
Recovering piecewise constant
conductances on networks with

boundary

A. Carmona1, A. M. Encinas2, M. J. Jiménez3, Á. Samperio4
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Abstract

The problem of recovering the conductances of a well-connected spider net-
work with boundary from its Dirichlet-to-Robin map is ill-posed for large net-
works, so despite there is an exact algorithm to solve it [1], the resulting network
is very different from the original one. This problem is the discrete analogous
to Calderon’s Inverse Problem, in which knowing a-priori that the conductiv-
ity is piecewise constant with a bounded number of unknown values makes the
problem Lipschitz stable [2].

We propose to introduce the hypothesis analogous for the discrete problem
that the conductances are constant in each element of a partition of the set
of edges with a small number of elements and we formulate the problem as a
polynomial optimization one, in which we minimize the difference between the
Dirichlet-to-Robin map of the recovered network and the given one plus a term
which penalizes the deviation from this hypothesis. We show examples in which
we are able to accurately recover the conductances solving this problem.

1 Introduction

The Inverse Boundary Value Problem arised for the first time around 1950 due
to Alberto Calderón’s work. However, it was not until 1980 that he published
“On an Inverse Boundary Value Problem” detailing his work on the subject.
This problem appeared as a consequence of an engineering problem on geo-
physical electrical prospection in which the objective is to deduce some internal
terrain properties from surface electrical measurements.

These works have motivated several developments in the inverse problem
field until nowadays. More recently, this problem has been also considered for



medical purposes on Electrical Impedance Tomography (EIT), which is a medical
imaging technique where an image containing visual information of internal
parts of the body is obtained from electrical measurements on the boundary.

The mathematical corresponding problem that Calderón proposed is whether
it is possible to determine the conductivity of a body by means of current and
voltage measurements at its boundary. This problem of recovering conductances
from boundary or surface current and potential measurements is a non–linear
inverse problem and it is exponentially ill–posed, since its solution is highly
sensitive to changes in the boundary data.

Since its appearance, Calderón’s Inverse Problems have been treated in many
ways. For instance, Sylvester and Uhlmann treated the uniqueness of solution;
Curtis, Ingerman and Morrow have worked on critical circular planar networks
conductivity reconstruction; Borcea, Druskin, Guevara and Mamonov have gone
into EIT problems in depth and their last works on the subject treat numerical
conductivity reconstruction.

Inverse boundary value problems have been considered both over the con-
tinuum and the discrete fields. In this work we define a new class of boundary
value problems on finite networks associated with Schrödinger operators. The
novelty lies on the fact that on a part of the boundary no data is prescribed,
whereas in another part of the boundary both the values of the function as of its
normal derivative are given. These problems are not self–adjoint, and hence we
worry about the study of existence and uniqueness through the adjoint problem.

We show that the overdetermined partial boundary value problem are the key
in the framework of inverse boundary value problems on finite networks, since
they provide the theoretical foundations of the recovery algorithm. In fact, this
type of problems were implicitly considered in some previous works, but only for
specific networks and boundary data. We analyze the uniqueness and existence
of solution of overdetermined partial boundary value problems through the non–
singularity of the partial Dirichlet–to–Neumann maps. These maps allow us
to determined the value of the solution in the part of the boundary with no
prescribed data. Afterwards, we give explicit formulae for the acquirement of
boundary spike conductances on critical planar networks and execute a full
conductance recovery for spider networks. This algorithm is an adaptation of
the one proposed for the Combinatorial Laplacian and when the corresponding
Dirichlet–to–Neumann map is singular.

2 Recovering conductances

Let Γ = (V, c) be a finite network; that is, a finite connected graph without
loops nor multiple edges, with vertex set V . Let E be the set of edges of the
network Γ. Each edge (x, y) has been assigned a conductance c(x, y), where
c : V ×V −→ [0,+∞). Moreover, c(x, y) = c(y, x) and c(x, y) = 0 if (x, y) /∈ E.
Then, x, y ∈ V are adjacent, x ∼ y, iff c(x, y) > 0.

The set of functions on a subset F ⊆ V , denoted by C(F ), and the set of
non–negative functions on F , C+(F ), are naturally identified with R|F | and the

positive cone of R|F |, respectively. We denote by

∫
F

u(x)dx or simply by

∫
F

u

the value
∑
x∈F

u(x). Moreover, if F is a non empty subset of V , its characteristic



function is denoted by χ
F

. When F = {x}, its characteristic function will be
denoted by εx. If u ∈ C(V ), we define the support of u as supp(u) = {x ∈ V :
u(x) 6= 0}.

If we consider a proper subset F ⊂ V , then its boundary δ(F ) is given by
the vertices of V \F that are adjacent to at least one vertex of F . The vertices
of δ(F ) are called boundary vertices and when a boundary vertex x ∈ δ(F ) has
a unique neighbour we call the edge joining them a boundary spike. It is easy
to prove that F̄ = F ∪ δ(F ) is connected when F is. Any function ω ∈ C+(F̄ )

such that supp(ω) = F̄ and

∫
F̄

ω2 = 1 is called weight on F̄ . The set of weights

is denoted by Ω(F̄ ). We denote by kF the function kF (x) =
∑
x∈F

c(x, y).

We define the normal derivative of u ∈ C(F̄ ) on F as the function in C(δ(F ))
given by (

∂u

∂n
F

)
(x) =

∫
F

c(x, y)
(
u(x)− u(y)

)
dy, for any x ∈ δ(F ).

Any function K ∈ C(F × F ) will be called a kernel on F . The integral
operator associated with K is the endomorphism K : C(F ) −→ C(F ) that assigns

to each f ∈ C(F ), the function K(f)(x) =

∫
F

K(x, y) f(y) dy for all x ∈ V .

Conversely, given an endomorphism K : C(F ) −→ C(F ), the associated kernel is
given by K(x, y) = K(εy)(x). Clearly, kernels and operators can be identified
with matrices, after giving a label on the vertex set. In addition, a function
u ∈ C(F ) can be identified with the kernel K(x, x) = u(x) and K(x, y) = 0
otherwise and hence with a diagonal matrix that will be denoted by Du.

The combinatorial Laplacian of Γ is the linear operator L : C(V ) −→ C(V )
that assigns to each u ∈ C(V ) the function defined for all x ∈ V as

L(u)(x) =

∫
V

c(x, y)
(
u(x)− u(y)

)
dy.

Given q ∈ C(V ) the Schrödinger operator on Γ with potential q is the linear
operator Lq : C(V ) −→ C(V ) that assigns to each u ∈ C(V ) the function Lq(u) =
L(u) + qu. It is well–known that any Schrödinger operator is self–adjoint. The
relation between the values of the Schrödinger operator with potential q on F
and the values of the normal derivative at δ(F ) is given by the First Green
Identity,∫
F

vLq(u) =
1

2

∫
F̄

∫
F̄

c
F

(x, y)(u(x)−u(y))(v(x)−v(y)) dxdy+

∫
F

quv−
∫
δ(F )

v
∂u

∂n
F

,

where u, v ∈ C(F̄ ) and c
F

= c · χ
(F̄×F̄ )\(δ(F )×δ(F ))

. A direct consequence of the
above identity is the so–called Second Green Identity∫

F

(
vLq(u)− uLq(v)

)
=

∫
δ(F )

(
u
∂v

∂n
F

− v ∂u

∂n
F

)
, for all u, v ∈ C(F̄ ).

We define the energy associated with F and q as the symmetric bilinear form
EFq : C(F̄ )× C(F̄ ) −→ IR given for any u, v ∈ C(F̄ ) by

EFq (u, v) =
1

2

∫
F̄

∫
F̄

c
F

(x, y)
(
u(x)− u(y)

) (
v(x)− v(y)

)
dx dy +

∫
F̄

q u v.



From the First Green Identity, for any u, v ∈ C(F̄ ) we get that

EFq (u, v) =

∫
F

vLq(u) +

∫
δ(F )

v

[
∂u

∂n
F

+ qu

]
.

For any weight σ ∈ Ω(F̄ ), the so–called potential associated with σ is the

function in C(F̄ ) defined as qσ = −σ−1L(σ) on F , qσ = −σ−1 ∂σ

∂n
F

on δ(F ). So,

through this section, will suppose that the above condition holds. In particular,
for any g ∈ C(δ(F )) the following Dirichlet problem

Lq(u) = 0 on F and u = g on δ(F ),

has a unique solution ug.
The map Λq : C(δ(F )) −→ C(δ(F )) that assigns to any function g ∈ C(δ(F ))

the function Λq(g) =
∂ug
∂n

F

+qg is called Dirichlet–to–Robin map. Moreover, λ is

the lowest eigenvalue of Λq and its associated eigenfunctions are multiple of σ.
In addition, if Nq ∈ C(δ(F )× δ(F )) is the kernel of Λq, its associated matrix Nq

is an irreducible and symmetric M–matrix. Usually Nq is called the response
matrix of the network. Given A,B ∈ δ(F ) a pair of disjoint subsets, we consider
the submatrix of the response matrix Nq(A;B) =

(
Nq(x, y)

)
(x,y)∈A×B .
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