approximately 10× larger than the Kol-
mogorov scale, therefore the latter is the driving factor
to select mesh resolution. The selected grid size is thus
assumed to resolve all the relevant flow scales. The
simulation strategy starts from a linear velocity profile
with random fluctuations, which is advanced in time to
reach turbulent steady-state conditions after approxi-
mately five flow-through-time (FTT) units; based on
the bulk velocity ub and the length of the channel
Lx = 4πδ, a FTT is defined as tb = Lx/ub ∼ δ/uτ .
In this regard, flow statistics are collected for roughly
10 FTTs once steady-state conditions are achieved.

Based on this dataset, several filter widths have
been assessed based on the top-hat filter, which is typ-
ically used within high-pressure frameworks (Selle &
Ribert, 2008 and Borghesi & Bellan, 2015). The cut-
off is defined to attain a significantly large part of the
small scales, i.e., at least 80% of turbulent kinetic
energy (TKE) is defined in this case. As a result,
∆̄/∆ = 2 is the largest filter width to accomplish these
requirements. Based on Sagaut & Grohens (1999), the
top-hat filter differential operator can be expressed as
a function of a Taylor series as

θ = θ +
∆̄2

24
∇2θ +

∆̄4

1920
∇4θ +O(∆6), (19)

where θ is a random variable and θ is the filtered vari-
able. To this extent, Figure 1 depicts the normal-
ized turbulent kinetic energy (TKE) at different filter
widths and for different values of y+ away from the
viscous region. It is observed that the TKE slowly in-
creases at a filter width above ∆̄/∆ = 4. This phe-
nomenon appears to be linked to the spatial order of
the explicit filter utilized.

Second, before tackling the problem from a mod-
eling standpoint, DNS results are compared with a fil-



tered DNS. In this regard, Figure 2 shows the con-
tours of u+ for DNS case and with filtered DNS at
∆̄/∆ = 2. The loss of resolution on the small scales
of the flow can be clearly seen, which becomes more
pronounced for larger filter widths.

5 Conclusions
This work has proposed a large-eddy simulation

framework suitable to high-pressure transcritical fluid
turbulence derived from a novel physics-compatible
formulation, which is kinetic-energy- and pressure-
equilibrium-preserving. The equations have been de-
veloped based on a low-pass filtering formalism, and
the corresponding unclosed terms have been identified
and their expressions described.

In particular, the mathematical framework derived
has identified six unclosed terms: (i) two arising from
the momentum conservation equation, (ii) three from
the pressure transport equation, and (iii) one from the
EoS. In this regard, with the objective of initially as-
sessing the importance of the unclosed terms identi-
fied, an exploratory a priori analysis has been per-
formed by filtering DNS data from a high-pressure
transcritical channel flow with a filter width of ∆̄/∆ =
2 to ensure that approximately 80% of turbulent ki-
netic energy is captured.

Ongoing work is, therefore, focused on quantify-
ing the relative importance of the unclosed terms as
a function of filter width. Moreover, to gain further
insight into the structure of the unclosed stress ten-
sor in terms of magnitude, shape and orientation, it
will be carefully analyzed by leveraging the method-
ology developed by Jofre et al 2019. These results
will be additionally compared against the structure
provided by classical existing models, such as the
constant-coefficient Smagorinsky, the scale-similarity
approach, and the more recent minimum-dissipation
strategies (Rozema et al 2015).

Figure 1: Normalized turbulent kinetic energy vs. filter
width ∆̄/∆ at different y+ levels (bottom/cold
wall).
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