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Abstract

In this paper, we present a detailed study of the reach distance-layer structure of the De Bruijn and
Kautz digraphs, and we apply our analysis to the performance evaluation of deflection routing in De
Bruijn and Kautz networks. Concerning the distance-layer structure, we provide explicit polynomial
expressions, in terms of the degree of the digraph, for the cardinalities of some relevant sets of this
structure. Regarding the application to defection routing, and as a consequence of our polynomial
description of the distance-layer structure, we formulate explicit expressions, in terms of the degree of
the digraph, for some probabilities of interest in the analysis of this type of routing.

De Bruijn and Kautz digraphs are fundamental examples of digraphs on alphabet and iterated line
digraphs. If the topology of the network under consideration corresponds to a digraph of this type, we
can perform, in principle, a similar vertex layer description.

1 Introduction

Deflection routing [1] is a routing scheme for bufferless networks based on the fact that if a packet cannot
be sent through a given link due to congestion, it is deflected through any other available link (instead of
being buffered in the node queue), and the packet is then rerouted to destination. This kind of routing is
nowadays interesting in the context of optical networks [19, 25, 31] and on-chip networks [6, 22]. However,
its efficiency depends highly on the network topology (as well as on the decision criteria used to deflect
packets when collisions appear [11]). More precisely, the routing efficiency will be determined by how much
the distance to the destination increases when a deflection occurs. This question is addressed by considering
some probabilities, as studied in Subsection 2.3. Because of this reason, the efficiency in networks with
unidirectional links may be worse than in the bidirectional case. Nevertheless, in many cases, directed
networks are convenient [22, 29].

Despite being known for a long time, active research is still going on on De Bruijn and Kautz digraphs
B(d,D) andK(d,D) [2, 9, 20, 21], both in graph theory [4, 10, 18, 23] and in network engineering [14, 24, 28].
Those digraphs have been proposed as topologies for optical networks (see for instance [5, 7, 30]). This
paper is concerned with deflection routing in these kinds of networks.

To study the topological properties of B(d,D) and K(d,D) that we need to evaluate the performance
of deflection routing, we provide a detailed study of its reach distance-layer structure. We give explicit
polynomial expressions, in terms of the degree of the digraph, for the cardinalities of some relevant sets of
this structure. For instance, if S⋆

i (v) denotes the set of vertices at distance i from a given vertex v, we show
that |S⋆

i (v)| = di−ai−1d
i−1−· · ·−a1d−a0, where the coefficients ak are 0 or 1, and are explicitly determined

from the sequence representation of v. Moreover, if w is a vertex adjacent from v, we demonstrate that
there are at most two integers j such that the intersection S⋆

i (v) ∩ S⋆
j (w) is nonempty; we show how to

determine such values of j; and we relate the polynomial description of |S⋆
i (v)∩S⋆

j (w)| with that of |S⋆
i (v)|.

We apply our results on the distance-layer structure to provide explicit expressions, in terms of the
degree d, of some probabilities of interest in the performance evaluation of deflection routing in B(d,D)
and K(d,D). Moreover, the polynomial description of the distance-layer structure is interesting by itself
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from a graph theoretical approach, and it can be helpful in other applications of De Bruijn and Kautz
digraphs to networks or other engineering fields.

The paper is organized as follows. In Section 2 we present our results on the distance-layer structure
of the set of vertices of B(d,D) and K(d,D) (Subsections 2.1 and 2.2), and on deflection routing (Subsec-
tion 2.3). To develop the proofs of our results, we need a collection of technical lemmas and remarks that
allow us to understand the distance-layer structure comprehensively. The proofs of these lemmas are put
together in an Appendix that also contains a long common proof of two of the propositions formulated in
Subsection 2.2.

An extended abstract of a preliminary version of our work appeared in [12]. Moreover, and extended
preprint version of this paper, with examples and additional remarks, can be found in [13].

2 Our results

Concerning the distance-layer structure of the set of vertices of the De Bruijn and Kautz digraphs we
formulate some polynomial expressions (in terms of the degree d of the digraph) for the cardinalities of
some relevant sets of this structure. More precisely, let S⋆

i (v) be the set of vertices at distance i from a
given vertex v. We show that |S⋆

i (v)| = di − ai−1d
i−1 − · · · − a1d− a0, and the coefficients ak ∈ {0, 1} are

explicitly calculated. Moreover, given v, we show that for each vertex w there exists at most one integer
j ⩾ i such that the intersection S⋆

i (v) ∩ S⋆
j (w) is nonempty; and in the case that w is adjacent from v,

we provide a precise characterization of when S⋆
i (v) ∩ S⋆

j (w) ̸= ∅. Furthermore, if w is adjacent from v,

we prove that if S⋆
i (v) ∩ S⋆

i−1(w) ̸= ∅, then |S⋆
i (v) ∩ S⋆

i−1(w)| = di−1 − bi−2d
i−2 − . . .− b1d− b0, and that

if S⋆
i (v) ∩ S⋆

j (w) ̸= ∅, then |S⋆
i (v) ∩ S⋆

j (w)| = di − αi−1d
i−1 − . . . − α1d − α0, where the coefficients of

these polynomial expressions, bk, αk ∈ {0, 1}, 0 ⩽ k ⩽ i− 2, and αi−1 ∈ {0, 1, 2}, are determined from the
coefficients ak of the polynomial expression of |S⋆

i (v)|.

2.1 The distance-layer structure of B(d,D) and K(d,D)

This subsection and the following one are devoted to presenting our results on the characterization of the
distance-layer structure of B(d,D) and K(d,D).

We make use of the well-known sequence representation of the vertices of B(d,D) and K(d,D). Each
vertex of the De Bruijn digraph B(d,D) corresponds to a sequence v = v1v2 · · · vD such that each element
vk belongs to a base alphabet A of d symbols, and vertex v is adjacent to the d vertices w = v2 · · · vDvD+1,
where vD+1 ∈ A. Analogously, each vertex of the Kautz digraph K(d,D) corresponds to a sequence
v = v1v2 · · · vD, where now vk ̸= vk+1, 1 ⩽ k < D, and the base alphabet A has d+1 symbols. In K(d,D),
vertex v is adjacent to the d vertices w = v2 · · · vDvD+1, where vD+1 ∈ A and vD+1 ̸= vD. The digraphs
B(d,D) and K(d,D) are d-regular, d ⩾ 2, have diameter D, and number of vertices dD and dD + dD−1,
respectively.

Notice that if v = v1v2 · · · vivi+1 · · · vD is the sequence representation of a vertex v, then the sequence
representation of a generic vertex u for which there exists a walk from v to u of length i, 0 ⩽ i ⩽ D− 1, is
u = vi+1 · · · vD ∗ · · · ∗, where the subsequence ∗ · · · ∗ means that the last i symbols of u can be arbitrarily
chosen (in the case G = K(d,D), two consecutive symbols must be different). It is easily checked that
between any pair of vertices there exists a walk of length D in B(d,D) and of length D + 1 in K(d,D).
It is also a well-known fact that in B(d,D) and K(d,D) the shortest path between any two vertices
is unique. Indeed, let v and z be distinct vertices with a sequence representation v = v1v2 · · · vD and
z = z1z2 · · · zD, respectively. Then, the distance from v to z is k if and only if k is the smallest integer
such that v = v1 · · · vkz1 · · · zD−k; that is to say, k is the smallest integer such that the last D − k symbols
of the sequence representation of v coincide with the first D − k symbols of the sequence representation
of z. Moreover, if k ⩾ 2, then the shortest path from v to z is v, u1, . . . , uk−1, z, where the sequence
representation of the intermediate vertex ui is ui = vi+1 · · · vkz1 · · · zD−k+i, 1 ⩽ i ⩽ k − 1.

From now on let G be the digraph under consideration (either G = B(d,D) or G = K(d,D)) and let V
denote its vertex set.

Given v ∈ V , for i ⩾ 0, let Si(v) be the set of vertices for which there exists a walk from v of length i,
and let S⋆

i (v) denote the set of vertices at distance i from v. From the definition it is clear that S0(v) = {v};
S1(v) is the set of vertices adjacent from v, usually denoted as Γ+(v); S⋆

i (v) = ∅ for i ⩾ D + 1; and

S⋆
i (v) = Si(v) \

(
i−1⋃
k=0

Sk(v)

)
for 0 ⩽ i ⩽ D. (1)
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Moreover, since in B(d,D) there exists a walk of length D between any pair of vertices, if G = B(d,D) and
i ⩾ D, then Si(v) = V , and so |Si(v)| = dD. Analogously, if G = K(d,D) and i ⩾ D + 1, then Si(v) = V
and |Si(v)| = dD + dD−1, because in K(d,D) there is a walk of length D + 1 between any pair of vertices.

2.2 Polynomial description of the distance-layer structure

The first goal of this subsection is to present a polynomial description of the cardinality of the set S⋆
i (v),

where the polynomial has degree i, variable d (the degree of the digraph), and coefficients 0 or 1. In order
to obtain this description, we introduce the following definition.

Definition 1. Given v ∈ V and two integers k, i such that 0 ⩽ i ⩽ D and 0 ⩽ k ⩽ i, let

Sk,i(v) =


Sk(v), if Sk(v) ⊆ Si(v) and for all j, k < j < i,

such that Sj(v) ⊆ Si(v) we have Sk(v) ̸⊆ Sj(v);

∅, otherwise.

Remark 1. It follows from Definition 1 that Si,i(v) = Si(v) for any v ∈ V . Moreover, if G = K(d,D), then
Si−1,i(v) = ∅ for any v ∈ V , because Si−1(v) ̸⊆ Si(v). In the case G = B(d,D) there are vertices v such
that Si−1,i(v) = Si−1(v) and vertices v for which Si−1,i(v) = ∅.

To prove the results presented in Subsections 2.2 and 2.3, we use several technical lemmas gathered in
the Appendix at the end of the document. However, for the sake of readability, we include in Subsection 2.2
the statements of Lemmas 1 to 5, and in Subsection 2.3, the statements of Lemmas 6 to 8.

We will use the following notation. If v ∈ V , then v[i,j] denotes the subsequence vivi+1 · · · vj of the
sequence representation v = v1v2 · · · vD. In particular, v[i,i] = vi is the i-th element of this sequence.

Lemma 1. Let v ∈ V . Then |Si(v)| = di for 0 ⩽ i ⩽ D. Moreover, if G = B(d,D) and i ⩾ D, then
Si(v) = V ; while if G = K(d,D) and i ⩾ D + 1, then Si(v) = V .

The main part of the next lemma essentially states that, given any two (no necessarily different) vertices
v, v′, if k ⩽ i < D or k < i = D, then either Sk(v) ⊆ Si(v

′) or Sk(v) ∩ Si(v
′) = ∅. The precise formulation

in terms of the sequence representation of v and v′ is as follows.

Lemma 2. Let v, v′ ∈ V be two vertices with sequence representation v = v1v2 · · · vD and v′ = v′1v
′
2 · · · v′D.

Let 0 ⩽ k ⩽ i and assume that Si(v
′) ̸= V . Then i ⩽ D, Sk(v) ̸= V , and the following statements hold:

1. If k ⩽ i < D, then either Sk(v) ⊆ Si(v
′) or Sk(v) ∩ Si(v

′) = ∅. Moreover, Sk(v) ⊆ Si(v
′) if and only

if v[k+1,D−(i−k)] = v′[i+1,D].

2. If k < i = D, then G = K(d,D) and either Sk(v) ⊆ SD(v′) or Sk(v) ∩ SD(v′) = ∅. Moreover,
Sk(v) ⊆ SD(v′) if and only if vk+1 ̸= v′D.

3. If k = i = D, then G = K(d,D) and SD(v)∩SD(v′) ̸= ∅. Moreover, if vD = v′D then SD(v) = SD(v′),
whereas if vD ̸= v′D, then SD(v) ̸= SD(v′) and |SD(v) ∩ SD(v′)| = dD − dD−1.

Remark 2. Let 0 ⩽ k < j < i ⩽ D. By statement (1) of Lemma 2, Sj(v) ̸⊆ Si(v) if and only if
Sj(v) ∩ Si(v) = ∅. Therefore, if Sk(v) ⊆ Si(v) and Sj(v) ̸⊆ Si(v), then Sk(v) ̸⊆ Sj(v). This observation
allows us to reformulate Definition 1 in the following way: Let v ∈ V and let k, i be two integers such that
0 ⩽ i ⩽ D and 0 ⩽ k ⩽ i. Then

Sk,i(v) =

{
Sk(v), if Sk(v) ⊆ Si(v) and Sk(v) ∩ Sj(v) = ∅ for all j, k < j < i;

∅, otherwise.

Remark 3. By Remark 2 and Lemma 2 we have Sk,i(v) = Sk(v) if and only if v[k+1,D−(i−k)] = v[i+1,D] and
v[k+1,D−(j−k)] ̸= v[j+1,D] for all j, k < j < i. In particular, if k = i − 1, then Si−1,i(v) = Si−1(v) if and
only if Si−1(v) ⊆ Si(v); if and only if v[i,D−1] = v[i+1,D]; if and only if vi = vi+1 = · · · = vD.

Remark 4. Let 0 ⩽ k1, k2 < i ⩽ D. We claim that if k1 ̸= k2, then Sk1,i(v) ∩ Sk2,i(v) = ∅. Indeed, if
Sk1,i(v) ∩ Sk2,i(v) ̸= ∅, then Sk1,i(v) ̸= ∅ and Sk2,i(v) ̸= ∅. So, Sk1,i(v) = Sk1

(v) ⊆ Si(v) and Sk2,i(v) =
Sk2(v) ⊆ Si(v). Hence Sk1(v) ∩ Sk2(v) = Sk1,i(v) ∩ Sk2,i(v) ̸= ∅. Now, by applying Lemma 2, either
Sk1(v) ⊆ Sk2(v) or Sk2(v) ⊆ Sk1(v). Hence either Sk1(v) ⊆ Sk2(v) ⊆ Si(v) or Sk2(v) ⊆ Sk1(v) ⊆ Si(v). In
any case, this leads us to a contradiction with the definition of Sk,i(v). This completes the proof of our
claim.
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The following result describes the structure of the distance-layer set S⋆
i (v).

Lemma 3. Let v ∈ V and let 0 ⩽ i ⩽ D. Then S⋆
i (v) = Si(v) \

( i−1⋃
k=0

Sk,i(v)
)
.

Now we can prove our first result concerning |S⋆
i (v)|.

Proposition 1. Let v ∈ V and i ⩽ D. Then,

|S⋆
i (v)| = di − ai−1d

i−1 − · · · − a1d− a0,

where the coefficients ak are 0 or 1, and ak = 1 if and only if Sk,i(v) ̸= ∅. In particular, if v = v1v2 · · · vD,
then ai−1 = 1 if and only if G = B(d,D) and vi = vi+1 = · · · = vD.

Proof. On one hand, from Lemma 3 we have S⋆
i (v) = Si(v) \

(⋃i−1
k=0 Sk,i(v)

)
. On the other hand, from the

definition of Sk,i(v) we have Sk,i(v) ⊆ Si(v). Therefore,

|S⋆
i (v)| =

∣∣∣Si(v) \
( i−1⋃

k=0

Sk,i(v)
)∣∣∣ = |Si(v)| −

∣∣∣ i−1⋃
k=0

Sk,i(v)
∣∣∣.

As shown in Remark 4, if k1 ̸= k2, then Sk1,i(v)∩Sk2,i(v) = ∅. Therefore, it follows that
∣∣∣⋃i−1

k=0 Sk,i(v)
∣∣∣ =∑i−1

k=0 |Sk,i(v)|. Thus, from the definition of Sk,i(v) and by Lemma 1, we have

|S⋆
i (v)| = |Si(v)| −

i−1∑
k=0

|Sk,i(v)| = di −
i−1∑
k=0

akd
k,

where the coefficients ak are 0 or 1, and ak = 1 if and only if Sk,i(v) ̸= ∅. Clearly, if i = D, then Si−1,i(v) ̸= ∅
if and only if G = B(d,D). To conclude, assume that i < D. In such a case we have ai−1 = 1 if and
only if Si−1,i(v) ̸= ∅; if and only if Si−1(v) ⊆ Si(v); if and only if v[i,D−1] = v[i+1,D] (the last equivalence
follows from statement (1) of Lemma 2 which can be applied because i < D). Therefore we conclude that
if i < D, then ai−1 = 1 if and only if G = B(d,D) and vi = vi+1 = · · · = vD. This completes the proof of
the proposition.

To illustrate the use of Proposition 1, let us consider the following two examples.

Example 1. Consider the De Bruijn digraph G = B(d, 7) and let v ∈ V be a vertex which sequence
representation is v = αββαβαβ, where α and β are distinct elements of the symbol alphabet A. Let us
determine the number of vertices, |S⋆

6 (v)|, at distance 6 from such a vertex v.
If the symbol ∗ stands for an arbitrary element of A, we can describe the sets Si(v) as S0(v) = {u ∈

V : u = αββαβαβ}, S1(v) = {u ∈ V : u = ββαβαβ∗}, S2(v) = {u ∈ V : u = βαβαβ ∗ ∗}, . . . , and
S6(v) = {u ∈ V : u = β ∗ ∗ ∗ ∗ ∗ ∗}. We realize that if k < 6, then Sk(v) ⊆ S6(v) if and only if k = 1, 2, 4.
Hence S1,6(v) = S1(v), because S1(v) ̸⊆ Sj(v) if 1 < j < 6; S2,6(v) = ∅, because S2(v) ⊆ S4(v); and
S4,6(v) = S4(v), because S4(v) ̸⊆ S5(v). Therefore we have a1 = a4 = 1 and a2 = a3 = a5 = 0, and hence
|S⋆

6 (v)| = d6 − d4 − d.

Example 2. In this second example we consider the Kautz digraph G = K(d, 10) and let us calculate
|S⋆

8 (v)|, being v a vertex with sequence representation v = αβγαβγαβαβ, where α, β and γ stand for
different elements of the symbol alphabet A. As in Example 1, the sets Si(v) can be described as S0(v) =
{u ∈ V : u = αβγαβγαβαβ}, S1(v) = {u ∈ V : u = βγαβγαβαβ∗}, S2(v) = {u ∈ V : u = γαβγαβαβ ∗
∗}, . . . , and S8(v) = {u ∈ V : u = αβ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗}. (Remember that, since G is a Kautz digraph, two
successive symbols in the above sequence representations must be different.) We can verify that if k < 8,
then the only subsets Sk,8(v) which are nonempty are S0,8(v) = S0(v), S3,8(v) = S3(v), and S6,8(v) = S6(v).
So we conclude that |S⋆

8 (v)| = d8 − d6 − d3 − 1.

For the application to deflection routing, in addition to |S⋆
i (v)|, we are also interested in |S⋆

i (v)∩S⋆
j (w)|

when w is a vertex adjacent from v. Let v ∈ V and w ∈ S1(v), and let i ⩾ 0. By the triangular inequality

we have S⋆
i (v) ∩ S⋆

j (w) = ∅ if j < i− 1. Therefore, since V =
⋃D

j=0 S
⋆
j (w), we conclude that

S⋆
i (v) =

D⋃
j=0

(
S⋆
i (v) ∩ S⋆

j (w)
)
=

D⋃
j=i−1

(
S⋆
i (v) ∩ S⋆

j (w)
)
.
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First, we demonstrate in Proposition 2 that there are at most two integers j ⩾ i − 1 such that the
intersection S⋆

i (v)∩S⋆
j (w) is nonempty. After this, in Propositions 3 and 4 we show how to determine such

values of j. Finally, in Theorems 1, 2 and 3 we relate the polynomial description of |S⋆
i (v)| with that of

|S⋆
i (v) ∩ S⋆

j (w)|.

Proposition 2. Let v ∈ V and let i ⩽ D. Then for each vertex w ∈ V there exists at most one integer j0,
i ⩽ j0 ⩽ D, such that S⋆

i (v) ∩ S⋆
j0
(w) ̸= ∅. In particular, if w ∈ S1(v), then

1. either there exists a unique integer j0, i ⩽ j0 ⩽ D, such that the intersection S⋆
i (v) ∩ S⋆

j0
(w) is

nonempty, and so S⋆
i (v) =

(
S⋆
i (v) ∩ S⋆

i−1(w)
)
∪
(
S⋆
i (v) ∩ S⋆

j0
(w)
)
;

2. or, for all integer j, i ⩽ j ⩽ D, the intersection S⋆
i (v) ∩ S⋆

j (w) is empty, and so S⋆
i (v) = S⋆

i (v) ∩
S⋆
i−1(w).

Proof. We have to prove that there exists at most one integer j0, i ⩽ j0 ⩽ D, such that S⋆
i (v)∩S⋆

j0
(w) ̸= ∅,

because if so, statements (1) and (2) follow. To prove that, let us demonstrate that if S⋆
i (v) ∩ S⋆

j (w) ̸= ∅
for some j, i ⩽ j < D, then S⋆

i (v) ∩ S⋆
j′(w) = ∅ for all integer j′ such that j < j′ ⩽ D. Thus assume

S⋆
i (v) ∩ S⋆

j (w) ̸= ∅ and let j < j′ ⩽ D. On one hand, if S⋆
i (v) ∩ S⋆

j (w) ̸= ∅, then Si(v) ∩ Sj(w) ̸= ∅
and, since i < D, we conclude from Lemma 2 that Si(v) ⊆ Sj(w). On the other hand, by definition we

have S⋆
j′(w) = Sj′(w) \

(⋃j′−1
k=0 Sk(w)

)
and, since j < j′, we get that Sj(w) ∩ S⋆

j′(w) = ∅. Thus we have

Si(v) ∩ S⋆
j′(w) = ∅, because Si(v) ⊆ Sj(w), and therefore we conclude that S⋆

i (v) ∩ S⋆
j′(w) = ∅, as we

wanted to prove.

Proposition 3. Assume d ⩾ 3. Let v ∈ V , w ∈ S1(v), and let i ⩽ D. Then,

1. If j ⩾ i ̸= D, then S⋆
i (v) ∩ S⋆

j (w) ̸= ∅ if and only if Si(v) ∩ Sj(w) ̸= ∅ and Si(v) ̸⊆ Sk,j(w) for
i ⩽ k < j.

2. The intersection S⋆
i (v)∩S⋆

i−1(w) is empty if and only if G = B(d,D) and vi = vi+1 = · · · = vD = wD.
Furthermore, if S⋆

i (v) ∩ S⋆
i−1(w) = ∅, then S⋆

i (v) ∩ S⋆
i (w) ̸= ∅.

3. There exists a unique integer j, i ⩽ j ⩽ D, such that the intersection S⋆
i (v) ∩ S⋆

j (w) is non-empty.

The condition d ⩾ 3 cannot be removed from the hypothesis of Proposition 3, because if d = 2 and
G = B(d,D), then statements (1) and (3) do not necessarily hold. So we study completely the case d = 2
in the next proposition.

Proposition 4. Assume d = 2. Let v ∈ V , w ∈ S1(v), and let i ⩽ D. Then,

1. If j ⩾ i ̸= D, then S⋆
i (v)∩S⋆

j (w) ̸= ∅ if and only if Si(v)∩Sj(w) ̸= ∅, Si(v) ̸⊆ Sk,j(w) for i ⩽ k < j,
and one of the following conditions holds:

(a) j < D;

(b) j = D, and v[i,D−1] ̸= v[i+1,D] or Si−1,j(w) = ∅.

2. The intersection S⋆
i (v)∩S⋆

i−1(w) is empty if and only if G = B(d,D) and vi = vi+1 = · · · = vD = wD.
Furthermore, if S⋆

i (v) ∩ S⋆
i−1(w) = ∅, then S⋆

i (v) ∩ S⋆
i (w) ̸= ∅.

3. The intersection S⋆
i (v) ∩ S⋆

j (w) is empty for all integer j, i ⩽ j ⩽ D, if and only if G = B(d,D) and
vi = vi+1 = · · · = vD ̸= wD.

Propositions 3 and 4 are proved together in the Appendix.
The following lemma deals with the set of vertices w ∈ S1(v) for which the intersection set Si(v)∩Sj(w)

is nonempty.

Lemma 4. Let v ∈ V and, for 0 ⩽ i ⩽ j < D, let Γ+
i,j(v) = {w ∈ S1(v) : Si(v) ∩ Sj(w) ̸= ∅}. Then

1. The set Γ+
i,j(v) is nonempty if and only if one the following conditions is fulfilled:

(a) i < j < D − 1 and v[i+1,D+i−j−1] = v[j+2,D].

(b) i < j = D − 1 and either G = B(d,D), or G = K(d,D) and vi+1 ̸= vD.

(c) i = j, G = B(d,D) and v[i+1,D] = vD · · · vD.

2. If the set Γ+
i,j(v) is nonempty, then Γ+

i,j(v) has a unique element w which sequence representation is
w = v2 · · · vDvi+(D−j). Moreover, if i = j, then Si−1(w) ⊆ Si(v) = Si(w) ⊆ Si+1(v) = Si+1(w) ⊆ · · · .
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In the next result we provide a detailed description of the intersection sets S⋆
i (v) ∩ S⋆

j (w) when w is a
vertex adjacent from v and for i, j ⩽ D with i− 1 ⩽ j.

Lemma 5. Let v ∈ V and w ∈ S1(v). Let i, j ⩽ D with i − 1 ⩽ j. If Si(v) ∩ Sj(w) ̸= ∅, then the
intersection set S⋆

i (v) ∩ S⋆
j (w) can be described as follows:

1. Si−1(w) \
i−1⋃
k=0

Sk,i(v) if j = i− 1.

2.
(
SD(v) ∩ SD(w)

)
\

D−2⋃
k=0

Sk,D(v) if i = j = D and G = K(d,D).

3. V \
(
SD−1(v) ∪ SD−1(w) ∪

D−2⋃
k=0

Sk,D(v)
)
if i = j = D and G = B(d,D).

4. Si(v) \
(( i−1⋃

k=0

Sk,i(v)
)
∪
( j−1⋃

k=i−1

Sk,j(w)
))

if j ⩾ i and i ̸= D.

Remark 5. Observe that in the above expressions we have Sk,i(v) ⊆ Si(v) for 0 ⩽ k ⩽ i − 1, because of
the definition of Sk,i(v). Furthermore, by Lemma 2, either Sk,i(v) ∩ Si−1(w) = ∅ or Sk,i(v) ⊆ Si−1(w),
0 ⩽ k ⩽ i− 1.

Next we show that, whenever the intersection S⋆
i (v)∩S⋆

j (w) is nonempty, its cardinality has a polynomial
expression of the form ∣∣S⋆

i (v) ∩ S⋆
j (w)

∣∣ = di − bi−1d
i−1 − . . .− b1d− b0,

where the coefficients bk are determined from the coefficients ak of the polynomial expression of |S⋆
i (v)|.

The coefficients bk are computed in the following theorems.

Theorem 1. Let v ∈ V , w ∈ S1(v), and let 1 ⩽ i ⩽ D. Assume that S⋆
i (v) ∩ S⋆

i−1(w) ̸= ∅ and that
S⋆
i (v) ∩ S⋆

j0
(w) ̸= ∅ for some i ⩽ j0 ⩽ D. Then,

S⋆
i (v) =

(
S⋆
i (v) ∩ S⋆

i−1(w)
)
∪
(
S⋆
i (v) ∩ S⋆

j0(w)
)
,

and so ∣∣S⋆
i (v)

∣∣ = ∣∣S⋆
i (v) ∩ S⋆

i−1(w)
∣∣+ ∣∣S⋆

i (v) ∩ S⋆
j0(w)

∣∣.
Moreover, if ∣∣S⋆

i (v)
∣∣ = di − ai−1d

i−1 − . . .− a1d− a0

is the polynomial expression of |S⋆
i (v)| given in Proposition 1, then |S⋆

i (v)∩ S⋆
i−1(w)

∣∣ and |S⋆
i (v)∩ S⋆

j0
(w)
∣∣

have polynomial expressions∣∣S⋆
i (v) ∩ S⋆

i−1(w)
∣∣ = di−1 − bi−2d

i−2 − . . .− b1d− b0,∣∣S⋆
i (v) ∩ S⋆

j0(w)
∣∣ = di − (ai−1 + 1)di−1 − (ai−2 − bi−2)d

i−2 − . . .− (a1 − b1)d− (a0 − b0),

where bk ∈ {0, 1} and bk = 1 if and only if ak = 1 and vD−i+k+1 = wD.

Remark 6. In Theorem 1, the equality S⋆
i (v) =

(
S⋆
i (v) ∩ S⋆

i−1(w)
)
∪
(
S⋆
i (v) ∩ S⋆

j0
(w)
)
as well as |S⋆

i (v)| =∣∣S⋆
i (v) ∩ S⋆

i−1(w)
∣∣ + ∣∣S⋆

i (v) ∩ S⋆
j0
(w)
∣∣ is valid even if S⋆

i (v) ∩ S⋆
i−1(w) or S⋆

i (v) ∩ S⋆
j0
(w) were empty, as

deduced from Proposition 2.

Remark 7. We know from Proposition 1 that ak ∈ {0, 1}. Since bk ∈ {0, 1} and bk = 1 only if ak = 1, we
conclude that, for 0 ⩽ k ⩽ i− 2, the coefficient ak − bk in the polynomial expression of |S⋆

i (v) ∩ S⋆
j0
(w)
∣∣ is

also either 0 or 1. Moreover, the coefficient ai−1+1 in this polynomial expression is 1 or 2. More precisely,
from Proposition 1, we have ai−1 + 1 = 2 if and only if G = B(d,D) and vi = vi+1 = · · · = vD.

Proof. From Proposition 2 we conclude that S⋆
i (v) =

(
S⋆
i (v) ∩ S⋆

i−1(w)
)
∪
(
S⋆
i (v) ∩ S⋆

j0
(w)
)
, and so, since(

S⋆
i (v) ∩ S⋆

i−1(w)
)
∩
(
S⋆
i (v) ∩ S⋆

j0
(w)
)
= ∅, we get

∣∣S⋆
i (v)

∣∣ =
∣∣S⋆

i (v) ∩ S⋆
i−1(w)

∣∣ + ∣∣S⋆
i (v) ∩ S⋆

j0
(w)
∣∣. To

complete the proof of the theorem we must demonstrate that if |S⋆
i (v)| = di − ai−1d

i−1 − . . . − a1d − a0,
then

∣∣S⋆
i (v) ∩ S⋆

i−1(w)
∣∣ = di−1 − bi−2d

i−2 − . . . − b1d − c0, where bk = 1 if and only if ak = 1 and
vD−i+k+1 = wD. Let us demonstrate this.
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First of all observe that Si(v) ∩ Si−1(w) ̸= ∅, because w ∈ S1(v). So we can apply statement (1) of
Lemma 5 to write S⋆

i (v) ∩ S⋆
i−1(w) as

S⋆
i (v) ∩ S⋆

i−1(w) = Si−1(w) \
i−1⋃
k=0

Sk,i(v) = Si−1(w) \
( i−2⋃

k=0

Sk,i(v) ∪
(
Si−1,i(v) ∩ Si−1(w)

))
. (2)

We claim that, in the above expression, the intersection Si−1,i(v)∩Si−1(w) is empty. Indeed, ifG = K(d,D),
then Si−1,i(v) = ∅ (see Remark 1) and we are done. So we can assume G = B(d,D). Moreover, since
S⋆
i (v) ∩ S⋆

i−1(w) ̸= ∅, we know by statement (2) of Propositions 3 and 4 that vi = vi+1 = · · · = vD = wD

does not hold. Now we can see that the assumption Si−1,i(v)∩Si−1(w) ̸= ∅ leads to contradiction. On one
hand, if Si−1,i(v) ∩ Si−1(w) ̸= ∅, then ∅ ≠ Si−1,i(v) = Si−1(v), and so vi = vi+1 = · · · = vD, by Remark 3.
On the other hand, by statement (1) of Lemma 2, if Si−1(v) ∩ Si−1(w) ̸= ∅, then v[i,D−1] = w[i,D] and so
vi = vi+1 = · · · = vD = wD, a contradiction that proves our claim.

Therefore, since Si−1(v) ∩ Si−1(w) = ∅, we get from (2) that

S⋆
i (v) ∩ S⋆

i−1(w) = Si−1(w) \
( i−2⋃

k=0

(
Sk,i(v) ∩ Si−1(w)

))
,

where, by statement (1) of Lemma 2, for 0 ⩽ k ⩽ i− 2, we have either Sk,i(v) ∩ Si−1(w) = ∅ or Sk,i(v) ⊆
Si−1(w). Thus, recalling that if k1 ̸= k2, then Sk1,i(v) ∩ Sk2,i(v) = ∅ (see Remark 4), we have

|S⋆
i (v) ∩ S⋆

i−1(w)| = |Si−1(v)| −
i−2∑
k=0

|Sk,i(v) ∩ Si−1(w)| = di−1 − bi−2d
i−2 − . . .− b1d− b0,

where the coefficients bk are 0 or 1. More precisely, for 0 ⩽ k ⩽ i − 2, we have bk = 1 if and only if
Sk,i(v)∩Si−1(w) ̸= ∅. That is, bk = 1 if and only if Sk,i(v) ̸= ∅ and Sk,i(v)∩Si−1(w) ̸= ∅. Now, by applying
Proposition 1 and statement (1) of Lemma 2 we have bk = 1 if and only if ak = 1 and Sk(v) ⊆ Si−1(w);
if and only if ak = 1 and v[k+1,D−(i−k)+1] = w[i,D]. To finish the proof let us demonstrate that we have
ak = 1 and v[k+1,D−(i−k)+1] = w[i,D] if and only if ak = 1 and vD−i+k+1 = wD. Clearly, we only must show
that if ak = 1 and vD−i+k+1 = wD, then v[k+1,D−(i−k)+1] = w[i,D]. If i = D, there is nothing to prove.
So let us prove the implication in the case i < D. Hence assume i < D, ak = 1, and vD−i+k+1 = wD.
By Proposition 1 and the definition of Sk,i(v), if ak = 1, then Sk,i(v) = Sk(v) ⊆ Si(v). Hence, again by
statement (1) of Lemma 2 and since w ∈ S1(v), we have v[k+1,D−(i−k)] = v[i+1,D] = w[i,D−1]. Therefore the
equality v[k+1,D−(i−k)+1] = w[i,D] holds, because we are assuming vD−i+k+1 = wD. This finishes the proof
of the theorem.

Theorem 2. Let v ∈ V , w ∈ S1(v), and let 1 ⩽ i ⩽ D. Assume that S⋆
i (v) ∩ S⋆

i−1(w) = ∅. Then
S⋆
i (v) = S⋆

i (v) ∩ S⋆
i (w), and so∣∣S⋆

i (v) ∩ S⋆
i (w)

∣∣ = ∣∣S⋆
i (v)

∣∣ = di − ai−1d
i−1 − . . .− a1d− a0.

Proof. Let v ∈ V and w ∈ S1(v). Let 1 ⩽ i ⩽ D and assume that S⋆
i (v) ∩ S⋆

i−1(w) = ∅.
If S⋆

i (v)∩S⋆
i−1(w) = ∅, then, by statement (2) of Propositions 3 and 4, we have S⋆

i (v)∩S⋆
i (w) ̸= ∅. Hence

the unique integer j0 given in Proposition 2 is j0 = i. Therefore, by statement (1) of this Proposition 2, we
have S⋆

i (v) = S⋆
i (v)∩S⋆

i (w), and so, if |S⋆
i (v)| = di−ai−1d

i−1− . . .−a1d−a0 is the polynomial expression
of |S⋆

i (v)|, then |S⋆
i (v) ∩ S⋆

i (w)| = |S⋆
i (v)| = di − ai−1d

i−1 − . . .− a1d− a0.

Theorem 3. Let v ∈ V , w ∈ S1(v), and let 1 ⩽ i ⩽ D. Assume that S⋆
i (v) ∩ S⋆

j (w) = ∅ for all i ⩽ j ⩽ D.
Then S⋆

i (v) = S⋆
i (v) ∩ S⋆

i−1(w) and∣∣S⋆
i (v) ∩ S⋆

i−1(w)
∣∣ = ∣∣S⋆

i (v)
∣∣ = di − ai−1d

i−1 − . . .− a1d− a0,

where, in this case, we have d = 2 and ai−1 = 1. Therefore
∣∣S⋆

i (v) ∩ S⋆
i−1(w)

∣∣ can be equivalently expressed
as ∣∣S⋆

i (v) ∩ S⋆
i−1(w)

∣∣ = di−1 − ai−2d
i−2 . . .− a1d− a0.

Proof. Let v ∈ V and w ∈ S1(v). Let 1 ⩽ i ⩽ D and assume that S⋆
i (v) ∩ S⋆

j (w) = ∅ for all i ⩽ j ⩽ D.
First of all notice that we must have d = 2, because if d ⩾ 3, then, by statement (3) of Proposi-

tion 3, there exists a unique integer j, i ⩽ j ⩽ D, such that the intersection S⋆
i (v) ∩ S⋆

j (w) is non-empty,
contradicting the assumption that S⋆

i (v) ∩ S⋆
j (w) = ∅ for all i ⩽ j ⩽ D.
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If S⋆
i (v) ∩ S⋆

j (w) = ∅ for all i ⩽ j ⩽ D, then, by statement (2) of Proposition 2, we have S⋆
i (v) =

S⋆
i (v) ∩ S⋆

i−1(w) and so, if |S⋆
i (v)| = di − ai−1d

i−1 − . . .− a1d− a0 is the polynomial expression of |S⋆
i (v)|,

then ∣∣S⋆
i (v) ∩ S⋆

i−1(w)
∣∣ = ∣∣S⋆

i (v)
∣∣ = di − ai−1d

i−1 − . . .− a1d− a0. (3)

It remains to prove that, in this case, we have ai−1 = 1. On one hand, by Proposition 1 we know that
ai−1 = 1 if and only if G = B(d,D) and vi = vi+1 = · · · = vD. On the other hand, by statement (3) of
Proposition 4, if S⋆

i (v) ∩ S⋆
j (w) = ∅ for all i ⩽ j ⩽ D, then G = B(d,D) and vi = vi+1 = · · · = vD ̸= wD.

Therefore ai−1 = 1.
Finally notice that, since d = 2 and ai−1 = 1, we have di−di−1 = di−1. Then the polynomial expression

di−di−1−ai−2d
i−2 . . .−a1d−a0 in (3) can be equivalently expressed as di−1−ai−2d

i−2 . . .−a1d−a0.

2.3 Application to deflection routing

The authors proposed in [11] an analytical model for evaluating the performance of deflection routing
schemes under different deflection criteria. In that model, a Markov chain is defined with states 0, 1, . . . , D,
corresponding to the possible distances that a packet may be to its destination (D stands for the diameter
of the network), and such that the transition probabilities depend on the deflection criteria and the network
topology.

In this paper, we determine for the case of B(d,D) and K(d,D) the following two probabilities that
appear in the formulation [11]:

• Input probability Pin(i): Given a vertex v selected uniformly at random, let Pin(i) be the probability
that another distinct vertex v′, also selected uniformly at random, be at distance i from v.

• Transition probability Pt(i, j): Suppose that a packet with destination vertex z is deflected when
visiting an intermediate vertex at a distance i to z. We denote by Pt(i, j) the probability that the
new distance to z (after the deflection has occurred) be j.

This subsection applies our results on the distance-layer structure of B(d,D) and K(d,D) to obtain
explicit expressions, in terms of the degree d, for these probabilities.

To calculate Pin(i) and Pt(i, j) we need to introduce a suitable partition of the vertex set of the di-
graph, classifying the vertices according to their sequence representation. In this way, we consider in V an
equivalence relation ∼ defined by v = v1v2 . . . vD ∼ v′ = v′1v

′
2 . . . v

′
D if and only if there exists a permuta-

tion σ of the symbol alphabet A such that σ(vk) = v′k, 1 ⩽ k ⩽ D. Notice that two equivalent vertices
have a sequence representation with the same number s of distinct symbols, where 1 ⩽ s ⩽ min (d,D) if
G = B(d,D) and 2 ⩽ s ⩽ min (d+ 1, D) if G = K(d,D). Let ns be the number of equivalence classes in
which the number of distinct symbols in the sequence representation of the vertices is s (clearly, n1 = 1 if
G = B(d,D), and n1 = 0 and n2 = 1 if G = K(d,D)). Thus the partition of V induced by the relation ∼
can be written as

V =
⋃
s

(Vs,1 ∪ · · · ∪ Vs,ns) . (4)

Moreover, since the sequence representation of a vertex in Vs,j contains s different symbols, then, indepen-
dently of j, 1 ⩽ j ⩽ ns, we have that

|Vs,j | =

{
d(d− 1) · · · (d− s+ 1) if G = B(d,D),

(d+ 1)d(d− 1) · · · (d− s+ 2) if G = K(d,D).

Furthermore, since |V | =
∑

s

∑
j |Vs,j |, we get

min (d,D)∑
s=1

ns d(d− 1) · · · (d− s+ 1) = dD, if G = B(d,D);

min (d+1,D)∑
s=2

ns (d+ 1)d(d− 1) · · · (d− s+ 2) = dD + dD−1, if G = K(d,D).

Evaluating the above identities for d = 1, 2, 3, . . ., the values of ns can be recursively computed. For
instance, if G = B(d,D), then the first non-zero values of ns are n1 = 1, n2 = 2D−1 − 1 for all D ⩾ 1 and
all d ⩾ 2, n3 = (3D−1 − 2D + 1)/2 for all D ⩾ 1 and all d ⩾ 3, . . .; and if G = K(d,D), then n2 = 1,
n3 = 2D−2 − 1 for all D ⩾ 2 and all d ⩾ 2, n4 = (3D−2 − 2D−1 + 1)/2 for all D ⩾ 2 and all d ⩾ 3, . . ..
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The total number of classes in the partition (4) is l =
∑

s ns. Therefore, if D ⩽ d, then l = n1+ · · ·+nD

is independent of the degree d. However, if D > d this is not true. For example, if G = B(2, D), then
l = n1 + n2 = 2D−1, whereas if G = (3, D), then l = n1 + n2 + n3 = (3D−1 + 1)/2.

From now on, for simplicity, we will also denote the partition (4) as

V = V1 ∪ · · · ∪ Vl, (5)

where each term Vi in (5) corresponds to one of the sets Vs,j in (4), and we will use both (4) and (5) as
illustrated in the following example.

Example 3. Let G = K(d, 4), d ⩾ 3, and let α, β, γ and δ stand for different elements of the base alphabet
A. The numbers ns of equivalence classes for which the the sequence representation of its vertices contains
s distinct symbols is n2 = 1, n3 = 2D−2 − 1 = 3, and n4 = (3D−2 − 2D−1 + 1)/2 = 1. So we have l = 5
different vertex classes, namely V1 = V2,1 = {v ∈ V : v = αβαβ}, V2 = V3,1 = {v ∈ V : v = αβαγ}, V3 =
V3,2 = {v ∈ V : v = αβγα}, V4 = V3,3 = {v ∈ V : v = αβγβ}, and V5 = V4,1 = {v ∈ V : v = αβγδ}, with
respective cardinalities |V1| = (d+1)d, |V2| = |V3| = |V4| = (d+1)d(d−1), and |V5| = (d+1)d(d−1)(d−2).

Now we introduce some additional technical lemmas that we need in this section and that will be proven
in the Appendix.

Lemma 6. Let v ∈ V and, for 0 ⩽ i ⩽ j < D, let Γ⋆
i,j(v) = {w ∈ S1(v) : S⋆

i (v) ∩ S⋆
j (w) ̸= ∅}. Then

Γ⋆
i,j(v) ̸= ∅ if and only if there exists a vertex w such that Γ⋆

i,j(v) = {w}; if and only if there exists a vertex

w such that Γ⋆
i,j(v) = Γ+

i,j(v) = {w}. Moreover, w ∈ Γ⋆
i,j(v) if and only if w ∈ Γ+

i,j(v) and Si (v) ̸⊆ St,j (w)
for i ⩽ t < j.

The following lemma discusses the set of vertices w ∈ S1(v) for which the intersection set Si(v)∩SD(w)
is nonempty. (The case Si(v) ∩ Sj(w) ̸= ∅, for j < D, was considered in Lemma 4.)

Lemma 7. Let v ∈ V and, for 0 ⩽ i < D, let Γ+
i,D(v) = {w ∈ S1(v) : Si(v) ∩ SD(w) ̸= ∅}. The following

statements hold:

1. If G = B(d,D), or G = K(d,D) and vi+1 = vD, then Γ+
i,D(v) = S1(v).

2. If G = K(d,D) and vi+1 ̸= vD, then w ∈ Γ+
i,D(v) if and only if w ∈ S1(v) and vi+1 ̸= wD. Moreover,

|Γ+
i,D(v)| = d− 1.

The last technical lemma deals with the partition {V1, . . . ,Vl} of the vertex set V . Notice that
if σ is a permutation of the symbol alphabet and σ(v) is the vertex whose sequence representation is
σ(v1)σ(v2) . . . σ(vD), then v and σ(v) belong to a same vertex class Vr (that is to say, the sequence repre-
sentations of v and σ(v) have an equivalent structure). The proof of the lemma is an immediate consequence
of the definitions and of the fact that σ is a bijection.

Lemma 8. Let σ be a permutation of the symbol alphabet and, given v ∈ V , let σ(v) = σ(v1)σ(v2) . . . σ(vD).
Then the following statements hold:

1. |S⋆
i (v)| = |S⋆

i (σ(v))|.

2. If w ∈ S1(v), then |S⋆
i (v) ∩ S⋆

j (w)| = |S⋆
i (σ(v)) ∩ S⋆

j (σ(w))|.

At this point, using the partition and the layer structure of the digraph, we present our results on input
and transition probabilities.

Expressing the input probability as
∑

r Pin(i | v ∈ Vr)P(v ∈ Vr) we obtain the following result that
provides a description of Pin(i) in terms of the degree d of the digraph.

Theorem 4. For any choice of the vertices v(1), . . . , v(l), where v(r) ∈ Vr, the input probability Pin(i) is
given by

Pin(i) =

l∑
r=1

|S⋆
i

(
v(r)

)
|

(|V | − 1)
· |Vr|
|V |

,

and has the following expression:

Pin(i) =

l∑
r=1

|Vr|
|V |(|V | − 1)

(
di − a

(r,i)
i−1 d

i−1 − · · · − a
(r,i)
1 d− a

(r,i)
0

)
,

where a
(r,i)
k ∈ {0, 1}. More precisely, a

(r,i)
k = 1 if and only if Sk,i

(
v(r)

)
̸= ∅; if and only if v

(r)
[k+1,D−(i−k)] =

v
(r)
[i+1,D] and v

(r)
[k+1,D−(j−k)] ̸= v

(r)
[j+1,D] for all j, k < j < i.
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Proof. Let v be a vertex selected uniformly at random from the vertex set V . By definition, the input
probability Pin(i) is the probability of selecting uniformly at random from V \ {v} a vertex v′ which is at
distance i from v. For a fixed v, the probability of selecting such a v′ is clearly Pin(i | v) = |S⋆

i (v) |/(|V | − 1).
Moreover, by Lemma 8, this probability is the same for any vertex v ∈ Vr in a same vertex class Vr, 1 ⩽ r ⩽ l.
Moreover, since v is chosen uniformly at random from V , we have P(v ∈ Vr) = |Vr|/|V |. Thus, for any
choice of v(r) ∈ Vr, the input probability Pin(i) can be expressed as

Pin(i) =
∑
r

Pin

(
i | v(r) ∈ Vr

)
P
(
v(r) ∈ Vr

)
=

l∑
r=1

∣∣S⋆
i

(
v(r)

)∣∣
(|V | − 1)

· |Vr|
|V |

.

The proof is completed by using the polynomial description of
∣∣S⋆

i

(
v(r)

)∣∣ given in Proposition 1 and
Remark 3.

Finally, notice that Pin(i) = Θ
(
1/dD−i

)
, because |S⋆

i (v) | = Θ
(
di
)
(independently of v) and |V | =

Θ
(
dD
)
.

The transition probability Pt(i, j) can also be calculated as Pt(i, j) =
∑

r Pt(i, j | v ∈ Vr)P(v ∈ Vr). In
this sum, Pt(i, j | v ∈ Vr) is the conditional probability that the new distance to destination be j, given
that a deflection occurs when visiting a vertex v at distance i to the destination and belonging to the class
Vr; whereas P(v ∈ Vr) is the probability that the vertex at which deflection occurs be in Vr. In this way,
we obtain the following result.

Theorem 5. The transition probabilities Pt(i, j), 1 ⩽ i ⩽ j < D, are given by

Pt(i, j) =
1

(d− 1)|V |
∑
r

|Vr| p(r,i,j)
(
1− q(r,i)

)
,

where p(r,i,j) and q(r,i) are of the form

p(r,i,j) = k(r,i,j) ·
di − α

(r,i)
i−1 d

i−1 − · · · − α
(r,i)
1 d− α

(r,i)
0

di − a
(r,i)
i−1 d

i−1 − · · · − a
(r,i)
1 d− a

(r,i)
0

and

q(r,i) = κ(r,i) ·
di−1 − b

(r,i)
i−2 d

i−2 − . . .− b
(r,i)
1 d− b

(r,i)
0

di − a
(r,i)
i−1 d

i−1 − · · · − a
(r,i)
1 d− a

(r,i)
0

,

and the coefficients of these fractions are 0, 1 or 2. Namely, k(r,i,j), κ(r,i) ∈ {0, 1}; α
(r,i)
i−1 ∈ {0, 1, 2};

a
(r,i)
i−1 ∈ {0, 1}; and α

(r,i)
l , a

(r,i)
l , b

(r,i)
l ∈ {0, 1} for 0 ⩽ l ⩽ i− 2.

Remark 8. In the proof of this theorem it will be shown how to determine the coefficients k(r,i,j), κ(r,i),

a
(r,i)
k , b

(r,i)
k , and α

(r,i)
k . More precisely, we will show that if v(r) is any representative vertex in the class Vr,

and if w(r) is the vertex adjacent from v(r) given by w(r) = v
(r)
2 · · · v(r)D v

(r)
i+(D−j), then

(a) k(r,i,j) = 1 if and only if S⋆
i

(
v(r)

)
∩ S⋆

j

(
w(r)

)
̸= ∅, as determined by statement (1) of Propositions 3

and 4;

(b) κ(r,i) = 1 if and only if S⋆
i

(
v(r)

)
∩ S⋆

i−1

(
w(r)

)
̸= ∅, as determined by statement (2) of Propositions 3

and 4;

(c) the coefficients a
(r,i)
k ∈ {0, 1} are determined from v(r) as in Proposition 1;

(d) the coefficients α
(r,i)
k and b

(r,i)
k are determined from v(r) and w(r) as in Theorems 1 and 2.

We stress that the values of all these coefficients are independent of the choice of v(r) in the class Vr.

Proof. Let v be the vertex at which deflection occurs and suppose that the destination vertex z is at
distance i from v. Let w ∈ S1(v) be the vertex through which deflection takes place. In other words, we
are supposing that a packet circulating within the network (which has to arrive to z) is currently in v and
cannot proceed through the shortest path from v to z; and hence it is deflected to vertex w.

Hence the probability that the new distance from w to the destination vertex z is j, given that a
deflection occurs in v and that the deflection takes place through w, is just the probability that, conditional
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on the event z ∈ S⋆
i (v), the destination vertex z belongs to S⋆

i (v) ∩ S⋆
j (w). In this way, denoting this

conditional probability as Pt (i, j | v, w), we have

Pt (i, j | v, w) =
∣∣S⋆

i (v) ∩ S⋆
j (w)

∣∣
|S⋆

i (v)|
.

It follows that Pt (i, j | v, w) ̸= 0 if and only if S⋆
i (v) ∩ S⋆

j (w) ̸= ∅.
Let w′

v,z be the vertex adjacent from v in the unique shortest path from v to z. The vertex w through
which deflection takes place is selected uniformly at random from S1(v) \ {w′

v,z}. Hence the probability
P (w | v) that, given that deflection occurs, it takes place through w ∈ S1(v) can be calculated as

P(w | v) =
∑

z∈S⋆
i (v)

P(w | v, z)P(z | v),

where P(w | v, z) = 0 if w = w′
v,z and P(w | v, z) = 1/(d− 1) if w ̸= w′

v,z. Moreover, w = w′
v,z if and only

if z ∈ S⋆
i (v) ∩ S⋆

i−1(w). Therefore, P(w | v, z) = 0 if and only if z ∈ S⋆
i (v) ∩ S⋆

i−1(w). Furthermore, the
probability that the destination vertex is a given vertex z belonging to S⋆

i (v) is simply

P(z | v) = 1

|S⋆
i (v)|

.

Then, since |S⋆
i (v)| − |S⋆

i (v) ∩ S⋆
i−1(w)| is the number of vertices z ∈ S⋆

i (v) for which w ̸= w′
v,z, we have

P(w | v) = 1

|S⋆
i (v)|

∑
z∈S⋆

i (v)

P(w | v, z)

=
1

|S⋆
i (v)|

|S⋆
i (v)| − |S⋆

i (v) ∩ S⋆
i−1(w)|

d− 1
=

1

d− 1

(
1−

|S⋆
i (v) ∩ S⋆

i−1(w)|
|S⋆

i (v)|

)
.

Let Γ⋆
i,j(v) = {w ∈ S1(v) : S⋆

i (v) ∩ S⋆
j (w) ̸= ∅}. Clearly, we have Pt (i, j | v, w) ̸= 0 if and only if

w ∈ Γ⋆
i,j(v). Moreover, it is proved in Lemmas 4 and 6 that if v = v1v2 · · · vD and Γ⋆

i,j(v) ̸= ∅, then Γ⋆
i,j(v)

contains a single vertex wv which sequence representation is uniquely determined from v, i and j, namely

wv = v2 · · · vDvi+(D−j). (6)

Taking all these considerations into account we can express the transition probability that the new
distance to the destination is j, conditional on the event that deflection occurs at v, as

Pt (i, j | v) =
∑

w∈Γ⋆
i,j(v)

Pt (i, j | v, w) · P (w | v) = Pt (i, j | v, wv)P(wv | v)

=
1

d− 1
·
∣∣S⋆

i (v) ∩ S⋆
j (wv)

∣∣
|S⋆

i (v)|

(
1−

|S⋆
i (v) ∩ S⋆

i−1(wv)|
|S⋆

i (v)|

)
, (7)

if Γ⋆
i,j (v) ̸= ∅; and Pt (i, j | v) = 0 otherwise.
Furthermore, if σ is a permutation of the symbol alphabet A, then, using the notation introduced in

Lemma 8, we can check that Γ⋆
i,j (σ(v)) ̸= ∅ if and only if Γ⋆

i,j (v) ̸= ∅, and that if Γ⋆
i,j (σ(v)) ̸= ∅, then

Γ⋆
i,j (σ(v)) = {σ (wv)}. Moreover, σ(w′

v,z) = w′
σ(v),σ(z) is the vertex adjacent from σ(v) in the shortest path

to σ(z). This facts, together with the statements of Lemma 8, imply that the probability calculated in (7)
is the same for any vertex v(r) in a given vertex class Vr. (Recall that Vr is the class of vertices to which
v(r) belongs according to the structure of its sequence representation.)

Now, by adding for all the classes Vr and taking into account that P
(
v(r) ∈ Vr

)
= |Vr|/|V | we obtain

the transition probability Pt(i, j) that, conditional on the event that the deflection occurs in a vertex which
is at distance i to the destination vertex, the new distance to this destination is j. In this way, by setting
w(r) = wv(r) we have

Pt(i, j) =
∑
r

Pt

(
i, j | v(r) ∈ Vr

)
P
(
v(r) ∈ Vr

)
=

1

(d− 1)|V |
∑
r

|Vr|
∣∣S⋆

i

(
v(r)

)
∩ S⋆

j

(
w(r)

)∣∣∣∣S⋆
i

(
v(r)

)∣∣
(
1−

|S⋆
i

(
v(r)

)
∩ S⋆

i−1

(
w(r)

)
|

|S⋆
i

(
v(r)

)
|

)
.
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Furthermore, if the intersection S⋆
i

(
v(r)

)
∩S⋆

j

(
w(r)

)
is nonempty, we conclude from Theorems 1 and 2 that∣∣S⋆

i

(
v(r)

)
∩ S⋆

j

(
w(r)

)∣∣ has a polynomial expression given by di−α
(r,i)
i−1 d

i−1−· · ·−α
(r,i)
1 d−α

(r,i)
0 . Moreover,

by Theorem 1, if S⋆
i

(
v(r)

)
∩S⋆

i−1

(
w(r)

)
̸= ∅, then

∣∣S⋆
i

(
v(r)

)
∩ S⋆

i−1

(
w(r)

)∣∣ has also a polynomial expression

of the form di−1 − b
(r,i)
i−2 d

i−2 − . . .− b
(r,i)
1 d− b

(r,i)
0 . Therefore, by taking also into account Proposition 1, we

have

Pt(i, j) =
1

(d− 1)|V |
∑
r

|Vr| p(r,i,j)
(
1− q(r,i)

)
,

where p(r,i,j) and q(r,i) are of the form

p(r,i,j) = k(r,i,j) ·
di − α

(r,i)
i−1 d

i−1 − · · · − α
(r,i)
1 d− α

(r,i)
0

di − a
(r,i)
i−1 d

i−1 − · · · − a
(r,i)
1 d− a

(r,i)
0

and

q(r,i) = κ(r,i) ·
di−1 − b

(r,i)
i−2 d

i−2 − . . .− b
(r,i)
1 d− b

(r,i)
0

di − a
(r,i)
i−1 d

i−1 − · · · − a
(r,i)
1 d− a

(r,i)
0

,

and k(r,i,j), κ(r,i) ∈ {0, 1}. Furthermore, we have k(r,i,j) = 1 if and only if S⋆
i

(
v(r)

)
∩ S⋆

j

(
w(r)

)
̸= ∅, as

determined by statement (1) of Propositions 3 and 4; and we have κ(r,i) = 1 if and only if S⋆
i

(
v(r)

)
∩

S⋆
i−1

(
w(r)

)
̸= ∅, as determined by statement (2) of Propositions 3 and 4.

Finally, observe that the coefficients a
(r,i)
k are determined from v(r) by using Proposition 1, and the

coefficients α
(r,i)
k , b

(r,i)
k ∈ {0, 1} are determined from v(r) and w(r) by using Theorems 1 and 2. So we

conclude that:

1. a
(r,i)
k ∈ {0, 1};

2. α
(r,i)
i−1 ∈ {0, 1, 2}, and α

(r,i)
k , b

(r,i)
k ∈ {0, 1} for 0 ⩽ k ⩽ i− 2.

This completes the proof of the theorem.

The following example illustrates the fractions p(r,i,j) and q(r,i), as well as the expressions of the tran-
sition probabilities Pt(i, j) formulated in Theorem 5.

Example 4. Let G = K(d, 12), d ⩾ 3, and consider the class of vertices Vr which sequence representation
is of the form αβγαβγαβγαβγ, where α, β and γ stand for different symbols of the alphabet A. Suppose
that v ∈ Vr is the vertex at which the deflection occurs and let w = βγαβγαβγαβγw12 be the vertex
adjacent from v through which this deflection takes place. Let us calculate, for instance, the transition
probabilities Pt(4, 6 | v ∈ Vr) and Pt(1, 6 | v ∈ Vr).

Firstly, let us consider Pt(4, 6 | v ∈ Vr). Observe that if this probability is not zero, then the destination
vertex z must belong to S⋆

4 (v) and also to S⋆
6 (w). Therefore, since S⋆

4 (v) ⊆ S4(v) and S⋆
6 (v) ⊆ S6(v), we

conclude that S4(v) ∩ S6(w) ̸= ∅ is a necessary condition for Pt(4, 6 | v ∈ Vr) ̸= 0. Using the notation
of Examples 1 and 2, we have S4(v) = {u ∈ V : u = βγαβγαβγ ∗ ∗ ∗ ∗} and S6(w) = {u ∈ V : u =
βγαβγw12 ∗ ∗ ∗ ∗ ∗ ∗}. From these sequence representations we can check that S4(v) ∩ S6(w) ̸= ∅ if and
only if S4(v) ⊆ S6(w); if and only if w12 = α. We conclude that if Pt(4, 6 | v ∈ Vr) ̸= 0, then there is only
one precise vertex w adjacent from v such that d(w, z) = 6, namely w = βγαβγαβγαβγα.

Using Propositions 1 and 3, and Theorem 1 we deduce that |S⋆
4 (v)| = d4− d, |S⋆

4 (v)∩S⋆
6 (w)| = d4− d3,

and |S⋆
4 (v) ∩ S⋆

3 (w)| = d3 − d. Therefore we get from (7) that the value of the transition probability
Pt(4, 6 | v ∈ Vr) is

Pt(4, 6 | v ∈ Vr) =
1

d− 1
· |S

⋆
4 (v) ∩ S⋆

6 (w)|
|S⋆

4 (v)|

(
1− |S⋆

4 (v) ∩ S⋆
3 (w)|

|S⋆
4 (v)|

)

=
1

d− 1
· d

4 − d3

d4 − d

(
1− d3 − d

d4 − d

)
=

d4

d5 + d4 + d3 − d2 − d− 1
. (8)

Observe that in (8), the expressions of |S⋆
4 (v) ∩ S⋆

6 (w)|/|S⋆
4 (v)| and |S⋆

4 (v) ∩ S⋆
3 (w)|/|S⋆

4 (v)| correspond in
Theorem 5 to p(r,4,6) = (d4 − d3)/(d4 − d) and q(r,4) = (d3 − d)/(d4 − d), respectively.

Secondly, let us determine Pt(1, 6 | v ∈ Vr). Reasoning as before we deduce that if Pt(1, 6 | v ∈ Vr) ̸= 0,
then we must have S1(v) ∩ S6(w) ̸= ∅, being w the vertex adjacent from v through which the deflection
takes place. We can check that this necessary condition holds if and only if w12 = α; that is, w must be
again the vertex w = βγαβγαβγαβγα. But now we deduce from Proposition 3 that S⋆

1 (v) ∩ S⋆
6 (w) = ∅.

Therefore, although the necessary condition S1(v)∩ S6(w) ̸= ∅ for having Pt(1, 6 | v) ̸= 0 holds, we have in
this case Pt(1, 6 | v) = 0. This fact is captured in Theorem 5 by setting k(r,1,6) = 0.
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The previous theorem provides a description of the probabilities Pt(i, j) in the case j < D. Next we
discuss the case j = D. Clearly we have Pt(D,D) = 1, because D is the maximum possible distance
between the vertices of the digraph. Moreover, the transition probabilities Pt(i,D), 1 ⩽ i < D, can be

obtained from Theorem 5 because, for each i, we have Pt(i,D) = 1−
∑D−1

j=i Pt(i, j). However, for the sake
of completeness, we present in the following theorem a description of the transition probabilities Pt(i,D),
analogous to those provided in Theorem 5 for Pt(i, j).

Theorem 6. The transition probabilities Pt(i,D), 1 ⩽ i < D, are given by

Pt(i,D) =
1

(d− 1)|V |
∑
r

mr∑
s=1

|Vr| p(r,s,i)
(
1− q(r,s,i)

)
,

where mr ∈ {d− 1, d} if G = K(d,D) and mr = d if G = B(d,D), and where p(r,s,i) and q(r,s,i) are of the
form

p(r,s,i) = k(r,s,i) ·
di − α

(r,s,i)
i−1 di−1 − · · · − α

(r,s,i)
1 d− α

(r,s,i)
0

di − a
(r,s,i)
i−1 di−1 − · · · − a

(r,s,i)
1 d− a

(r,s,i)
0

and

q(r,s,i) = κ(r,s,i) ·
di−1 − b

(r,s,i)
i−2 di−2 − . . .− b

(r,s,i)
1 d− b

(r,s,i)
0

di − a
(r,s,i)
i−1 di−1 − · · · − a

(r,s,i)
1 d− a

(r,s,i)
0

,

where all the coefficients are 0, 1 or 2. Namely, k(r,s,i), κ(r,s,i) ∈ {0, 1}; α(r,s,i)
i−1 ∈ {0, 1, 2}; a(r,s,i)i−1 ∈ {0, 1};

and α
(r,s,i)
l , a

(r,s,i)
l , b

(r,s,i)
l ∈ {0, 1} for 0 ⩽ l ⩽ i− 2.

Proof. We use the same notation and an analysis similar to that in the proof of Theorem 5. The probability
that the new distance from w to the destination vertex is D, given that a deflection occurs in v (which is
at distance i to the destination) and that the deflection takes place through w ∈ S1(v) is

Pt (i,D | v, w) = |S⋆
i (v) ∩ S⋆

D (w)|
|S⋆

i (v)|
.

Let Γ+
i,D(v) = {w ∈ S1(v) : Si(v) ∩ SD(w) ̸= ∅} be the set defined in Lemma 7. Clearly, if w ∈

S1 (v)\Γ+
i,D (v), then for such a vertex w we have Pt (i,D | v, w) = 0. In Lemma 7 it is proved that Γ+

i,D (v)

is always nonempty. Indeed, if G = B(d,D), or G = K(d,D) and vi+1 = vD, then Γ+
i,D(v) = S1(v); whereas

if G = K(d,D) and vi+1 ̸= vD, then Γ+
i,D(v) = {w ∈ S1(v) : w = v2 · · · vDwD, wD ̸= vi+1, vD}, and hence

|Γ+
i,D(v)| = d− 1. Therefore, the transition probability that the new distance to the destination is D, given

the event that deflection occurs at v, can be expressed as in (7); that is,

Pt (i,D | v) =
∑

w∈Γ+
i,D(v)

Pt (i,D | v, w) · P (w | v)

=
1

d− 1

m∑
s=1

|S⋆
i (v) ∩ S⋆

D (wv,s)|
|S⋆

i (v)|

(
1−

|S⋆
i (v) ∩ S⋆

i−1(wv,s)|
|S⋆

i (v)|

)
, (9)

where m = d−1 if G = K(d,D) and vi+1 ̸= vD and m = d otherwise; and wv,s, 1 ⩽ s ⩽ m, are the vertices
belonging to Γ+

i,D (v).

Furthermore, if σ is a permutation of the symbol alphabet A, then the elements of Γ+
i,j (σ(v)) are

wσ(v),s = σ (wv,s), 1 ⩽ s ⩽ m. Hence, by taking into account Lemma 8, we conclude that the probability

(9) is the same for any vertex v(r) in a given vertex class Vr. By adding for all the classes Vr and taking
into account that P

(
v(r) ∈ Vr

)
= |Vr|/|V | we obtain the transition probability Pt(i,D) that, conditional

on the event that the deflection occurs in a vertex which is at distance i to the destination vertex, the new
distance to this destination is D. In this way, by setting w(r,s) = wv(r),s, 1 ⩽ s ⩽ m, we have

Pt(i,D) =
∑
r

Pt

(
i,D | v(r) ∈ Vr

)
P
(
v(r) ∈ Vr

)
=

1

(d− 1)|V |
∑
r

m∑
s=1

|Vr|
∣∣S⋆

i

(
v(r)

)
∩ S⋆

D

(
w(r,s)

)∣∣∣∣S⋆
i

(
v(r)

)∣∣ ·

(
1−

|S⋆
i

(
v(r)

)
∩ S⋆

i−1

(
w(r,s)

)
|

|S⋆
i

(
v(r)

)
|

)
,
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Moreover, by considering the polynomial expressions of
∣∣S⋆

i

(
v(r)

)
∩ S⋆

D

(
w(r,s)

)∣∣ and ∣∣S⋆
i

(
v(r)

)
∩ S⋆

i−1

(
w(r,s)

)∣∣,
we have

Pt(i,D) =
1

(d− 1)|V |
∑
r

mr∑
s=1

|Vr| p(r,s,i)
(
1− q(r,s,i)

)
,

where mr ∈ {d − 1, d} if G = K(d,D) and mr = d if G = B(d,D), and where p(r,s,i) and q(r,s,i) are
expressed as

p(r,s,i) = k(r,s,i) ·
di − α

(r,s,i)
i−1 di−1 − · · · − α

(r,s,i)
1 d− α

(r,s,i)
0

di − a
(r,s,i)
i−1 di−1 − · · · − a

(r,s,i)
1 d− a

(r,s,i)
0

and

q(r,s,i) = κ(r,s,i) ·
di−1 − b

(r,s,i)
i−2 di−2 − . . .− b

(r,s,i)
1 d− b

(r,s,i)
0

di − a
(r,s,i)
i−1 di−1 − · · · − a

(r,s,i)
1 d− a

(r,s,i)
0

,

and k(r,s,i), κ(r,s,i) ∈ {0, 1}. More precisely, k(r,s,i) = 1 if and only if S⋆
i

(
v(r)

)
∩ S⋆

D

(
w(r,s)

)
̸= ∅, as

determined by statement (1) of Propositions 3 and 4, and κ(r,s,i) = 1 if and only if S⋆
i

(
v(r)

)
∩S⋆

i−1

(
w(r,s)

)
̸=

∅, as determined by statement (2) of Propositions 3 and 4.

As in Theorem 5, the coefficients a
(r,s,i)
k , α

(r,s,i)
k , b

(r,s,i)
k are determined from v(r) and w(r,s) by using

Proposition 1 and Theorems 1 and 2. Furthermore, a
(r,s,i)
k ∈ {0, 1}, α(r,s,i)

i−1 ∈ {0, 1, 2}, and α
(r,s,i)
k , b

(r,s,i)
k ∈

{0, 1} for 0 ⩽ k ⩽ i− 2.

Using the Markov model [11] mentioned in Section 1, we can apply the probabilities given in Theorems 4,
5, and 6 to measure the efficiency of deflection routing in De Bruijn and Kautz networks.

We conclude this subsection with two corollaries that are straightforward consequences of our previous
results. The first one deals with the asymptotic behaviour of the input and transition probabilities. The
second one is about the computation of the mean distance in the De Bruijn and Kautz digraphs (some
related results can be found in [3, 26, 27]).

Corollary 1.

1. Pin(i) ∼ 1/dD−i as d → ∞.

2. If j < D and d is large enough, then Pt(i, j) ⩽ 1/d.

3. If j = D, then Pt(i, j) ∼ 1 as d → ∞.

Corollary 2. If G is the De Bruijn digraph B(d,D) or the Kautz digraph K(d,D), then the mean distance

of G is given by
∑D

i=1 i · Pin(i).

3 Final remarks

The digraphs B(d,D) and K(d,D) are fundamental examples of digraphs on alphabets [16] as well as
iterated line digraphs [8, 15]. Indeed, in the line digraph L(G0) of a digraph G0 each vertex represents
an arc (x, y) of G0; and a vertex (x, y) is adjacent to a vertex (z, t) if and only if y = z. For any k > 1,
the k-iterated line digraph, Lk(G0), is defined recursively by Lk(G0) = L(Lk−1(G0)) (see for instance
[15]). In particular, if G0 is the complete symmetric digraph on d vertices with a loop in each vertex, then
B(d,D) = LD−1(G0); and if G0 is the complete symmetric digraph on d + 1 vertices without loops, then
K(d,D) = LD−1(G0). Other used network topologies correspond to iterated line digraphs as, for instance,
the generalized De Bruijn cycles [17]. So, we point out that an analysis of the distance-layer structure (and
hence the evaluation of the efficiency of deflection routing in the corresponding network topology), similar
to the one presented in this paper, could be done in other families of digraphs on alphabets or of iterated
line digraphs.
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[4] K. Böhmová, C. Dalfó, and C. Huemer, New cyclic Kautz digraphs with optimal diameter, Contrib.
Discrete Math. 16 (3) (2021), 111–124

[5] M. Chatterjee, S. Sanyal, M. Nasipuri and U. Bhattacharya, A wavelength assignment algorithm for
de Bruijn WDM networks, International Journal of Parallel, Emergent and Distributed Systems, 26:6,
477-491, (2011) DOI: 10.1080/17445760.2010.499103

[6] C. Chen, Z. Tao, and J. S. Miguel, Bufferless NoCs with Scheduled Deflection Routing,
2020 14th IEEE/ACM International Symposium on Networks-on-Chip (NOCS) (2020), 1–6, doi:
10.1109/NOCS50636.2020.9241585

[7] D. Coudert, A. Ferreira and X. Munoz, Topologies for optical interconnection networks based on the
optical transpose interconnection system, Appl. Opt. 39, 2965-2974 (2000)
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[11] J. Fàbrega and X. Muñoz, A Study of Network Capacity under Deflection Routing Schemes. In: Kosch
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Appendix

We remind that V denotes the vertex set of the digraph, either G = B(d,D) or G = K(d,D), and that,
for v = v1v2 · · · vD ∈ V , we denote the subsequence vivi+1 · · · vj by v[i,j].

Proofs of the technical lemmas

Proof of Lemma 1

The result follows directly from the sequence representation of the vertices and the adjacency rules. More-
over, we must consider that in K(d,D) there exists a walk of length D + 1 from a given vertex v to any
other one. □

Proof of Lemma 2

It follows from Lemma 1 that if Si(v
′) ̸= V , then i ⩽ D − 1 if G = B(d,D), i ⩽ D if G = K(d,D), and

Sk(v) ̸= V for k ⩽ i.
Suppose i < D. The sequences corresponding to vertices w ∈ Sk(v) and w′ ∈ Si(v

′) are of the form
w = vk+1 · · · vD ∗ · · · ∗ and w′ = v′i+1 · · · v′D ∗ · · · ∗, respectively. Since k ⩽ i, we get from these sequence
representations that Sk(v) ∩ Si(v

′) ̸= ∅ if and only if

vk+1 = v′i+1, . . . , vk+(D−i) = v′D, (10)

16



that is, the subsequences v[k+1,D−(i−k)] and v′[i+1,D] coincide. Furthermore, Sk(v) ⊆ Si(v
′) if and only if

condition (10) holds. (Notice that for k = i we have Sk(v) = Si(v
′).) Hence if k ⩽ i < D, then either

Sk(v) ⊆ Si(v
′) or Sk(v) ∩ Si(v

′) = ∅ and statement (1) is proved.
Now assume that k < i = D and G = K(d,D). Then Sk(v) = {w ∈ V : w = vk+1 · · · vD ∗ · · · ∗} and

SD(v′) = {w ∈ V : w = w1w2 · · ·wD, w1 ̸= v′D}. Therefore, if vk+1 ̸= v′D then Sk(v) ⊆ SD(v′), whereas if
vk+1 = v′D then Sk(v) ∩ SD(v′) = ∅.

Finally assume that k = i = D and G = K(d,D). Then SD(v) = {w ∈ V : w = w1w2 · · ·wD, w1 ̸= vD}
and SD(v′) = {w ∈ V : w = w1w2 · · ·wD, w1 ̸= v′D}. Hence SD(v) ∩ SD(v′) ̸= ∅ because the alphabet
A has d + 1 symbols and d ⩾ 2. Moreover, SD(v) ⊆ SD(v′) if and only if SD(v) = SD(v′), if and only if
vD = v′D. If vD ̸= v′D, then |SD(v) ∩ SD(v′)| = (d− 1)dD−1 = dD − dD−1, because w1 ∈ A \ {vD, v′D}. □

Proof of Lemma 3

From the definitions it is clear that

S⋆
i (v) = Si(v) \

( i−1⋃
k=0

Sk(v)
)
= Si(v) \

( i−1⋃
k=0

(Sk(v) ∩ Si(v))
)
.

By Lemma 2, either Sk(v) ∩ Si(v) = ∅ or Sk(v) ⊆ Si(v). Therefore, S
⋆
i (v) = Si(v) \

(⋃i−1
k=0 Sk,i(v)

)
. □

Proof of Lemma 4

Let w ∈ S1(v). Hence w[1,D−1] = v[2,D]. Assume first that j < D − 1. By statement (1) of Lemma 2,
Si(v) ∩ Sj(w) ̸= ∅ if and only if v[i+1,D−(j−i)] = w[j+1,D]; that is, Si(v) ∩ Sj(w) ̸= ∅ if and only if
v[i+1,D−(j−i)−1] = v[j+2,D] and vD−(j−i) = wD. In particular, if i = j, then vi+1 = vi+2 = · · · = vD = wD,
and hence G = B(d,D).

Now suppose j = D − 1. By Lemma 2, Si(v) ∩ SD−1(w) ̸= ∅ if and only if vi+1 = wD. Therefore, if
G = B(d,D) there is always a vertex w ∈ Γ+

i,j(v), while if G = K(d,D), then there exists w ∈ Γ+
i,j(v) if

and only if vi+1 ̸= vD. In particular, if G = K(d,D) and Γ+
i,j(v) ̸= ∅, then D ̸= i+ 1.

Until now we have proved statement (1). Next, to prove statement (2) first let us assume that Γ+
i,j(v) ̸= ∅.

Observe from the above that if w ∈ Γ+
i,j(v), then wD is uniquely determined and it is equal to vi+(D−j)

both for j < D−1 as for j = D−1. Hence Γ+
i,j(v) has a unique element w which sequence representation is

w = v2 · · · vDvi+(D−j). It is clear from the previous statements that if Γ+
i,j(v) ̸= ∅ and i = j, then G cannot

be K(d,D). Since w ∈ S1(v) we have Sl(w) ⊆ Sl+1(v) for all l ⩾ 0. Hence to finish the proof of statement
(2) we only need to show that if i = j, then Sk(v) = Sk(w) for all k ⩾ i. But this is clear because, from
the above discussion, if i = j and Γ+

i,j(v) ̸= ∅, then there exists α such that the sequence representations of
v and w are of the form v = v1 · · · viα · · ·α, w = w1 · · ·wiα · · ·α. □

We include in this appendix three additional results, namely Lemmas A.1, A.2, and A.3, which are used
in the remaining proofs. In the following two, we consider some valuable properties of the sets Sk,j(w) in
the case that w is a vertex adjacent from v. Lemma A.3, which is a refinement of Lemma 5 in the case
j ⩾ i and i ̸= D, is formulated after the proof of Lemma 5.

Lemma A.1. Let v ∈ V and w ∈ S1(v). Let 0 ⩽ i, j ⩽ D and let k, 0 ⩽ k ⩽ j. Assume that
Sk,j(w) ∩ Si(v) ̸= ∅. Then

1. If k = D, then Sk,j(w) = SD(w). Moreover,

(a) If i = D, then Sk,j(w) = Si(v) if G = B(d,D), while Sk,j(w) ̸= Si(v) if G = K(d,D).

(b) If i < D, then Si(v) ⊆ Sk,j(w).

2. If k ̸= D, then Si(v) ⊆ Sk,j(w) = Sk(w) if k ⩾ i, while Sk(w) = Sk,j(w) ⊆ Si(v) if k < i. Moreover,

(a) If k = i, then G = B(d,D), Si(v) = Si(w), and either j = i or j = i+ 1.

(b) If k = i− 1 = j, then Sk,j(w) ∩ Si(v) = Si−1(w).

(c) If k = i − 1 < j < D, then either Si−1,i(v) = ∅ or G = B(d,D) and j = i. Moreover, if
Si−1,i(v) ̸= ∅, then Si−1,i(v) = Si−1,i(w) = Si−1(v) = Si−1(w).

(d) If k = i− 1 < j = D, then either Si−1,i(v) = ∅ or G = B(d,D). Moreover, if Si−1,i(v) ̸= ∅ and
wD = vD, then i = j = D and SD−1,D(v) = SD−1,D(w) = SD−1(v) = SD−1(w).

(e) If k < i− 1, then there exists k′ ⩽ i− 1 such that Sk,j(w) ⊆ Sk′,i(v).
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Proof. Let us prove statement (1). If k = D, then j = D and clearly Sk,j(w) = SD(w). If G = B(d,D)
we have SD(v) = SD(w) = V . If G = K(d,D), then SD(v) ̸= V and SD(w) ̸= V . Furthermore, since
w ∈ S1(v), we have vD = wD−1 ̸= wD. Hence, by applying Lemma 2, SD(v) ̸= SD(w). So we have proved
(1.a). To prove (1.b) observe that if G = B(d,D), then Si(v) ⊆ SD(w), because SD(w) = V ; whereas if
G = K(d,D) and Si(v) ∩ SD(w) ̸= ∅, then Si(v) ⊆ SD(w) by statement (2) in Lemma 2.

Next we are going to prove statement (2). From now on assume that k ̸= D.
If Sk,j(w)∩Si(v) ̸= ∅, then by the definition of Sk,j(w) we get Sk,j(w) = Sk(w), and hence, by applying

Lemma 2, Sk(w) ⊆ Si(v) if k < i, while Si(v) ⊆ Sk(w) if i ⩽ k, because k < D.
First let us consider statement (2.a). If k = i, then from our assumptions we get that Si(v)∩Si(w) ̸= ∅.

Thus the set Γ+
i,i(v) defined in Lemma 4 is nonempty. Therefore, if i < D, then from Lemma 4 we have

G = B(d,D) and Si(v) = Si(w). To conclude the proof of statement (2.a) we must demonstrate that either
i = j or i + 1 = j. On one hand we have k ⩽ j. On the other hand we are assuming k = i. So, i ⩽ j.
Thus it only remains to prove that j ⩽ i+ 1. Assume on the contrary that i+ 1 < j. Since Γ+

i,i(v) ̸= ∅, by
applying again Lemma 4 we have Si−1(w) ⊆ Si(v) = Si(w) ⊆ Si+1(v) = Si+1(w) ⊆ · · · ⊆ Sj(v) = Sj(w).
Therefore, Si(w) ⊆ Si+1(w) ⊆ Sj(w) and thus, by Definition 1, we have Si,j(w) = ∅. This contradicts the
assumption Sk,j(w) ∩ Si(v) ̸= ∅, because k = i.

Now let us prove (2.b). From Remark 1 we have Si−1,i−1(w) = Si−1(w). Moreover, Si−1(w) ⊆ Si(v)
because w ∈ S1(v). So, statement (2.b) follows.

Next we demonstrate statements (2.c) and (2.d). Notice that i ⩽ j because k = i − 1 and k < j. By
the assumptions of the lemma we have w ∈ S1(v) and Si−1,j(w)∩Si(v) ̸= ∅. Hence Si−1,j(w) = Si−1(w) ⊆
Si(v). Suppose that Si−1,i(v) ̸= ∅. Recall that this assumption implies G = B(d,D) (see Remark 1) and,
moreover, from the definition of Si−1,i(v) it follows that Si−1,i(v) = Si−1(v) ⊆ Si(v).

Let us consider first statement (2.c). So now we are assuming j < D. We have to prove that j = i and
that Si−1,i(v) = Si−1,i(w) (because this last equality and the assumption Si−1,i(v) ̸= ∅ imply Si−1,i(w) ̸= ∅,
and hence Si−1,i(v) = Si−1(v) and Si−1,i(w) = Si−1(w)). Since Si−1(v) ⊆ Si(v) and i− 1 ⩽ i < D, we can
apply statement (1) of Lemma 2 and we get that v[i,D−1] = v[i+1,D]. Moreover, v[2,D] = w[1,D−1] because
w ∈ S1(v). Hence on one hand we have vi = wi = vi+1 = · · · = wD−1 = vD. On the other hand, from
the definition of Si−1,j(w), in any case we have Si−1,j(w) ⊆ Sj(w). So, Si−1,j(w) ∩ Si(v) ⊆ Si(v) ∩ Sj(w).
Therefore, Si(v) ∩ Sj(w) ̸= ∅ because we are assuming Si−1,j(w) ∩ Si(v) ̸= ∅. Thus, since i ⩽ j < D, we
can apply once more Lemma 2, and now we get that Si(v) ⊆ Sj(w) and that v[i+1,D−(j−i)] = w[j+1,D]. In
particular, wD = vD−(j−i) = wD−(j−i)−1 and therefore

vi = wi = vi+1 = · · · = wD−1 = vD = wD. (11)

Observe that for i ⩽ l ⩽ j < D, equality (11) implies w[i,D−l+i−1] = w[l+1,D] and w[j+1,D−(j−l)] = w[l+1,D].
Thus (again by Lemma 2) we have Si−1(w) ⊆ Sl(w) ⊆ Sj(w) for i ⩽ l ⩽ j < D. But if j > i the definition of
Si−1,j(w) would imply Si−1,j(w) = ∅, a contradiction. Therefore, it must be j = i, as we wanted to show. To
complete the proof of statement (2.c) in the case j < D, it only remains to show that Si−1,i(v) = Si−1,i(w).
But this is straightforward because by our assumptions we know that Si−1(w) = Si−1,j(w) = Si−1,i(w)
and Si−1(v) = Si−1,i(v), and, moreover, by (11) we have v[i,D] = w[i,D], and so Si−1(v) = Si−1(w). This
completes the proof of (2.c).

Now we are going to prove (2.d). So, let us assume j = D. In this case we want to prove that
if wD = vD, then i = D and SD−1(v) = SD−1(w) (as in the proof of (2.c) this last equality implies
SD−1,D(v) = SD−1,D(w) = SD−1(v) = SD−1(w)). First let us show that i = D. On the contrary, assume
that i < D. In that case, since Si−1(v) ⊆ Si(v) and i − 1 ⩽ i < D, we can apply again statement (1) of
Lemma 2 to get v[i,D−1] = v[i+1,D] and thus v[2,D] = w[1,D−1], because w ∈ S1(v). Thus, since wD = vD,
equality (11) also holds. Therefore, we have w[i,D−l+i−1] = w[l+1,D] and w[j+1,D−(j−l)] = w[l+1,D] for
i ⩽ l < D. Thus (again by Lemma 2) we have Si−1(w) ⊆ Sl(w) ⊆ SD(w) = V for i ⩽ l < D. Since
i < D the definition of Si−1,D(w) implies Si−1,D(w) = ∅, a contradiction. Therefore, it must be i = D,
as we wanted to prove. It remains to show that SD−1(v) = SD−1(w). But this is straightforward because
wD = vD and so SD−1(v) = SD−1(w).

Finally, let us prove statement (2.e). Let k < i − 1 and assume that Sk,j(w) ∩ Si(v) ̸= ∅. From
Sk,j(w) ∩ Si(v) ̸= ∅ it follows that Sk,j(w) = Sk(w) and Sk(w) ∩ Si(v) ̸= ∅. Notice that Sk(w) ⊆ Sk+1(v)
because w ∈ S1(v). Hence Sk+1(v)∩Si(v) ̸= ∅ and so, by applying Lemma 2, it follows that Sk+1(v) ⊆ Si(v)
because k + 1 < i. Let k′ = max{l : k + 1 ⩽ l < i and Sk+1(v) ⊆ Sl(v) ⊆ Si(v)}. From the definition we
get k′ ⩽ i− 1 and Sk+1(v) ⊆ Sk′(v) = Sk′,i(v). Therefore, Sk,j(w) = Sk(w) ⊆ Sk+1(v) ⊆ Sk′,i(v).

Lemma A.2. Let v ∈ V and w ∈ S1(v). If 0 ⩽ k < i − 1 < D and Sk,i−1(w) ̸= ∅, then there exists
k′ ⩽ i− 1 such that Sk,i−1(w) ⊆ Sk′,i(v).
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Proof. Let k < i− 1 and assume that Sk,i−1(w) ̸= ∅. It follows that Sk,i−1(w) = Sk(w) ⊆ Si−1(w). Hence
Sk+1(v) ∩ Si−1(w) ̸= ∅ because Sk(w) ⊆ Sk+1(v). So, since k + 1 ⩽ i − 1, by applying Lemma 2 we get
Sk+1(v) ⊆ Si−1(w). Therefore, Sk+1(v) ⊆ Si(v) because Si−1(w) ⊆ Si(v). Let k′ = max{l : k + 1 ⩽ l <
i and Sk+1(v) ⊆ Sl(v) ⊆ Si(v)}. From the definition we get k′ ⩽ i − 1 and Sk+1(v) ⊆ Sk′(v) = Sk′,i(v).
Thus Sk,i−1(w) ⊆ Sk+1(v) ⊆ Sk′,i(v).

Proof of Lemma 5

By Lemma 3 we have S⋆
i (v) = Si(v) \

(⋃i−1
k=0 Sk,i(v)

)
and S⋆

j (w) = Sj(w) \
(⋃j−1

k=0 Sk,j(w)
)
. Therefore,

S⋆
i (v) ∩ S⋆

j (w) =
(
Si(v) ∩ Sj(w)

)
\
(( i−1⋃

k=0

Sk,i(v)
)
∪
( j−1⋃

k=0

Sk,j(w)
))

.

By applying Lemma 2, it follows that Si(v) ⊆ Sj(w) if i ⩽ j ⩽ D and i < D, while Sj(w) ⊆ Si(v) if
j = i− 1. Thus

S⋆
i (v) ∩ S⋆

j (w) =



Si−1(w) \
(( i−1⋃

k=0

Sk,i(v)
)
∪
( i−2⋃

k=0

Sk,i−1(w)
))

if j = i− 1;

(
SD(v) ∩ SD(w)

)
\
((D−1⋃

k=0

Sk,D(v)
)
∪
(D−1⋃

k=0

Sk,D(w)
))

if j = i = D;

Si(v) \
(( i−1⋃

k=0

Sk,i(v)
)
∪
( j−1⋃

k=0

Sk,j(w)
))

if j ⩾ i and i ̸= D.

By Lemma A.2 we have
⋃i−2

k=0 Sk,i−1(w) ⊆
⋃i−1

k=0 Sk,i(v), and hence the description of S⋆
i (v) ∩ S⋆

j (w)
formulated in statement (1) follows.

Next we are going to prove the expression of S⋆
i (v)∩ S⋆

j (w) given in statements (2) and (3). So assume
that i = j = D. Hence

S⋆
D(v) ∩ S⋆

D(w) =
(
SD(v) ∩ SD(w)

)
\
((D−1⋃

k=0

Sk,D(v)
)
∪
(D−1⋃

k=0

(
Sk,D(w) ∩ SD(v)

)))
.

By statement (2.e) of Lemma A.1, if 0 ⩽ k ⩽ D− 2 and Sk,D(w)∩SD(v) ̸= ∅, then there exists k′ ⩽ D− 1
such that Sk,D(w) ⊆ Sk′,D(v). Hence Sk,D(w) ∩ SD(v) ⊆ Sk′,D(v) ∩ SD(v) ⊆ Sk′,D(v), and so

S⋆
D(v) ∩ S⋆

D(w) =
(
SD(v) ∩ SD(w)

)
\
((D−1⋃

k=0

Sk,D(v)
)
∪
(
SD−1,D(w) ∩ SD(v)

))
.

If G = K(d,D), then from Remark 1 we have SD−1,D(v) = SD−1,D(w) = ∅, and so the description
given in statement (2) follows. If G = B(d,D), then from Remark 1 we have SD−1,D(v) = SD−1(v),
SD−1,D(w) = SD−1(w), and from Lemma 1 we have SD(v) = SD(w) = V . Hence statement (3) follows.

Now we are going to prove that if j ⩾ i ̸= D, then the set S⋆
i (v) ∩ S⋆

j (w) can be expressed as stated in
statement (4). So, assume that j ⩾ i ̸= D. Hence

S⋆
i (v) ∩ S⋆

j (w)

= Si(v) \
(( i−1⋃

k=0

Sk,i(v)
)
∪
( i−2⋃

k=0

Sk,j(w)
)
∪
( j−1⋃

k=i−1

Sk,j(w)
))

= Si(v) \
(( i−1⋃

k=0

Sk,i(v)
)
∪
( i−2⋃

k=0

(
Sk,j(w) ∩ Si(v)

))
∪
( j−1⋃

k=i−1

Sk,j(w)
))

.

By statement (2.e) of Lemma A.1, if 0 ⩽ k ⩽ i − 2 and Sk,j(w) ∩ Si(v) ̸= ∅, then there exists k′ ⩽ i − 1
such that Sk,j(w) ⊆ Sk′,i(v). Hence Sk,j(w) ∩ Si(v) ⊆ Sk′,i(v) ∩ Si(v) ⊆ Sk′,i(v), and so

S⋆
i (v) ∩ S⋆

j (w) = Si(v) \
(( i−1⋃

k=0

Sk,i(v)
)
∪
( j−1⋃

k=i−1

Sk,j(w)
))

,

as claimed in statement (4). □
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Lemma A.3. Let v ∈ V and w ∈ S1(v). Let j ⩾ i and i ̸= D. Let Si(v) ∩ Sj(w) ̸= ∅ and Si(v) ̸⊆ Sk,j(w)
for i ⩽ k ⩽ j − 1. Then S⋆

i (v) ∩ S⋆
j (w) can be described as

S⋆
i (v) ∩ S⋆

j (w) = Si(v) \
(( i−2⋃

k=0

Sk,i(v)
)
∪ S′

)
,

where

S′ =



∅ if Si−1,j(w) = ∅ and v[i,D−1] ̸= v[i+1,D], (1)

Si−1(v) if Si−1,j(w) = ∅ and v[i,D−1] = v[i+1,D], (2)

Si−1(w) if Si−1,j(w) ̸= ∅ and v[i,D−1] ̸= v[i+1,D], (3)

Si−1(v) = Si−1(w) if Si−1,j(w) ̸= ∅ and v[i,D−1] = v[i+1,D] and j < D, (4)

Si−1(v) ∪ Si−1(w) if Si−1,j(w) ̸= ∅ and v[i,D−1] = v[i+1,D] and j = D, (5)

where in the last case we have Si−1(v) ∩ Si−1(w) = ∅.

Proof. From statement (4) of Lemma 5, the intersection set S⋆
i (v) ∩ S⋆

j (w) can be written as

S⋆
i (v) ∩ S⋆

j (w) =

= Si(v) \
(( i−1⋃

k=0

Sk,i(v)
)
∪
(
Si−1,j(w) ∩ Si(v)

)
∪
( j−1⋃

k=i

(
Sk,j(w) ∩ Si(v)

)))
(12)

if i < j, and

S⋆
i (v) ∩ S⋆

j (w) = Si(v) \
(( i−1⋃

k=0

Sk,i(v)
)
∪
(
Si−1,j(w) ∩ Si(v)

))
(13)

if i = j. If Si(v) ̸⊆ Sk,j(w) for i ⩽ k ⩽ j − 1, then from statement (2.e) of Lemma A.1 we get that
Sk,j(w) ∩ Si(v) = ∅ for i ⩽ k ⩽ j − 1. Therefore, our assumptions imply that the following equality holds
both for i < j and for i = j:

S⋆
i (v) ∩ S⋆

j (w) = Si(v) \
(( i−1⋃

k=0

Sk,i(v)
)
∪
(
Si−1,j(w) ∩ Si(v)

))
= Si(v) \

(( i−2⋃
k=0

Sk,i(v)
)
∪ S′

)
,

where S′ = Si−1,i(v) ∪ (Si−1,j(w) ∩ Si(v)).
Observe that if Si−1,j(w) = ∅, then S′ = Si−1,i(v). Therefore, statements (1) and (2) follow from

Remark 3. Moreover, by the definition of Si−1,i(v), we have S′ = Si−1,i(v) ⊆ Si(v).
From now on we assume that Si−1,j(w) ̸= ∅. In this case we have S′ = Si−1,i(v) ∪ (Si−1(w) ∩ Si(v)),

and, so, S′ = Si−1,i(v) ∪ Si−1(w) ⊆ Si(v) because Si−1(w) ⊆ Si(v) (recall that w ∈ S1(v)).
By Remark 3, if v[i,D−1] ̸= v[i+1,D], then S′ = Si−1(w), proving statement (3). Therefore, the proof of

the lemma will be completed by demonstrating statements (4) and (5).
Thus assume that Si−1,j(w) ̸= ∅ and v[i,D−1] ̸= v[i+1,D], or, equivalently, assume that Si−1,j(w) ̸= ∅

and Si−1,i(v) ̸= ∅. Hence we have S′ = Si−1,i(v) ∪ Si−1(w) = Si−1(v) ∪ Si−1(w). To prove (4) and (5) we
are going to apply Lemma A.1 with k = i− 1. Observe that we are under the assumptions of this lemma
because, since Si−1,j(w) ̸= ∅ and w ∈ S1(v), then Si−1,j(w) ∩ Si(v) = Si−1(w) ∩ Si(v) = Si−1(w) ̸= ∅.

Let us prove (4). If j < D, since we are assuming Si−1,i(v) ̸= ∅, from statement (2.c) of Lemma A.1,
we conclude that j = i and Si−1,i(v) = Si−1,i(w) = Si−1(v) = Si−1(w). Thus S′ = Si−1(v) = Si−1(w), as
we wanted to prove.

Finally, let us prove (5). If j = D, since we are assuming Si−1,i(v) ̸= ∅, now from statement (2.d) of
Lemma A.1, we get wD ̸= vD. In particular we have v[i,D] ̸= w[i,D]. So, by statement (1) of Lemma 2, we
have Si−1(v) ∩ Si−1(w) = ∅. This completes the proof of the lemma.

Proof of Lemma 6

Since S⋆
i (v) ∩ S⋆

j (w) ⊆ Si(v) ∩ Sj(w) we have Γ⋆
i,j(v) ⊆ Γ+

i,j(v). Let us assume Γ+
i,j(v) ̸= ∅, in which case

Γ+
i,j(v) = {w}, where w is the unique element of Γ+

i,j(v) given in statement (2) of Lemma 4. Therefore we

have Γ⋆
i,j(v) ̸= ∅ if and only if Γ⋆

i,j(v) = Γ+
i,j(v) = {w}; if and only if S⋆

i (v) ∩ S⋆
j (w) ̸= ∅. Finally, since

Si (v) ∩ Sj (w) ̸= ∅ if S⋆
i (v) ∩ S⋆

j (w) ̸= ∅, we conclude from statement (1) of Propositions 3 and 4 (which

proof depends only on the preceding technical lemmas) that S⋆
i (v)∩S⋆

j (w) ̸= ∅ if and only if w ∈ Γ+
i,j(v) and

Si (v) ̸⊆ St,j (w) for i ⩽ t < j; that is, we have w ∈ Γ⋆
i,j(v) if and only if w ∈ Γ+

i,j(v) and Si (v) ̸⊆ St,j (w)
for i ⩽ t < j. □
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Proof of Lemma 7

If G = B(d,D), then SD(w) = V and hence Si(v) ∩ SD(w) = Si(v) ̸= ∅ for all w ∈ S1(v). Therefore if
G = B(d,D), then Γ+

i,D(v) = S1(v). Now let G = K(d,D). If w ∈ S1(v), then w[1,D−1] = v[2,D] and,
in particular, wD−1 = vD. Thus we have wD ̸= vD, because two consecutive symbols in the sequence
representation of the vertices of K(d,D) are different. By statement (2) of Lemma 2, we have Si(v) ∩
SD(w) ̸= ∅ if and only if vi+1 ̸= wD. Therefore if vi+1 = vD, then vi+1 ̸= wD holds for any w ∈ S1(v). We
conclude that if G = K(d,D) and vi+1 = vD, then Γ+

i,D(v) = S1(v). This completes the proof of statement
(1).

Let us demonstrate statement (2). So assume G = K(d,D) and vi+1 ̸= vD. By the previous consid-
erations, we have w ∈ Γ+

i,D(v) if and only if w ∈ S1(v) and vi+1 ̸= wD; if and only if w ∈ S1(v) and

wD ̸∈ {vi+1, vD}. Then, since the symbol alphabet has d + 1 ⩾ 3 symbols, we have Γ+
i,D(v) ̸= ∅ and,

moreover, |Γ+
i,D(v)| = d− 1. This completes the proof of the lemma. □

Proof of Propositions 3 and 4

We prove together the two propositions. Firstly, we prove the case i = j = D of both statement (3) of
Proposition 3 and statement (3) of Proposition 4; secondly, we prove statement (1) of Proposition 3 and
statement (1) of Proposition 4; next we consider the common statement (2) of both propositions; and
finally, for i ⩽ j < D, we complete the demonstration of statement (3) of Proposition 3 and statement (3)
of Proposition 4.

Case i = j = D of statement (3) of Propositions 3 and 4

Let i = j = D. We have to prove that if d ⩾ 3, then S⋆
i (v) ∩ S⋆

j (w) ̸= ∅; whereas if d = 2, then
S⋆
i (v) ∩ S⋆

j (w) ̸= ∅ if and only if G = K(d,D) or vD = wD. Equivalently, we must demonstrate that if
G = K(d,D), then S⋆

i (v) ∩ S⋆
j (w) ̸= ∅; while if G = B(d,D), then S⋆

i (v) ∩ S⋆
j (w) ̸= ∅ if and only if d ⩾ 3

or vD = wD.
If G is the Kautz digraph K(d,D), then, by statement (3) of Lemma 2, we have SD(v)∩SD(w) ̸= ∅ and

|SD(v) ∩ SD(w)| = dD − dD−1. Since SD(v) ∩ SD(w) ̸= ∅, by statement (2) of Lemma 5, the intersection
S⋆
D(v) ∩ S⋆

D(w) can be expressed as

S⋆
D(v) ∩ S⋆

D(w) =
(
SD(v) ∩ SD(w)

)
\

D−2⋃
k=0

Sk,D(v).

Moreover, by Definition 1 and Lemma 1, we have either Sk,D(v) = ∅ or |Sk,D(v)| = |Sk(v)| = dk. Therefore

the cardinality of the union
⋃D−2

k=0 Sk,D(v) can be bounded as follows:∣∣∣∣∣
D−2⋃
k=0

Sk,D(v)

∣∣∣∣∣ ⩽
D−2∑
k=0

dk =
dD−1 − 1

d− 1
,

and hence

|S⋆
D(v) ∩ S⋆

D(w)| ⩾
(
dD − dD−1

)
− dD−1 − 1

d− 1
=

(d− 2)dD + 1

d− 1
> 0.

In particular, we get that if G = K(d,D), then S⋆
D(v) ∩ S⋆

D(w) ̸= ∅, as we wanted to prove.
Now let us assume G = B(d,D). We must demonstrate that, in this case, we have S⋆

D(v) ∩ S⋆
D(w) ̸= ∅

if and only if d ⩾ 3 or vD = wD.
If G = B(d,D), then SD(v)∩SD(w) = V and, by statement (3) of Lemma 5, we can write S⋆

D(v)∩S⋆
D(w)

as

S⋆
D(v) ∩ S⋆

D(w) = V \
(
SD−1(v) ∪ SD−1(w) ∪

D−2⋃
k=0

Sk,D(v)
)
. (14)

By taking into account again that either Sk,D(v) = ∅ or |Sk,D(v)| = |Sk(v)| = dk, we have∣∣∣∣∣SD−1(v) ∪ SD−1(w) ∪
D−2⋃
k=0

Sk,D(v)

∣∣∣∣∣
⩽ |SD−1(v) ∪ SD−1(w)|+

D−2∑
k=0

|Sk,D(v)| ⩽ |SD−1(v) ∪ SD−1(w)|+
dD−1 − 1

d− 1
,
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and thus

|S⋆
D(v) ∩ S⋆

D(w)| ⩾ dD − |SD−1(v) ∪ SD−1(w)| −
dD−1 − 1

d− 1
. (15)

At this point we distinguish two cases: d ⩾ 3 and d = 2.
First assume d ⩾ 3. Since |SD−1(v)| = |SD−1(w)| = dD−1, we have the bound |SD−1(v) ∪ SD−1(w)| ⩽

2dD−1. Hence it follows from (15) that

|S⋆
D(v) ∩ S⋆

D(w)| ⩾ dD − 2dD−1 − dD−1 − 1

d− 1
=

(d− 3)dD + dD−1 + 1

d− 1
> 0,

because d ⩾ 3. Therefore we have proved that if G = B(d,D) and d ⩾ 3, then S⋆
D(v) ∩ S⋆

D(w) ̸= ∅.
Finally, assume d = 2. In this case we must demonstrate that if vD = wD, then S⋆

D(v) ∩ S⋆
D(w) ̸= ∅;

while if vD ̸= wD, then S⋆
D(v) ∩ S⋆

D(w) = ∅.
If vD = wD, then, by statement (1) of Lemma 2, we have SD−1(v) = SD−1(w). So if vD = wD, from

(15) and by taking into account that d = 2, |V | = 2D, and |SD−1(v)| = 2D−1, we get

|S⋆
D(v) ∩ S⋆

D(w)| ⩾ 2D − 2D−1 −
(
2D−1 − 1

)
= 1,

which demonstrates that S⋆
D(v) ∩ S⋆

D(w) ̸= ∅.
To end suppose vD ̸= wD. Since we are assuming d = 2, we conclude that vD and wD are the two

different symbols of the base alphabet A for the sequence representation of the vertices. Moreover, by
using this sequence representation, it is easy to check that in this case we have SD−1(v) ∪ SD−1(w) = V .
Therefore, if vD ̸= wD we conclude from (14) that S⋆

D(v) ∩ S⋆
D(w) = ∅.

This completes the proof of statement (3) of Proposition 3 and statement (3) of Proposition 4 in the
case i = j = D.

Statement (1) of Propositions 3 and 4

Let j ⩾ i ̸= D. We have to prove that if d ⩾ 3, then S⋆
i (v)∩S⋆

j (w) ̸= ∅ if and only if Si(v)∩Sj(w) ̸= ∅ and
Si(v) ̸⊆ Sk,j(w) for i ⩽ k < j; whereas if d = 2, then S⋆

i (v) ∩ S⋆
j (w) ̸= ∅ if and only if Si(v) ∩ Sj(w) ̸= ∅,

Si(v) ̸⊆ Sk,j(w) for i ⩽ k < j, and one of the following conditions holds:

1. j < D;

2. j = D, and v[i,D−1] ̸= v[i+1,D] or Si−1,j(w) = ∅.

Firstly we claim that, for any d ⩾ 2, if j ⩾ i and S⋆
i (v) ∩ S⋆

j (w) ̸= ∅, then Si(v) ∩ Sj(w) ̸= ∅ and
Si(v) ̸⊆ Sk,j(w) for i ⩽ k < j. Clearly, if S⋆

i (v) ∩ S⋆
j (w) ̸= ∅, then Si(v) ∩ Sj(w) ̸= ∅. If j = i we are done,

because in this case the condition Si(v) ̸⊆ Sk,j(w) for i ⩽ k < j is empty. So, let us assume j > i. Since
Si(v) ∩ Sj(w) ̸= ∅, by statement (4) of Lemma 5, the intersection set S⋆

i (v) ∩ S⋆
j (w) can be written as

S⋆
i (v) ∩ S⋆

j (w) = Si(v) \
(( i−1⋃

k=0

Sk,i(v)
)
∪
( j−1⋃

k=i−1

Sk,j(w)
))

.

So if Si(v) ⊆ Sk,j(w) for some k, i ⩽ k < j, then we conclude from the above expression that S⋆
i (v)∩S∗

j (w) =
∅. This finishes the proof of our claim.

Now we are going to demonstrate that if d = 2, j = D, and S⋆
i (v) ∩ S⋆

j (w) ̸= ∅, then v[i,D−1] ̸= v[i+1,D]

or Si−1,j(w) = ∅.
We claim that if d = 2, j = D, v[i,D−1] = v[i+1,D], and Si−1,j(w) ̸= ∅, then Si−1(v) ∪ Si−1(w) =

Si(v). Indeed, on one hand, since v[i,D−1] = v[i+1,D], from statement (1) of Lemma 2 we conclude that
Si−1(v) ⊆ Si(v). So, by Definition 1, we have Si−1,i(v) ̸= ∅. On the other hand, since Si−1,D(w) ̸= ∅, then
Si−1,D(w) = Si−1(w), and hence Si−1,D(w) ∩ Si(v) = Si−1(w) ∩ Si(v) = Si−1(w), because w ∈ S1(v). In
particular, Si−1,D(w) ∩ Si(v) ̸= ∅. Therefore, if i ̸= D = j, Si−1,j(w) ̸= ∅, and v[i,D−1] = v[i+1,D], then we
can apply statement (2.d) of Lemma A.1 to conclude that wD ̸= vD.

To finish the proof of our claim, let us use the sequence representation of the vertices to check that if
d = 2, i < D, v[i,D−1] = v[i+1,D], and wD ̸= vD, then Si−1(v) ∪ Si−1(w) = Si(v).

In fact, if i < D and v[i,D−1] = v[i+1,D], then vi = vi+1 = · · · = vD = α for some symbol α of
the base alphabet A. In particular we have G = B(d,D). Hence a vertex z belongs to Si−1(v) if and
only if z[1,D−i+1] = v[i,D] = α · · ·α. Analogously, since w = v2 · · · vDwD (because w ∈ S1(v)), a vertex
z′ is in Si−1(w) if and only if z′[1,D−i+1] = w[i,D] = α · · ·αwD. Moreover, we have z′′ ∈ Si(v) if and

only if z′′[1,D−i] = w[i+1,D] = α · · ·α. If we assume d = 2 and vD ̸= wD, then vD = α and wD are the
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two symbols of the base alphabet A, that is, we have A = {α,wD}. Now it is clear that a vertex z
belongs to Si−1(v) ∪ Si−1(w) if and only if z[1,D−i] = α · · ·α; if and only if z ∈ Si(v). Hence we have
Si−1(v) ∪ Si−1(w) = Si(v), as we wanted to check.

This completes the proof of our claim.
From our claim and by statement (5) of Lemma A.3, we conclude that if d = 2, j = D, S⋆

i (v)∩S⋆
j (w) ̸= ∅,

Si−1,D(w) ̸= ∅, and v[i,D−1] = v[i+1,D], then

Si−1(v) ∪ Si−1(w) = Si(v) and S⋆
i (v) ∩ S⋆

D(w) = Si(v) \
(( i−2⋃

k=0

Sk,i(v)
)
∪ S′

)
,

where S′ = Si−1(v) ∪ Si−1(w) and Si−1(v) ∩ Si−1(w) = ∅. Since Si−1(v) ∪ Si−1(w) = Si(v), we get
S⋆
i (v) ∩ S⋆

D(w) = ∅, which is a contradiction.
At this point we have proved the direct implication of statement (1) of Proposition 3 and statement (1)

of Proposition 4.
To complete the proof we are going to show that if Si(v) ∩ Sj(w) ̸= ∅, Si(v) ̸⊆ Sk,j(w) for i ⩽ k < j,

and if one of the following conditions hold:

(i) d ⩾ 3;

(ii) j < D;

(iii) j = D, and v[i,D−1] ̸= v[i+1,D] or Si−1,j(w) = ∅,

then S⋆
i (v) ∩ S⋆

j (w) ̸= ∅.
Let us assume Si(v)∩Sj(w) ̸= ∅, Si(v) ̸⊆ Sk,j(w) for i ⩽ k < j, and that either condition (i), or (ii), or

(iii) is fulfilled.
Since Si(v) ∩ Sj(w) ̸= ∅ and Si(v) ̸⊆ Sk,j(w) for i ⩽ k < j, by Lemma A.3 we deduce that the

intersection set S⋆
i (v) ∩ S⋆

j (w) can be described as

S⋆
i (v) ∩ S⋆

j (w) = Si(v) \
(( i−2⋃

k=0

Sk,i(v)
)
∪ S′

)
, (16)

where S′ ⊆ Si−1(v) ∪ Si−1(w).
First assume that we are under condition (i); that is, d ⩾ 3. Since either Sk,i(v) = ∅ or |Sk,i(v)| =

|Sk(v)| = dk, and |Si−1(v)| = |Si−1(v)| = di−1, we have∣∣∣∣∣
i−2⋃
k=0

Sk,i(v) ∪ S′

∣∣∣∣∣ ⩽
i−2∑
k=0

|Sk,i(v)|+ |Si−1(v)|+ |Si−1(w)| ⩽
di−1 − 1

d− 1
+ 2di−1 =

2di − di−1 − 1

d− 1
, (17)

and hence

|S⋆
i (v) ∩ S⋆

j (w)| ⩾ di − 2di − di−1 − 1

d− 1
=

(d− 3)di + di−1 + 1

d− 1
> 0, (18)

because d ⩾ 3. Therefore, if condition (i) holds, then S⋆
i (v) ∩ S⋆

j (w) ̸= ∅, as we wanted to prove.
Now we must demonstrate that S⋆

i (v) ∩ S⋆
j (w) ̸= ∅ if either condition (ii) or (iii) is satisfied.

First observe that if either condition (ii) or (iii) is satisfied, then, by statements (1), (2), (3), or (4) of
Lemma A.3, the set S′ in (16) is either S′ = ∅, or S′ = Si−1(v), or S

′ = Si−1(w). Therefore, in any case
we have |S′| ⩽ di−1, and so we have the bound∣∣∣∣∣

i−2⋃
k=0

Sk,i(v) ∪ S′

∣∣∣∣∣ ⩽
i−2∑
k=0

|Sk,i(v)|+ |S′| ⩽ di−1 − 1

d− 1
+ di−1 =

di − 1

d− 1
, (19)

and hence

|S⋆
i (v) ∩ S⋆

j (w)| ⩾ di − di − 1

d− 1
=

(d− 2)di + 1

d− 1
. (20)

So |S⋆
i (v) ∩ S⋆

j (w)| > 0 for any d ⩾ 2. Therefore we have S⋆
i (v) ∩ S⋆

j (w) ̸= ∅.
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Statement (2) of both propositions

Here we assume d ⩾ 2. We must prove that:

(a) the intersection S⋆
i (v)∩S⋆

i−1(w) is empty if and only if G = B(d,D) and vi = vi+1 = · · · = vD = wD.

(b) if S⋆
i (v) ∩ S⋆

i−1(w) = ∅, then S⋆
i (v) ∩ S⋆

i (w) ̸= ∅.

Let us prove statement (a).
First of all observe that Si(v) ∩ Si−1(w) ̸= ∅, because w ∈ S1(v). So we can apply statement (1) of

Lemma 5 to write S⋆
i (v) ∩ S⋆

i−1(w) as

S⋆
i (v) ∩ S⋆

i−1(w) = Si−1(w) \
i−1⋃
k=0

Sk,i(v)

= Si−1(w) \
( i−2⋃

k=0

Sk,i(v) ∪
(
Si−1,i(v) ∩ Si−1(w)

))
= Si−1(w) \

( i−2⋃
k=0

Sk,i(v) ∪ S′
)
, (21)

where S′ = Si−1,i(v) ∩ Si−1(w). Next we are going to prove that either S′ = ∅ or S′ = Si−1(v) = Si−1(w).
To this end, we only must prove that if Si−1,i(v) ∩ Si−1(w) ̸= ∅, then Si−1,i(v) ∩ Si−1(w) = Si−1(v) =
Si−1(w). So assume Si−1,i(v) ∩ Si−1(w) ̸= ∅. In particular we have Si−1,i(v) ̸= ∅ and hence, from
Definition 1, we get that Si−1,i(v) = Si−1(v). So our assumption implies that Si−1(v) ∩ Si−1(w) ̸= ∅.
Now, by applying statement (1) of Lemma 2, we have Si−1(v) ⊆ Si−1(w) and Si−1(w) ⊆ Si−1(v). Hence
Si−1,i(v) ∩ Si−1(w) = Si−1(v) ∩ Si−1(w) = Si−1(v) = Si−1(w).

By Definition 1 and Lemma 1 we know that |Si−1(w)| = di−1 and that, either Sk,i(v) = ∅ or |Sk,i(v)| =
|Sk(v)| = dk. Therefore, from (21) we conclude that

|S⋆
i (v) ∩ S⋆

i−1(w)| = |Si−1(w)| −
i−2∑
k=0

|Sk,i(v)| − |S′| ⩾ di−1 −
i−2∑
k=0

dk − |S′|.

Thus, since

di−1 −
i−2∑
k=0

dk = di−1 − di−1 − 1

d− 1
=

(d− 2)di−1 + 1

d− 1
> 0,

we have |S⋆
i (v) ∩ S⋆

i−1(w)| = 0 if and only if |S′| ̸= 0. Therefore S⋆
i (v) ∩ S⋆

i−1(w) = ∅ if and only if
Si−1,i(v) ∩ Si−1(w) = Si−1(v) = Si−1(w).

By statement (1) of Lemma 2, we have Si−1(v) = Si−1(w) if and only if v[i,D] = w[i,D]. Thus, since
w ∈ S1(v), we conclude that Si−1(v) = Si−1(w) if and only if vi = vi+1 = · · · = vD = wD; if and only if
G = B(d,D) and vi = vi+1 = · · · = vD = wD.

Therefore the proof of (a) will be completed by showing that if Si−1(v) = Si−1(w), then Si−1,i(v) ∩
Si−1(w) = Si−1(v) = Si−1(w). Let us prove this. Assume Si−1(v) = Si−1(w). Then Si−1(v) = Si−1(w) ⊆
Si(v), because w ∈ S1(v). Therefore, by Definition 1, we have Si−1,i(v) = Si−1(v). So Si−1,i(v)∩Si−1(w) =
Si−1(v) ∩ Si−1(w) = Si−1(v) = Si−1(w), as we wanted to prove.

Now let us demonstrate (b); that is, we have to prove that if S⋆
i (v)∩S⋆

i−1(w) = ∅, then S⋆
i (v)∩S⋆

i (w) ̸= ∅.
So let us assume S⋆

i (v) ∩ S⋆
i−1(w) = ∅ and thus, by (a), we have G = B(d,D) and vi = vi+1 = · · · =

vD = wD.
If i = D and d ⩾ 3 there is nothing to prove, because in this case we have S⋆

D(v) ∩ S⋆
D(w) ̸= ∅ by the

case i = j = D of statement (3) of Proposition 3; whereas if i = D and d = 2, then, since vD = wD, we
also have S⋆

D(v) ∩ S⋆
D(w) ̸= ∅ by the case i = j = D of statement (3) of Propositions 4.

Hence assume i < D. Since vi = vi+1 = · · · = vD = wD, we have v[i+1,D−1] = v[i+2,D] and vD = wD,
which implies v[i+1,D] = w[i+1,D], because w ∈ S1(v). Thus we conclude from Lemma 2 that Si(v) = Si(w)
and so Si(v) ∩ Si(w) ̸= ∅. Therefore if d ⩾ 3, then it follows from statement (1) of Proposition 3 that
S⋆
i (v) ∩ S⋆

i (w) ̸= ∅. Whereas if d = 2, since i < D, we also have S⋆
i (v) ∩ S⋆

i (w) ̸= ∅, because of condition
(a) of statement (1) of Proposition 4. This concludes the proof of (b).
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Case i ⩽ j < D of statement (3) of Propositions 3 and 4

We have to prove the following two statements:

(a) If d ⩾ 3, then there exists a unique integer j, i ⩽ j ⩽ D, such that the intersection S⋆
i (v) ∩ S⋆

j (w) is
nonempty.

(b) If d = 2, then the intersection S⋆
i (v) ∩ S⋆

j (w) is empty for all integer j, i ⩽ j ⩽ D, if and only if
G = B(d,D) and vi = vi+1 = · · · = vD ̸= wD.

Before proving (a) and (b) let us demonstrate the following claim: for any v ∈ V and w ∈ S1(v), either
Si(v) ∩ SD−1(w) ̸= ∅ or Si(v) ∩ SD(w) ̸= ∅.

Indeed, the claim clearly holds whenever G = B(d,D), because in this case we have SD(w) = V . If G is
the Kautz digraph K(d,D), we conclude from statements (1) and (2) of Lemma 2 that if vi+1 = wD, then
Si(v) ∩ SD−1(w) ̸= ∅; while if vi+1 ̸= wD, then Si(v) ∩ SD(w) ̸= ∅. This finishes the proof of our claim.

The above claim guarantees that the set of integers {ℓ : i ⩽ ℓ ⩽ D and Si(v)∩Sℓ(w) ̸= ∅} is nonempty.
Set ℓ0 = min{ℓ : i ⩽ ℓ ⩽ D and Si(v) ∩ Sℓ(w) ̸= ∅}. So ℓ0 is an integer such that i ⩽ ℓ0 ⩽ D,
Si(v) ∩ Sℓ0(w) ̸= ∅, and Si(v) ∩ Sk(w) = ∅ for i ⩽ k < ℓ0. In particular, for i ⩽ k < ℓ0, we have
Si(v) ̸⊆ Sk(w), and hence Si(v) ̸⊆ Sk,ℓ0(w) for i ⩽ k < ℓ0.

Let us prove (a).
So we assume d ⩾ 3 and we have to demonstrate that there exists a unique integer j, i ⩽ j ⩽ D, such

that the intersection S⋆
i (v) ∩ S⋆

j (w) is nonempty. By Proposition 2, it is enough to prove that there exists
an integer j0, i ⩽ j0 ⩽ D, such that the S⋆

i (v) ∩ S⋆
j0
(w) ̸= ∅.

If i = D the result holds by taking j0 = D, because in this case, by the case i = j = D of statement
(3) of Proposition 3, we have S⋆

D(v) ∩ S⋆
D(w) ̸= ∅. Whereas if i < D the result holds by taking j0 = ℓ0.

Indeed, since Si(v) ̸⊆ Sk,ℓ0(w) for i ⩽ k < ℓ0, by applying statement (1) of Proposition 3, we have
S⋆
i (v) ∩ S⋆

ℓ0
(w) ̸= ∅.

This concludes the proof of (a).
Now let us prove (b).
Assume d = 2. First, let us prove that if for all integer j, i ⩽ j ⩽ D, the intersection S⋆

i (v) ∩ S⋆
j (w) is

empty, then G = B(d,D) and vi = vi+1 = · · · = vD ̸= wD.
Observe that if i = D, then the above implication is a direct consequence of the case i = j = D of

statement (3) of Proposition 4. Thus we only must prove the implication in the case i < D.
Hence, assume i < D. Let us consider the integer ℓ0 defined above. By assumption, S⋆

i (v)∩S⋆
ℓ0
(w) = ∅.

Therefore, by statement (1) of Proposition 4, we conclude that ℓ0 = D, v[i,D−1] = v[i+1,D], and Si−1,ℓ0(w) ̸=
∅. Since i < D we have v[i,D−1] = v[i+1,D] if and only if G = B(d,D) and vi = vi+1 = · · · = vD. To conclude
it only remains to show that vD ̸= wD.

Since ℓ0 = D and Si−1,ℓ0(w) ̸= ∅, by Remark 2 we have Si−1(w) ∩ Sk(w) = ∅ for all i − 1 < k < D.
By statement (1) of Lemma 2, we have Si−1(w) ∩ Sk(w) = ∅ for all i − 1 < k < D if and only if
w[i,D−(k−i)−1)] ̸= w[k+1,D] for all i−1 < k < D; if and only if v[i+1,D−(k−i)−1)] ̸= v[k+2,D] for vD−(k−i) ̸= wD

for all i−1 < k < D. Since vi = vi+1 = · · · = vD we have v[i+1,D−(k−i)−1)] = v[k+2,D] for all i−1 < k < D−1.
Therefore we have Si−1(w) ∩ Sk(w) = ∅ for all i − 1 < k < D if and only if vD−(k−i) ̸= wD for all
i− 1 < k < D; if and only if vD ̸= wD.

Reciprocally, let us demonstrate that if G = B(d,D) and vi = vi+1 = · · · = vD ̸= wD, then the
intersection S⋆

i (v) ∩ S⋆
j (w) is empty for all integer j, i ⩽ j ⩽ D. If vi = vi+1 = · · · = vD ̸= wD,

then v[i+1,D−(j−i)] ̸= w[j+1,D] for all j, i ⩽ j < D. Therefore, by statement(1) of Lemma 2, we have
Si(v) ∩ Sj(v) = ∅ for all j, i ⩽ j < D, and hence S⋆

i (v) ∩ S⋆
j (w) = ∅ for all j, i ⩽ j < D. It remains

to be proved that we also have S⋆
i (v) ∩ S⋆

D(w) = ∅. Indeed, since S⋆
i (v) = Si(v) \

(⋃i−1
k=0 Sk(v)

)
and

S⋆
D(w) = V \

(⋃D−1
k=0 Sk(w)

)
, we conclude that

S⋆
i (v) ∩ S⋆

D(w) = Si(v) \
i−1⋃
k=0

(Sk(v) ∪ Sk(w)) = ∅,

because, since d = 2 and vi = vi+1 = · · · = vD ̸= wD, we have Si−1(v) ∪ Si−1(w) = Si(v). (This last
equality can be easily checked by using the sequence representation of the vertices.)
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