Distance-layer structure of the De Bruijn and Kautz digraphs: analysis and application to deflection routing

J. Fàbrega, J. Martí-Farré and X. Muñoz *†
Departament de Matemàtiques, Universitat Politècnica de Catalunya
Barcelona, Spain

May 9, 2023

Abstract

In this paper, we present a detailed study of the reach distance-layer structure of the De Bruijn and Kautz digraphs, and we apply our analysis to the performance evaluation of deflection routing in De Bruijn and Kautz networks. Concerning the distance-layer structure, we provide explicit polynomial expressions, in terms of the degree of the digraph, for the cardinalities of some relevant sets of this structure. Regarding the application to defection routing, and as a consequence of our polynomial description of the distance-layer structure, we formulate explicit expressions, in terms of the degree of the digraph, for some probabilities of interest in the analysis of this type of routing.

De Bruijn and Kautz digraphs are fundamental examples of digraphs on alphabet and iterated line digraphs. If the topology of the network under consideration corresponds to a digraph of this type, we can perform, in principle, a similar vertex layer description.

1 Introduction

Deflection routing [1] is a routing scheme for bufferless networks based on the fact that if a packet cannot be sent through a given link due to congestion, it is deflected through any other available link (instead of being buffered in the node queue), and the packet is then rerouted to destination. This kind of routing is nowadays interesting in the context of optical networks [19, 25, 31] and on-chip networks [6, 22]. However, its efficiency depends highly on the network topology (as well as on the decision criteria used to deflect packets when collisions appear [11). More precisely, the routing efficiency will be determined by how much the distance to the destination increases when a deflection occurs. This question is addressed by considering some probabilities, as studied in Subsection 2.3. Because of this reason, the efficiency in networks with unidirectional links may be worse than in the bidirectional case. Nevertheless, in many cases, directed networks are convenient [22, 29].

Despite being known for a long time, active research is still going on on De Bruijn and Kautz digraphs $B(d, D)$ and $K(d, D)[2,9,20,21$, both in graph theory [4, 10, 18, 23] and in network engineering [14, 24, 28, Those digraphs have been proposed as topologies for optical networks (see for instance [5, [7, 30]). This paper is concerned with deflection routing in these kinds of networks.

To study the topological properties of $B(d, D)$ and $K(d, D)$ that we need to evaluate the performance of deflection routing, we provide a detailed study of its reach distance-layer structure. We give explicit polynomial expressions, in terms of the degree of the digraph, for the cardinalities of some relevant sets of this structure. For instance, if $S_{i}^{\star}(v)$ denotes the set of vertices at distance i from a given vertex v, we show that $\left|S_{i}^{\star}(v)\right|=d^{i}-a_{i-1} d^{i-1}-\cdots-a_{1} d-a_{0}$, where the coefficients a_{k} are 0 or 1 , and are explicitly determined from the sequence representation of v. Moreover, if w is a vertex adjacent from v, we demonstrate that there are at most two integers j such that the intersection $S_{i}^{\star}(v) \cap S_{j}^{\star}(w)$ is nonempty; we show how to determine such values of j; and we relate the polynomial description of $\left|S_{i}^{\star}(v) \cap S_{j}^{\star}(w)\right|$ with that of $\left|S_{i}^{\star}(v)\right|$.

We apply our results on the distance-layer structure to provide explicit expressions, in terms of the degree d, of some probabilities of interest in the performance evaluation of deflection routing in $B(d, D)$ and $K(d, D)$. Moreover, the polynomial description of the distance-layer structure is interesting by itself

[^0]from a graph theoretical approach, and it can be helpful in other applications of De Bruijn and Kautz digraphs to networks or other engineering fields.

The paper is organized as follows. In Section 2 we present our results on the distance-layer structure of the set of vertices of $B(d, D)$ and $K(d, D)$ (Subsections 2.1 and 2.2), and on deflection routing (Subsection 2.3). To develop the proofs of our results, we need a collection of technical lemmas and remarks that allow us to understand the distance-layer structure comprehensively. The proofs of these lemmas are put together in an Appendix that also contains a long common proof of two of the propositions formulated in Subsection 2.2

An extended abstract of a preliminary version of our work appeared in [12]. Moreover, and extended preprint version of this paper, with examples and additional remarks, can be found in [13].

2 Our results

Concerning the distance-layer structure of the set of vertices of the De Bruijn and Kautz digraphs we formulate some polynomial expressions (in terms of the degree d of the digraph) for the cardinalities of some relevant sets of this structure. More precisely, let $S_{i}^{\star}(v)$ be the set of vertices at distance i from a given vertex v. We show that $\left|S_{i}^{\star}(v)\right|=d^{i}-a_{i-1} d^{i-1}-\cdots-a_{1} d-a_{0}$, and the coefficients $a_{k} \in\{0,1\}$ are explicitly calculated. Moreover, given v, we show that for each vertex w there exists at most one integer $j \geqslant i$ such that the intersection $S_{i}^{\star}(v) \cap S_{j}^{\star}(w)$ is nonempty; and in the case that w is adjacent from v, we provide a precise characterization of when $S_{i}^{\star}(v) \cap S_{j}^{\star}(w) \neq \emptyset$. Furthermore, if w is adjacent from v, we prove that if $S_{i}^{\star}(v) \cap S_{i-1}^{\star}(w) \neq \emptyset$, then $\left|S_{i}^{\star}(v) \cap S_{i-1}^{\star}(w)\right|=d^{i-1}-b_{i-2} d^{i-2}-\ldots-b_{1} d-b_{0}$, and that if $S_{i}^{\star}(v) \cap S_{j}^{\star}(w) \neq \emptyset$, then $\left|S_{i}^{\star}(v) \cap S_{j}^{\star}(w)\right|=d^{i}-\alpha_{i-1} d^{i-1}-\ldots-\alpha_{1} d-\alpha_{0}$, where the coefficients of these polynomial expressions, $b_{k}, \alpha_{k} \in\{0,1\}, 0 \leqslant k \leqslant i-2$, and $\alpha_{i-1} \in\{0,1,2\}$, are determined from the coefficients a_{k} of the polynomial expression of $\left|S_{i}^{\star}(v)\right|$.

2.1 The distance-layer structure of $B(d, D)$ and $K(d, D)$

This subsection and the following one are devoted to presenting our results on the characterization of the distance-layer structure of $B(d, D)$ and $K(d, D)$.

We make use of the well-known sequence representation of the vertices of $B(d, D)$ and $K(d, D)$. Each vertex of the De Bruijn digraph $B(d, D)$ corresponds to a sequence $v=v_{1} v_{2} \cdots v_{D}$ such that each element v_{k} belongs to a base alphabet A of d symbols, and vertex v is adjacent to the d vertices $w=v_{2} \cdots v_{D} v_{D+1}$, where $v_{D+1} \in A$. Analogously, each vertex of the Kautz digraph $K(d, D)$ corresponds to a sequence $v=v_{1} v_{2} \cdots v_{D}$, where now $v_{k} \neq v_{k+1}, 1 \leqslant k<D$, and the base alphabet A has $d+1$ symbols. In $K(d, D)$, vertex v is adjacent to the d vertices $w=v_{2} \cdots v_{D} v_{D+1}$, where $v_{D+1} \in A$ and $v_{D+1} \neq v_{D}$. The digraphs $B(d, D)$ and $K(d, D)$ are d-regular, $d \geqslant 2$, have diameter D, and number of vertices d^{D} and $d^{D}+d^{D-1}$, respectively.

Notice that if $v=v_{1} v_{2} \cdots v_{i} v_{i+1} \cdots v_{D}$ is the sequence representation of a vertex v, then the sequence representation of a generic vertex u for which there exists a walk from v to u of length $i, 0 \leqslant i \leqslant D-1$, is $u=v_{i+1} \cdots v_{D} * \cdots *$, where the subsequence $* \cdots *$ means that the last i symbols of u can be arbitrarily chosen (in the case $G=K(d, D)$, two consecutive symbols must be different). It is easily checked that between any pair of vertices there exists a walk of length D in $B(d, D)$ and of length $D+1$ in $K(d, D)$. It is also a well-known fact that in $B(d, D)$ and $K(d, D)$ the shortest path between any two vertices is unique. Indeed, let v and z be distinct vertices with a sequence representation $v=v_{1} v_{2} \cdots v_{D}$ and $z=z_{1} z_{2} \cdots z_{D}$, respectively. Then, the distance from v to z is k if and only if k is the smallest integer such that $v=v_{1} \cdots v_{k} z_{1} \cdots z_{D-k}$; that is to say, k is the smallest integer such that the last $D-k$ symbols of the sequence representation of v coincide with the first $D-k$ symbols of the sequence representation of z. Moreover, if $k \geqslant 2$, then the shortest path from v to z is $v, u_{1}, \ldots, u_{k-1}, z$, where the sequence representation of the intermediate vertex u_{i} is $u_{i}=v_{i+1} \cdots v_{k} z_{1} \cdots z_{D-k+i}, 1 \leqslant i \leqslant k-1$.

From now on let G be the digraph under consideration (either $G=B(d, D)$ or $G=K(d, D)$) and let V denote its vertex set.

Given $v \in V$, for $i \geqslant 0$, let $S_{i}(v)$ be the set of vertices for which there exists a walk from v of length i, and let $S_{i}^{\star}(v)$ denote the set of vertices at distance i from v. From the definition it is clear that $S_{0}(v)=\{v\}$; $S_{1}(v)$ is the set of vertices adjacent from v, usually denoted as $\Gamma^{+}(v) ; S_{i}^{\star}(v)=\emptyset$ for $i \geqslant D+1$; and

$$
\begin{equation*}
S_{i}^{\star}(v)=S_{i}(v) \backslash\left(\bigcup_{k=0}^{i-1} S_{k}(v)\right) \text { for } 0 \leqslant i \leqslant D . \tag{1}
\end{equation*}
$$

Moreover, since in $B(d, D)$ there exists a walk of length D between any pair of vertices, if $G=B(d, D)$ and $i \geqslant D$, then $S_{i}(v)=V$, and so $\left|S_{i}(v)\right|=d^{D}$. Analogously, if $G=K(d, D)$ and $i \geqslant D+1$, then $S_{i}(v)=V$ and $\left|S_{i}(v)\right|=d^{D}+d^{D-1}$, because in $K(d, D)$ there is a walk of length $D+1$ between any pair of vertices.

2.2 Polynomial description of the distance-layer structure

The first goal of this subsection is to present a polynomial description of the cardinality of the set $S_{i}^{\star}(v)$, where the polynomial has degree i, variable d (the degree of the digraph), and coefficients 0 or 1 . In order to obtain this description, we introduce the following definition.

Definition 1. Given $v \in V$ and two integers k, i such that $0 \leqslant i \leqslant D$ and $0 \leqslant k \leqslant i$, let

$$
S_{k, i}(v)= \begin{cases}S_{k}(v), & \text { if } S_{k}(v) \subseteq S_{i}(v) \text { and for all } j, k<j<i \\ & \text { such that } S_{j}(v) \subseteq S_{i}(v) \text { we have } S_{k}(v) \nsubseteq S_{j}(v) \\ \emptyset, & \text { otherwise }\end{cases}
$$

Remark 1. It follows from Definition 1 that $S_{i, i}(v)=S_{i}(v)$ for any $v \in V$. Moreover, if $G=K(d, D)$, then $S_{i-1, i}(v)=\emptyset$ for any $v \in V$, because $S_{i-1}(v) \nsubseteq S_{i}(v)$. In the case $G=B(d, D)$ there are vertices v such that $S_{i-1, i}(v)=S_{i-1}(v)$ and vertices v for which $S_{i-1, i}(v)=\emptyset$.

To prove the results presented in Subsections 2.2 and 2.3. we use several technical lemmas gathered in the Appendix at the end of the document. However, for the sake of readability, we include in Subsection 2.2 the statements of Lemmas 1 to 5, and in Subsection 2.3 , the statements of Lemmas 6 to 8 .

We will use the following notation. If $v \in V$, then $v_{[i, j]}$ denotes the subsequence $v_{i} v_{i+1} \cdots v_{j}$ of the sequence representation $v=v_{1} v_{2} \cdots v_{D}$. In particular, $v_{[i, i]}=v_{i}$ is the i-th element of this sequence.
Lemma 1. Let $v \in V$. Then $\left|S_{i}(v)\right|=d^{i}$ for $0 \leqslant i \leqslant D$. Moreover, if $G=B(d, D)$ and $i \geqslant D$, then $S_{i}(v)=V$; while if $G=K(d, D)$ and $i \geqslant D+1$, then $S_{i}(v)=V$.

The main part of the next lemma essentially states that, given any two (no necessarily different) vertices v, v^{\prime}, if $k \leqslant i<D$ or $k<i=D$, then either $S_{k}(v) \subseteq S_{i}\left(v^{\prime}\right)$ or $S_{k}(v) \cap S_{i}\left(v^{\prime}\right)=\emptyset$. The precise formulation in terms of the sequence representation of v and v^{\prime} is as follows.

Lemma 2. Let $v, v^{\prime} \in V$ be two vertices with sequence representation $v=v_{1} v_{2} \cdots v_{D}$ and $v^{\prime}=v_{1}^{\prime} v_{2}^{\prime} \cdots v_{D}^{\prime}$. Let $0 \leqslant k \leqslant i$ and assume that $S_{i}\left(v^{\prime}\right) \neq V$. Then $i \leqslant D, S_{k}(v) \neq V$, and the following statements hold:

1. If $k \leqslant i<D$, then either $S_{k}(v) \subseteq S_{i}\left(v^{\prime}\right)$ or $S_{k}(v) \cap S_{i}\left(v^{\prime}\right)=\emptyset$. Moreover, $S_{k}(v) \subseteq S_{i}\left(v^{\prime}\right)$ if and only if $v_{[k+1, D-(i-k)]}=v_{[i+1, D]}^{\prime}$.
2. If $k<i=D$, then $G=K(d, D)$ and either $S_{k}(v) \subseteq S_{D}\left(v^{\prime}\right)$ or $S_{k}(v) \cap S_{D}\left(v^{\prime}\right)=\emptyset$. Moreover, $S_{k}(v) \subseteq S_{D}\left(v^{\prime}\right)$ if and only if $v_{k+1} \neq v_{D}^{\prime}$.
3. If $k=i=D$, then $G=K(d, D)$ and $S_{D}(v) \cap S_{D}\left(v^{\prime}\right) \neq \emptyset$. Moreover, if $v_{D}=v_{D}^{\prime}$ then $S_{D}(v)=S_{D}\left(v^{\prime}\right)$, whereas if $v_{D} \neq v_{D}^{\prime}$, then $S_{D}(v) \neq S_{D}\left(v^{\prime}\right)$ and $\left|S_{D}(v) \cap S_{D}\left(v^{\prime}\right)\right|=d^{D}-d^{D-1}$.

Remark 2. Let $0 \leqslant k<j<i \leqslant D$. By statement (1) of Lemma 2, $S_{j}(v) \nsubseteq S_{i}(v)$ if and only if $S_{j}(v) \cap S_{i}(v)=\emptyset$. Therefore, if $S_{k}(v) \subseteq S_{i}(v)$ and $S_{j}(v) \nsubseteq S_{i}(v)$, then $S_{k}(v) \nsubseteq S_{j}(v)$. This observation allows us to reformulate Definition 1 in the following way: Let $v \in V$ and let k, i be two integers such that $0 \leqslant i \leqslant D$ and $0 \leqslant k \leqslant i$. Then

$$
S_{k, i}(v)= \begin{cases}S_{k}(v), & \text { if } S_{k}(v) \subseteq S_{i}(v) \text { and } S_{k}(v) \cap S_{j}(v)=\emptyset \text { for all } j, k<j<i \\ \emptyset, & \text { otherwise }\end{cases}
$$

Remark 3. By Remark 2 and Lemma 2 we have $S_{k, i}(v)=S_{k}(v)$ if and only if $v_{[k+1, D-(i-k)]}=v_{[i+1, D]}$ and $v_{[k+1, D-(j-k)]} \neq v_{[j+1, D]}$ for all $j, k<j<i$. In particular, if $k=i-1$, then $S_{i-1, i}(v)=S_{i-1}(v)$ if and only if $S_{i-1}(v) \subseteq S_{i}(v)$; if and only if $v_{[i, D-1]}=v_{[i+1, D]}$; if and only if $v_{i}=v_{i+1}=\cdots=v_{D}$.
Remark 4. Let $0 \leqslant k_{1}, k_{2}<i \leqslant D$. We claim that if $k_{1} \neq k_{2}$, then $S_{k_{1}, i}(v) \cap S_{k_{2}, i}(v)=\emptyset$. Indeed, if $S_{k_{1}, i}(v) \cap S_{k_{2}, i}(v) \neq \emptyset$, then $S_{k_{1}, i}(v) \neq \emptyset$ and $S_{k_{2}, i}(v) \neq \emptyset$. So, $S_{k_{1}, i}(v)=S_{k_{1}}(v) \subseteq S_{i}(v)$ and $S_{k_{2}, i}(v)=$ $S_{k_{2}}(v) \subseteq S_{i}(v)$. Hence $S_{k_{1}}(v) \cap S_{k_{2}}(v)=S_{k_{1}, i}(v) \cap S_{k_{2}, i}(v) \neq \emptyset$. Now, by applying Lemma 2 , either $S_{k_{1}}(v) \subseteq S_{k_{2}}(v)$ or $S_{k_{2}}(v) \subseteq S_{k_{1}}(v)$. Hence either $S_{k_{1}}(v) \subseteq S_{k_{2}}(v) \subseteq S_{i}(v)$ or $S_{k_{2}}(v) \subseteq S_{k_{1}}(v) \subseteq S_{i}(v)$. In any case, this leads us to a contradiction with the definition of $S_{k, i}(v)$. This completes the proof of our claim.

The following result describes the structure of the distance-layer set $S_{i}^{\star}(v)$.
Lemma 3. Let $v \in V$ and let $0 \leqslant i \leqslant D$. Then $S_{i}^{\star}(v)=S_{i}(v) \backslash\left(\bigcup_{k=0}^{i-1} S_{k, i}(v)\right)$.
Now we can prove our first result concerning $\left|S_{i}^{\star}(v)\right|$.
Proposition 1. Let $v \in V$ and $i \leqslant D$. Then,

$$
\left|S_{i}^{\star}(v)\right|=d^{i}-a_{i-1} d^{i-1}-\cdots-a_{1} d-a_{0}
$$

where the coefficients a_{k} are 0 or 1 , and $a_{k}=1$ if and only if $S_{k, i}(v) \neq \emptyset$. In particular, if $v=v_{1} v_{2} \cdots v_{D}$, then $a_{i-1}=1$ if and only if $G=B(d, D)$ and $v_{i}=v_{i+1}=\cdots=v_{D}$.

Proof. On one hand, from Lemma 3 we have $S_{i}^{\star}(v)=S_{i}(v) \backslash\left(\bigcup_{k=0}^{i-1} S_{k, i}(v)\right)$. On the other hand, from the definition of $S_{k, i}(v)$ we have $S_{k, i}(v) \subseteq S_{i}(v)$. Therefore,

$$
\left|S_{i}^{\star}(v)\right|=\left|S_{i}(v) \backslash\left(\bigcup_{k=0}^{i-1} S_{k, i}(v)\right)\right|=\left|S_{i}(v)\right|-\left|\bigcup_{k=0}^{i-1} S_{k, i}(v)\right|
$$

As shown in Remark 4 . if $k_{1} \neq k_{2}$, then $S_{k_{1}, i}(v) \cap S_{k_{2}, i}(v)=\emptyset$. Therefore, it follows that $\left|\bigcup_{k=0}^{i-1} S_{k, i}(v)\right|=$ $\sum_{k=0}^{i-1}\left|S_{k, i}(v)\right|$. Thus, from the definition of $S_{k, i}(v)$ and by Lemma 1 we have

$$
\left|S_{i}^{\star}(v)\right|=\left|S_{i}(v)\right|-\sum_{k=0}^{i-1}\left|S_{k, i}(v)\right|=d^{i}-\sum_{k=0}^{i-1} a_{k} d^{k}
$$

where the coefficients a_{k} are 0 or 1 , and $a_{k}=1$ if and only if $S_{k, i}(v) \neq \emptyset$. Clearly, if $i=D$, then $S_{i-1, i}(v) \neq \emptyset$ if and only if $G=B(d, D)$. To conclude, assume that $i<D$. In such a case we have $a_{i-1}=1$ if and only if $S_{i-1, i}(v) \neq \emptyset$; if and only if $S_{i-1}(v) \subseteq S_{i}(v)$; if and only if $v_{[i, D-1]}=v_{[i+1, D]}$ (the last equivalence follows from statement (1) of Lemma 2 which can be applied because $i<D$). Therefore we conclude that if $i<D$, then $a_{i-1}=1$ if and only if $G=B(d, D)$ and $v_{i}=v_{i+1}=\cdots=v_{D}$. This completes the proof of the proposition.

To illustrate the use of Proposition 1. let us consider the following two examples.
Example 1. Consider the De Bruijn digraph $G=B(d, 7)$ and let $v \in V$ be a vertex which sequence representation is $v=\alpha \beta \beta \alpha \beta \alpha \beta$, where α and β are distinct elements of the symbol alphabet A. Let us determine the number of vertices, $\left|S_{6}^{\star}(v)\right|$, at distance 6 from such a vertex v.

If the symbol $*$ stands for an arbitrary element of A, we can describe the sets $S_{i}(v)$ as $S_{0}(v)=\{u \in$ $V: u=\alpha \beta \beta \alpha \beta \alpha \beta\}, S_{1}(v)=\{u \in V: u=\beta \beta \alpha \beta \alpha \beta *\}, S_{2}(v)=\{u \in V: u=\beta \alpha \beta \alpha \beta * *\}, \ldots$, and $S_{6}(v)=\{u \in V: u=\beta * * * * * *\}$. We realize that if $k<6$, then $S_{k}(v) \subseteq S_{6}(v)$ if and only if $k=1,2,4$. Hence $S_{1,6}(v)=S_{1}(v)$, because $S_{1}(v) \nsubseteq S_{j}(v)$ if $1<j<6 ; S_{2,6}(v)=\emptyset$, because $S_{2}(v) \subseteq S_{4}(v)$; and $S_{4,6}(v)=S_{4}(v)$, because $S_{4}(v) \nsubseteq S_{5}(v)$. Therefore we have $a_{1}=a_{4}=1$ and $a_{2}=a_{3}=a_{5}=0$, and hence $\left|S_{6}^{\star}(v)\right|=d^{6}-d^{4}-d$.
Example 2. In this second example we consider the Kautz digraph $G=K(d, 10)$ and let us calculate $\left|S_{8}^{\star}(v)\right|$, being v a vertex with sequence representation $v=\alpha \beta \gamma \alpha \beta \gamma \alpha \beta \alpha \beta$, where α, β and γ stand for different elements of the symbol alphabet A. As in Example 1, the sets $S_{i}(v)$ can be described as $S_{0}(v)=$ $\{u \in V: u=\alpha \beta \gamma \alpha \beta \gamma \alpha \beta \alpha \beta\}, S_{1}(v)=\{u \in V: u=\beta \gamma \alpha \beta \gamma \alpha \beta \alpha \beta *\}, S_{2}(v)=\{u \in V: u=\gamma \alpha \beta \gamma \beta \alpha \beta *$ $*\}, \ldots$, and $S_{8}(v)=\{u \in V: u=\alpha \beta * * * * * * * *\}$. (Remember that, since G is a Kautz digraph, two successive symbols in the above sequence representations must be different.) We can verify that if $k<8$, then the only subsets $S_{k, 8}(v)$ which are nonempty are $S_{0,8}(v)=S_{0}(v), S_{3,8}(v)=S_{3}(v)$, and $S_{6,8}(v)=S_{6}(v)$. So we conclude that $\left|S_{8}^{\star}(v)\right|=d^{8}-d^{6}-d^{3}-1$.

For the application to deflection routing, in addition to $\left|S_{i}^{\star}(v)\right|$, we are also interested in $\left|S_{i}^{\star}(v) \cap S_{j}^{\star}(w)\right|$ when w is a vertex adjacent from v. Let $v \in V$ and $w \in S_{1}(v)$, and let $i \geqslant 0$. By the triangular inequality we have $S_{i}^{\star}(v) \cap S_{j}^{\star}(w)=\emptyset$ if $j<i-1$. Therefore, since $V=\bigcup_{j=0}^{D} S_{j}^{\star}(w)$, we conclude that

$$
S_{i}^{\star}(v)=\bigcup_{j=0}^{D}\left(S_{i}^{\star}(v) \cap S_{j}^{\star}(w)\right)=\bigcup_{j=i-1}^{D}\left(S_{i}^{\star}(v) \cap S_{j}^{\star}(w)\right)
$$

First, we demonstrate in Proposition 2 that there are at most two integers $j \geqslant i-1$ such that the intersection $S_{i}^{\star}(v) \cap S_{j}^{\star}(w)$ is nonempty. After this, in Propositions 3 and 4 we show how to determine such values of j. Finally, in Theorems 1, 2 and 3 we relate the polynomial description of $\left|S_{i}^{\star}(v)\right|$ with that of $\left|S_{i}^{\star}(v) \cap S_{j}^{\star}(w)\right|$.
Proposition 2. Let $v \in V$ and let $i \leqslant D$. Then for each vertex $w \in V$ there exists at most one integer j_{0}, $i \leqslant j_{0} \leqslant D$, such that $S_{i}^{\star}(v) \cap S_{j_{0}}^{\star}(w) \neq \emptyset$. In particular, if $w \in S_{1}(v)$, then

1. either there exists a unique integer $j_{0}, i \leqslant j_{0} \leqslant D$, such that the intersection $S_{i}^{\star}(v) \cap S_{j_{0}}^{\star}(w)$ is nonempty, and so $S_{i}^{\star}(v)=\left(S_{i}^{\star}(v) \cap S_{i-1}^{\star}(w)\right) \cup\left(S_{i}^{\star}(v) \cap S_{j_{0}}^{\star}(w)\right)$;
2. or, for all integer $j, i \leqslant j \leqslant D$, the intersection $S_{i}^{\star}(v) \cap S_{j}^{\star}(w)$ is empty, and so $S_{i}^{\star}(v)=S_{i}^{\star}(v) \cap$ $S_{i-1}^{\star}(w)$.

Proof. We have to prove that there exists at most one integer $j_{0}, i \leqslant j_{0} \leqslant D$, such that $S_{i}^{\star}(v) \cap S_{j_{0}}^{\star}(w) \neq \emptyset$, because if so, statements (1) and (2) follow. To prove that, let us demonstrate that if $S_{i}^{\star}(v) \cap S_{j}^{\star}(w) \neq \emptyset$ for some $j, i \leqslant j<D$, then $S_{i}^{\star}(v) \cap S_{j^{\prime}}^{\star}(w)=\emptyset$ for all integer j^{\prime} such that $j<j^{\prime} \leqslant D$. Thus assume $S_{i}^{\star}(v) \cap S_{j}^{\star}(w) \neq \emptyset$ and let $j<j^{\prime} \leqslant D$. On one hand, if $S_{i}^{\star}(v) \cap S_{j}^{\star}(w) \neq \emptyset$, then $S_{i}(v) \cap S_{j}(w) \neq \emptyset$ and, since $i<D$, we conclude from Lemma 2 that $S_{i}(v) \subseteq S_{j}(w)$. On the other hand, by definition we have $S_{j^{\prime}}^{\star}(w)=S_{j^{\prime}}(w) \backslash\left(\bigcup_{k=0}^{j^{\prime}-1} S_{k}(w)\right)$ and, since $j<j^{\prime}$, we get that $S_{j}(w) \cap S_{j^{\prime}}^{\star}(w)=\emptyset$. Thus we have $S_{i}(v) \cap S_{j^{\prime}}^{\star}(w)=\emptyset$, because $S_{i}(v) \subseteq S_{j}(w)$, and therefore we conclude that $S_{i}^{\star}(v) \cap S_{j^{\prime}}^{\star}(w)=\emptyset$, as we wanted to prove.

Proposition 3. Assume $d \geqslant 3$. Let $v \in V, w \in S_{1}(v)$, and let $i \leqslant D$. Then,

1. If $j \geqslant i \neq D$, then $S_{i}^{\star}(v) \cap S_{j}^{\star}(w) \neq \emptyset$ if and only if $S_{i}(v) \cap S_{j}(w) \neq \emptyset$ and $S_{i}(v) \nsubseteq S_{k, j}(w)$ for $i \leqslant k<j$.
2. The intersection $S_{i}^{\star}(v) \cap S_{i-1}^{\star}(w)$ is empty if and only if $G=B(d, D)$ and $v_{i}=v_{i+1}=\cdots=v_{D}=w_{D}$. Furthermore, if $S_{i}^{\star}(v) \cap S_{i-1}^{\star}(w)=\emptyset$, then $S_{i}^{\star}(v) \cap S_{i}^{\star}(w) \neq \emptyset$.
3. There exists a unique integer $j, i \leqslant j \leqslant D$, such that the intersection $S_{i}^{\star}(v) \cap S_{j}^{\star}(w)$ is non-empty.

The condition $d \geqslant 3$ cannot be removed from the hypothesis of Proposition 3, because if $d=2$ and $G=B(d, D)$, then statements (1) and (3) do not necessarily hold. So we study completely the case $d=2$ in the next proposition.

Proposition 4. Assume $d=2$. Let $v \in V, w \in S_{1}(v)$, and let $i \leqslant D$. Then,

1. If $j \geqslant i \neq D$, then $S_{i}^{\star}(v) \cap S_{j}^{\star}(w) \neq \emptyset$ if and only if $S_{i}(v) \cap S_{j}(w) \neq \emptyset$, $S_{i}(v) \nsubseteq S_{k, j}(w)$ for $i \leqslant k<j$, and one of the following conditions holds:
(a) $j<D$;
(b) $j=D$, and $v_{[i, D-1]} \neq v_{[i+1, D]}$ or $S_{i-1, j}(w)=\emptyset$.
2. The intersection $S_{i}^{\star}(v) \cap S_{i-1}^{\star}(w)$ is empty if and only if $G=B(d, D)$ and $v_{i}=v_{i+1}=\cdots=v_{D}=w_{D}$. Furthermore, if $S_{i}^{\star}(v) \cap S_{i-1}^{\star}(w)=\emptyset$, then $S_{i}^{\star}(v) \cap S_{i}^{\star}(w) \neq \emptyset$.
3. The intersection $S_{i}^{\star}(v) \cap S_{j}^{\star}(w)$ is empty for all integer $j, i \leqslant j \leqslant D$, if and only if $G=B(d, D)$ and $v_{i}=v_{i+1}=\cdots=v_{D} \neq w_{D}$.

Propositions 3 and 4 are proved together in the Appendix.
The following lemma deals with the set of vertices $w \in S_{1}(v)$ for which the intersection set $S_{i}(v) \cap S_{j}(w)$ is nonempty.

Lemma 4. Let $v \in V$ and, for $0 \leqslant i \leqslant j<D$, let $\Gamma_{i, j}^{+}(v)=\left\{w \in S_{1}(v): S_{i}(v) \cap S_{j}(w) \neq \emptyset\right\}$. Then

1. The set $\Gamma_{i, j}^{+}(v)$ is nonempty if and only if one the following conditions is fulfilled:
(a) $i<j<D-1$ and $v_{[i+1, D+i-j-1]}=v_{[j+2, D]}$.
(b) $i<j=D-1$ and either $G=B(d, D)$, or $G=K(d, D)$ and $v_{i+1} \neq v_{D}$.
(c) $i=j, G=B(d, D)$ and $v_{[i+1, D]}=v_{D} \cdots v_{D}$.
2. If the set $\Gamma_{i, j}^{+}(v)$ is nonempty, then $\Gamma_{i, j}^{+}(v)$ has a unique element w which sequence representation is $w=v_{2} \cdots v_{D} v_{i+(D-j)}$. Moreover, if $i=j$, then $S_{i-1}(w) \subseteq S_{i}(v)=S_{i}(w) \subseteq S_{i+1}(v)=S_{i+1}(w) \subseteq \cdots$.

In the next result we provide a detailed description of the intersection sets $S_{i}^{\star}(v) \cap S_{j}^{\star}(w)$ when w is a vertex adjacent from v and for $i, j \leqslant D$ with $i-1 \leqslant j$.

Lemma 5. Let $v \in V$ and $w \in S_{1}(v)$. Let $i, j \leqslant D$ with $i-1 \leqslant j$. If $S_{i}(v) \cap S_{j}(w) \neq \emptyset$, then the intersection set $S_{i}^{\star}(v) \cap S_{j}^{\star}(w)$ can be described as follows:

1. $S_{i-1}(w) \backslash \bigcup_{k=0}^{i-1} S_{k, i}(v)$ if $j=i-1$.
2. $\left(S_{D}(v) \cap S_{D}(w)\right) \backslash \bigcup_{k=0}^{D-2} S_{k, D}(v)$ if $i=j=D$ and $G=K(d, D)$.
3. $V \backslash\left(S_{D-1}(v) \cup S_{D-1}(w) \cup \bigcup_{k=0}^{D-2} S_{k, D}(v)\right)$ if $i=j=D$ and $G=B(d, D)$.
4. $S_{i}(v) \backslash\left(\left(\bigcup_{k=0}^{i-1} S_{k, i}(v)\right) \cup\left(\bigcup_{k=i-1}^{j-1} S_{k, j}(w)\right)\right)$ if $j \geqslant i$ and $i \neq D$.

Remark 5. Observe that in the above expressions we have $S_{k, i}(v) \subseteq S_{i}(v)$ for $0 \leqslant k \leqslant i-1$, because of the definition of $S_{k, i}(v)$. Furthermore, by Lemma 2, either $S_{k, i}(v) \cap S_{i-1}(w)=\emptyset$ or $S_{k, i}(v) \subseteq S_{i-1}(w)$, $0 \leqslant k \leqslant i-1$.

Next we show that, whenever the intersection $S_{i}^{\star}(v) \cap S_{j}^{\star}(w)$ is nonempty, its cardinality has a polynomial expression of the form

$$
\left|S_{i}^{\star}(v) \cap S_{j}^{\star}(w)\right|=d^{i}-b_{i-1} d^{i-1}-\ldots-b_{1} d-b_{0}
$$

where the coefficients b_{k} are determined from the coefficients a_{k} of the polynomial expression of $\left|S_{i}^{\star}(v)\right|$. The coefficients b_{k} are computed in the following theorems.

Theorem 1. Let $v \in V, w \in S_{1}(v)$, and let $1 \leqslant i \leqslant D$. Assume that $S_{i}^{\star}(v) \cap S_{i-1}^{\star}(w) \neq \emptyset$ and that $S_{i}^{\star}(v) \cap S_{j_{0}}^{\star}(w) \neq \emptyset$ for some $i \leqslant j_{0} \leqslant D$. Then,

$$
S_{i}^{\star}(v)=\left(S_{i}^{\star}(v) \cap S_{i-1}^{\star}(w)\right) \cup\left(S_{i}^{\star}(v) \cap S_{j_{0}}^{\star}(w)\right),
$$

and so

$$
\left|S_{i}^{\star}(v)\right|=\left|S_{i}^{\star}(v) \cap S_{i-1}^{\star}(w)\right|+\left|S_{i}^{\star}(v) \cap S_{j_{0}}^{\star}(w)\right| .
$$

Moreover, if

$$
\left|S_{i}^{\star}(v)\right|=d^{i}-a_{i-1} d^{i-1}-\ldots-a_{1} d-a_{0}
$$

is the polynomial expression of $\left|S_{i}^{\star}(v)\right|$ given in Proposition 1 , then $\left|S_{i}^{\star}(v) \cap S_{i-1}^{\star}(w)\right|$ and $\left|S_{i}^{\star}(v) \cap S_{j_{0}}^{\star}(w)\right|$ have polynomial expressions

$$
\begin{gathered}
\left|S_{i}^{\star}(v) \cap S_{i-1}^{\star}(w)\right|=d^{i-1}-b_{i-2} d^{i-2}-\ldots-b_{1} d-b_{0} \\
\left|S_{i}^{\star}(v) \cap S_{j_{0}}^{\star}(w)\right|=d^{i}-\left(a_{i-1}+1\right) d^{i-1}-\left(a_{i-2}-b_{i-2}\right) d^{i-2}-\ldots-\left(a_{1}-b_{1}\right) d-\left(a_{0}-b_{0}\right),
\end{gathered}
$$

where $b_{k} \in\{0,1\}$ and $b_{k}=1$ if and only if $a_{k}=1$ and $v_{D-i+k+1}=w_{D}$.
Remark 6. In Theorem 1. the equality $S_{i}^{\star}(v)=\left(S_{i}^{\star}(v) \cap S_{i-1}^{\star}(w)\right) \cup\left(S_{i}^{\star}(v) \cap S_{j_{0}}^{\star}(w)\right)$ as well as $\left|S_{i}^{\star}(v)\right|=$ $\left|S_{i}^{\star}(v) \cap S_{i-1}^{\star}(w)\right|+\left|S_{i}^{\star}(v) \cap S_{j_{0}}^{\star}(w)\right|$ is valid even if $S_{i}^{\star}(v) \cap S_{i-1}^{\star}(w)$ or $S_{i}^{\star}(v) \cap S_{j_{0}}^{\star}(w)$ were empty, as deduced from Proposition 2 .
Remark 7. We know from Proposition 1 that $a_{k} \in\{0,1\}$. Since $b_{k} \in\{0,1\}$ and $b_{k}=1$ only if $a_{k}=1$, we conclude that, for $0 \leqslant k \leqslant i-2$, the coefficient $a_{k}-b_{k}$ in the polynomial expression of $\left|S_{i}^{\star}(v) \cap S_{j_{0}}^{\star}(w)\right|$ is also either 0 or 1 . Moreover, the coefficient $a_{i-1}+1$ in this polynomial expression is 1 or 2 . More precisely, from Proposition 1, we have $a_{i-1}+1=2$ if and only if $G=B(d, D)$ and $v_{i}=v_{i+1}=\cdots=v_{D}$.

Proof. From Proposition 2 we conclude that $S_{i}^{\star}(v)=\left(S_{i}^{\star}(v) \cap S_{i-1}^{\star}(w)\right) \cup\left(S_{i}^{\star}(v) \cap S_{j_{0}}^{\star}(w)\right)$, and so, since $\left(S_{i}^{\star}(v) \cap S_{i-1}^{\star}(w)\right) \cap\left(S_{i}^{\star}(v) \cap S_{j_{0}}^{\star}(w)\right)=\emptyset$, we get $\left|S_{i}^{\star}(v)\right|=\left|S_{i}^{\star}(v) \cap S_{i-1}^{\star}(w)\right|+\left|S_{i}^{\star}(v) \cap S_{j_{0}}^{\star}(w)\right|$. To complete the proof of the theorem we must demonstrate that if $\left|S_{i}^{\star}(v)\right|=d^{i}-a_{i-1} d^{i-1}-\ldots-a_{1} d-a_{0}$, then $\left|S_{i}^{\star}(v) \cap S_{i-1}^{\star}(w)\right|=d^{i-1}-b_{i-2} d^{i-2}-\ldots-b_{1} d-c_{0}$, where $b_{k}=1$ if and only if $a_{k}=1$ and $v_{D-i+k+1}=w_{D}$. Let us demonstrate this.

First of all observe that $S_{i}(v) \cap S_{i-1}(w) \neq \emptyset$, because $w \in S_{1}(v)$. So we can apply statement (1) of Lemma 5 to write $S_{i}^{\star}(v) \cap S_{i-1}^{\star}(w)$ as

$$
\begin{equation*}
S_{i}^{\star}(v) \cap S_{i-1}^{\star}(w)=S_{i-1}(w) \backslash \bigcup_{k=0}^{i-1} S_{k, i}(v)=S_{i-1}(w) \backslash\left(\bigcup_{k=0}^{i-2} S_{k, i}(v) \cup\left(S_{i-1, i}(v) \cap S_{i-1}(w)\right)\right) \tag{2}
\end{equation*}
$$

We claim that, in the above expression, the intersection $S_{i-1, i}(v) \cap S_{i-1}(w)$ is empty. Indeed, if $G=K(d, D)$, then $S_{i-1, i}(v)=\emptyset$ (see Remark 11) and we are done. So we can assume $G=B(d, D)$. Moreover, since $S_{i}^{\star}(v) \cap S_{i-1}^{\star}(w) \neq \emptyset$, we know by statement (2) of Propositions 3 and 4 that $v_{i}=v_{i+1}=\cdots=v_{D}=w_{D}$ does not hold. Now we can see that the assumption $S_{i-1, i}(v) \cap S_{i-1}(w) \neq \emptyset$ leads to contradiction. On one hand, if $S_{i-1, i}(v) \cap S_{i-1}(w) \neq \emptyset$, then $\emptyset \neq S_{i-1, i}(v)=S_{i-1}(v)$, and so $v_{i}=v_{i+1}=\cdots=v_{D}$, by Remark 3. On the other hand, by statement (1) of Lemma 2 if $S_{i-1}(v) \cap S_{i-1}(w) \neq \emptyset$, then $v_{[i, D-1]}=w_{[i, D]}$ and so $v_{i}=v_{i+1}=\cdots=v_{D}=w_{D}$, a contradiction that proves our claim.

Therefore, since $S_{i-1}(v) \cap S_{i-1}(w)=\emptyset$, we get from (2) that

$$
S_{i}^{\star}(v) \cap S_{i-1}^{\star}(w)=S_{i-1}(w) \backslash\left(\bigcup_{k=0}^{i-2}\left(S_{k, i}(v) \cap S_{i-1}(w)\right)\right)
$$

where, by statement (1) of Lemma 2, for $0 \leqslant k \leqslant i-2$, we have either $S_{k, i}(v) \cap S_{i-1}(w)=\emptyset$ or $S_{k, i}(v) \subseteq$ $S_{i-1}(w)$. Thus, recalling that if $k_{1} \neq k_{2}$, then $S_{k_{1}, i}(v) \cap S_{k_{2}, i}(v)=\emptyset$ (see Remark 4), we have

$$
\left|S_{i}^{\star}(v) \cap S_{i-1}^{\star}(w)\right|=\left|S_{i-1}(v)\right|-\sum_{k=0}^{i-2}\left|S_{k, i}(v) \cap S_{i-1}(w)\right|=d^{i-1}-b_{i-2} d^{i-2}-\ldots-b_{1} d-b_{0}
$$

where the coefficients b_{k} are 0 or 1 . More precisely, for $0 \leqslant k \leqslant i-2$, we have $b_{k}=1$ if and only if $S_{k, i}(v) \cap S_{i-1}(w) \neq \emptyset$. That is, $b_{k}=1$ if and only if $S_{k, i}(v) \neq \emptyset$ and $S_{k, i}(v) \cap S_{i-1}(w) \neq \emptyset$. Now, by applying Proposition 1 and statement (1) of Lemma 2 we have $b_{k}=1$ if and only if $a_{k}=1$ and $S_{k}(v) \subseteq S_{i-1}(w)$; if and only if $a_{k}=1$ and $v_{[k+1, D-(i-k)+1]}=w_{[i, D]}$. To finish the proof let us demonstrate that we have $a_{k}=1$ and $v_{[k+1, D-(i-k)+1]}=w_{[i, D]}$ if and only if $a_{k}=1$ and $v_{D-i+k+1}=w_{D}$. Clearly, we only must show that if $a_{k}=1$ and $v_{D-i+k+1}=w_{D}$, then $v_{[k+1, D-(i-k)+1]}=w_{[i, D]}$. If $i=D$, there is nothing to prove. So let us prove the implication in the case $i<D$. Hence assume $i<D, a_{k}=1$, and $v_{D-i+k+1}=w_{D}$. By Proposition 1 and the definition of $S_{k, i}(v)$, if $a_{k}=1$, then $S_{k, i}(v)=S_{k}(v) \subseteq S_{i}(v)$. Hence, again by statement (1) of Lemma 2 and since $w \in S_{1}(v)$, we have $v_{[k+1, D-(i-k)]}=v_{[i+1, D]}=w_{[i, D-1]}$. Therefore the equality $v_{[k+1, D-(i-k)+1]}=w_{[i, D]}$ holds, because we are assuming $v_{D-i+k+1}=w_{D}$. This finishes the proof of the theorem.

Theorem 2. Let $v \in V, w \in S_{1}(v)$, and let $1 \leqslant i \leqslant D$. Assume that $S_{i}^{\star}(v) \cap S_{i-1}^{\star}(w)=\emptyset$. Then $S_{i}^{\star}(v)=S_{i}^{\star}(v) \cap S_{i}^{\star}(w)$, and so

$$
\left|S_{i}^{\star}(v) \cap S_{i}^{\star}(w)\right|=\left|S_{i}^{\star}(v)\right|=d^{i}-a_{i-1} d^{i-1}-\ldots-a_{1} d-a_{0} .
$$

Proof. Let $v \in V$ and $w \in S_{1}(v)$. Let $1 \leqslant i \leqslant D$ and assume that $S_{i}^{\star}(v) \cap S_{i-1}^{\star}(w)=\emptyset$.
If $S_{i}^{\star}(v) \cap S_{i-1}^{\star}(w)=\emptyset$, then, by statement (2) of Propositions 3 and 4 , we have $S_{i}^{\star}(v) \cap S_{i}^{\star}(w) \neq \emptyset$. Hence the unique integer j_{0} given in Proposition 2 is $j_{0}=i$. Therefore, by statement (1) of this Proposition 2, we have $S_{i}^{\star}(v)=S_{i}^{\star}(v) \cap S_{i}^{\star}(w)$, and so, if $\left|S_{i}^{\star}(v)\right|=d^{i}-a_{i-1} d^{i-1}-\ldots-a_{1} d-a_{0}$ is the polynomial expression of $\left|S_{i}^{\star}(v)\right|$, then $\left|S_{i}^{\star}(v) \cap S_{i}^{\star}(w)\right|=\left|S_{i}^{\star}(v)\right|=d^{i}-a_{i-1} d^{i-1}-\ldots-a_{1} d-a_{0}$.

Theorem 3. Let $v \in V, w \in S_{1}(v)$, and let $1 \leqslant i \leqslant D$. Assume that $S_{i}^{\star}(v) \cap S_{j}^{\star}(w)=\emptyset$ for all $i \leqslant j \leqslant D$. Then $S_{i}^{\star}(v)=S_{i}^{\star}(v) \cap S_{i-1}^{\star}(w)$ and

$$
\left|S_{i}^{\star}(v) \cap S_{i-1}^{\star}(w)\right|=\left|S_{i}^{\star}(v)\right|=d^{i}-a_{i-1} d^{i-1}-\ldots-a_{1} d-a_{0},
$$

where, in this case, we have $d=2$ and $a_{i-1}=1$. Therefore $\left|S_{i}^{\star}(v) \cap S_{i-1}^{\star}(w)\right|$ can be equivalently expressed as

$$
\left|S_{i}^{\star}(v) \cap S_{i-1}^{\star}(w)\right|=d^{i-1}-a_{i-2} d^{i-2} \ldots-a_{1} d-a_{0} .
$$

Proof. Let $v \in V$ and $w \in S_{1}(v)$. Let $1 \leqslant i \leqslant D$ and assume that $S_{i}^{\star}(v) \cap S_{j}^{\star}(w)=\emptyset$ for all $i \leqslant j \leqslant D$.
First of all notice that we must have $d=2$, because if $d \geqslant 3$, then, by statement (3) of Proposition 33 there exists a unique integer $j, i \leqslant j \leqslant D$, such that the intersection $S_{i}^{\star}(v) \cap S_{j}^{\star}(w)$ is non-empty, contradicting the assumption that $S_{i}^{\star}(v) \cap S_{j}^{\star}(w)=\emptyset$ for all $i \leqslant j \leqslant D$.

If $S_{i}^{\star}(v) \cap S_{j}^{\star}(w)=\emptyset$ for all $i \leqslant j \leqslant D$, then, by statement (2) of Proposition 2, we have $S_{i}^{\star}(v)=$ $S_{i}^{\star}(v) \cap S_{i-1}^{\star}(w)$ and so, if $\left|S_{i}^{\star}(v)\right|=d^{i}-a_{i-1} d^{i-1}-\ldots-a_{1} d-a_{0}$ is the polynomial expression of $\left|S_{i}^{\star}(v)\right|$, then

$$
\begin{equation*}
\left|S_{i}^{\star}(v) \cap S_{i-1}^{\star}(w)\right|=\left|S_{i}^{\star}(v)\right|=d^{i}-a_{i-1} d^{i-1}-\ldots-a_{1} d-a_{0} . \tag{3}
\end{equation*}
$$

It remains to prove that, in this case, we have $a_{i-1}=1$. On one hand, by Proposition 1 we know that $a_{i-1}=1$ if and only if $G=B(d, D)$ and $v_{i}=v_{i+1}=\cdots=v_{D}$. On the other hand, by statement (3) of Proposition 4 if $S_{i}^{\star}(v) \cap S_{j}^{\star}(w)=\emptyset$ for all $i \leqslant j \leqslant D$, then $G=B(d, D)$ and $v_{i}=v_{i+1}=\cdots=v_{D} \neq w_{D}$. Therefore $a_{i-1}=1$.

Finally notice that, since $d=2$ and $a_{i-1}=1$, we have $d^{i}-d^{i-1}=d^{i-1}$. Then the polynomial expression $d^{i}-d^{i-1}-a_{i-2} d^{i-2} \ldots-a_{1} d-a_{0}$ in (3) can be equivalently expressed as $d^{i-1}-a_{i-2} d^{i-2} \ldots-a_{1} d-a_{0}$.

2.3 Application to deflection routing

The authors proposed in [11 an analytical model for evaluating the performance of deflection routing schemes under different deflection criteria. In that model, a Markov chain is defined with states $0,1, \ldots, D$, corresponding to the possible distances that a packet may be to its destination (D stands for the diameter of the network), and such that the transition probabilities depend on the deflection criteria and the network topology.

In this paper, we determine for the case of $B(d, D)$ and $K(d, D)$ the following two probabilities that appear in the formulation [11:

- Input probability $\mathbb{P}_{\mathrm{in}}(i)$: Given a vertex v selected uniformly at random, let $\mathbb{P}_{\mathrm{in}}(i)$ be the probability that another distinct vertex v^{\prime}, also selected uniformly at random, be at distance i from v.
- Transition probability $\mathbb{P}_{\mathrm{t}}(i, j)$: Suppose that a packet with destination vertex z is deflected when visiting an intermediate vertex at a distance i to z. We denote by $\mathbb{P}_{\mathbf{t}}(i, j)$ the probability that the new distance to z (after the deflection has occurred) be j.

This subsection applies our results on the distance-layer structure of $B(d, D)$ and $K(d, D)$ to obtain explicit expressions, in terms of the degree d, for these probabilities.

To calculate $\mathbb{P}_{\mathrm{in}}(i)$ and $\mathbb{P}_{\mathrm{t}}(i, j)$ we need to introduce a suitable partition of the vertex set of the digraph, classifying the vertices according to their sequence representation. In this way, we consider in V an equivalence relation \sim defined by $v=v_{1} v_{2} \ldots v_{D} \sim v^{\prime}=v_{1}^{\prime} v_{2}^{\prime} \ldots v_{D}^{\prime}$ if and only if there exists a permutation σ of the symbol alphabet A such that $\sigma\left(v_{k}\right)=v_{k}^{\prime}, 1 \leqslant k \leqslant D$. Notice that two equivalent vertices have a sequence representation with the same number s of distinct symbols, where $1 \leqslant s \leqslant \min (d, D)$ if $G=B(d, D)$ and $2 \leqslant s \leqslant \min (d+1, D)$ if $G=K(d, D)$. Let n_{s} be the number of equivalence classes in which the number of distinct symbols in the sequence representation of the vertices is s (clearly, $n_{1}=1$ if $G=B(d, D)$, and $n_{1}=0$ and $n_{2}=1$ if $G=K(d, D)$). Thus the partition of V induced by the relation \sim can be written as

$$
\begin{equation*}
V=\bigcup_{s}\left(V_{s, 1} \cup \cdots \cup V_{s, n_{s}}\right) \tag{4}
\end{equation*}
$$

Moreover, since the sequence representation of a vertex in $V_{s, j}$ contains s different symbols, then, independently of $j, 1 \leqslant j \leqslant n_{s}$, we have that

$$
\left|V_{s, j}\right|= \begin{cases}d(d-1) \cdots(d-s+1) & \text { if } G=B(d, D) \\ (d+1) d(d-1) \cdots(d-s+2) & \text { if } G=K(d, D)\end{cases}
$$

Furthermore, since $|V|=\sum_{s} \sum_{j}\left|V_{s, j}\right|$, we get

$$
\begin{cases}\sum_{s=1}^{\min (d, D)} n_{s} d(d-1) \cdots(d-s+1)=d^{D}, & \text { if } G=B(d, D) \\ \sum_{s=2}^{\min (d+1, D)} n_{s}(d+1) d(d-1) \cdots(d-s+2)=d^{D}+d^{D-1}, & \text { if } G=K(d, D)\end{cases}
$$

Evaluating the above identities for $d=1,2,3, \ldots$, the values of n_{s} can be recursively computed. For instance, if $G=B(d, D)$, then the first non-zero values of n_{s} are $n_{1}=1, n_{2}=2^{D-1}-1$ for all $D \geqslant 1$ and all $d \geqslant 2, n_{3}=\left(3^{D-1}-2^{D}+1\right) / 2$ for all $D \geqslant 1$ and all $d \geqslant 3, \ldots$; and if $G=K(d, D)$, then $n_{2}=1$, $n_{3}=2^{D-2}-1$ for all $D \geqslant 2$ and all $d \geqslant 2, n_{4}=\left(3^{D-2}-2^{D-1}+1\right) / 2$ for all $D \geqslant 2$ and all $d \geqslant 3, \ldots$.

The total number of classes in the partition (4) is $l=\sum_{s} n_{s}$. Therefore, if $D \leqslant d$, then $l=n_{1}+\cdots+n_{D}$ is independent of the degree d. However, if $D>d$ this is not true. For example, if $G=B(2, D)$, then $l=n_{1}+n_{2}=2^{D-1}$, whereas if $G=(3, D)$, then $l=n_{1}+n_{2}+n_{3}=\left(3^{D-1}+1\right) / 2$.

From now on, for simplicity, we will also denote the partition (4) as

$$
\begin{equation*}
V=\mathcal{V}_{1} \cup \cdots \cup \mathcal{V}_{l} \tag{5}
\end{equation*}
$$

where each term \mathcal{V}_{i} in (5) corresponds to one of the sets $V_{s, j}$ in (4), and we will use both (4) and (5) as illustrated in the following example.
Example 3. Let $G=K(d, 4), d \geqslant 3$, and let α, β, γ and δ stand for different elements of the base alphabet A. The numbers n_{s} of equivalence classes for which the the sequence representation of its vertices contains s distinct symbols is $n_{2}=1, n_{3}=2^{D-2}-1=3$, and $n_{4}=\left(3^{D-2}-2^{D-1}+1\right) / 2=1$. So we have $l=5$ different vertex classes, namely $\mathcal{V}_{1}=V_{2,1}=\{v \in V: v=\alpha \beta \alpha \beta\}, \mathcal{V}_{2}=V_{3,1}=\{v \in V: v=\alpha \beta \alpha \gamma\}, \mathcal{V}_{3}=$ $V_{3,2}=\{v \in V: v=\alpha \beta \gamma \alpha\}, \mathcal{V}_{4}=V_{3,3}=\{v \in V: v=\alpha \beta \gamma \beta\}$, and $\mathcal{V}_{5}=V_{4,1}=\{v \in V: v=\alpha \beta \gamma \delta\}$, with respective cardinalities $\left|\mathcal{V}_{1}\right|=(d+1) d,\left|\mathcal{V}_{2}\right|=\left|\mathcal{V}_{3}\right|=\left|\mathcal{V}_{4}\right|=(d+1) d(d-1)$, and $\left|\mathcal{V}_{5}\right|=(d+1) d(d-1)(d-2)$.

Now we introduce some additional technical lemmas that we need in this section and that will be proven in the Appendix.
Lemma 6. Let $v \in V$ and, for $0 \leqslant i \leqslant j<D$, let $\Gamma_{i, j}^{\star}(v)=\left\{w \in S_{1}(v): S_{i}^{\star}(v) \cap S_{j}^{\star}(w) \neq \emptyset\right\}$. Then $\Gamma_{i, j}^{\star}(v) \neq \emptyset$ if and only if there exists a vertex w such that $\Gamma_{i, j}^{\star}(v)=\{w\}$; if and only if there exists a vertex w such that $\Gamma_{i, j}^{\star}(v)=\Gamma_{i, j}^{+}(v)=\{w\}$. Moreover, $w \in \Gamma_{i, j}^{\star}(v)$ if and only if $w \in \Gamma_{i, j}^{+}(v)$ and $S_{i}(v) \nsubseteq S_{t, j}(w)$ for $i \leqslant t<j$.

The following lemma discusses the set of vertices $w \in S_{1}(v)$ for which the intersection set $S_{i}(v) \cap S_{D}(w)$ is nonempty. (The case $S_{i}(v) \cap S_{j}(w) \neq \emptyset$, for $j<D$, was considered in Lemma4)
Lemma 7. Let $v \in V$ and, for $0 \leqslant i<D$, let $\Gamma_{i, D}^{+}(v)=\left\{w \in S_{1}(v): S_{i}(v) \cap S_{D}(w) \neq \emptyset\right\}$. The following statements hold:

1. If $G=B(d, D)$, or $G=K(d, D)$ and $v_{i+1}=v_{D}$, then $\Gamma_{i, D}^{+}(v)=S_{1}(v)$.
2. If $G=K(d, D)$ and $v_{i+1} \neq v_{D}$, then $w \in \Gamma_{i, D}^{+}(v)$ if and only if $w \in S_{1}(v)$ and $v_{i+1} \neq w_{D}$. Moreover, $\left|\Gamma_{i, D}^{+}(v)\right|=d-1$.

The last technical lemma deals with the partition $\left\{\mathcal{V}_{1}, \ldots, \mathcal{V}_{l}\right\}$ of the vertex set V. Notice that if σ is a permutation of the symbol alphabet and $\sigma(v)$ is the vertex whose sequence representation is $\sigma\left(v_{1}\right) \sigma\left(v_{2}\right) \ldots \sigma\left(v_{D}\right)$, then v and $\sigma(v)$ belong to a same vertex class \mathcal{V}_{r} (that is to say, the sequence representations of v and $\sigma(v)$ have an equivalent structure). The proof of the lemma is an immediate consequence of the definitions and of the fact that σ is a bijection.

Lemma 8. Let σ be a permutation of the symbol alphabet and, given $v \in V$, let $\sigma(v)=\sigma\left(v_{1}\right) \sigma\left(v_{2}\right) \ldots \sigma\left(v_{D}\right)$. Then the following statements hold:

1. $\left|S_{i}^{\star}(v)\right|=\left|S_{i}^{\star}(\sigma(v))\right|$.
2. If $w \in S_{1}(v)$, then $\left|S_{i}^{\star}(v) \cap S_{j}^{\star}(w)\right|=\left|S_{i}^{\star}(\sigma(v)) \cap S_{j}^{\star}(\sigma(w))\right|$.

At this point, using the partition and the layer structure of the digraph, we present our results on input and transition probabilities.

Expressing the input probability as $\sum_{r} \mathbb{P}_{\text {in }}\left(i \mid v \in \mathcal{V}_{r}\right) \mathbb{P}\left(v \in \mathcal{V}_{r}\right)$ we obtain the following result that provides a description of $\mathbb{P}_{\text {in }}(i)$ in terms of the degree d of the digraph.
Theorem 4. For any choice of the vertices $v^{(1)}, \ldots, v^{(l)}$, where $v^{(r)} \in \mathcal{V}_{r}$, the input probability $\mathbb{P}_{\text {in }}(i)$ is given by

$$
\mathbb{P}_{\text {in }}(i)=\sum_{r=1}^{l} \frac{\left|S_{i}^{\star}\left(v^{(r)}\right)\right|}{(|V|-1)} \cdot \frac{\left|\mathcal{V}_{r}\right|}{|V|}
$$

and has the following expression:

$$
\mathbb{P}_{\text {in }}(i)=\sum_{r=1}^{l} \frac{\left|\mathcal{V}_{r}\right|}{|V|(|V|-1)}\left(d^{i}-a_{i-1}^{(r, i)} d^{i-1}-\cdots-a_{1}^{(r, i)} d-a_{0}^{(r, i)}\right)
$$

where $a_{k}^{(r, i)} \in\{0,1\}$. More precisely, $a_{k}^{(r, i)}=1$ if and only if $S_{k, i}\left(v^{(r)}\right) \neq \emptyset$; if and only if $v_{[k+1, D-(i-k)]}^{(r)}=$ $v_{[i+1, D]}^{(r)}$ and $v_{[k+1, D-(j-k)]}^{(r)} \neq v_{[j+1, D]}^{(r)}$ for all $j, k<j<i$.

Proof. Let v be a vertex selected uniformly at random from the vertex set V. By definition, the input probability $\mathbb{P}_{\text {in }}(i)$ is the probability of selecting uniformly at random from $V \backslash\{v\}$ a vertex v^{\prime} which is at distance i from v. For a fixed v, the probability of selecting such a v^{\prime} is clearly $\mathbb{P}_{\text {in }}(i \mid v)=\left|S_{i}^{\star}(v)\right| /(|V|-1)$. Moreover, by Lemma 8 , this probability is the same for any vertex $v \in \mathcal{V}_{r}$ in a same vertex class $\mathcal{V}_{r}, 1 \leqslant r \leqslant l$. Moreover, since v is chosen uniformly at random from V, we have $\mathbb{P}\left(v \in \mathcal{V}_{r}\right)=\left|\mathcal{V}_{r}\right| /|V|$. Thus, for any choice of $v^{(r)} \in \mathcal{V}_{r}$, the input probability $\mathbb{P}_{\text {in }}(i)$ can be expressed as

$$
\mathbb{P}_{\text {in }}(i)=\sum_{r} \mathbb{P}_{\text {in }}\left(i \mid v^{(r)} \in \mathcal{V}_{r}\right) \mathbb{P}\left(v^{(r)} \in \mathcal{V}_{r}\right)=\sum_{r=1}^{l} \frac{\left|S_{i}^{\star}\left(v^{(r)}\right)\right|}{(|V|-1)} \cdot \frac{\left|\mathcal{V}_{r}\right|}{|V|}
$$

The proof is completed by using the polynomial description of $\left|S_{i}^{\star}\left(v^{(r)}\right)\right|$ given in Proposition 1 and Remark 3 .

Finally, notice that $\mathbb{P}_{\text {in }}(i)=\Theta\left(1 / d^{D-i}\right)$, because $\left|S_{i}^{\star}(v)\right|=\Theta\left(d^{i}\right)$ (independently of $\left.v\right)$ and $|V|=$ $\Theta\left(d^{D}\right)$.

The transition probability $\mathbb{P}_{\mathbf{t}}(i, j)$ can also be calculated as $\mathbb{P}_{\mathbf{t}}(i, j)=\sum_{r} \mathbb{P}_{\mathbf{t}}\left(i, j \mid v \in \mathcal{V}_{r}\right) \mathbb{P}\left(v \in \mathcal{V}_{r}\right)$. In this sum, $\mathbb{P}_{\mathrm{t}}\left(i, j \mid v \in \mathcal{V}_{r}\right)$ is the conditional probability that the new distance to destination be j, given that a deflection occurs when visiting a vertex v at distance i to the destination and belonging to the class \mathcal{V}_{r}; whereas $\mathbb{P}\left(v \in \mathcal{V}_{r}\right)$ is the probability that the vertex at which deflection occurs be in \mathcal{V}_{r}. In this way, we obtain the following result.

Theorem 5. The transition probabilities $\mathbb{P}_{\mathbf{t}}(i, j), 1 \leqslant i \leqslant j<D$, are given by

$$
\mathbb{P}_{\mathbf{t}}(i, j)=\frac{1}{(d-1)|V|} \sum_{r}\left|\mathcal{V}_{r}\right| p^{(r, i, j)}\left(1-q^{(r, i)}\right)
$$

where $p^{(r, i, j)}$ and $q^{(r, i)}$ are of the form

$$
p^{(r, i, j)}=k^{(r, i, j)} \cdot \frac{d^{i}-\alpha_{i-1}^{(r, i)} d^{i-1}-\cdots-\alpha_{1}^{(r, i)} d-\alpha_{0}^{(r, i)}}{d^{i}-a_{i-1}^{(r, i)} d^{i-1}-\cdots-a_{1}^{(r, i)} d-a_{0}^{(r, i)}}
$$

and

$$
q^{(r, i)}=\kappa^{(r, i)} \cdot \frac{d^{i-1}-b_{i-2}^{(r, i)} d^{i-2}-\ldots-b_{1}^{(r, i)} d-b_{0}^{(r, i)}}{d^{i}-a_{i-1}^{(r, i)} d^{i-1}-\cdots-a_{1}^{(r, i)} d-a_{0}^{(r, i)}}
$$

and the coefficients of these fractions are 0,1 or 2 . Namely, $k^{(r, i, j)}, \kappa^{(r, i)} \in\{0,1\} ; \alpha_{i-1}^{(r, i)} \in\{0,1,2\}$; $a_{i-1}^{(r, i)} \in\{0,1\} ;$ and $\alpha_{l}^{(r, i)}, a_{l}^{(r, i)}, b_{l}^{(r, i)} \in\{0,1\}$ for $0 \leqslant l \leqslant i-2$.

Remark 8. In the proof of this theorem it will be shown how to determine the coefficients $k^{(r, i, j)}, \kappa^{(r, i)}$, $a_{k}^{(r, i)}, b_{k}^{(r, i)}$, and $\alpha_{k}^{(r, i)}$. More precisely, we will show that if $v^{(r)}$ is any representative vertex in the class \mathcal{V}_{r}, and if $w^{(r)}$ is the vertex adjacent from $v^{(r)}$ given by $w^{(r)}=v_{2}^{(r)} \cdots v_{D}^{(r)} v_{i+(D-j)}^{(r)}$, then
(a) $k^{(r, i, j)}=1$ if and only if $S_{i}^{\star}\left(v^{(r)}\right) \cap S_{j}^{\star}\left(w^{(r)}\right) \neq \emptyset$, as determined by statement (1) of Propositions 3 and 4
(b) $\kappa^{(r, i)}=1$ if and only if $S_{i}^{\star}\left(v^{(r)}\right) \cap S_{i-1}^{\star}\left(w^{(r)}\right) \neq \emptyset$, as determined by statement (2) of Propositions 3 and 4
(c) the coefficients $a_{k}^{(r, i)} \in\{0,1\}$ are determined from $v^{(r)}$ as in Proposition 1
(d) the coefficients $\alpha_{k}^{(r, i)}$ and $b_{k}^{(r, i)}$ are determined from $v^{(r)}$ and $w^{(r)}$ as in Theorems 1 and 2 .

We stress that the values of all these coefficients are independent of the choice of $v^{(r)}$ in the class \mathcal{V}_{r}.
Proof. Let v be the vertex at which deflection occurs and suppose that the destination vertex z is at distance i from v. Let $w \in S_{1}(v)$ be the vertex through which deflection takes place. In other words, we are supposing that a packet circulating within the network (which has to arrive to z) is currently in v and cannot proceed through the shortest path from v to z; and hence it is deflected to vertex w.

Hence the probability that the new distance from w to the destination vertex z is j, given that a deflection occurs in v and that the deflection takes place through w, is just the probability that, conditional
on the event $z \in S_{i}^{\star}(v)$, the destination vertex z belongs to $S_{i}^{\star}(v) \cap S_{j}^{\star}(w)$. In this way, denoting this conditional probability as $\mathbb{P}_{\mathrm{t}}(i, j \mid v, w)$, we have

$$
\mathbb{P}_{\mathrm{t}}(i, j \mid v, w)=\frac{\left|S_{i}^{\star}(v) \cap S_{j}^{\star}(w)\right|}{\left|S_{i}^{\star}(v)\right|} .
$$

It follows that $\mathbb{P}_{\mathrm{t}}(i, j \mid v, w) \neq 0$ if and only if $S_{i}^{\star}(v) \cap S_{j}^{\star}(w) \neq \emptyset$.
Let $w_{v, z}^{\prime}$ be the vertex adjacent from v in the unique shortest path from v to z. The vertex w through which deflection takes place is selected uniformly at random from $S_{1}(v) \backslash\left\{w_{v, z}^{\prime}\right\}$. Hence the probability $\mathbb{P}(w \mid v)$ that, given that deflection occurs, it takes place through $w \in S_{1}(v)$ can be calculated as

$$
\mathbb{P}(w \mid v)=\sum_{z \in S_{i}^{\star}(v)} \mathbb{P}(w \mid v, z) \mathbb{P}(z \mid v)
$$

where $\mathbb{P}(w \mid v, z)=0$ if $w=w_{v, z}^{\prime}$ and $\mathbb{P}(w \mid v, z)=1 /(d-1)$ if $w \neq w_{v, z}^{\prime}$. Moreover, $w=w_{v, z}^{\prime}$ if and only if $z \in S_{i}^{\star}(v) \cap S_{i-1}^{\star}(w)$. Therefore, $\mathbb{P}(w \mid v, z)=0$ if and only if $z \in S_{i}^{\star}(v) \cap S_{i-1}^{\star}(w)$. Furthermore, the probability that the destination vertex is a given vertex z belonging to $S_{i}^{\star}(v)$ is simply

$$
\mathbb{P}(z \mid v)=\frac{1}{\left|S_{i}^{\star}(v)\right|}
$$

Then, since $\left|S_{i}^{\star}(v)\right|-\left|S_{i}^{\star}(v) \cap S_{i-1}^{\star}(w)\right|$ is the number of vertices $z \in S_{i}^{\star}(v)$ for which $w \neq w_{v, z}^{\prime}$, we have

$$
\begin{aligned}
\mathbb{P}(w \mid v) & =\frac{1}{\left|S_{i}^{\star}(v)\right|} \sum_{z \in S_{i}^{\star}(v)} \mathbb{P}(w \mid v, z) \\
& =\frac{1}{\left|S_{i}^{\star}(v)\right|} \frac{\left|S_{i}^{\star}(v)\right|-\left|S_{i}^{\star}(v) \cap S_{i-1}^{\star}(w)\right|}{d-1}=\frac{1}{d-1}\left(1-\frac{\left|S_{i}^{\star}(v) \cap S_{i-1}^{\star}(w)\right|}{\left|S_{i}^{\star}(v)\right|}\right) .
\end{aligned}
$$

Let $\Gamma_{i, j}^{\star}(v)=\left\{w \in S_{1}(v): S_{i}^{\star}(v) \cap S_{j}^{\star}(w) \neq \emptyset\right\}$. Clearly, we have $\mathbb{P}_{\mathrm{t}}(i, j \mid v, w) \neq 0$ if and only if $w \in \Gamma_{i, j}^{\star}(v)$. Moreover, it is proved in Lemmas 4 and 6 that if $v=v_{1} v_{2} \cdots v_{D}$ and $\Gamma_{i, j}^{\star}(v) \neq \emptyset$, then $\Gamma_{i, j}^{\star}(v)$ contains a single vertex w_{v} which sequence representation is uniquely determined from v, i and j, namely

$$
\begin{equation*}
w_{v}=v_{2} \cdots v_{D} v_{i+(D-j)} . \tag{6}
\end{equation*}
$$

Taking all these considerations into account we can express the transition probability that the new distance to the destination is j, conditional on the event that deflection occurs at v, as

$$
\begin{align*}
\mathbb{P}_{\mathbf{t}}(i, j \mid v) & =\sum_{w \in \Gamma_{i, j}^{\star}(v)} \mathbb{P}_{\mathbf{t}}(i, j \mid v, w) \cdot \mathbb{P}(w \mid v)=\mathbb{P}_{\mathbf{t}}\left(i, j \mid v, w_{v}\right) \mathbb{P}\left(w_{v} \mid v\right) \\
& =\frac{1}{d-1} \cdot \frac{\left|S_{i}^{\star}(v) \cap S_{j}^{\star}\left(w_{v}\right)\right|}{\left|S_{i}^{\star}(v)\right|}\left(1-\frac{\left|S_{i}^{\star}(v) \cap S_{i-1}^{\star}\left(w_{v}\right)\right|}{\left|S_{i}^{\star}(v)\right|}\right), \tag{7}
\end{align*}
$$

if $\Gamma_{i, j}^{\star}(v) \neq \emptyset$; and $\mathbb{P}_{\mathrm{t}}(i, j \mid v)=0$ otherwise.
Furthermore, if σ is a permutation of the symbol alphabet A, then, using the notation introduced in Lemma 8, we can check that $\Gamma_{i, j}^{\star}(\sigma(v)) \neq \emptyset$ if and only if $\Gamma_{i, j}^{\star}(v) \neq \emptyset$, and that if $\Gamma_{i, j}^{\star}(\sigma(v)) \neq \emptyset$, then $\Gamma_{i, j}^{\star}(\sigma(v))=\left\{\sigma\left(w_{v}\right)\right\}$. Moreover, $\sigma\left(w_{v, z}^{\prime}\right)=w_{\sigma(v), \sigma(z)}^{\prime}$ is the vertex adjacent from $\sigma(v)$ in the shortest path to $\sigma(z)$. This facts, together with the statements of Lemma 8, imply that the probability calculated in (7) is the same for any vertex $v^{(r)}$ in a given vertex class \mathcal{V}_{r}. (Recall that \mathcal{V}_{r} is the class of vertices to which $v^{(r)}$ belongs according to the structure of its sequence representation.)

Now, by adding for all the classes \mathcal{V}_{r} and taking into account that $\mathbb{P}\left(v^{(r)} \in \mathcal{V}_{r}\right)=\left|\mathcal{V}_{r}\right| /|V|$ we obtain the transition probability $\mathbb{P}_{\mathfrak{t}}(i, j)$ that, conditional on the event that the deflection occurs in a vertex which is at distance i to the destination vertex, the new distance to this destination is j. In this way, by setting $w^{(r)}=w_{v^{(r)}}$ we have

$$
\begin{aligned}
& \mathbb{P}_{\mathrm{t}}(i, j)=\sum_{r} \mathbb{P}_{\mathrm{t}}\left(i, j \mid v^{(r)} \in \mathcal{V}_{r}\right) \mathbb{P}\left(v^{(r)} \in \mathcal{V}_{r}\right) \\
& \quad=\frac{1}{(d-1)|V|} \sum_{r}\left|\mathcal{V}_{r}\right| \frac{\left|S_{i}^{\star}\left(v^{(r)}\right) \cap S_{j}^{\star}\left(w^{(r)}\right)\right|}{\left|S_{i}^{\star}\left(v^{(r)}\right)\right|}\left(1-\frac{\left|S_{i}^{\star}\left(v^{(r)}\right) \cap S_{i-1}^{\star}\left(w^{(r)}\right)\right|}{\left|S_{i}^{\star}\left(v^{(r)}\right)\right|}\right) .
\end{aligned}
$$

Furthermore, if the intersection $S_{i}^{\star}\left(v^{(r)}\right) \cap S_{j}^{\star}\left(w^{(r)}\right)$ is nonempty, we conclude from Theorems 1 and 2 that $\left|S_{i}^{\star}\left(v^{(r)}\right) \cap S_{j}^{\star}\left(w^{(r)}\right)\right|$ has a polynomial expression given by $d^{i}-\alpha_{i-1}^{(r, i)} d^{i-1}-\cdots-\alpha_{1}^{(r, i)} d-\alpha_{0}^{(r, i)}$. Moreover, by Theorem 1 , if $S_{i}^{\star}\left(v^{(r)}\right) \cap S_{i-1}^{\star}\left(w^{(r)}\right) \neq \emptyset$, then $\left|S_{i}^{\star}\left(v^{(r)}\right) \cap S_{i-1}^{\star}\left(w^{(r)}\right)\right|$ has also a polynomial expression of the form $d^{i-1}-b_{i-2}^{(r, i)} d^{i-2}-\ldots-b_{1}^{(r, i)} d-b_{0}^{(r, i)}$. Therefore, by taking also into account Proposition 1. we have

$$
\mathbb{P}_{\mathrm{t}}(i, j)=\frac{1}{(d-1)|V|} \sum_{r}\left|\mathcal{V}_{r}\right| p^{(r, i, j)}\left(1-q^{(r, i)}\right)
$$

where $p^{(r, i, j)}$ and $q^{(r, i)}$ are of the form

$$
p^{(r, i, j)}=k^{(r, i, j)} \cdot \frac{d^{i}-\alpha_{i-1}^{(r, i)} d^{i-1}-\cdots-\alpha_{1}^{(r, i)} d-\alpha_{0}^{(r, i)}}{d^{i}-a_{i-1}^{(r, i)} d^{i-1}-\cdots-a_{1}^{(r, i)} d-a_{0}^{(r, i)}}
$$

and

$$
q^{(r, i)}=\kappa^{(r, i)} \cdot \frac{d^{i-1}-b_{i-2}^{(r, i)} d^{i-2}-\ldots-b_{1}^{(r, i)} d-b_{0}^{(r, i)}}{d^{i}-a_{i-1}^{(r, i)} d^{i-1}-\cdots-a_{1}^{(r, i)} d-a_{0}^{(r, i)}}
$$

and $k^{(r, i, j)}, \kappa^{(r, i)} \in\{0,1\}$. Furthermore, we have $k^{(r, i, j)}=1$ if and only if $S_{i}^{\star}\left(v^{(r)}\right) \cap S_{j}^{\star}\left(w^{(r)}\right) \neq \emptyset$, as determined by statement (1) of Propositions 3 and 4 , and we have $\kappa^{(r, i)}=1$ if and only if $S_{i}^{\star}\left(v^{(r)}\right) \cap$ $S_{i-1}^{\star}\left(w^{(r)}\right) \neq \emptyset$, as determined by statement (2) of Propositions 3 and 4 .

Finally, observe that the coefficients $a_{k}^{(r, i)}$ are determined from $v^{(r)}$ by using Proposition 1 and the coefficients $\alpha_{k}^{(r, i)}, b_{k}^{(r, i)} \in\{0,1\}$ are determined from $v^{(r)}$ and $w^{(r)}$ by using Theorems 1 and 2 . So we conclude that:

1. $a_{k}^{(r, i)} \in\{0,1\}$;
2. $\alpha_{i-1}^{(r, i)} \in\{0,1,2\}$, and $\alpha_{k}^{(r, i)}, b_{k}^{(r, i)} \in\{0,1\}$ for $0 \leqslant k \leqslant i-2$.

This completes the proof of the theorem.
The following example illustrates the fractions $p^{(r, i, j)}$ and $q^{(r, i)}$, as well as the expressions of the transition probabilities $\mathbb{P}_{\mathbf{t}}(i, j)$ formulated in Theorem 5

Example 4. Let $G=K(d, 12), d \geqslant 3$, and consider the class of vertices \mathcal{V}_{r} which sequence representation is of the form $\alpha \beta \gamma \alpha \beta \gamma \alpha \beta \gamma \alpha \beta \gamma$, where α, β and γ stand for different symbols of the alphabet A. Suppose that $v \in \mathcal{V}_{r}$ is the vertex at which the deflection occurs and let $w=\beta \gamma \alpha \beta \gamma \alpha \beta \gamma \alpha \beta \gamma w_{12}$ be the vertex adjacent from v through which this deflection takes place. Let us calculate, for instance, the transition probabilities $\mathbb{P}_{\mathfrak{t}}\left(4,6 \mid v \in \mathcal{V}_{r}\right)$ and $\mathbb{P}_{\mathfrak{t}}\left(1,6 \mid v \in \mathcal{V}_{r}\right)$.

Firstly, let us consider $\mathbb{P}_{\mathfrak{t}}\left(4,6 \mid v \in \mathcal{V}_{r}\right)$. Observe that if this probability is not zero, then the destination vertex z must belong to $S_{4}^{\star}(v)$ and also to $S_{6}^{\star}(w)$. Therefore, since $S_{4}^{\star}(v) \subseteq S_{4}(v)$ and $S_{6}^{\star}(v) \subseteq S_{6}(v)$, we conclude that $S_{4}(v) \cap S_{6}(w) \neq \emptyset$ is a necessary condition for $\mathbb{P}_{\mathrm{t}}\left(4,6 \mid v \in \mathcal{V}_{r}\right) \neq 0$. Using the notation of Examples 1 and 2, we have $S_{4}(v)=\{u \in V: u=\beta \gamma \alpha \beta \gamma \alpha \beta \gamma * * * *\}$ and $S_{6}(w)=\{u \in V: u=$ $\left.\beta \gamma \alpha \beta \gamma w_{12} * * * * * *\right\}$. From these sequence representations we can check that $S_{4}(v) \cap S_{6}(w) \neq \emptyset$ if and only if $S_{4}(v) \subseteq S_{6}(w)$; if and only if $w_{12}=\alpha$. We conclude that if $\mathbb{P}_{\mathrm{t}}\left(4,6 \mid v \in \mathcal{V}_{r}\right) \neq 0$, then there is only one precise vertex w adjacent from v such that $d(w, z)=6$, namely $w=\beta \gamma \alpha \beta \gamma \alpha \beta \gamma \beta \beta \alpha$.

Using Propositions 1 and 3 and Theorem 1 we deduce that $\left|S_{4}^{\star}(v)\right|=d^{4}-d,\left|S_{4}^{\star}(v) \cap S_{6}^{\star}(w)\right|=d^{4}-d^{3}$, and $\left|S_{4}^{\star}(v) \cap S_{3}^{\star}(w)\right|=d^{3}-d$. Therefore we get from 77 that the value of the transition probability $\mathbb{P}_{\mathbf{t}}\left(4,6 \mid v \in \mathcal{V}_{r}\right)$ is

$$
\begin{align*}
\mathbb{P}_{\mathrm{t}}\left(4,6 \mid v \in \mathcal{V}_{r}\right) & =\frac{1}{d-1} \cdot \frac{\left|S_{4}^{\star}(v) \cap S_{6}^{\star}(w)\right|}{\left|S_{4}^{\star}(v)\right|}\left(1-\frac{\left|S_{4}^{\star}(v) \cap S_{3}^{\star}(w)\right|}{\left|S_{4}^{\star}(v)\right|}\right) \\
& =\frac{1}{d-1} \cdot \frac{d^{4}-d^{3}}{d^{4}-d}\left(1-\frac{d^{3}-d}{d^{4}-d}\right)=\frac{d^{4}}{d^{5}+d^{4}+d^{3}-d^{2}-d-1} . \tag{8}
\end{align*}
$$

Observe that in (8), the expressions of $\left|S_{4}^{\star}(v) \cap S_{6}^{\star}(w)\right| /\left|S_{4}^{\star}(v)\right|$ and $\left|S_{4}^{\star}(v) \cap S_{3}^{\star}(w)\right| /\left|S_{4}^{\star}(v)\right|$ correspond in Theorem 5 to $p^{(r, 4,6)}=\left(d^{4}-d^{3}\right) /\left(d^{4}-d\right)$ and $q^{(r, 4)}=\left(d^{3}-d\right) /\left(d^{4}-d\right)$, respectively.

Secondly, let us determine $\mathbb{P}_{\mathrm{t}}\left(1,6 \mid v \in \mathcal{V}_{r}\right)$. Reasoning as before we deduce that if $\mathbb{P}_{\mathrm{t}}\left(1,6 \mid v \in \mathcal{V}_{r}\right) \neq 0$, then we must have $S_{1}(v) \cap S_{6}(w) \neq \emptyset$, being w the vertex adjacent from v through which the deflection takes place. We can check that this necessary condition holds if and only if $w_{12}=\alpha$; that is, w must be again the vertex $w=\beta \gamma \alpha \beta \gamma \alpha \beta \gamma \alpha \beta \gamma \alpha$. But now we deduce from Proposition 3 that $S_{1}^{\star}(v) \cap S_{6}^{\star}(w)=\emptyset$. Therefore, although the necessary condition $S_{1}(v) \cap S_{6}(w) \neq \emptyset$ for having $\mathbb{P}_{\mathfrak{t}}(1,6 \mid v) \neq 0$ holds, we have in this case $\mathbb{P}_{\mathrm{t}}(1,6 \mid v)=0$. This fact is captured in Theorem 5 by setting $k^{(r, 1,6)}=0$.

The previous theorem provides a description of the probabilities $\mathbb{P}_{\mathfrak{t}}(i, j)$ in the case $j<D$. Next we discuss the case $j=D$. Clearly we have $\mathbb{P}_{\mathrm{t}}(D, D)=1$, because D is the maximum possible distance between the vertices of the digraph. Moreover, the transition probabilities $\mathbb{P}_{\mathfrak{t}}(i, D), 1 \leqslant i<D$, can be obtained from Theorem 5 because, for each i, we have $\mathbb{P}_{\mathfrak{t}}(i, D)=1-\sum_{j=i}^{D-1} \mathbb{P}_{\mathrm{t}}(i, j)$. However, for the sake of completeness, we present in the following theorem a description of the transition probabilities $\mathbb{P}_{\mathbf{t}}(i, D)$, analogous to those provided in Theorem 5 for $\mathbb{P}_{\mathrm{t}}(i, j)$.

Theorem 6. The transition probabilities $\mathbb{P}_{\mathbf{t}}(i, D), 1 \leqslant i<D$, are given by

$$
\mathbb{P}_{\mathrm{t}}(i, D)=\frac{1}{(d-1)|V|} \sum_{r} \sum_{s=1}^{m_{r}}\left|\mathcal{V}_{r}\right| p^{(r, s, i)}\left(1-q^{(r, s, i)}\right),
$$

where $m_{r} \in\{d-1, d\}$ if $G=K(d, D)$ and $m_{r}=d$ if $G=B(d, D)$, and where $p^{(r, s, i)}$ and $q^{(r, s, i)}$ are of the form

$$
p^{(r, s, i)}=k^{(r, s, i)} \cdot \frac{d^{i}-\alpha_{i-1}^{(r, s, i)} d^{i-1}-\cdots-\alpha_{1}^{(r, s, i)} d-\alpha_{0}^{(r, s, i)}}{d^{i}-a_{i-1}^{(r, s, i)} d^{i-1}-\cdots-a_{1}^{(r, s, i)} d-a_{0}^{(r, s, i)}}
$$

and

$$
q^{(r, s, i)}=\kappa^{(r, s, i)} \cdot \frac{d^{i-1}-b_{i-2}^{(r, s, i)} d^{i-2}-\ldots-b_{1}^{(r, s, i)} d-b_{0}^{(r, s, i)}}{d^{i}-a_{i-1}^{(r, s, i)} d^{i-1}-\cdots-a_{1}^{(r, s, i)} d-a_{0}^{(r, s, i)}},
$$

where all the coefficients are 0 , 1 or 2 . Namely, $k^{(r, s, i)}, \kappa^{(r, s, i)} \in\{0,1\} ; \alpha_{i-1}^{(r, s, i)} \in\{0,1,2\} ; a_{i-1}^{(r, s, i)} \in\{0,1\}$; and $\alpha_{l}^{(r, s, i)}, a_{l}^{(r, s, i)}, b_{l}^{(r, s, i)} \in\{0,1\}$ for $0 \leqslant l \leqslant i-2$.

Proof. We use the same notation and an analysis similar to that in the proof of Theorem 5 . The probability that the new distance from w to the destination vertex is D, given that a deflection occurs in v (which is at distance i to the destination) and that the deflection takes place through $w \in S_{1}(v)$ is

$$
\mathbb{P}_{\mathrm{t}}(i, D \mid v, w)=\frac{\left|S_{i}^{\star}(v) \cap S_{D}^{\star}(w)\right|}{\left|S_{i}^{\star}(v)\right|} .
$$

Let $\Gamma_{i, D}^{+}(v)=\left\{w \in S_{1}(v): S_{i}(v) \cap S_{D}(w) \neq \emptyset\right\}$ be the set defined in Lemma 7 Clearly, if $w \in$ $S_{1}(v) \backslash \Gamma_{i, D}^{+}(v)$, then for such a vertex w we have $\mathbb{P}_{\mathrm{t}}(i, D \mid v, w)=0$. In Lemma 7 it is proved that $\Gamma_{i, D}^{+}(v)$ is always nonempty. Indeed, if $G=B(d, D)$, or $G=K(d, D)$ and $v_{i+1}=v_{D}$, then $\Gamma_{i, D}^{+}(v)=S_{1}(v)$; whereas if $G=K(d, D)$ and $v_{i+1} \neq v_{D}$, then $\Gamma_{i, D}^{+}(v)=\left\{w \in S_{1}(v): w=v_{2} \cdots v_{D} w_{D}, w_{D} \neq v_{i+1}, v_{D}\right\}$, and hence $\left|\Gamma_{i, D}^{+}(v)\right|=d-1$. Therefore, the transition probability that the new distance to the destination is D, given the event that deflection occurs at v, can be expressed as in (7); that is,

$$
\begin{align*}
\mathbb{P}_{\mathrm{t}}(i, D \mid v) & =\sum_{w \in \Gamma_{i, D}^{+}(v)} \mathbb{P}_{\mathrm{t}}(i, D \mid v, w) \cdot \mathbb{P}(w \mid v) \\
& =\frac{1}{d-1} \sum_{s=1}^{m} \frac{\left|S_{i}^{\star}(v) \cap S_{D}^{\star}\left(w_{v, s}\right)\right|}{\left|S_{i}^{\star}(v)\right|}\left(1-\frac{\left|S_{i}^{\star}(v) \cap S_{i-1}^{\star}\left(w_{v, s}\right)\right|}{\left|S_{i}^{\star}(v)\right|}\right), \tag{9}
\end{align*}
$$

where $m=d-1$ if $G=K(d, D)$ and $v_{i+1} \neq v_{D}$ and $m=d$ otherwise; and $w_{v, s}, 1 \leqslant s \leqslant m$, are the vertices belonging to $\Gamma_{i, D}^{+}(v)$.

Furthermore, if σ is a permutation of the symbol alphabet A, then the elements of $\Gamma_{i, j}^{+}(\sigma(v))$ are $w_{\sigma(v), s}=\sigma\left(w_{v, s}\right), 1 \leqslant s \leqslant m$. Hence, by taking into account Lemma 8, we conclude that the probability (9) is the same for any vertex $v^{(r)}$ in a given vertex class \mathcal{V}_{r}. By adding for all the classes \mathcal{V}_{r} and taking into account that $\mathbb{P}\left(v^{(r)} \in \mathcal{V}_{r}\right)=\left|\mathcal{V}_{r}\right| /|V|$ we obtain the transition probability $\mathbb{P}_{\mathrm{t}}(i, D)$ that, conditional on the event that the deflection occurs in a vertex which is at distance i to the destination vertex, the new distance to this destination is D. In this way, by setting $w^{(r, s)}=w_{v^{(r)}, s}, 1 \leqslant s \leqslant m$, we have

$$
\begin{aligned}
\mathbb{P}_{\mathrm{t}}(i, D) & =\sum_{r} \mathbb{P}_{\mathrm{t}}\left(i, D \mid v^{(r)} \in \mathcal{V}_{r}\right) \mathbb{P}\left(v^{(r)} \in \mathcal{V}_{r}\right) \\
& =\frac{1}{(d-1)|V|} \sum_{r} \sum_{s=1}^{m}\left|\mathcal{V}_{r}\right| \frac{\left|S_{i}^{\star}\left(v^{(r)}\right) \cap S_{D}^{\star}\left(w^{(r, s)}\right)\right|}{\left|S_{i}^{\star}\left(v^{(r)}\right)\right|} \cdot\left(1-\frac{\left|S_{i}^{\star}\left(v^{(r)}\right) \cap S_{i-1}^{\star}\left(w^{(r, s)}\right)\right|}{\left|S_{i}^{\star}\left(v^{(r)}\right)\right|}\right),
\end{aligned}
$$

Moreover, by considering the polynomial expressions of $\left|S_{i}^{\star}\left(v^{(r)}\right) \cap S_{D}^{\star}\left(w^{(r, s)}\right)\right|$ and $\left|S_{i}^{\star}\left(v^{(r)}\right) \cap S_{i-1}^{\star}\left(w^{(r, s)}\right)\right|$, we have

$$
\mathbb{P}_{\mathbf{t}}(i, D)=\frac{1}{(d-1)|V|} \sum_{r} \sum_{s=1}^{m_{r}}\left|\mathcal{V}_{r}\right| p^{(r, s, i)}\left(1-q^{(r, s, i)}\right),
$$

where $m_{r} \in\{d-1, d\}$ if $G=K(d, D)$ and $m_{r}=d$ if $G=B(d, D)$, and where $p^{(r, s, i)}$ and $q^{(r, s, i)}$ are expressed as

$$
p^{(r, s, i)}=k^{(r, s, i)} \cdot \frac{d^{i}-\alpha_{i-1}^{(r, s, i)} d^{i-1}-\cdots-\alpha_{1}^{(r, s, i)} d-\alpha_{0}^{(r, s, i)}}{d^{i}-a_{i-1}^{(r, s, i)} d^{i-1}-\cdots-a_{1}^{(r, s, i)} d-a_{0}^{(r, s, i)}}
$$

and

$$
q^{(r, s, i)}=\kappa^{(r, s, i)} \cdot \frac{d^{i-1}-b_{i-2}^{(r, s, i)} d^{i-2}-\ldots-b_{1}^{(r, s, i)} d-b_{0}^{(r, s, i)}}{d^{i}-a_{i-1}^{(r, s, i)} d^{i-1}-\cdots-a_{1}^{(r, s, i)} d-a_{0}^{(r, s, i)}}
$$

and $k^{(r, s, i)}, \kappa^{(r, s, i)} \in\{0,1\}$. More precisely, $k^{(r, s, i)}=1$ if and only if $S_{i}^{\star}\left(v^{(r)}\right) \cap S_{D}^{\star}\left(w^{(r, s)}\right) \neq \emptyset$, as determined by statement (1) of Propositions 3 and 4 and $\kappa^{(r, s, i)}=1$ if and only if $S_{i}^{\star}\left(v^{(r)}\right) \cap S_{i-1}^{\star}\left(w^{(r, s)}\right) \neq$ \emptyset, as determined by statement (2) of Propositions 3 and 4 .

As in Theorem 5, the coefficients $a_{k}^{(r, s, i)}, \alpha_{k}^{(r, s, i)}, b_{k}^{(r, s, i)}$ are determined from $v^{(r)}$ and $w^{(r, s)}$ by using Proposition 1 and Theorems 1 and 2 Furthermore, $a_{k}^{(r, s, i)} \in\{0,1\}, \alpha_{i-1}^{(r, s, i)} \in\{0,1,2\}$, and $\alpha_{k}^{(r, s, i)}, b_{k}^{(r, s, i)} \in$ $\{0,1\}$ for $0 \leqslant k \leqslant i-2$.

Using the Markov model [11] mentioned in Section 1, we can apply the probabilities given in Theorems 4 , 5. and 6 to measure the efficiency of deflection routing in De Bruijn and Kautz networks.

We conclude this subsection with two corollaries that are straightforward consequences of our previous results. The first one deals with the asymptotic behaviour of the input and transition probabilities. The second one is about the computation of the mean distance in the De Bruijn and Kautz digraphs (some related results can be found in [3, 26, 27]).

Corollary 1.

1. $\mathbb{P}_{\text {in }}(i) \sim 1 / d^{D-i}$ as $d \rightarrow \infty$.
2. If $j<D$ and d is large enough, then $\mathbb{P}_{\mathfrak{t}}(i, j) \leqslant 1 / d$.
3. If $j=D$, then $\mathbb{P}_{\mathbf{t}}(i, j) \sim 1$ as $d \rightarrow \infty$.

Corollary 2. If G is the De Bruijn digraph $B(d, D)$ or the Kautz digraph $K(d, D)$, then the mean distance of G is given by $\sum_{i=1}^{D} i \cdot \mathbb{P}_{\text {in }}(i)$.

3 Final remarks

The digraphs $B(d, D)$ and $K(d, D)$ are fundamental examples of digraphs on alphabets [16] as well as iterated line digraphs [8, 15]. Indeed, in the line digraph $L\left(G_{0}\right)$ of a digraph G_{0} each vertex represents an $\operatorname{arc}(x, y)$ of G_{0}; and a vertex (x, y) is adjacent to a vertex (z, t) if and only if $y=z$. For any $k>1$, the k-iterated line digraph, $L^{k}\left(G_{0}\right)$, is defined recursively by $L^{k}\left(G_{0}\right)=L\left(L^{k-1}\left(G_{0}\right)\right.$) (see for instance [15]). In particular, if G_{0} is the complete symmetric digraph on d vertices with a loop in each vertex, then $B(d, D)=L^{D-1}\left(G_{0}\right)$; and if G_{0} is the complete symmetric digraph on $d+1$ vertices without loops, then $K(d, D)=L^{D-1}\left(G_{0}\right)$. Other used network topologies correspond to iterated line digraphs as, for instance, the generalized De Bruijn cycles [17. So, we point out that an analysis of the distance-layer structure (and hence the evaluation of the efficiency of deflection routing in the corresponding network topology), similar to the one presented in this paper, could be done in other families of digraphs on alphabets or of iterated line digraphs.

Acknowledgement. We would like to thank the anonymous reviewers for their time and effort to review the manuscript. We sincerely appreciate their valuable comments and suggestions, which helped us in improving the quality of the paper.

References

[1] P. Baran, On Distributed Communications Networks, IEEE Trans. Comm. Sys. 12 (1964), 1-9, doi: 10.1109/TCOM.1964.1088883
[2] J-C. Bermond and C. Peyrat, De Bruijn and Kautz networks: A competitor for the hypercube?, In: Andre, F., Verjus, J.P. (eds): Hypercube and Distributed Computers, North-Holland, Amsterdam (1989), 279-294.
[3] J-C. Bermond, Z. Liu, and M. Syska, Mean eccentricities of de Bruijn networks, Networks 30 (3) (1997), 187-203, doi: 10.1002/(SICI)1097-0037(199710)30:3¡187::AID-NET4¡3.0.CO;2-H
[4] K. Böhmová, C. Dalfó, and C. Huemer, New cyclic Kautz digraphs with optimal diameter, Contrib. Discrete Math. 16 (3) (2021), 111-124
[5] M. Chatterjee, S. Sanyal, M. Nasipuri and U. Bhattacharya, A wavelength assignment algorithm for de Bruijn WDM networks, International Journal of Parallel, Emergent and Distributed Systems, 26:6, 477-491, (2011) DOI: 10.1080/17445760.2010.499103
[6] C. Chen, Z. Tao, and J. S. Miguel, Bufferless NoCs with Scheduled Deflection Routing, 2020 14th IEEE/ACM International Symposium on Networks-on-Chip (NOCS) (2020), 1-6, doi: 10.1109/NOCS50636.2020.9241585
[7] D. Coudert, A. Ferreira and X. Munoz, Topologies for optical interconnection networks based on the optical transpose interconnection system, Appl. Opt. 39, 2965-2974 (2000)
[8] C. Dalfó, Iterated line digraphs are asymptotically dense, Linear Algebra Appl. 529 (2017), 391-396, doi: 10.1016/j.laa.2017.04.036
[9] N. G. De Bruijn, A combinatorial problem, Koninkl. Nederl. Acad. Wetensch. Proc. Ser. A 49 (1946), 758-764.
[10] Y. Dong, E. Shan, and X. Min, Distance domination of generalized de Bruijn and Kautz digraphs, Front. Math. China 12 (2) (2017), 339-357, doi: 10.1007/s11464-016-0607-y
[11] J. Fàbrega and X. Muñoz, A Study of Network Capacity under Deflection Routing Schemes. In: Kosch H., Böszörményi L., Hellwagner H. (eds) Euro-Par 2003 Parallel Processing. Euro-Par 2003. Lecture Notes in Computer Science 2790 (2003), 989-994, doi: 10.1007/978-3-540-45209-6_135
[12] J. Fàbrega, J. Martí, and X. Muñoz, Layer structure of De Bruijn and Kautz digraphs. An application to deflection routing, Electron. Notes Discrete Math. 54 (2016), 157-162, doi: 10.1016/j.endm.2016.09.028
[13] J. Fàbrega, J. Martí, and X. Muñoz, Distance-layer structure of the De Bruijn and Kautz digraphs: analysis and application to deflection routing (with examples and remarks), (2022) doi: 10.48550/arXiv.2203.09918
[14] P. Faizian, M. A. Mollah, X. Yuan, Z. Alzaid, S. Pakin, and M. Lang, Random Regular Graph and Generalized De Bruijn Graph with k-Shortest Path Routing, IEEE Trans. Parallel Distrib. Systems 29 (1) (2018), 144-155, doi: 10.1109/TPDS.2017.2741492
[15] M. A. Fiol, J. L. A. Yebra, and I. Alegre, Line digraph iterations and the (d, k) digraph problem, IEEE Trans. Comput. C-33 (1984), 400-403, doi: 10.1109/TC.1984.1676455
[16] J. Gómez, M. A. Fiol, and J. L. A. Yebra, Graphs on alphabets as models for large interconnection networks, Discrete Appl. Math. 37/38 (1992), 227-243, doi: 10.1016/0166-218X(92)90135-W
[17] J. Gómez, C. Padró, and S. Perennes, Large Generalized Cycles, Discrete Appl. Math. 89 (1998), 107-123, doi: 10.1016/S0166-218X(98)00120-6
[18] C. Grigorious, T. Kalinowski, and S. Stephen, On the power domination number of de Bruijn and Kautz digraphs, Lecture Notes in Comput. Sci., 10765 (2018), 264-272, doi: 10.1007/978-3-319-78825-8_22
[19] S. Haeri and L. Trajkovic, Intelligent deflection routing in buffer-less networks, IEEE Transactions on Cybernetics 45 (2) (2015), 316-327, doi: 10.1109/TCYB.2014.2360680
[20] W. H. Kautz, Bounds on directed (d, k) graphs, Theory of Cellular Logic Networks and Machines, AFCRL-68-0668 Final Rept. (1968), 20-28.
[21] W. H. Kautz, Design of optimal interconnection networks for multiprocessors, In: Architecture and Design of Digital Computers, Nato Advanced Summer Institute (1969), 249-272.
[22] R. G. Kunthara, R. K. James, S. Z. Sleeba, and J. Jose, Traffic aware routing in 3D NoC using interleaved asymmetric edge routers, Nano Communication Networks 27 (2021), doi: 10.1016/j.nancom.2020.100334.
[23] N. Lichiardopol, Quasi-centers and radius related to some iterated line digraphs, proofs of several conjectures on de Bruijn and Kautz graphs, Discrete Appl. Math. 202 (2016), 106-110, doi: 10.1016/j.dam.2015.08.025
[24] S. Marcovich, T. Etzion, and E. Yaakobi, Balanced de Bruijn Sequences, 2021 IEEE International Symposium on Information Theory (ISIT) (2021) 1528-1533, doi: 10.1109/ISIT45174.2021.9517873
[25] B. Nleya and A. Mutsvangwa, A Node-Regulated Deflection Routing Framework for Contention Minimization, Journal of Computer Networks and Communications, 2020, Article ID 2708357, 14 pages, 2020, doi: 10.1155/2020/2708357
[26] G. Panchapakesan and A. Sengupta, On a lightwave network topology using Kautz digraphs, IEEE Trans. Comput., 48 (10) (1998), 1131-1137, doi: 10.1109/12.805162
[27] P. Salinger and P. Tvrdfk, All-to-All Scatter in Kautz networks, In: Pritchard D., Reeve J. (eds) EuroPar'98 Parallel Processing. Euro-Par 1998. Lecture Notes in Computer Science 1470 (1998), 1057-1061, doi: 10.1007/BFb0057967
[28] H. Shen and Z. Li, A Kautz-Based Wireless Sensor and Actuator Network for Real-Time, Fault-Tolerant and Energy-Efficient Transmission, IEEE Trans. on Mobile Computing, 15 (1) (2016), 1-16, doi: 10.1109/TMC.2015.2407391
[29] Y. Sheng, Y. Zhang, H. Guo, S. Bose, and G. Shen, Benefits of Unidirectional Design Based on Decoupled Transmitters and Receivers in Tackling Traffic Asymmetry for Elastic Optical Networks, J. Opt. Commun. Netw. 10 (2018), C1-C14, doi: 10.1364/JOCN.10.0000C1
[30] J. Zerwas, C. Györgyi, A. Blenk, S. Schmid, and C. Avin, Kevin: de Brujin-based topology with demand-aware links and greedy routing, arXiv preprint (2022), arXiv:2202.05487.
[31] X. Zheng, Y. Hu, D. Luo, and X. Wu, Study of Deflection Routing from an Information-theoretic Perspective, International Journal of Future Generation Communication and Networking, 8 (1) (2015), 227-236, doi: $10.14257 / \mathrm{ijfgcn}$.2015.8.1.23

Appendix

We remind that V denotes the vertex set of the digraph, either $G=B(d, D)$ or $G=K(d, D)$, and that, for $v=v_{1} v_{2} \cdots v_{D} \in V$, we denote the subsequence $v_{i} v_{i+1} \cdots v_{j}$ by $v_{[i, j]}$.

Proofs of the technical lemmas

Proof of Lemma 1

The result follows directly from the sequence representation of the vertices and the adjacency rules. Moreover, we must consider that in $K(d, D)$ there exists a walk of length $D+1$ from a given vertex v to any other one.

Proof of Lemma 2

It follows from Lemma 1 that if $S_{i}\left(v^{\prime}\right) \neq V$, then $i \leqslant D-1$ if $G=B(d, D), i \leqslant D$ if $G=K(d, D)$, and $S_{k}(v) \neq V$ for $k \leqslant i$.

Suppose $i<D$. The sequences corresponding to vertices $w \in S_{k}(v)$ and $w^{\prime} \in S_{i}\left(v^{\prime}\right)$ are of the form $w=v_{k+1} \cdots v_{D} * \cdots *$ and $w^{\prime}=v_{i+1}^{\prime} \cdots v_{D}^{\prime} * \cdots *$, respectively. Since $k \leqslant i$, we get from these sequence representations that $S_{k}(v) \cap S_{i}\left(v^{\prime}\right) \neq \emptyset$ if and only if

$$
\begin{equation*}
v_{k+1}=v_{i+1}^{\prime}, \ldots, v_{k+(D-i)}=v_{D}^{\prime} \tag{10}
\end{equation*}
$$

that is, the subsequences $v_{[k+1, D-(i-k)]}$ and $v_{[i+1, D]}^{\prime}$ coincide. Furthermore, $S_{k}(v) \subseteq S_{i}\left(v^{\prime}\right)$ if and only if condition 10 holds. (Notice that for $k=i$ we have $S_{k}(v)=S_{i}\left(v^{\prime}\right)$.) Hence if $k \leqslant i<D$, then either $S_{k}(v) \subseteq S_{i}\left(v^{\prime}\right)$ or $S_{k}(v) \cap S_{i}\left(v^{\prime}\right)=\emptyset$ and statement (1) is proved.

Now assume that $k<i=D$ and $G=K(d, D)$. Then $S_{k}(v)=\left\{w \in V: w=v_{k+1} \cdots v_{D} * \cdots *\right\}$ and $S_{D}\left(v^{\prime}\right)=\left\{w \in V: w=w_{1} w_{2} \cdots w_{D}, w_{1} \neq v_{D}^{\prime}\right\}$. Therefore, if $v_{k+1} \neq v_{D}^{\prime}$ then $S_{k}(v) \subseteq S_{D}\left(v^{\prime}\right)$, whereas if $v_{k+1}=v_{D}^{\prime}$ then $S_{k}(v) \cap S_{D}\left(v^{\prime}\right)=\emptyset$.

Finally assume that $k=i=D$ and $G=K(d, D)$. Then $S_{D}(v)=\left\{w \in V: w=w_{1} w_{2} \cdots w_{D}, w_{1} \neq v_{D}\right\}$ and $S_{D}\left(v^{\prime}\right)=\left\{w \in V: w=w_{1} w_{2} \cdots w_{D}, w_{1} \neq v_{D}^{\prime}\right\}$. Hence $S_{D}(v) \cap S_{D}\left(v^{\prime}\right) \neq \emptyset$ because the alphabet A has $d+1$ symbols and $d \geqslant 2$. Moreover, $S_{D}(v) \subseteq S_{D}\left(v^{\prime}\right)$ if and only if $S_{D}(v)=S_{D}\left(v^{\prime}\right)$, if and only if $v_{D}=v_{D}^{\prime}$. If $v_{D} \neq v_{D}^{\prime}$, then $\left|S_{D}(v) \cap S_{D}\left(v^{\prime}\right)\right|=(d-1) d^{D-1}=d^{D}-d^{D-1}$, because $w_{1} \in A \backslash\left\{v_{D}, v_{D}^{\prime}\right\}$.

Proof of Lemma 3

From the definitions it is clear that

$$
S_{i}^{\star}(v)=S_{i}(v) \backslash\left(\bigcup_{k=0}^{i-1} S_{k}(v)\right)=S_{i}(v) \backslash\left(\bigcup_{k=0}^{i-1}\left(S_{k}(v) \cap S_{i}(v)\right)\right) .
$$

By Lemma 2 , either $S_{k}(v) \cap S_{i}(v)=\emptyset$ or $S_{k}(v) \subseteq S_{i}(v)$. Therefore, $S_{i}^{\star}(v)=S_{i}(v) \backslash\left(\bigcup_{k=0}^{i-1} S_{k, i}(v)\right)$.

Proof of Lemma 4

Let $w \in S_{1}(v)$. Hence $w_{[1, D-1]}=v_{[2, D]}$. Assume first that $j<D-1$. By statement (1) of Lemma 2 , $S_{i}(v) \cap S_{j}(w) \neq \emptyset$ if and only if $v_{[i+1, D-(j-i)]}=w_{[j+1, D]}$; that is, $S_{i}(v) \cap S_{j}(w) \neq \emptyset$ if and only if $v_{[i+1, D-(j-i)-1]}=v_{[j+2, D]}$ and $v_{D-(j-i)}=w_{D}$. In particular, if $i=j$, then $v_{i+1}=v_{i+2}=\cdots=v_{D}=w_{D}$, and hence $G=B(d, D)$.

Now suppose $j=D-1$. By Lemma 2, $S_{i}(v) \cap S_{D-1}(w) \neq \emptyset$ if and only if $v_{i+1}=w_{D}$. Therefore, if $G=B(d, D)$ there is always a vertex $w \in \Gamma_{i, j}^{+}(v)$, while if $G=K(d, D)$, then there exists $w \in \Gamma_{i, j}^{+}(v)$ if and only if $v_{i+1} \neq v_{D}$. In particular, if $G=K(d, D)$ and $\Gamma_{i, j}^{+}(v) \neq \emptyset$, then $D \neq i+1$.

Until now we have proved statement (1). Next, to prove statement (2) first let us assume that $\Gamma_{i, j}^{+}(v) \neq \emptyset$. Observe from the above that if $w \in \Gamma_{i, j}^{+}(v)$, then w_{D} is uniquely determined and it is equal to $v_{i+(D-j)}$ both for $j<D-1$ as for $j=D-1$. Hence $\Gamma_{i, j}^{+}(v)$ has a unique element w which sequence representation is $w=v_{2} \cdots v_{D} v_{i+(D-j)}$. It is clear from the previous statements that if $\Gamma_{i, j}^{+}(v) \neq \emptyset$ and $i=j$, then G cannot be $K(d, D)$. Since $w \in S_{1}(v)$ we have $S_{l}(w) \subseteq S_{l+1}(v)$ for all $l \geqslant 0$. Hence to finish the proof of statement (2) we only need to show that if $i=j$, then $S_{k}(v)=S_{k}(w)$ for all $k \geqslant i$. But this is clear because, from the above discussion, if $i=j$ and $\Gamma_{i, j}^{+}(v) \neq \emptyset$, then there exists α such that the sequence representations of v and w are of the form $v=v_{1} \cdots v_{i} \alpha \cdots \alpha, w=w_{1} \cdots w_{i} \alpha \cdots \alpha$.

We include in this appendix three additional results, namely Lemmas A.1, A.2, and A.3, which are used in the remaining proofs. In the following two, we consider some valuable properties of the sets $S_{k, j}(w)$ in the case that w is a vertex adjacent from v. Lemma A.3, which is a refinement of Lemma 5 in the case $j \geqslant i$ and $i \neq D$, is formulated after the proof of Lemma 5 .

Lemma A.1. Let $v \in V$ and $w \in S_{1}(v)$. Let $0 \leqslant i, j \leqslant D$ and let $k, 0 \leqslant k \leqslant j$. Assume that $S_{k, j}(w) \cap S_{i}(v) \neq \emptyset$. Then

1. If $k=D$, then $S_{k, j}(w)=S_{D}(w)$. Moreover,
(a) If $i=D$, then $S_{k, j}(w)=S_{i}(v)$ if $G=B(d, D)$, while $S_{k, j}(w) \neq S_{i}(v)$ if $G=K(d, D)$.
(b) If $i<D$, then $S_{i}(v) \subseteq S_{k, j}(w)$.
2. If $k \neq D$, then $S_{i}(v) \subseteq S_{k, j}(w)=S_{k}(w)$ if $k \geqslant i$, while $S_{k}(w)=S_{k, j}(w) \subseteq S_{i}(v)$ if $k<i$. Moreover,
(a) If $k=i$, then $G=B(d, D), S_{i}(v)=S_{i}(w)$, and either $j=i$ or $j=i+1$.
(b) If $k=i-1=j$, then $S_{k, j}(w) \cap S_{i}(v)=S_{i-1}(w)$.
(c) If $k=i-1<j<D$, then either $S_{i-1, i}(v)=\emptyset$ or $G=B(d, D)$ and $j=i$. Moreover, if $S_{i-1, i}(v) \neq \emptyset$, then $S_{i-1, i}(v)=S_{i-1, i}(w)=S_{i-1}(v)=S_{i-1}(w)$.
(d) If $k=i-1<j=D$, then either $S_{i-1, i}(v)=\emptyset$ or $G=B(d, D)$. Moreover, if $S_{i-1, i}(v) \neq \emptyset$ and $w_{D}=v_{D}$, then $i=j=D$ and $S_{D-1, D}(v)=S_{D-1, D}(w)=S_{D-1}(v)=S_{D-1}(w)$.
(e) If $k<i-1$, then there exists $k^{\prime} \leqslant i-1$ such that $S_{k, j}(w) \subseteq S_{k^{\prime}, i}(v)$.

Proof. Let us prove statement (1). If $k=D$, then $j=D$ and clearly $S_{k, j}(w)=S_{D}(w)$. If $G=B(d, D)$ we have $S_{D}(v)=S_{D}(w)=V$. If $G=K(d, D)$, then $S_{D}(v) \neq V$ and $S_{D}(w) \neq V$. Furthermore, since $w \in S_{1}(v)$, we have $v_{D}=w_{D-1} \neq w_{D}$. Hence, by applying Lemma 2, $S_{D}(v) \neq S_{D}(w)$. So we have proved (1.a). To prove (1.b) observe that if $G=B(d, D)$, then $S_{i}(v) \subseteq S_{D}(w)$, because $S_{D}(w)=V$; whereas if $G=K(d, D)$ and $S_{i}(v) \cap S_{D}(w) \neq \emptyset$, then $S_{i}(v) \subseteq S_{D}(w)$ by statement (2) in Lemma 2 .

Next we are going to prove statement (2). From now on assume that $k \neq D$.
If $S_{k, j}(w) \cap S_{i}(v) \neq \emptyset$, then by the definition of $S_{k, j}(w)$ we get $S_{k, j}(w)=S_{k}(w)$, and hence, by applying Lemma 2, $S_{k}(w) \subseteq S_{i}(v)$ if $k<i$, while $S_{i}(v) \subseteq S_{k}(w)$ if $i \leqslant k$, because $k<D$.

First let us consider statement (2.a). If $k=i$, then from our assumptions we get that $S_{i}(v) \cap S_{i}(w) \neq \emptyset$. Thus the set $\Gamma_{i, i}^{+}(v)$ defined in Lemma 4 is nonempty. Therefore, if $i<D$, then from Lemma 4 we have $G=B(d, D)$ and $S_{i}(v)=S_{i}(w)$. To conclude the proof of statement (2.a) we must demonstrate that either $i=j$ or $i+1=j$. On one hand we have $k \leqslant j$. On the other hand we are assuming $k=i$. So, $i \leqslant j$. Thus it only remains to prove that $j \leqslant i+1$. Assume on the contrary that $i+1<j$. Since $\Gamma_{i, i}^{+}(v) \neq \emptyset$, by applying again Lemma 4 we have $S_{i-1}(w) \subseteq S_{i}(v)=S_{i}(w) \subseteq S_{i+1}(v)=S_{i+1}(w) \subseteq \cdots \subseteq S_{j}(v)=S_{j}(w)$. Therefore, $S_{i}(w) \subseteq S_{i+1}(w) \subseteq S_{j}(w)$ and thus, by Definition 1 we have $S_{i, j}(w)=\emptyset$. This contradicts the assumption $S_{k, j}(w) \cap S_{i}(v) \neq \emptyset$, because $k=i$.

Now let us prove (2.b). From Remark 1 we have $S_{i-1, i-1}(w)=S_{i-1}(w)$. Moreover, $S_{i-1}(w) \subseteq S_{i}(v)$ because $w \in S_{1}(v)$. So, statement (2.b) follows.

Next we demonstrate statements (2.c) and (2.d). Notice that $i \leqslant j$ because $k=i-1$ and $k<j$. By the assumptions of the lemma we have $w \in S_{1}(v)$ and $S_{i-1, j}(w) \cap S_{i}(v) \neq \emptyset$. Hence $S_{i-1, j}(w)=S_{i-1}(w) \subseteq$ $S_{i}(v)$. Suppose that $S_{i-1, i}(v) \neq \emptyset$. Recall that this assumption implies $G=B(d, D)$ (see Remark 1) and, moreover, from the definition of $S_{i-1, i}(v)$ it follows that $S_{i-1, i}(v)=S_{i-1}(v) \subseteq S_{i}(v)$.

Let us consider first statement (2.c). So now we are assuming $j<D$. We have to prove that $j=i$ and that $S_{i-1, i}(v)=S_{i-1, i}(w)$ (because this last equality and the assumption $S_{i-1, i}(v) \neq \emptyset$ imply $S_{i-1, i}(w) \neq \emptyset$, and hence $S_{i-1, i}(v)=S_{i-1}(v)$ and $\left.S_{i-1, i}(w)=S_{i-1}(w)\right)$. Since $S_{i-1}(v) \subseteq S_{i}(v)$ and $i-1 \leqslant i<D$, we can apply statement (1) of Lemma 2 and we get that $v_{[i, D-1]}=v_{[i+1, D]}$. Moreover, $v_{[2, D]}=w_{[1, D-1]}$ because $w \in S_{1}(v)$. Hence on one hand we have $v_{i}=w_{i}=v_{i+1}=\cdots=w_{D-1}=v_{D}$. On the other hand, from the definition of $S_{i-1, j}(w)$, in any case we have $S_{i-1, j}(w) \subseteq S_{j}(w)$. So, $S_{i-1, j}(w) \cap S_{i}(v) \subseteq S_{i}(v) \cap S_{j}(w)$. Therefore, $S_{i}(v) \cap S_{j}(w) \neq \emptyset$ because we are assuming $S_{i-1, j}(w) \cap S_{i}(v) \neq \emptyset$. Thus, since $i \leqslant j<D$, we can apply once more Lemma 2 , and now we get that $S_{i}(v) \subseteq S_{j}(w)$ and that $v_{[i+1, D-(j-i)]}=w_{[j+1, D]}$. In particular, $w_{D}=v_{D-(j-i)}=w_{D-(j-i)-1}$ and therefore

$$
\begin{equation*}
v_{i}=w_{i}=v_{i+1}=\cdots=w_{D-1}=v_{D}=w_{D} \tag{11}
\end{equation*}
$$

Observe that for $i \leqslant l \leqslant j<D$, equality 11$]$ implies $w_{[i, D-l+i-1]}=w_{[l+1, D]}$ and $w_{[j+1, D-(j-l)]}=w_{[l+1, D]}$. Thus (again by Lemma 2) we have $S_{i-1}(w) \subseteq S_{l}(w) \subseteq S_{j}(w)$ for $i \leqslant l \leqslant j<D$. But if $j>i$ the definition of $S_{i-1, j}(w)$ would imply $S_{i-1, j}(w)=\emptyset$, a contradiction. Therefore, it must be $j=i$, as we wanted to show. To complete the proof of statement (2.c) in the case $j<D$, it only remains to show that $S_{i-1, i}(v)=S_{i-1, i}(w)$. But this is straightforward because by our assumptions we know that $S_{i-1}(w)=S_{i-1, j}(w)=S_{i-1, i}(w)$ and $S_{i-1}(v)=S_{i-1, i}(v)$, and, moreover, by 11 we have $v_{[i, D]}=w_{[i, D]}$, and so $S_{i-1}(v)=S_{i-1}(w)$. This completes the proof of (2.c).

Now we are going to prove (2.d). So, let us assume $j=D$. In this case we want to prove that if $w_{D}=v_{D}$, then $i=D$ and $S_{D-1}(v)=S_{D-1}(w)$ (as in the proof of (2.c) this last equality implies $\left.S_{D-1, D}(v)=S_{D-1, D}(w)=S_{D-1}(v)=S_{D-1}(w)\right)$. First let us show that $i=D$. On the contrary, assume that $i<D$. In that case, since $S_{i-1}(v) \subseteq S_{i}(v)$ and $i-1 \leqslant i<D$, we can apply again statement (1) of Lemma 2 to get $v_{[i, D-1]}=v_{[i+1, D]}$ and thus $v_{[2, D]}=w_{[1, D-1]}$, because $w \in S_{1}(v)$. Thus, since $w_{D}=v_{D}$, equality (11) also holds. Therefore, we have $w_{[i, D-l+i-1]}=w_{[l+1, D]}$ and $w_{[j+1, D-(j-l)]}=w_{[l+1, D]}$ for $i \leqslant l<\bar{D}$. Thus (again by Lemma 2) we have $S_{i-1}(w) \subseteq S_{l}(w) \subseteq S_{D}(w)=V$ for $i \leqslant l<D$. Since $i<D$ the definition of $S_{i-1, D}(w)$ implies $S_{i-1, D}(w)=\emptyset$, a contradiction. Therefore, it must be $i=D$, as we wanted to prove. It remains to show that $S_{D-1}(v)=S_{D-1}(w)$. But this is straightforward because $w_{D}=v_{D}$ and so $S_{D-1}(v)=S_{D-1}(w)$.

Finally, let us prove statement (2.e). Let $k<i-1$ and assume that $S_{k, j}(w) \cap S_{i}(v) \neq \emptyset$. From $S_{k, j}(w) \cap S_{i}(v) \neq \emptyset$ it follows that $S_{k, j}(w)=S_{k}(w)$ and $S_{k}(w) \cap S_{i}(v) \neq \emptyset$. Notice that $S_{k}(w) \subseteq S_{k+1}(v)$ because $w \in S_{1}(v)$. Hence $S_{k+1}(v) \cap S_{i}(v) \neq \emptyset$ and so, by applying Lemma 2 , it follows that $S_{k+1}(v) \subseteq S_{i}(v)$ because $k+1<i$. Let $k^{\prime}=\max \left\{l: k+1 \leqslant l<i\right.$ and $\left.S_{k+1}(v) \subseteq S_{l}(v) \subseteq S_{i}(v)\right\}$. From the definition we get $k^{\prime} \leqslant i-1$ and $S_{k+1}(v) \subseteq S_{k^{\prime}}(v)=S_{k^{\prime}, i}(v)$. Therefore, $S_{k, j}(w)=S_{k}(w) \subseteq S_{k+1}(v) \subseteq S_{k^{\prime}, i}(v)$.

Lemma A.2. Let $v \in V$ and $w \in S_{1}(v)$. If $0 \leqslant k<i-1<D$ and $S_{k, i-1}(w) \neq \emptyset$, then there exists $k^{\prime} \leqslant i-1$ such that $S_{k, i-1}(w) \subseteq S_{k^{\prime}, i}(v)$.

Proof. Let $k<i-1$ and assume that $S_{k, i-1}(w) \neq \emptyset$. It follows that $S_{k, i-1}(w)=S_{k}(w) \subseteq S_{i-1}(w)$. Hence $S_{k+1}(v) \cap S_{i-1}(w) \neq \emptyset$ because $S_{k}(w) \subseteq S_{k+1}(v)$. So, since $k+1 \leqslant i-1$, by applying Lemma 2 we get $S_{k+1}(v) \subseteq S_{i-1}(w)$. Therefore, $S_{k+1}(v) \subseteq S_{i}(v)$ because $S_{i-1}(w) \subseteq S_{i}(v)$. Let $k^{\prime}=\max \{l: k+1 \leqslant l<$ i and $\left.S_{k+1}(v) \subseteq S_{l}(v) \subseteq S_{i}(v)\right\}$. From the definition we get $k^{\prime} \leqslant i-1$ and $S_{k+1}(v) \subseteq S_{k^{\prime}}(v)=S_{k^{\prime}, i}(v)$. Thus $S_{k, i-1}(w) \subseteq S_{k+1}(v) \subseteq S_{k^{\prime}, i}(v)$.

Proof of Lemma 5

By Lemma 3 we have $S_{i}^{\star}(v)=S_{i}(v) \backslash\left(\bigcup_{k=0}^{i-1} S_{k, i}(v)\right)$ and $S_{j}^{\star}(w)=S_{j}(w) \backslash\left(\bigcup_{k=0}^{j-1} S_{k, j}(w)\right)$. Therefore,

$$
S_{i}^{\star}(v) \cap S_{j}^{\star}(w)=\left(S_{i}(v) \cap S_{j}(w)\right) \backslash\left(\left(\bigcup_{k=0}^{i-1} S_{k, i}(v)\right) \cup\left(\bigcup_{k=0}^{j-1} S_{k, j}(w)\right)\right)
$$

By applying Lemma 2, it follows that $S_{i}(v) \subseteq S_{j}(w)$ if $i \leqslant j \leqslant D$ and $i<D$, while $S_{j}(w) \subseteq S_{i}(v)$ if $j=i-1$. Thus

$$
S_{i}^{\star}(v) \cap S_{j}^{\star}(w)=\left\{\begin{array}{l}
S_{i-1}(w) \backslash\left(\left(\bigcup_{k=0}^{i-1} S_{k, i}(v)\right) \cup\left(\bigcup_{k=0}^{i-2} S_{k, i-1}(w)\right)\right) \text { if } j=i-1 ; \\
\left(S_{D}(v) \cap S_{D}(w)\right) \backslash\left(\left(\bigcup_{k=0}^{D-1} S_{k, D}(v)\right) \cup\left(\bigcup_{k=0}^{D-1} S_{k, D}(w)\right)\right) \\
\text { if } j=i=D \\
S_{i}(v) \backslash\left(\left(\bigcup_{k=0}^{i-1} S_{k, i}(v)\right) \cup\left(\bigcup_{k=0}^{j-1} S_{k, j}(w)\right)\right) \text { if } j \geqslant i \text { and } i \neq D .
\end{array}\right.
$$

By Lemma A. 2 we have $\bigcup_{k=0}^{i-2} S_{k, i-1}(w) \subseteq \bigcup_{k=0}^{i-1} S_{k, i}(v)$, and hence the description of $S_{i}^{\star}(v) \cap S_{j}^{\star}(w)$ formulated in statement (1) follows.

Next we are going to prove the expression of $S_{i}^{\star}(v) \cap S_{j}^{\star}(w)$ given in statements (2) and (3). So assume that $i=j=D$. Hence

$$
S_{D}^{\star}(v) \cap S_{D}^{\star}(w)=\left(S_{D}(v) \cap S_{D}(w)\right) \backslash\left(\left(\bigcup_{k=0}^{D-1} S_{k, D}(v)\right) \cup\left(\bigcup_{k=0}^{D-1}\left(S_{k, D}(w) \cap S_{D}(v)\right)\right)\right)
$$

By statement (2.e) of Lemma A.1, if $0 \leqslant k \leqslant D-2$ and $S_{k, D}(w) \cap S_{D}(v) \neq \emptyset$, then there exists $k^{\prime} \leqslant D-1$ such that $S_{k, D}(w) \subseteq S_{k^{\prime}, D}(v)$. Hence $S_{k, D}(w) \cap S_{D}(v) \subseteq S_{k^{\prime}, D}(v) \cap S_{D}(v) \subseteq S_{k^{\prime}, D}(v)$, and so

$$
S_{D}^{\star}(v) \cap S_{D}^{\star}(w)=\left(S_{D}(v) \cap S_{D}(w)\right) \backslash\left(\left(\bigcup_{k=0}^{D-1} S_{k, D}(v)\right) \cup\left(S_{D-1, D}(w) \cap S_{D}(v)\right)\right)
$$

If $G=K(d, D)$, then from Remark 1 we have $S_{D-1, D}(v)=S_{D-1, D}(w)=\emptyset$, and so the description given in statement (2) follows. If $G=B(d, D)$, then from Remark 1 we have $S_{D-1, D}(v)=S_{D-1}(v)$, $S_{D-1, D}(w)=S_{D-1}(w)$, and from Lemma 1 we have $S_{D}(v)=S_{D}(w)=V$. Hence statement (3) follows.

Now we are going to prove that if $j \geqslant i \neq D$, then the set $S_{i}^{\star}(v) \cap S_{j}^{\star}(w)$ can be expressed as stated in statement (4). So, assume that $j \geqslant i \neq D$. Hence

$$
\begin{aligned}
S_{i}^{\star}(v) & \cap S_{j}^{\star}(w) \\
= & S_{i}(v) \backslash\left(\left(\bigcup_{k=0}^{i-1} S_{k, i}(v)\right) \cup\left(\bigcup_{k=0}^{i-2} S_{k, j}(w)\right) \cup\left(\bigcup_{k=i-1}^{j-1} S_{k, j}(w)\right)\right) \\
& =S_{i}(v) \backslash\left(\left(\bigcup_{k=0}^{i-1} S_{k, i}(v)\right) \cup\left(\bigcup_{k=0}^{i-2}\left(S_{k, j}(w) \cap S_{i}(v)\right)\right) \cup\left(\bigcup_{k=i-1}^{j-1} S_{k, j}(w)\right)\right) .
\end{aligned}
$$

By statement (2.e) of Lemma A.1, if $0 \leqslant k \leqslant i-2$ and $S_{k, j}(w) \cap S_{i}(v) \neq \emptyset$, then there exists $k^{\prime} \leqslant i-1$ such that $S_{k, j}(w) \subseteq S_{k^{\prime}, i}(v)$. Hence $S_{k, j}(w) \cap S_{i}(v) \subseteq S_{k^{\prime}, i}(v) \cap S_{i}(v) \subseteq S_{k^{\prime}, i}(v)$, and so

$$
S_{i}^{\star}(v) \cap S_{j}^{\star}(w)=S_{i}(v) \backslash\left(\left(\bigcup_{k=0}^{i-1} S_{k, i}(v)\right) \cup\left(\bigcup_{k=i-1}^{j-1} S_{k, j}(w)\right)\right)
$$

as claimed in statement (4).

Lemma A.3. Let $v \in V$ and $w \in S_{1}(v)$. Let $j \geqslant i$ and $i \neq D$. Let $S_{i}(v) \cap S_{j}(w) \neq \emptyset$ and $S_{i}(v) \nsubseteq S_{k, j}(w)$ for $i \leqslant k \leqslant j-1$. Then $S_{i}^{\star}(v) \cap S_{j}^{\star}(w)$ can be described as

$$
S_{i}^{\star}(v) \cap S_{j}^{\star}(w)=S_{i}(v) \backslash\left(\left(\bigcup_{k=0}^{i-2} S_{k, i}(v)\right) \cup S^{\prime}\right)
$$

where

$$
S^{\prime}= \begin{cases}\emptyset & \text { if } S_{i-1, j}(w)=\emptyset \text { and } v_{[i, D-1]} \neq v_{[i+1, D]}, \tag{1}\\ S_{i-1}(v) & \text { if } S_{i-1, j}(w)=\emptyset \text { and } v_{[i, D-1]}=v_{[i+1, D]}, \\ S_{i-1}(w) & \text { if } S_{i-1, j}(w) \neq \emptyset \text { and } v_{[i, D-1]} \neq v_{[i+1, D]}, \\ S_{i-1}(v)=S_{i-1}(w) & \text { if } S_{i-1, j}(w) \neq \emptyset \text { and } v_{[i, D-1]}=v_{[i+1, D]} \text { and } j<D \\ S_{i-1}(v) \cup S_{i-1}(w) & \text { if } S_{i-1, j}(w) \neq \emptyset \text { and } v_{[i, D-1]}=v_{[i+1, D]} \text { and } j=D\end{cases}
$$

where in the last case we have $S_{i-1}(v) \cap S_{i-1}(w)=\emptyset$.
Proof. From statement (4) of Lemma 5, the intersection set $S_{i}^{\star}(v) \cap S_{j}^{\star}(w)$ can be written as

$$
\begin{align*}
& S_{i}^{\star}(v) \cap S_{j}^{\star}(w)= \\
& \quad=S_{i}(v) \backslash\left(\left(\bigcup_{k=0}^{i-1} S_{k, i}(v)\right) \cup\left(S_{i-1, j}(w) \cap S_{i}(v)\right) \cup\left(\bigcup_{k=i}^{j-1}\left(S_{k, j}(w) \cap S_{i}(v)\right)\right)\right) \tag{12}
\end{align*}
$$

if $i<j$, and

$$
\begin{equation*}
S_{i}^{\star}(v) \cap S_{j}^{\star}(w)=S_{i}(v) \backslash\left(\left(\bigcup_{k=0}^{i-1} S_{k, i}(v)\right) \cup\left(S_{i-1, j}(w) \cap S_{i}(v)\right)\right) \tag{13}
\end{equation*}
$$

if $i=j$. If $S_{i}(v) \nsubseteq S_{k, j}(w)$ for $i \leqslant k \leqslant j-1$, then from statement (2.e) of Lemma A. 1 we get that $S_{k, j}(w) \cap S_{i}(v)=\emptyset$ for $i \leqslant k \leqslant j-1$. Therefore, our assumptions imply that the following equality holds both for $i<j$ and for $i=j$:

$$
S_{i}^{\star}(v) \cap S_{j}^{\star}(w)=S_{i}(v) \backslash\left(\left(\bigcup_{k=0}^{i-1} S_{k, i}(v)\right) \cup\left(S_{i-1, j}(w) \cap S_{i}(v)\right)\right)=S_{i}(v) \backslash\left(\left(\bigcup_{k=0}^{i-2} S_{k, i}(v)\right) \cup S^{\prime}\right)
$$

where $S^{\prime}=S_{i-1, i}(v) \cup\left(S_{i-1, j}(w) \cap S_{i}(v)\right)$.
Observe that if $S_{i-1, j}(w)=\emptyset$, then $S^{\prime}=S_{i-1, i}(v)$. Therefore, statements (1) and (2) follow from Remark 3. Moreover, by the definition of $S_{i-1, i}(v)$, we have $S^{\prime}=S_{i-1, i}(v) \subseteq S_{i}(v)$.

From now on we assume that $S_{i-1, j}(w) \neq \emptyset$. In this case we have $S^{\prime}=S_{i-1, i}(v) \cup\left(S_{i-1}(w) \cap S_{i}(v)\right)$, and, so, $S^{\prime}=S_{i-1, i}(v) \cup S_{i-1}(w) \subseteq S_{i}(v)$ because $S_{i-1}(w) \subseteq S_{i}(v)$ (recall that $w \in S_{1}(v)$).

By Remark 3, if $v_{[i, D-1]} \neq v_{[i+1, D]}$, then $S^{\prime}=S_{i-1}(w)$, proving statement (3). Therefore, the proof of the lemma will be completed by demonstrating statements (4) and (5).

Thus assume that $S_{i-1, j}(w) \neq \emptyset$ and $v_{[i, D-1]} \neq v_{[i+1, D]}$, or, equivalently, assume that $S_{i-1, j}(w) \neq \emptyset$ and $S_{i-1, i}(v) \neq \emptyset$. Hence we have $S^{\prime}=S_{i-1, i}(v) \cup S_{i-1}(w)=S_{i-1}(v) \cup S_{i-1}(w)$. To prove (4) and (5) we are going to apply Lemma A.1 with $k=i-1$. Observe that we are under the assumptions of this lemma because, since $S_{i-1, j}(w) \neq \emptyset$ and $w \in S_{1}(v)$, then $S_{i-1, j}(w) \cap S_{i}(v)=S_{i-1}(w) \cap S_{i}(v)=S_{i-1}(w) \neq \emptyset$.

Let us prove (4). If $j<D$, since we are assuming $S_{i-1, i}(v) \neq \emptyset$, from statement (2.c) of Lemma A.1, we conclude that $j=i$ and $S_{i-1, i}(v)=S_{i-1, i}(w)=S_{i-1}(v)=S_{i-1}(w)$. Thus $S^{\prime}=S_{i-1}(v)=S_{i-1}(w)$, as we wanted to prove.

Finally, let us prove (5). If $j=D$, since we are assuming $S_{i-1, i}(v) \neq \emptyset$, now from statement (2.d) of Lemma A.1, we get $w_{D} \neq v_{D}$. In particular we have $v_{[i, D]} \neq w_{[i, D]}$. So, by statement (1) of Lemma 2, we have $S_{i-1}(v) \cap S_{i-1}(w)=\emptyset$. This completes the proof of the lemma.

Proof of Lemma 6

Since $S_{i}^{\star}(v) \cap S_{j}^{\star}(w) \subseteq S_{i}(v) \cap S_{j}(w)$ we have $\Gamma_{i, j}^{\star}(v) \subseteq \Gamma_{i, j}^{+}(v)$. Let us assume $\Gamma_{i, j}^{+}(v) \neq \emptyset$, in which case $\Gamma_{i, j}^{+}(v)=\{w\}$, where w is the unique element of $\Gamma_{i, j}^{+}(v)$ given in statement (2) of Lemma 4 . Therefore we have $\Gamma_{i, j}^{\star}(v) \neq \emptyset$ if and only if $\Gamma_{i, j}^{\star}(v)=\Gamma_{i, j}^{+}(v)=\{w\}$; if and only if $S_{i}^{\star}(v) \cap S_{j}^{\star}(w) \neq \emptyset$. Finally, since $S_{i}(v) \cap S_{j}(w) \neq \emptyset$ if $S_{i}^{\star}(v) \cap S_{j}^{\star}(w) \neq \emptyset$, we conclude from statement (1) of Propositions 3 and 4 (which proof depends only on the preceding technical lemmas) that $S_{i}^{\star}(v) \cap S_{j}^{\star}(w) \neq \emptyset$ if and only if $w \in \Gamma_{i, j}^{+}(v)$ and $S_{i}(v) \nsubseteq S_{t, j}(w)$ for $i \leqslant t<j$; that is, we have $w \in \Gamma_{i, j}^{\star}(v)$ if and only if $w \in \Gamma_{i, j}^{+}(v)$ and $S_{i}(v) \nsubseteq S_{t, j}(w)$ for $i \leqslant t<j$.

Proof of Lemma 7

If $G=B(d, D)$, then $S_{D}(w)=V$ and hence $S_{i}(v) \cap S_{D}(w)=S_{i}(v) \neq \emptyset$ for all $w \in S_{1}(v)$. Therefore if $G=B(d, D)$, then $\Gamma_{i, D}^{+}(v)=S_{1}(v)$. Now let $G=K(d, D)$. If $w \in S_{1}(v)$, then $w_{[1, D-1]}=v_{[2, D]}$ and, in particular, $w_{D-1}=v_{D}$. Thus we have $w_{D} \neq v_{D}$, because two consecutive symbols in the sequence representation of the vertices of $K(d, D)$ are different. By statement (2) of Lemma 2, we have $S_{i}(v) \cap$ $S_{D}(w) \neq \emptyset$ if and only if $v_{i+1} \neq w_{D}$. Therefore if $v_{i+1}=v_{D}$, then $v_{i+1} \neq w_{D}$ holds for any $w \in S_{1}(v)$. We conclude that if $G=K(d, D)$ and $v_{i+1}=v_{D}$, then $\Gamma_{i, D}^{+}(v)=S_{1}(v)$. This completes the proof of statement (1).

Let us demonstrate statement (2). So assume $G=K(d, D)$ and $v_{i+1} \neq v_{D}$. By the previous considerations, we have $w \in \Gamma_{i, D}^{+}(v)$ if and only if $w \in S_{1}(v)$ and $v_{i+1} \neq w_{D}$; if and only if $w \in S_{1}(v)$ and $w_{D} \notin\left\{v_{i+1}, v_{D}\right\}$. Then, since the symbol alphabet has $d+1 \geqslant 3$ symbols, we have $\Gamma_{i, D}^{+}(v) \neq \emptyset$ and, moreover, $\left|\Gamma_{i, D}^{+}(v)\right|=d-1$. This completes the proof of the lemma.

Proof of Propositions 3 and 4

We prove together the two propositions. Firstly, we prove the case $i=j=D$ of both statement (3) of Proposition 3 and statement (3) of Proposition 4, secondly, we prove statement (1) of Proposition 3 and statement (1) of Proposition 4 next we consider the common statement (2) of both propositions; and finally, for $i \leqslant j<D$, we complete the demonstration of statement (3) of Proposition 3 and statement (3) of Proposition 4.

Case $i=j=D$ of statement (3) of Propositions 3 and 4

Let $i=j=D$. We have to prove that if $d \geqslant 3$, then $S_{i}^{\star}(v) \cap S_{j}^{\star}(w) \neq \emptyset$; whereas if $d=2$, then $S_{i}^{\star}(v) \cap S_{j}^{\star}(w) \neq \emptyset$ if and only if $G=K(d, D)$ or $v_{D}=w_{D}$. Equivalently, we must demonstrate that if $G=K(d, D)$, then $S_{i}^{\star}(v) \cap S_{j}^{\star}(w) \neq \emptyset$; while if $G=B(d, D)$, then $S_{i}^{\star}(v) \cap S_{j}^{\star}(w) \neq \emptyset$ if and only if $d \geqslant 3$ or $v_{D}=w_{D}$.

If G is the Kautz digraph $K(d, D)$, then, by statement (3) of Lemma 2, we have $S_{D}(v) \cap S_{D}(w) \neq \emptyset$ and $\left|S_{D}(v) \cap S_{D}(w)\right|=d^{D}-d^{D-1}$. Since $S_{D}(v) \cap S_{D}(w) \neq \emptyset$, by statement (2) of Lemma 5, the intersection $S_{D}^{\star}(v) \cap S_{D}^{\star}(w)$ can be expressed as

$$
S_{D}^{\star}(v) \cap S_{D}^{\star}(w)=\left(S_{D}(v) \cap S_{D}(w)\right) \backslash \bigcup_{k=0}^{D-2} S_{k, D}(v)
$$

Moreover, by Definition 1 and Lemma 1. we have either $S_{k, D}(v)=\emptyset$ or $\left|S_{k, D}(v)\right|=\left|S_{k}(v)\right|=d^{k}$. Therefore the cardinality of the union $\bigcup_{k=0}^{D-2} S_{k, D}(v)$ can be bounded as follows:

$$
\left|\bigcup_{k=0}^{D-2} S_{k, D}(v)\right| \leqslant \sum_{k=0}^{D-2} d^{k}=\frac{d^{D-1}-1}{d-1}
$$

and hence

$$
\left|S_{D}^{\star}(v) \cap S_{D}^{\star}(w)\right| \geqslant\left(d^{D}-d^{D-1}\right)-\frac{d^{D-1}-1}{d-1}=\frac{(d-2) d^{D}+1}{d-1}>0 .
$$

In particular, we get that if $G=K(d, D)$, then $S_{D}^{\star}(v) \cap S_{D}^{\star}(w) \neq \emptyset$, as we wanted to prove.
Now let us assume $G=B(d, D)$. We must demonstrate that, in this case, we have $S_{D}^{\star}(v) \cap S_{D}^{\star}(w) \neq \emptyset$ if and only if $d \geqslant 3$ or $v_{D}=w_{D}$.

If $G=B(d, D)$, then $S_{D}(v) \cap S_{D}(w)=V$ and, by statement (3) of Lemma5 we can write $S_{D}^{\star}(v) \cap S_{D}^{\star}(w)$ as

$$
\begin{equation*}
S_{D}^{\star}(v) \cap S_{D}^{\star}(w)=V \backslash\left(S_{D-1}(v) \cup S_{D-1}(w) \cup \bigcup_{k=0}^{D-2} S_{k, D}(v)\right) \tag{14}
\end{equation*}
$$

By taking into account again that either $S_{k, D}(v)=\emptyset$ or $\left|S_{k, D}(v)\right|=\left|S_{k}(v)\right|=d^{k}$, we have

$$
\begin{aligned}
& \left|S_{D-1}(v) \cup S_{D-1}(w) \cup \bigcup_{k=0}^{D-2} S_{k, D}(v)\right| \\
& \quad \leqslant\left|S_{D-1}(v) \cup S_{D-1}(w)\right|+\sum_{k=0}^{D-2}\left|S_{k, D}(v)\right| \leqslant\left|S_{D-1}(v) \cup S_{D-1}(w)\right|+\frac{d^{D-1}-1}{d-1}
\end{aligned}
$$

and thus

$$
\begin{equation*}
\left|S_{D}^{\star}(v) \cap S_{D}^{\star}(w)\right| \geqslant d^{D}-\left|S_{D-1}(v) \cup S_{D-1}(w)\right|-\frac{d^{D-1}-1}{d-1} \tag{15}
\end{equation*}
$$

At this point we distinguish two cases: $d \geqslant 3$ and $d=2$.
First assume $d \geqslant 3$. Since $\left|S_{D-1}(v)\right|=\left|S_{D-1}(w)\right|=d^{D-1}$, we have the bound $\left|S_{D-1}(v) \cup S_{D-1}(w)\right| \leqslant$ $2 d^{D-1}$. Hence it follows from 15 that

$$
\left|S_{D}^{\star}(v) \cap S_{D}^{\star}(w)\right| \geqslant d^{D}-2 d^{D-1}-\frac{d^{D-1}-1}{d-1}=\frac{(d-3) d^{D}+d^{D-1}+1}{d-1}>0
$$

because $d \geqslant 3$. Therefore we have proved that if $G=B(d, D)$ and $d \geqslant 3$, then $S_{D}^{\star}(v) \cap S_{D}^{\star}(w) \neq \emptyset$.
Finally, assume $d=2$. In this case we must demonstrate that if $v_{D}=w_{D}$, then $S_{D}^{\star}(v) \cap S_{D}^{\star}(w) \neq \emptyset$; while if $v_{D} \neq w_{D}$, then $S_{D}^{\star}(v) \cap S_{D}^{\star}(w)=\emptyset$.

If $v_{D}=w_{D}$, then, by statement (1) of Lemma 2, we have $S_{D-1}(v)=S_{D-1}(w)$. So if $v_{D}=w_{D}$, from (15) and by taking into account that $d=2,|V|=2^{D}$, and $\left|S_{D-1}(v)\right|=2^{D-1}$, we get

$$
\left|S_{D}^{\star}(v) \cap S_{D}^{\star}(w)\right| \geqslant 2^{D}-2^{D-1}-\left(2^{D-1}-1\right)=1
$$

which demonstrates that $S_{D}^{\star}(v) \cap S_{D}^{\star}(w) \neq \emptyset$.
To end suppose $v_{D} \neq w_{D}$. Since we are assuming $d=2$, we conclude that v_{D} and w_{D} are the two different symbols of the base alphabet A for the sequence representation of the vertices. Moreover, by using this sequence representation, it is easy to check that in this case we have $S_{D-1}(v) \cup S_{D-1}(w)=V$. Therefore, if $v_{D} \neq w_{D}$ we conclude from (14) that $S_{D}^{\star}(v) \cap S_{D}^{\star}(w)=\emptyset$.

This completes the proof of statement (3) of Proposition 3 and statement (3) of Proposition 4 in the case $i=j=D$.

Statement (1) of Propositions 3 and 4

Let $j \geqslant i \neq D$. We have to prove that if $d \geqslant 3$, then $S_{i}^{\star}(v) \cap S_{j}^{\star}(w) \neq \emptyset$ if and only if $S_{i}(v) \cap S_{j}(w) \neq \emptyset$ and $S_{i}(v) \nsubseteq S_{k, j}(w)$ for $i \leqslant k<j$; whereas if $d=2$, then $S_{i}^{\star}(v) \cap S_{j}^{\star}(w) \neq \emptyset$ if and only if $S_{i}(v) \cap S_{j}(w) \neq \emptyset$, $S_{i}(v) \nsubseteq S_{k, j}(w)$ for $i \leqslant k<j$, and one of the following conditions holds:

1. $j<D$;
2. $j=D$, and $v_{[i, D-1]} \neq v_{[i+1, D]}$ or $S_{i-1, j}(w)=\emptyset$.

Firstly we claim that, for any $d \geqslant 2$, if $j \geqslant i$ and $S_{i}^{\star}(v) \cap S_{j}^{\star}(w) \neq \emptyset$, then $S_{i}(v) \cap S_{j}(w) \neq \emptyset$ and $S_{i}(v) \nsubseteq S_{k, j}(w)$ for $i \leqslant k<j$. Clearly, if $S_{i}^{\star}(v) \cap S_{j}^{\star}(w) \neq \emptyset$, then $S_{i}(v) \cap S_{j}(w) \neq \emptyset$. If $j=i$ we are done, because in this case the condition $S_{i}(v) \nsubseteq S_{k, j}(w)$ for $i \leqslant k<j$ is empty. So, let us assume $j>i$. Since $S_{i}(v) \cap S_{j}(w) \neq \emptyset$, by statement (4) of Lemma5 the intersection set $S_{i}^{\star}(v) \cap S_{j}^{\star}(w)$ can be written as

$$
S_{i}^{\star}(v) \cap S_{j}^{\star}(w)=S_{i}(v) \backslash\left(\left(\bigcup_{k=0}^{i-1} S_{k, i}(v)\right) \cup\left(\bigcup_{k=i-1}^{j-1} S_{k, j}(w)\right)\right)
$$

So if $S_{i}(v) \subseteq S_{k, j}(w)$ for some $k, i \leqslant k<j$, then we conclude from the above expression that $S_{i}^{\star}(v) \cap S_{j}^{*}(w)=$ \emptyset. This finishes the proof of our claim.

Now we are going to demonstrate that if $d=2, j=D$, and $S_{i}^{\star}(v) \cap S_{j}^{\star}(w) \neq \emptyset$, then $v_{[i, D-1]} \neq v_{[i+1, D]}$ or $S_{i-1, j}(w)=\emptyset$.

We claim that if $d=2, j=D, v_{[i, D-1]}=v_{[i+1, D]}$, and $S_{i-1, j}(w) \neq \emptyset$, then $S_{i-1}(v) \cup S_{i-1}(w)=$ $S_{i}(v)$. Indeed, on one hand, since $v_{[i, D-1]}=v_{[i+1, D]}$, from statement (1) of Lemma 2 we conclude that $S_{i-1}(v) \subseteq S_{i}(v)$. So, by Definition 1, we have $S_{i-1, i}(v) \neq \emptyset$. On the other hand, since $S_{i-1, D}(w) \neq \emptyset$, then $S_{i-1, D}(w)=S_{i-1}(w)$, and hence $S_{i-1, D}(w) \cap S_{i}(v)=S_{i-1}(w) \cap S_{i}(v)=S_{i-1}(w)$, because $w \in S_{1}(v)$. In particular, $S_{i-1, D}(w) \cap S_{i}(v) \neq \emptyset$. Therefore, if $i \neq D=j, S_{i-1, j}(w) \neq \emptyset$, and $v_{[i, D-1]}=v_{[i+1, D]}$, then we can apply statement (2.d) of Lemma A. 1 to conclude that $w_{D} \neq v_{D}$.

To finish the proof of our claim, let us use the sequence representation of the vertices to check that if $d=2, i<D, v_{[i, D-1]}=v_{[i+1, D]}$, and $w_{D} \neq v_{D}$, then $S_{i-1}(v) \cup S_{i-1}(w)=S_{i}(v)$.

In fact, if $i<D$ and $v_{[i, D-1]}=v_{[i+1, D]}$, then $v_{i}=v_{i+1}=\cdots=v_{D}=\alpha$ for some symbol α of the base alphabet A. In particular we have $G=B(d, D)$. Hence a vertex z belongs to $S_{i-1}(v)$ if and only if $z_{[1, D-i+1]}=v_{[i, D]}=\alpha \cdots \alpha$. Analogously, since $w=v_{2} \cdots v_{D} w_{D}$ (because $w \in S_{1}(v)$), a vertex z^{\prime} is in $S_{i-1}(w)$ if and only if $z_{[1, D-i+1]}^{\prime}=w_{[i, D]}=\alpha \cdots \alpha w_{D}$. Moreover, we have $z^{\prime \prime} \in S_{i}(v)$ if and only if $z_{[1, D-i]}^{\prime \prime}=w_{[i+1, D]}=\alpha \cdots \alpha$. If we assume $d=2$ and $v_{D} \neq w_{D}$, then $v_{D}=\alpha$ and w_{D} are the
two symbols of the base alphabet A, that is, we have $A=\left\{\alpha, w_{D}\right\}$. Now it is clear that a vertex z belongs to $S_{i-1}(v) \cup S_{i-1}(w)$ if and only if $z_{[1, D-i]}=\alpha \cdots \alpha$; if and only if $z \in S_{i}(v)$. Hence we have $S_{i-1}(v) \cup S_{i-1}(w)=S_{i}(v)$, as we wanted to check.

This completes the proof of our claim.
From our claim and by statement (5) of Lemma A.3. we conclude that if $d=2, j=D, S_{i}^{\star}(v) \cap S_{j}^{\star}(w) \neq \emptyset$, $S_{i-1, D}(w) \neq \emptyset$, and $v_{[i, D-1]}=v_{[i+1, D]}$, then

$$
S_{i-1}(v) \cup S_{i-1}(w)=S_{i}(v) \text { and } S_{i}^{\star}(v) \cap S_{D}^{\star}(w)=S_{i}(v) \backslash\left(\left(\bigcup_{k=0}^{i-2} S_{k, i}(v)\right) \cup S^{\prime}\right)
$$

where $S^{\prime}=S_{i-1}(v) \cup S_{i-1}(w)$ and $S_{i-1}(v) \cap S_{i-1}(w)=\emptyset$. Since $S_{i-1}(v) \cup S_{i-1}(w)=S_{i}(v)$, we get $S_{i}^{\star}(v) \cap S_{D}^{\star}(w)=\emptyset$, which is a contradiction.

At this point we have proved the direct implication of statement (1) of Proposition 3 and statement (1) of Proposition 4.

To complete the proof we are going to show that if $S_{i}(v) \cap S_{j}(w) \neq \emptyset, S_{i}(v) \nsubseteq S_{k, j}(w)$ for $i \leqslant k<j$, and if one of the following conditions hold:
(i) $d \geqslant 3$;
(ii) $j<D$;
(iii) $j=D$, and $v_{[i, D-1]} \neq v_{[i+1, D]}$ or $S_{i-1, j}(w)=\emptyset$,
then $S_{i}^{\star}(v) \cap S_{j}^{\star}(w) \neq \emptyset$.
Let us assume $S_{i}(v) \cap S_{j}(w) \neq \emptyset, S_{i}(v) \nsubseteq S_{k, j}(w)$ for $i \leqslant k<j$, and that either condition (i), or (ii), or (iii) is fulfilled.

Since $S_{i}(v) \cap S_{j}(w) \neq \emptyset$ and $S_{i}(v) \nsubseteq S_{k, j}(w)$ for $i \leqslant k<j$, by Lemma A.3 we deduce that the intersection set $S_{i}^{\star}(v) \cap S_{j}^{\star}(w)$ can be described as

$$
\begin{equation*}
S_{i}^{\star}(v) \cap S_{j}^{\star}(w)=S_{i}(v) \backslash\left(\left(\bigcup_{k=0}^{i-2} S_{k, i}(v)\right) \cup S^{\prime}\right), \tag{16}
\end{equation*}
$$

where $S^{\prime} \subseteq S_{i-1}(v) \cup S_{i-1}(w)$.
First assume that we are under condition (i); that is, $d \geqslant 3$. Since either $S_{k, i}(v)=\emptyset$ or $\left|S_{k, i}(v)\right|=$ $\left|S_{k}(v)\right|=d^{k}$, and $\left|S_{i-1}(v)\right|=\left|S_{i-1}(v)\right|=d^{i-1}$, we have

$$
\begin{equation*}
\left|\bigcup_{k=0}^{i-2} S_{k, i}(v) \cup S^{\prime}\right| \leqslant \sum_{k=0}^{i-2}\left|S_{k, i}(v)\right|+\left|S_{i-1}(v)\right|+\left|S_{i-1}(w)\right| \leqslant \frac{d^{i-1}-1}{d-1}+2 d^{i-1}=\frac{2 d^{i}-d^{i-1}-1}{d-1} \tag{17}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\left|S_{i}^{\star}(v) \cap S_{j}^{\star}(w)\right| \geqslant d^{i}-\frac{2 d^{i}-d^{i-1}-1}{d-1}=\frac{(d-3) d^{i}+d^{i-1}+1}{d-1}>0 \tag{18}
\end{equation*}
$$

because $d \geqslant 3$. Therefore, if condition (i) holds, then $S_{i}^{\star}(v) \cap S_{j}^{\star}(w) \neq \emptyset$, as we wanted to prove.
Now we must demonstrate that $S_{i}^{\star}(v) \cap S_{j}^{\star}(w) \neq \emptyset$ if either condition (ii) or (iii) is satisfied.
First observe that if either condition (ii) or (iii) is satisfied, then, by statements (1), (2), (3), or (4) of Lemma A.3, the set S^{\prime} in 16] is either $S^{\prime}=\emptyset$, or $S^{\prime}=S_{i-1}(v)$, or $S^{\prime}=S_{i-1}(w)$. Therefore, in any case we have $\left|S^{\prime}\right| \leqslant d^{i-1}$, and so we have the bound

$$
\begin{equation*}
\left|\bigcup_{k=0}^{i-2} S_{k, i}(v) \cup S^{\prime}\right| \leqslant \sum_{k=0}^{i-2}\left|S_{k, i}(v)\right|+\left|S^{\prime}\right| \leqslant \frac{d^{i-1}-1}{d-1}+d^{i-1}=\frac{d^{i}-1}{d-1} \tag{19}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\left|S_{i}^{\star}(v) \cap S_{j}^{\star}(w)\right| \geqslant d^{i}-\frac{d^{i}-1}{d-1}=\frac{(d-2) d^{i}+1}{d-1} \tag{20}
\end{equation*}
$$

So $\left|S_{i}^{\star}(v) \cap S_{j}^{\star}(w)\right|>0$ for any $d \geqslant 2$. Therefore we have $S_{i}^{\star}(v) \cap S_{j}^{\star}(w) \neq \emptyset$.

Statement (2) of both propositions

Here we assume $d \geqslant 2$. We must prove that:
(a) the intersection $S_{i}^{\star}(v) \cap S_{i-1}^{\star}(w)$ is empty if and only if $G=B(d, D)$ and $v_{i}=v_{i+1}=\cdots=v_{D}=w_{D}$.
(b) if $S_{i}^{\star}(v) \cap S_{i-1}^{\star}(w)=\emptyset$, then $S_{i}^{\star}(v) \cap S_{i}^{\star}(w) \neq \emptyset$.

Let us prove statement (a).
First of all observe that $S_{i}(v) \cap S_{i-1}(w) \neq \emptyset$, because $w \in S_{1}(v)$. So we can apply statement (1) of Lemma 5 to write $S_{i}^{\star}(v) \cap S_{i-1}^{\star}(w)$ as

$$
\begin{align*}
S_{i}^{\star}(v) \cap S_{i-1}^{\star}(w) & =S_{i-1}(w) \backslash \bigcup_{k=0}^{i-1} S_{k, i}(v) \\
& =S_{i-1}(w) \backslash\left(\bigcup_{k=0}^{i-2} S_{k, i}(v) \cup\left(S_{i-1, i}(v) \cap S_{i-1}(w)\right)\right) \\
& =S_{i-1}(w) \backslash\left(\bigcup_{k=0}^{i-2} S_{k, i}(v) \cup S^{\prime}\right), \tag{21}
\end{align*}
$$

where $S^{\prime}=S_{i-1, i}(v) \cap S_{i-1}(w)$. Next we are going to prove that either $S^{\prime}=\emptyset$ or $S^{\prime}=S_{i-1}(v)=S_{i-1}(w)$. To this end, we only must prove that if $S_{i-1, i}(v) \cap S_{i-1}(w) \neq \emptyset$, then $S_{i-1, i}(v) \cap S_{i-1}(w)=S_{i-1}(v)=$ $S_{i-1}(w)$. So assume $S_{i-1, i}(v) \cap S_{i-1}(w) \neq \emptyset$. In particular we have $S_{i-1, i}(v) \neq \emptyset$ and hence, from Definition 1, we get that $S_{i-1, i}(v)=S_{i-1}(v)$. So our assumption implies that $S_{i-1}(v) \cap S_{i-1}(w) \neq \emptyset$. Now, by applying statement (1) of Lemma 2, we have $S_{i-1}(v) \subseteq S_{i-1}(w)$ and $S_{i-1}(w) \subseteq S_{i-1}(v)$. Hence $S_{i-1, i}(v) \cap S_{i-1}(w)=S_{i-1}(v) \cap S_{i-1}(w)=S_{i-1}(v)=S_{i-1}(w)$.

By Definition 1 and Lemma 1 we know that $\left|S_{i-1}(w)\right|=d^{i-1}$ and that, either $S_{k, i}(v)=\emptyset$ or $\left|S_{k, i}(v)\right|=$ $\left|S_{k}(v)\right|=d^{k}$. Therefore, from 21 we conclude that

$$
\left|S_{i}^{\star}(v) \cap S_{i-1}^{\star}(w)\right|=\left|S_{i-1}(w)\right|-\sum_{k=0}^{i-2}\left|S_{k, i}(v)\right|-\left|S^{\prime}\right| \geqslant d^{i-1}-\sum_{k=0}^{i-2} d^{k}-\left|S^{\prime}\right|
$$

Thus, since

$$
d^{i-1}-\sum_{k=0}^{i-2} d^{k}=d^{i-1}-\frac{d^{i-1}-1}{d-1}=\frac{(d-2) d^{i-1}+1}{d-1}>0
$$

we have $\left|S_{i}^{\star}(v) \cap S_{i-1}^{\star}(w)\right|=0$ if and only if $\left|S^{\prime}\right| \neq 0$. Therefore $S_{i}^{\star}(v) \cap S_{i-1}^{\star}(w)=\emptyset$ if and only if $S_{i-1, i}(v) \cap S_{i-1}(w)=S_{i-1}(v)=S_{i-1}(w)$.

By statement (1) of Lemma 2, we have $S_{i-1}(v)=S_{i-1}(w)$ if and only if $v_{[i, D]}=w_{[i, D]}$. Thus, since $w \in S_{1}(v)$, we conclude that $S_{i-1}(v)=S_{i-1}(w)$ if and only if $v_{i}=v_{i+1}=\cdots=v_{D}=w_{D}$; if and only if $G=B(d, D)$ and $v_{i}=v_{i+1}=\cdots=v_{D}=w_{D}$.

Therefore the proof of (a) will be completed by showing that if $S_{i-1}(v)=S_{i-1}(w)$, then $S_{i-1, i}(v) \cap$ $S_{i-1}(w)=S_{i-1}(v)=S_{i-1}(w)$. Let us prove this. Assume $S_{i-1}(v)=S_{i-1}(w)$. Then $S_{i-1}(v)=S_{i-1}(w) \subseteq$ $S_{i}(v)$, because $w \in S_{1}(v)$. Therefore, by Definition 1, we have $S_{i-1, i}(v)=S_{i-1}(v)$. So $S_{i-1, i}(v) \cap S_{i-1}(w)=$ $S_{i-1}(v) \cap S_{i-1}(w)=S_{i-1}(v)=S_{i-1}(w)$, as we wanted to prove.

Now let us demonstrate (b); that is, we have to prove that if $S_{i}^{\star}(v) \cap S_{i-1}^{\star}(w)=\emptyset$, then $S_{i}^{\star}(v) \cap S_{i}^{\star}(w) \neq \emptyset$.
So let us assume $S_{i}^{\star}(v) \cap S_{i-1}^{\star}(w)=\emptyset$ and thus, by (a), we have $G=B(d, D)$ and $v_{i}=v_{i+1}=\cdots=$ $v_{D}=w_{D}$.

If $i=D$ and $d \geqslant 3$ there is nothing to prove, because in this case we have $S_{D}^{\star}(v) \cap S_{D}^{\star}(w) \neq \emptyset$ by the case $i=j=D$ of statement (3) of Proposition 3, whereas if $i=D$ and $d=2$, then, since $v_{D}=w_{D}$, we also have $S_{D}^{\star}(v) \cap S_{D}^{\star}(w) \neq \emptyset$ by the case $i=j=D$ of statement (3) of Propositions 4 .

Hence assume $i<D$. Since $v_{i}=v_{i+1}=\cdots=v_{D}=w_{D}$, we have $v_{[i+1, D-1]}=v_{[i+2, D]}$ and $v_{D}=w_{D}$, which implies $v_{[i+1, D]}=w_{[i+1, D]}$, because $w \in S_{1}(v)$. Thus we conclude from Lemma 2 that $S_{i}(v)=S_{i}(w)$ and so $S_{i}(v) \cap S_{i}(w) \neq \emptyset$. Therefore if $d \geqslant 3$, then it follows from statement (1) of Proposition 3 that $S_{i}^{\star}(v) \cap S_{i}^{\star}(w) \neq \emptyset$. Whereas if $d=2$, since $i<D$, we also have $S_{i}^{\star}(v) \cap S_{i}^{\star}(w) \neq \emptyset$, because of condition (a) of statement (1) of Proposition 4. This concludes the proof of (b).

Case $i \leqslant j<D$ of statement (3) of Propositions 3 and 4
We have to prove the following two statements:
(a) If $d \geqslant 3$, then there exists a unique integer $j, i \leqslant j \leqslant D$, such that the intersection $S_{i}^{\star}(v) \cap S_{j}^{\star}(w)$ is nonempty.
(b) If $d=2$, then the intersection $S_{i}^{\star}(v) \cap S_{j}^{\star}(w)$ is empty for all integer $j, i \leqslant j \leqslant D$, if and only if $G=B(d, D)$ and $v_{i}=v_{i+1}=\cdots=v_{D} \neq w_{D}$.

Before proving (a) and (b) let us demonstrate the following claim: for any $v \in V$ and $w \in S_{1}(v)$, either $S_{i}(v) \cap S_{D-1}(w) \neq \emptyset$ or $S_{i}(v) \cap S_{D}(w) \neq \emptyset$.

Indeed, the claim clearly holds whenever $G=B(d, D)$, because in this case we have $S_{D}(w)=V$. If G is the Kautz digraph $K(d, D)$, we conclude from statements (1) and (2) of Lemma 2 that if $v_{i+1}=w_{D}$, then $S_{i}(v) \cap S_{D-1}(w) \neq \emptyset$; while if $v_{i+1} \neq w_{D}$, then $S_{i}(v) \cap S_{D}(w) \neq \emptyset$. This finishes the proof of our claim.

The above claim guarantees that the set of integers $\left\{\ell: i \leqslant \ell \leqslant D\right.$ and $\left.S_{i}(v) \cap S_{\ell}(w) \neq \emptyset\right\}$ is nonempty. Set $\ell_{0}=\min \left\{\ell: i \leqslant \ell \leqslant D\right.$ and $\left.S_{i}(v) \cap S_{\ell}(w) \neq \emptyset\right\}$. So ℓ_{0} is an integer such that $i \leqslant \ell_{0} \leqslant D$, $S_{i}(v) \cap S_{\ell_{0}}(w) \neq \emptyset$, and $S_{i}(v) \cap S_{k}(w)=\emptyset$ for $i \leqslant k<\ell_{0}$. In particular, for $i \leqslant k<\ell_{0}$, we have $S_{i}(v) \nsubseteq S_{k}(w)$, and hence $S_{i}(v) \nsubseteq S_{k, \ell_{0}}(w)$ for $i \leqslant k<\ell_{0}$.

Let us prove (a).
So we assume $d \geqslant 3$ and we have to demonstrate that there exists a unique integer $j, i \leqslant j \leqslant D$, such that the intersection $S_{i}^{\star}(v) \cap S_{j}^{\star}(w)$ is nonempty. By Proposition 2 it is enough to prove that there exists an integer $j_{0}, i \leqslant j_{0} \leqslant D$, such that the $S_{i}^{\star}(v) \cap S_{j_{0}}^{\star}(w) \neq \emptyset$.

If $i=D$ the result holds by taking $j_{0}=D$, because in this case, by the case $i=j=D$ of statement (3) of Proposition 3, we have $S_{D}^{\star}(v) \cap S_{D}^{\star}(w) \neq \emptyset$. Whereas if $i<D$ the result holds by taking $j_{0}=\ell_{0}$. Indeed, since $S_{i}(v) \nsubseteq S_{k, \ell_{0}}(w)$ for $i \leqslant k<\ell_{0}$, by applying statement (1) of Proposition 3, we have $S_{i}^{\star}(v) \cap S_{\ell_{0}}^{\star}(w) \neq \emptyset$.

This concludes the proof of (a).
Now let us prove (b).
Assume $d=2$. First, let us prove that if for all integer $j, i \leqslant j \leqslant D$, the intersection $S_{i}^{\star}(v) \cap S_{j}^{\star}(w)$ is empty, then $G=B(d, D)$ and $v_{i}=v_{i+1}=\cdots=v_{D} \neq w_{D}$.

Observe that if $i=D$, then the above implication is a direct consequence of the case $i=j=D$ of statement (3) of Proposition 4. Thus we only must prove the implication in the case $i<D$.

Hence, assume $i<D$. Let us consider the integer ℓ_{0} defined above. By assumption, $S_{i}^{\star}(v) \cap S_{\ell_{0}}^{\star}(w)=\emptyset$. Therefore, by statement (1) of Proposition 4, we conclude that $\ell_{0}=D, v_{[i, D-1]}=v_{[i+1, D]}$, and $S_{i-1, \ell_{0}}(w) \neq$ \emptyset. Since $i<D$ we have $v_{[i, D-1]}=v_{[i+1, D]}$ if and only if $G=B(d, D)$ and $v_{i}=v_{i+1}=\cdots=v_{D}$. To conclude it only remains to show that $v_{D} \neq w_{D}$.

Since $\ell_{0}=D$ and $S_{i-1, \ell_{0}}(w) \neq \emptyset$, by Remark 2 we have $S_{i-1}(w) \cap S_{k}(w)=\emptyset$ for all $i-1<k<D$. By statement (1) of Lemma 2, we have $S_{i-1}(w) \cap S_{k}(w)=\emptyset$ for all $i-1<k<D$ if and only if $w_{[i, D-(k-i)-1)]} \neq w_{[k+1, D]}$ for all $i-1<k<D$; if and only if $v_{[i+1, D-(k-i)-1)]} \neq v_{[k+2, D]}$ for $v_{D-(k-i)} \neq w_{D}$ for all $i-1<k<D$. Since $v_{i}=v_{i+1}=\cdots=v_{D}$ we have $v_{[i+1, D-(k-i)-1)]}=v_{[k+2, D]}$ for all $i-1<k<D-1$. Therefore we have $S_{i-1}(w) \cap S_{k}(w)=\emptyset$ for all $i-1<k<D$ if and only if $v_{D-(k-i)} \neq w_{D}$ for all $i-1<k<D$; if and only if $v_{D} \neq w_{D}$.

Reciprocally, let us demonstrate that if $G=B(d, D)$ and $v_{i}=v_{i+1}=\cdots=v_{D} \neq w_{D}$, then the intersection $S_{i}^{\star}(v) \cap S_{j}^{\star}(w)$ is empty for all integer $j, i \leqslant j \leqslant D$. If $v_{i}=v_{i+1}=\cdots=v_{D} \neq w_{D}$, then $v_{[i+1, D-(j-i)]} \neq w_{[j+1, D]}$ for all $j, i \leqslant j<D$. Therefore, by statement(1) of Lemma 2 , we have $S_{i}(v) \cap S_{j}(v)=\emptyset$ for all $j, i \leqslant j<D$, and hence $S_{i}^{\star}(v) \cap S_{j}^{\star}(w)=\emptyset$ for all $j, i \leqslant j<D$. It remains to be proved that we also have $S_{i}^{\star}(v) \cap S_{D}^{\star}(w)=\emptyset$. Indeed, since $S_{i}^{\star}(v)=S_{i}(v) \backslash\left(\bigcup_{k=0}^{i-1} S_{k}(v)\right)$ and $S_{D}^{\star}(w)=V \backslash\left(\bigcup_{k=0}^{D-1} S_{k}(w)\right)$, we conclude that

$$
S_{i}^{\star}(v) \cap S_{D}^{\star}(w)=S_{i}(v) \backslash \bigcup_{k=0}^{i-1}\left(S_{k}(v) \cup S_{k}(w)\right)=\emptyset
$$

because, since $d=2$ and $v_{i}=v_{i+1}=\cdots=v_{D} \neq w_{D}$, we have $S_{i-1}(v) \cup S_{i-1}(w)=S_{i}(v)$. (This last equality can be easily checked by using the sequence representation of the vertices.)

[^0]: *Correspondence: J. Fàbrega, Departament de Matemàtiques, Universitat Politècnica de Catalunya, Barcelona, Spain. Email: josep.fabrega@upc.edu
 ${ }^{\dagger}$ Funding information: Partially supported by the Ministerio de Ciencia e Innovación/Agencia Estatal de Investigación, Spain, and the European Regional Development Fund under project PGC2018-095471-B-I00; and by AGAUR from the Catalan Government under project 2017SGR-1087.

