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EXTREMAL FAMILIES FOR KRUSKAL-KATONA THEOREM

O. SERRA and L. VENA

Abstract. Given a set of size n and a positive integer k < n, Kruskal-Katona

theorem gives the minimum size of the shadow of a family S of k-sets of [n] in terms

of the cardinality of S. We give a characterization of the families of k-sets satisfying
equality in Kruskal-Katona theorem. This answers a question of Füredi and Griggs.

1. Introduction

The well-known Kruskal-Katona Theorem [7, 9] on the minimum shadow of a
family of k-subsets of an n-set is a central result in Extremal Combinatorics with

multiple applications, see e.g. [5]. The shadow of a family S ⊂
(
[n]
k

)
is the family

∆(S) ⊂
(

[n]
k−1
)

of (k−1)-subsets which are contained in some set in S. The Shadow

Minimization Problem asks for the minimum cardinality of ∆(S) of sets S with a
given cardinality m = |S|. The answer given by the Kruskal-Katona theorem can
be stated in terms of k-binomial decompositions. The k-binomial decomposition
of a positive integer m is

m =

(
a0
k

)
+

(
a1
k − 1

)
+ · · ·+

(
at
k − t

)
, a0 > a1 > · · · > at ≥ k − t ≥ 1,

where the coefficients a0 > a1 > · · · > at ≥ k− t ≥ 1 are well defined and uniquely
determined by m.

Theorem 1 (Kruskal-Katona [7, 9]). Let S ⊂
(
[n]
k

)
be a family of k-subsets of

[n] and let

|S| =
(
a0
k

)
+

(
a1
k − 1

)
+ · · ·+

(
at
k − t

)
, a0 > a1 > · · · > at ≥ k − t ≥ 1,

be the k-binomial decomposition of |S|. Then

|∆S| ≥
(

a0
k − 1

)
+

(
a1
k − 2

)
+ · · ·+

(
at

k − t− 1

)
.
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In this context, we say that a family S is extremal if the cardinality of its shadow
achieves the lower bound in Theorem 1. For every m, the initial segment of length
m in the colex order is an extremal family. We recall that the colex order on the
k-subsets of [n] is defined by x ≤ y if and only if max(x∆y) ∈ y, where here ∆
denotes the symmetric difference of the two k-subsets x and y.

Füredi and Griggs [6] (see also Mörs [10]) proved that, for cardinalities m for
which the k-binomial decomposition has length t + 1 < k, these initial segments
in the colex order are in fact the unique extremal families. They also gave some
examples which show that this is not the case when t + 1 = k. This prompted
the authors to ask about the characterization of the extremal families. The aim
of this paper is to give an answer to this question.

For fixed k the set of integers for which the k-binomial decomposition has length
k (so t = k − 1) has asymptotic density one. This suggests that there may be a
large number of extremal families besides the initial segments of the colex order.
A consequence of our results is that this is indeed the case.

Our approach is based on a variation on the k-binomial decomposition of a po-
sitive integer, which will be directly related to the family S of k-subsets. We recall
that the i-th shadow of a family S is defined recursively by ∆i(S) = ∆(∆i−1(S)).
Our main result is the following.

Theorem 2. Let S ⊂
(
[n]
k

)
be a family k-subsets of [n]. There is a sequence of

(non necessarily positive) integers b0 > b1 > · · · > bk−2 ≥ bk−1 such that, for each
0 ≤ i ≤ k − 1,

|∆i(S)| =
(

b0
k − i

)
+

(
b1

k − i− 1

)
+ · · ·+

(
bk−1
−i+ 1

)
.

Moreover, S is an extremal family if and only if bk−1 ≥ 1.

We call the sequence b(S) = (b0, b1, . . . , bk−1) the shadow k-binomial sequence
of S. For k ≥ 2, the shadow sequence of a family S of k-subsets can be simply
defined recursively by

bi =


|∆k−1(S)| − 1, i = 0

|∆k−i−1(S)| −
((

b0
i+1

)
+ · · ·+

(
bi−1

2

))
− 1, 1 ≤ i < k − 1,

|S| −
((

b0
k

)
+ · · ·+

(
bk−2

2

))
i = k − 1

.

The core of Theorem 2 is to show that the terms of the sequence satisfy the
inequalities b0 > b1 > · · · > bk ≥ bk−1, and also to obtain some of its properties.
Once this is proved, the characterization of extremal sets in the Theorem follows
using Theorem 1 and the results in [6, Theorem 2.1] and [10].

An application of Theorem 2 is to provide several explicit examples of extremal
families which are not initial segments in the colex order. An example of the
ubiquity of extremal families is the following result.



EXTREMAL FAMILIES FOR KRUSKAL-KATONA THEOREM 1045

Theorem 3. For each family S ⊂
(
[n]
k

)
there is a positive integer n0 = n0(S)

such that, for every m ≥ n0, the family S′ of k-subsets of [n+m] defined as

S′ =

{
y ∪ z

∣∣∣ y ⊂ s, s ∈ S, z ∈ ([n+ 1, n+m]

k − |y|

)}
, is extremal.

Example 4. The family of 3-sets in [6] formed by S = {{1, 2, 3}, {4, 5, 6}} is
not extremal as its shadow 3-binomial decomposition is

(
5
3

)
+
(−5

2

)
+
(−18

1

)
. The

family of 3-sets in [6 + 19] formed by

{1, 2, 3}, {4, 5, 6}, {s ∪ i}s∈(6
2),i∈[7,25]

, and {s ∪ {i, j}}
s∈[6],{i,j}∈([7,25]

2 )

have shadow 3-binomial
(
24
3

)
+
(
14
2

)
+
(
1
1

)
and is hence extremal.

Theorem 3 has Theorem 9 below as a complementary result which describes a
structural property of extremal families.

The shadow sequences also provide a tool to analyze the structure of sets which
are close to be extremal and derive stability results for the Kruskal-Katona theorem
as the ones obtained by Keevash [8]. Another application, which was one of the
motivation of the present paper, is the analysis of the isoperimetric function of the
Johnson graphs (see e.g. [2, 1]), that we develop in a forthcoming paper.

2. Downsets

We denote a k-subset x = {x1, . . . , xk} ∈
(
[n]
k

)
with x1 < x2 < · · · < xk by the

vector (x1, . . . , xk). We consider the partial order in
(
[n]
k

)
defined as

x = (x1, . . . , xk) ≤ y = (y1, . . . , yk) ⇔ xi ≤ yi, for all i, 1 ≤ i ≤ k.

By a downset we mean a downset in the former order, namely a set S satisfying
that x ∈ S and y ≤ x implies y ∈ x. Downsets are equivalent to compressed
sets defined in terms of the shift operator used by Erdős, Ko and Rado [3] in their
proof of the Erdős-Ko-Rado theorem and also used by Frankl [4] in his proof of the
Kruskal-Katona theorem. The computation of the shadow sequence of a family S
is simpler for downsets than for general sets. We need some notation.

For x ∈
(
[n]
k

)
the denote the downset generated by x as

〈x〉 =

{
y ∈

(
[n]

k

) ∣∣∣ y ≤ x} .
For a family R = {r1, . . . , rt} ⊂

(
[n]
k

)
the downset generated by R is 〈R〉 =

〈x1, . . . , xt〉 = 〈x1〉 ∪ · · · ∪ 〈xt〉. A generating set R is minimal if no proper subset
of R generates 〈R〉. Every downset is generated by the family of all its members
and has a uniquely defined minimum generating set.

For every x = (x1, . . . , xk) ∈
(
[n]
k

)
, the subset of the i largest elements in

x is denoted by x(i) = (xk−i+1, . . . , xk) ∈
(
[n]
i

)
. The notation is extended to a

family S of k-sets S ⊂
(
[n]
k

)
by S(i) = {x(i) | x ∈ S}. The k-extension of a set

y = (y1, . . . , yi) ∈
(
[n]
i

)
such that y1 > k − i and i ≤ k is the k-subset obtained
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from y by adding the largest elements smaller than y1 and it is denoted by

(y)k = (y1 − (k − i), y1 − (k − i− 1), . . . , y1 − 1, y1, y2, . . . , yi) ∈
(

[n]

k

)
,

The conditional cone of y is the set of all elements in 〈(y)k〉 whose i largest coor-
dinates coincide with y, denoted by

Ky = {x ∈ 〈(y)k〉 : x(i) = y}.

We note that, by definition, for distinct subsets y, y′ of [n] with |y| ≤ |y′|

either Ky ⊆ Ky′ (when y(|y
′|) = y′) or Ky ∩Ky′ = ∅.

Lower shadows of downsets are also downsets and their generating sets can be
easily obtained.

Proposition 5 (Generation of lower shadows). Let S = 〈R〉 ⊂
(
[n]
k

)
be a

downset generated by the family R. Then, for each 1 ≤ i < k,

∆i(S) = 〈R(k−i)〉.

The following Proposition gives an expression of a downset S ⊂
(
[n]
k

)
in terms

of a principal downset and a family of cones.

Proposition 6. Let R = {r1, . . . , rt} be the minimal generating set of the
downset S. Let b = max(∪ti=1ri). There is a set M = M(R) ⊂ 2[n] univocally
determined by R such that

S = 〈(b)k〉r (∪y∈MKy) .

The set M = M(R) given in Proposition 6 can be explicitly described in terms
of the elements in R and provides the means to obtain the shadow sequence of
S described in Theorem 2, when S is compressed. Let Mi = {y ∈ M : |y| = i},
2 ≤ i ≤ k, and denote by λi,j = |{y ∈ Mj : y1 = i + 1}|. The following Theorem
describes the shadow sequence of a downset.

Theorem 7. Let S = 〈R〉 be the downset of
(
[n]
k

)
generated by R. For 2 ≤ i ≤ k

let µi,2 = λi,2 and let b be the maximum element in ∪x∈Sx

µi,j = λi,j + max

{
min{i− (ai−1 − 1), 0}+

∑
t>i

µt,j−1, 0

}
, 3 ≤ j ≤ k.

The shadow sequence of S is given by

ai =


b− 1 if i = 0

ai−1 − 1−
∑

t∈[1,b] µt,i+1 if k − 1 > i ≥ 1,

ak−2 −
∑

t∈[1,b] µt,k i = k − 1.
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3. Shadow sequences

Theorem 2 involves the treatment of any family of sets, not only compressed ones.
In the general case the explicit form of the shadow sequence heavily depends on
the elements in S. Nevertheless sufficient information can be obtained from the
shadow sequence for the applications mentioned in the Introduction.

The approach for the general case is parallel to the one for downsets. We first
prove an analogous to Proposition 6.

Proposition 8. Let S be a family of k-subsets of [n]. Let b = | ∪x∈S x| be the
size of the support of S. There is a set M = M(S) univocally defined by S such
that S = 〈(b)k〉r

(
∪y∈MKy

)
.

When S is not compressed, Ky is a cone analogous to Ky. A labeled tree is
associated to the set M(S) which provides parameters λi,j = λi,j(S) analogous
to the downset case. Once these are defined, the exact same description from
Theorem 7 follows also for non-compressed sets, exchanging the λi,j in Theorem 7
by these analogous λi,j(S), ommiting the reference to the generating set R, and
where b is the size of the support of S (as in Proposition 8).

4. Extremal families

Given S, a family of k-sets of [n], we can define the hypergraph H(S) as follows.
The vertex set of H(S) is [n] and {h1, . . . , hs} is an edge in H(S) if and only if,

for each x ∈
(
[n]r{h1,...,hs}

k−s
)

then x ∪ {h1, . . . , hs} /∈ S, and there is no subset of

{h1, . . . , hs} with the same extension property. Note that the edge set of H(S) is
precisely the set M from Proposition 8. Any family of k-sets on [n] determines a
unique hypergraph H(S) on [n] whose edges have at most k elements (complexity
at most k), no edge is strictly contained in another (simple), and such that for each
s ∈ [k] and for each s-set X of V (H(S)) there exists an x ∈ V (H(S))rX such that
x ∪ X /∈ E(H(S)) (no s-set has the complete s + 1 neighbourhood). Moreover,
any hypergraph with the mentioned properties induce a family of k-sets. The
hypergraph H(S) is said to be the hypergraph of the family S.

Theorem 9. Let S be an extremal family of k-sets on [n]. Let H(S) = (V,E)
be the hypergraph of the family S.

Then any hypergraph H′ = (V,E′) with E′ ⊂ E is the hypergraph of S′, a family
of k-sets on [n], which is extremal and contains S.

In particular, the families S′ containing S are not trivial as long as H′ = (V,E′)
is non-empty.
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6. Füredi Z. and Griggs J. R., Families of finite sets with minimum shadows, Combinatorica
6 (1986), 355–363.

7. Katona G., A Theorem of Finite Sets, in: Classic Papers in Combinatorics, Springer, 2009.
8. Keevash P., Shadows and intersections: stability and new proofs, Adv. Math. 218 (2008),

1685–1703.

9. Kruskal J. B., The number of simplices in a complex, Mathematical optimization techniques
10 (1963), 251–278.
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