
Polytechnic University of Catalonia

Center of Image and Multimedia Technology CITM

Multimedia Degree, Bachelor’s Thesis

Gallery of interactive
applications with 3D

components

Case study

Rubén Chiquin

Mentored by Pau Fernandez

Multimedia

Terrassa, 2022-2023



Rubén Chiquin
Gallery of interactive applications with 3D components

2



Rubén Chiquin
Gallery of interactive applications with 3D components

Index
Index 3
Summary 5
KeyWords 6
Links 7
Table Index 8
Figure Index 9
Glossary 10
1. Introduction 12

1.1. Motivation 12
1.2. Formulation of the problem 12
1.3. General objectives 13
1.4. Specific objectives 13
1.5. Target audience 14

2. State of the art 15
2.1. Three.js 16
2.2. React Three Fiber (R3F) 17
2.3. Spline.js 19
2.4. Theatre.js 20
2.5. Needle.tools 21
2.6. Outside of JavaScript 22

2.6.1. Three kit 22
2.6.2. Threlte 23
2.6.3. Trois 24

2.7. Market study 26
2.7.1. Galleries 26

Three.js Gallery 26
Three.js Docs 27
Awwwards 28

2.7.2. Specific examples 29
CineShader 29
Ringba 30
Github 31
3dfy 32
Three journey 33

2.8. Mono Repositories 34
3. Project management 36

Github 36
Google Drive 36

3.1. SWOT 36
3.2. Risks and contingencies plan 40

3



Rubén Chiquin
Gallery of interactive applications with 3D components

3.3. Initial cost analysis 41
4. Methodology 42
5. Project development 44
6. Conclusions 45

7.1. Future expansion 46
8. E-graphy 47
9. Annex 49

4



Rubén Chiquin
Gallery of interactive applications with 3D components

Summary

This thesis has the intention of exploring the potential of cutting-edge web
technologies for creating immersive 3D experiences in the browser. This
exploration will review different available technologies, and end up taking
the form of a gallery of interactive applications, evaluated for user
experience and optimized for performance. The results demonstrate the
potential of these technologies for web-based 3D graphics and interactive
applications.

5



Rubén Chiquin
Gallery of interactive applications with 3D components

KeyWords

3D, Web, So�ware

6



Rubén Chiquin
Gallery of interactive applications with 3D components

Links

URL on està la maqueta, web, APP, videojoc, vídeo, etc.

7



Rubén Chiquin
Gallery of interactive applications with 3D components

Table Index

8



Rubén Chiquin
Gallery of interactive applications with 3D components

Figure Index

9



Rubén Chiquin
Gallery of interactive applications with 3D components

Glossary

- JavaScript: A high-level programming language used to create dynamic
and interactive web content. It is supported by all modern web browsers
and can also be used for server-side development with Node.js.

- TypeScript: An open-source programming language that is a superset
of JavaScript, adding optional static typing and other features. It is
designed to improve code maintainability and scalability in large
applications.

- React: A popular JavaScript library for building user interfaces,
developed by Facebook. It allows developers to create reusable UI
components and efficiently manage the application state.

- Three.js: JavaScript library used for creating and displaying 3D
computer graphics in a web browser. It is compatible with a variety of
web technologies and provides tools for 3D model creation, animation,
and interaction.

- Tech stack: A tech stack, or technology stack, is a combination of
programming languages, so�ware tools, and technologies used to build
a web or mobile application.

- API: A set of protocols and tools that define how different so�ware
components interact with each other.

- DOM manipulation: Process of modifying the HTML and CSS
elements of a web page dynamically using JavaScript.

- SPA: A client-side web application that dynamically updates content on
a single web page, without requiring the entire page to be reloaded,
resulting in a more fluid user experience.

-
- React components: Reusable pieces of UI code that can be composed

together to create complex user interfaces.

- React Hooks: functions that allow stateful logic to be encapsulated and
shared between different components in a more efficient and flexible
way.

- Development dependency: A so�ware package or library that is
necessary during the development phase of a project, but not during

10



Rubén Chiquin
Gallery of interactive applications with 3D components

production.

- Shader: A small program that runs on the GPU and is used to render
graphics in 3D applications, games, and simulations. It controls the
colors, lighting, and other visual effects of 3D objects.

- Source code: refers to the human-readable instructions that a
programmer writes to create a computer program.

- SDK: Stands for So�ware Development Kit. It is a set of so�ware tools
and resources provided by a company or organization to help
developers create applications for a specific platform, operating system,
or so�ware framework.

- Declarative code: A programming paradigm that focuses on describing
"what" needs to be accomplished, rather than explicitly specifying "how"
to achieve it.

11



Rubén Chiquin
Gallery of interactive applications with 3D components

1. Introduction

1.1. Motivation

The motivation behind this thesis lies in a personal interest in exploring the
potential of emerging web technologies for creating engaging and
immersive user experiences. The use of 3D graphics and interactive
applications has become increasingly prevalent in various industries, and
its is worthwhile to investigate the capabilities of React, TypeScript, and
Three.js for creating such experiences in the browser.

Additionally, the growing demand for web-based solutions due to the
COVID-19 pandemic, which has highlighted the need for innovative and
accessible technologies for remote learning, product visualization, and
virtual experiences. By exploring the potential of these technologies, this
project hopes to contribute to the advancement of the field of web
development and provide insights into the design decisions that can impact
the overall user experience.

1.2. Formulation of the problem

Despite the increasing use of 3D graphics and interactive applications in
various industries, there is still a lack of understanding regarding the design
decisions and best practices for creating engaging and immersive user
experiences. Additionally, there is a need for accessible and innovative
web-based solutions due to the COVID-19 pandemic, which has highlighted
the potential of online person-to-person interactions.

While React, TypeScript, and Three.js offer promising capabilities for
creating 3D experiences in the browser, there is a need to explore their
potential and optimize their performance to ensure smooth rendering and
user satisfaction. Therefore, the problem addressed in this thesis is how to
leverage React, TypeScript, and Three.js to create a gallery of interactive
applications with 3D components that showcase different use cases,
evaluate the user experience, and optimize the performance.

12



Rubén Chiquin
Gallery of interactive applications with 3D components

1.3. General objectives

- To explore the potential of React, TypeScript, and Three.js for creating
immersive and engaging 3D experiences in the browser.

- To develop a gallery of interactive applications with 3D components
that showcase different use cases for 3D graphics, such as virtual reality
simulations, product visualizations, and educational tools.

- To optimize the performance of these applications to reduce load times
and ensure smooth rendering of the 3D graphics.

- To contribute to the field of web development by providing insights
into the design decisions and best practices for creating engaging and
immersive user experiences using React, TypeScript, and Three.js.

1.4. Specific objectives

- To research the capabilities of the pnmdrs developer collective
(explained in detail in this section), and put to the tests it’s
open-sourced libraries

- To touch different aspects of 3D and interactivity, using different event
triggers to perform different 3D actions

- To evaluate the viability of production-ready 3D so�ware on the web,
through trial and pragmatic effort.

- To familiarize with the intricacies of digital models at a code level, and
to become comfortable manipulating them and using them in
applications

- To evaluate, if not in practice at least in principle, the other potential
technologies that are arising and the future of the 3D technology for
the web.

13



Rubén Chiquin
Gallery of interactive applications with 3D components

1.5. Target audience

This thesis is limited in scope to the exploration of the pnmdrs stack. While
the findings may not apply to all 3D graphics applications or web
development frameworks, the insights and best practices provided can be
useful for developers and designers looking to create engaging and
immersive user experiences through the web.

The target audience for this thesis includes developers, designers, and
researchers interested in web-based 3D graphics and interactive
applications. Users potentially benefiting from this work include various
industries such as education, entertainment, marketing, and e-commerce,
as well as individuals interested in exploring 3D graphics and interactive
applications in the browser.

The optimized and user-friendly applications developed through this thesis
can offer new ways to visualize and interact with products, educational
content, and virtual environments, which can lead to improved learning
outcomes, higher user engagement, and better customer experiences.

14



Rubén Chiquin
Gallery of interactive applications with 3D components

2. State of the art

Web-based 3D graphics have been rapidly advancing in recent years,
driven by the growing demand for immersive and interactive content on
the web. Three.js is one of the most popular libraries for creating 3D
experiences in the browser, with a wide range of features and plugins that
make it suitable for various applications.

Other technologies, such as the ones that will later be mentioned in this
section, have also emerged as powerful tools for building 3D experiences
on the web. It is this section’s intention to lay out the advantages and
caveats of each technology and justify selecting one over the rest.

The exploration on optimizing web-based 3D graphics has shown that
techniques such as texture compression, model optimization, and lazy
loading can significantly improve the performance and load times of 3D
applications. These are some of the reasons why choosing the correct tech
stack is of most importance.

But before diving into the comparison, let’s analyze the hierarchy of
abstractions of web-based 3D technologies and compare the repertoire of
tech stacks that are available to solve the problem laid out by this thesis.

The hierarchy of abstractions on the tech stack chosen can be
conceptualized as in the following figure:

Figure x: Hierarchy of abstractions of the chosen tech stack

15



Rubén Chiquin
Gallery of interactive applications with 3D components

It is important to note that there have been layers of abstraction where an
opt-in (A conscious and premeditated decision to choose a certain
technology over another) has taken place. The first one would be to use
technology regarding the web (WebGL). The second, the JavaScript
programming language as the tool of choice (More concretely, TypeScript,
as a superset of the former language). Finally, a React opt-in, which
provides common ground for all the utility libraries that one may use for a
specific task.

A�er careful consideration, these opt-ins were chosen for specific reasons.
The personal interest and expertise of JavaScript / TypeScript has been a
primary factor, but not the only one. According to multiple sources dated
in 2022, such as Stack overflow survey1 or Github’s Octoverse Survey2

TypeScript has been one of the most loved and wanted programming
languages of today’s market.

It is also known that React-Three-Fiber is a standard for 3D based solutions,
as most utility libraries offer a direct connection to it. Cases such as
Shopify3 use these types of technologies on a daily basis. Given this
prominence of usage, it was decided to stick to the React ecosystem, as it is
considered the largest and fastest-growing tech stack available on the
market.

Having said that and before proceeding to discuss the chosen tech stack, let
us note that there will be an honorable mention of promising technologies
that were not part of the thesis due to the opt-ins of choice, in section 2.6.

2.1. Three.js4

Three.js is a popular JavaScript library for creating 3D graphics and
animations in web applications. It provides a comprehensive set of tools for
rendering, animating, and manipulating 3D objects in a browser
environment.

It maps out the WebGL API, a standard browser plug-in, allowing
GPU-accelerated usage of physics and image processing and effects as part
of the web page canvas.

It is considered the foundation of using 3D components on the browser.
Although it can be used directly in last-generation tech stacks, it is o�en

4 (Three.js, n.d.)

3 (Shopify, n.d.)

2 (The Top Programming Languages | The State of the Octoverse, n.d.)

1 (Stack Overflow, n.d.)

16



Rubén Chiquin
Gallery of interactive applications with 3D components

layered with other libraries and third-party tools to complete the
development tooling.

Figure x: Three.js webpage, showcasing star projects

2.2. React Three Fiber (R3F)5

In the era of DOM manipulation and SPA’s, the interactivity of web
applications and creation of user interfaces is rarely as easy to implement
as it is with frameworks such as Svelte, Astro or React.

React Three Fiber is a popular library that brings together the power of
React and Three.js, allowing developers to create immersive and interactive
3D experiences in the browser.

It provides a declarative way of creating and manipulating Three.js scenes
and objects using React components and hooks, simplifying the
development process and making it simpler .

R3F was created and is maintained by Poimandres6, an open source
developer collective for the creative space. This collective has taken over
the market niche of 3D web experiences, as they own and maintain not
only the R3F library (one of the most popular 3D web libraries), but also a

6 (Poimandres Collective, n.d.)

5 (React Three Fiber, n.d.)

17



Rubén Chiquin
Gallery of interactive applications with 3D components

wide variety of complementary libraries that created a large ecosystem and
the so-called s stack.

Figure x: Pmndrs documentation

Some of this libraries are7:

- React PostProcessing8: a postprocessing wrapper for
react-three-fiber.

- A11y9: Accessibility to webGL with easy-to-use react-three-fiber
components.

- React Spring10: Spring animation primitives for React, with direct
SDK that match the pmndrs libraries.

- Drei11: A growing collection of useful helpers and abstractions for
react-three-fiber.

As we will see further, R3F is used as a foundation for other utility libraries,
and is a referent for many other 3D libraries.

11 (Useful Helpers for React-Three-Fiber, n.d.)

10 (React Spring, n.d.)

9 (A11y Documentation, n.d.)

8 (React Postprocessing Documentation, n.d.)

7 Full list on (Poimandres Collective, n.d.)

18

https://docs.pmnd.rs/react-three-fiber/getting-started/examples


Rubén Chiquin
Gallery of interactive applications with 3D components

2.3. Spline.js 12

Spline.js is a free, real-time collaborative 3D design tool to create
tridimensional models. It provides a flexible and easy-to-use API for
defining and manipulating splines, allowing developers to create complex
and dynamic animations with ease.

Spline.js is o�en used by developers and designers as a studio to construct
animations and interactions that are later exported to known formats such
as R3F. It is compatible with other popular animation libraries like
Greensock and Three.js, making it a versatile and powerful tool for creating
engaging and visually appealing web animations.

Figure x: Spline studio

12 (Spline, n.d.)

19

https://spline.design/


Rubén Chiquin
Gallery of interactive applications with 3D components

2.4. Theatre.js13

Theatre.js is a javascript animation library with a professional motion
design toolset. It helps you create any animation, from cinematic scenes in
three.js, to complex UI interactions.

It aims to simplify the creation of interactive 3D scenes by providing a
higher-level, declarative API. Theatre.js allows developers to create and
manage multiple 3D scenes, define animations using timeline-based
keyframes, and easily add interactivity and user input handling.

It also includes a powerful layout engine for positioning and animating UI
elements, making it an ideal choice for creating rich and engaging 3D user
interfaces. Theatre.js is built on top of Three.js and provides a user-friendly
interface for building complex 3D scenes, reducing the amount of code
needed and speeding up the development process.

It has a direct SDK for three.js and react-three-fiber, and is o�en meant to
be used as a development dependency to test animations, interactions and
scene props placement.

Figure 4: Theatre.js studio format example

13 (Threate, n.d.)

20

https://www.theatrejs.com/


Rubén Chiquin
Gallery of interactive applications with 3D components

2.5. Needle.tools14

Needle is a popular open-source testing framework for Node.js
applications.

It provides a simple and easy-to-use API for writing automated tests, and
offers a number of powerful features, including parallel test execution, test
grouping and filtering, and code coverage analysis. One of the key
components of Needle is its set of built-in tools, which include a test
runner, an assertion library, and a mocking library.

These tools allow developers to write comprehensive, reliable tests that can
ensure the correctness and robustness of their Node.js applications. With its
intuitive interface and rich set of features, Needle has become a popular
choice for Node.js developers looking to improve the quality and stability
of their code.

Needle supports the use of popular 3D applications, such as Unity and
Blender. It connects these technologies to be used as a 3D studio to test
animations, interactions and scene props placement, similar to Theatre.js.

Figure x: Needle.js showcase

14 (Needle Tools, n.d.)

21

https://needle.tools


Rubén Chiquin
Gallery of interactive applications with 3D components

2.6. Outside of JavaScript

As mentioned before, there were some opt-ins in the tech stack chosen that
set aside multiple other options available in the market. And although the
opt-ins were previously justified, it wouldn’t be fair not to mention other
very viable choices with promising features.

2.6.1. Three kit15

The Threekit platform includes a variety of tools that make it easy for
companies to create and manage 3D product visuals. For example, their
configurator tool allows companies to create interactive product
configurators that let customers customize product features and see the
results in real-time. They also have a visualizer tool that enables companies
to create high-quality product images and 360-degree spins.

Another key feature of the Threekit platform is its AR capabilities.
Companies can use Threekit to create AR experiences that allow customers
to view and interact with 3D product models in real-world environments
using their mobile devices.

Unfortunately, Three.kit’s so�ware is proprietary and not available for the
public, and although they provide a top-class solution to 3D visualization,
their platform’s technology is far from our reach.

Figure x: Three kit’s webpage

15 (ThreeKit, n.d.)

22

https://www.threekit.com


Rubén Chiquin
Gallery of interactive applications with 3D components

2.6.2. Threlte16

Threlte is a renderer and component library for Svelte, a popular JavaScript
framework for building web applications. Threlte allows developers to use
Svelte to create and render 3D graphics and animations using Three.js, a
popular JavaScript library for creating 3D graphics.

One similarity between threlte and React Three Fiber is that both libraries
provide a declarative and reactive way of creating and manipulating 3D
objects and scenes using Three.js. This is one of many cases where Three.js
is the basis for JavaScript’s 3D ecosystem and is mainly powered by
Three.js.

Threlte allows developers to write Svelte components that create and
render Three.js scenes, while React Three Fiber allows developers to write
React components that create and manipulate Three.js objects and scenes.

Another similarity is that both libraries allow developers to manage the
state of 3D objects and scenes using the framework's built-in state
management tools. Threlte allows developers to use Svelte reactive stores
and props to manage the state of Three.js objects, while React Three Fiber
provides hooks and context objects for managing state in a React
application.

In fact, threlte’s philosophy is admittedly based on the sensible defaults of
React-Three-Fiber, as the authors have publicly stated in the
documentation. Overall, these two technologies are similar in their goals of
making it easier for developers to create and manage 3D graphics and
animations in web applications using popular JavaScript frameworks.

16 (Threlte, n.d.)

23



Rubén Chiquin
Gallery of interactive applications with 3D components

Figure x: Threlte’s documentation

2.6.3. Trois17

Trois.js is a JavaScript library built on top of Three.js that provides a set of
higher-level abstractions and utility functions for building complex 3D
scenes and animations. It is designed to make it easier for developers to
work with Three.js by providing a simpler and more intuitive API.

One of the key features of Trois.js is its collection of pre-made 3D objects
and shapes. These objects can be easily added to a scene and customized
with lighting and material properties. Trois.js also provides a number of
customizable camera controls, including pan, zoom, and rotate, which can
be used to give users an interactive view of a 3D scene.

Another feature of Trois.js is its particle system, which allows developers to
create complex particle effects such as smoke, fire, and explosions. The
library also provides integration with popular web frameworks such as
Vue.js and React.

One of the key benefits of Trois.js is that it abstracts away some of the
complexity of working with Three.js, making it easier for developers to

17 (TroisJS, n.d.)

24



Rubén Chiquin
Gallery of interactive applications with 3D components

create complex 3D scenes and animations without having to write low-level
Three.js code.

In summary, Trois.js is a higher-level library built on top of Three.js that
provides a simplified API and collection of pre-made objects and shapes for
creating complex 3D scenes and animations in web applications.

25



Rubén Chiquin
Gallery of interactive applications with 3D components

2.7. Market study

There is no shortage of examples in the market regarding web applications
using 3D technology, and although some used technology far from our
reach and not open-sourced, some of them are well acquainted with the
tech stack chosen.

The following projects are prime examples of fully performant,
professional applications using 3D technology at its best, and were used in
this thesis as references, both technically and creatively.

2.7.1. Galleries

During the research phase, there were multiple galleries of reference where
one could find recent, innovative applications that used 3D technology.
They are not specific examples, but are a good sources of ideas for starting
new projects and getting inspired.

Three.js Gallery18

The landscape of Three.js, which features a gallery of 3D projects created
by the community, can be a valuable reference for anyone creating 3D web
applications. The gallery showcases a wide range of projects, from games
and virtual reality experiences to product configurators and architectural
visualizations.

One of the key benefits of using the Three.js gallery as a reference is that it
offers a glimpse into the latest trends and innovations in 3D web design.
The gallery is constantly updated with new projects created by the
community, meaning that developers and designers can stay up-to-date
with the latest developments in the field. Additionally, the featured projects
are selected based on their quality and creativity, so the gallery offers a
curated selection of the best 3D web applications out there.

Another benefit of using the Three.js gallery as a reference is that it
provides real-world examples of how Three.js can be used to create
different types of 3D web applications. By studying the projects in the
gallery, developers can gain a better understanding of how to use the

18 (Three.js, n.d.)

26



Rubén Chiquin
Gallery of interactive applications with 3D components

library to create specific types of 3D experiences. They can also get
inspiration and ideas for their own projects.

Furthermore, the Three.js gallery is a community-driven project, meaning
that it features apps created by developers and designers from all around
the world. This can be especially helpful for those looking for different
design styles, cultural influences, and regional trends in 3D web design.

Three.js Docs19

The Three.js Examples documentation is a collection of practical examples
that demonstrate how to use the library to create different types of 3D web
applications. Each example is accompanied by code snippets and
explanations, making it easy for developers to understand how the code
works and adapt it to their own projects.

The Three.js examples documentation can be an incredibly useful
open-sourced reference for creating 3D web applications because it offers a
wide range of examples that cover various aspects of 3D graphics and
animation. Whether you want to create a 3D product configurator, an
interactive game, or a virtual reality experience, you can find examples that
showcase different techniques and approaches.

19 (Three.js Docs, n.d.)

27



Rubén Chiquin
Gallery of interactive applications with 3D components

Furthermore, the examples in the Three.js documentation are created with
vanilla three.js, meaning that they use only the core library without any
additional plugins or frameworks. This can be especially helpful for
developers who are learning Three.js or want to understand the underlying
principles of 3D graphics programming. By studying the code and
techniques used in the examples, developers can gain an understanding of
how to apply certain 3D concepts using JavaScript.

Figure x: Three.js documentation example’s section

Awwwards 20

Awwwards is a website that showcases exceptional design work in the fields
of web design, UX/UI design, and interactive design.

It is a platform that recognizes and rewards the best websitesfrom around
the world. As a reference for creating 3D web applications, Awwwards.com
can be an incredibly useful resource as it features a variety of outstanding
examples of 3D web applications that are not only visually stunning but
also functional and user-friendly.

20 (Awwards - Website Awards, n.d.)

28



Rubén Chiquin
Gallery of interactive applications with 3D components

By exploring and analyzing the different approaches taken by the
award-winning 3D web applications featured on Awwwards.com,
developers and designers can gain insights into best practices, innovative
techniques, and creative solutions that can be adapted and implemented in
their own projects.

2.7.2. Specific examples

CineShader21

Cineshader is an online platform that provides a library of high-quality
cinematic shaders for use in 3D graphics and animation projects. Shaders
are computer programs that define the appearance of 3D objects in a scene,
controlling how light interacts with the object's surface and creating the
final visual output.

Cineshader offers a range of different shaders, each designed to achieve a
specific look or effect. For example, there are shaders for creating realistic
skin, hair, and fur, as well as shaders for creating stylized or cartoon-like
visuals. All of the shaders are created by professional artists and designers,
and are optimized for use in a variety of 3D so�ware applications.

One of the main benefits of using Cineshader is that it can save time and
effort for 3D artists and designers. Rather than having to create shaders
from scratch for every project, they can simply download pre-built shaders
from the library and customize them as needed. This can be especially
helpful for freelancers or small teams who may not have the resources to
create their own shaders from scratch.

Additionally, Cineshader offers a range of resources and tutorials to help
users get the most out of the platform. There are video tutorials that walk
users through the process of applying shaders to 3D objects, as well as
articles and guides on best practices for shader development and
optimization.

21 (Cine Shader, n.d.)

29



Rubén Chiquin
Gallery of interactive applications with 3D components

Figure x: CineShader’s display of shaders

Ringba22

Ringba is a call tracking and analytics platform that helps businesses track
and analyze their phone calls to better understand their marketing
campaigns and customer behavior

Ringba.com's use of 3D graphics on their website can serve as a valuable
reference for those creating 3D web applications. By examining the design
and implementation of Ringba.com's 3D graphics, developers and
designers can gain insight into how to effectively use 3D graphics to
enhance visual design, improve user experience, and optimize
performance.

Although their 3D application does not have interactive functionalities, it
provides an insight on how 3D graphics can directly affect the user
experience and inferred quality of the product.

22 (Inbound Call Tracking for Pay Per Call, n.d.)

30



Rubén Chiquin
Gallery of interactive applications with 3D components

Figure x: Ringba’s use of 3D on their business pitch

Github23

GitHub is a web-based platform for version control and collaboration that
allows users to store and manage their code and related projects. It provides
tools for code review, project management, and continuous integration and
deployment. It is considered the biggest platform for code storage, and it is
used by millions of developers all around the world.

Github used to have a 3D component in their landing page that aided their
explanation on what their market value was, and it proves that 3D
applications are used frequently by enterprises and high quality digital
agencies.

23(HowWe Built the GitHub Globe, 2020)

31



Rubén Chiquin
Gallery of interactive applications with 3D components

Figure x: Github’s landing page and an interactive globe

3dfy24

3dfy is a so�ware company that specializes in converting 2D content into
3D models. Their proprietary technology uses computer vision and
machine learning algorithms to automatically create 3D models from 2D
images and videos, allowing users to easily create 3D content for use in
virtual reality, augmented reality, gaming, and other applications. The
company's products include an SDK for developers and a cloud-based
service for non-technical users.

The 3D particles on the 3dfy.ai website are a visual representation of the
company's core technology, which uses computer vision and machine
learning algorithms to convert 2D content into 3D models. The particles
move and rotate in a way that simulates the process of analyzing a 2D
image or video and extracting depth and spatial information to create a 3D
model. This process involves complex calculations and pattern recognition,
and the 3D particles help to illustrate how 3dfy's technology works in a
simple and intuitive way. Overall, the 3D particles are a creative and
engaging way to showcase 3dfy's innovative approach to 3D modeling.

24 (3DFY, n.d.)

32

https://github.blog/2020-12-21-how-we-built-the-github-globe/


Rubén Chiquin
Gallery of interactive applications with 3D components

Figure x: 3dfy’s landing page, 3D particles

Three journey25

Three.js Journey is an online course that teaches web developers how to
create 3D graphics and animations using the Three.js library. The course is
aimed at both beginners and experienced developers who want to add
interactive 3D content to their websites or create 3D games.

The landing page of Three.js Journey features a dynamic and immersive
3D scene that showcases the capabilities of the Three.js library for creating
3D graphics and animations on the web. The scene includes several key
components, including a textured and illuminated terrain, a 3D model of a
robot, and a particle system that generates small floating orbs.

The landing page itself is a great source of inspiration, as it provides a great
example of the capability of Three.js to create amazing digital experiences
for the web.

25 (Three.js Journey, n.d.)

33



Rubén Chiquin
Gallery of interactive applications with 3D components

Figure x: Three journey's landscape

2.8. Mono Repositories

As the project was being thought of more and more, careful consideration
was given to the utilization of monorepos as a viable solution for managing
the project's codebase. Monorepos offer advantages such as enhanced
organization of multiple related applications or components within a single
repository, facilitating code sharing, dependency management, and overall
project structure. It seemed a perfect fit for a set of applications with shared
dependencies.

An intriguing monorepo option, TurboRepo26 developed by Vercel,
captured attention during the evaluation process. However, due to its beta
status, concerns were raised regarding the stability and reliability of
TurboRepo, particularly when dealing with a critical research project like
the one at hand.

Throughout the exploration of alternative options, two prominent
monorepo tools, namely Nx27 and Lerna28, were considered. These
well-established tools provide advanced features for effectively managing
large-scale projects, including streamlined build processes, comprehensive
dependency tracking, and robust testing frameworks. Nevertheless,
considering the primary focus of this thesis, which lies in exploring and

28 (Lerna n.d)

27 (Nx n.d)

26 (Turborepo n.d.)

34



Rubén Chiquin
Gallery of interactive applications with 3D components

experimenting, it became apparent that these monorepo tools were
excessively sophisticated and primarily tailored towards enterprise-level
development scenarios.

Taking into account the research-oriented nature of the thesis and the
specific objectives to be accomplished, the decision was made to forgo the
implementation of monorepos. This choice was motivated by several
factors:

Firstly, the experimental nature of the web technologies under
investigation necessitated a flexible project structure and diverse
deployment options. The utilization of a monorepo structure would have
introduced constraints that could potentially limit the exploration of
various configurations and optimization techniques.

Secondly, while monorepos excel in managing expansive projects
comprising multiple interconnected applications or components, the scope
of this thesis primarily involved the creation of an interactive application
gallery. By adopting a simpler repository structure, the focus could be
maintained on the immersive experiences themselves, as well as the
evaluation of user experience and performance optimization. The inherent
complexities introduced by monorepos would have diverted attention
from the core objectives of the thesis.

This claim is backed up by the deprecated attempt to implement turborepo
for all the projects, which you can find reference to in the e-graphy and
annexes29.

Lastly, the time constraints associated with the project factored into the
decision-making process. The learning curve entailed in implementing and
configuring a monorepo tool would have necessitated a substantial
investment of time and effort. Given the thesis's emphasis on exploring
cutting-edge web technologies, prioritizing the development and
evaluation of immersive experiences over establishing and maintaining a
monorepo infrastructure was imperative.

In conclusion, while acknowledging the undeniable benefits of monorepos
in specific project scenarios, their implementation would have introduced
unnecessary complexities and potential limitations for the research
objectives at hand. By opting for a more straightforward project structure,
the focus remained on the core goals of the thesis, facilitating a more
efficient exploration and research.

29Monorepo (2020,May 20)

35



Rubén Chiquin
Gallery of interactive applications with 3D components

3. Project management

Project management is a critical aspect of any organization or business,
with the primary objective of achieving project goals while meeting scope,
time, quality, and budget requirements. In today's fast-paced and
ever-changing business world, the effective management of projects is
essential for the success of organizations. Project management tools play a
vital role in facilitating the process of project management by improving
project planning, organization, and communication.

The following is a list of all the tools that were used in this thesis for
project management.

Github30

GitHub is a powerful web-based platform for version control and
collaboration. It is particularly useful for so�ware development, as it is
commonly used to store source code as is the case of this thesis. By using
GitHub's version control, collaboration, issue tracking, documentation, and
hosting features, it was much easier to keep track of the work, collaborate
with others, and share the results with the world.

Google Drive31

Google Drive is a cloud-based storage and collaboration platform that can
be used as a management tool for a variety of projects, including research
and academic work. By storing files and documents on Google Drive, one
can easily organize, access, and collaborate on their work from anywhere
with an internet connection.

This was particularly useful to share the writing part of the thesis done,
review it and reiterate on corrections done by this thesis’s mentor.

3.1. SWOT

This thesis aims to explore the potential of cutting-edge web

31 (Personal Cloud Storage & File Sharing Platform, n.d.)

30 (Github, n.d.)

36



Rubén Chiquin
Gallery of interactive applications with 3D components

technologies for creating immersive 3D experiences in the browser.
As we assess the potential of these technologies, it is important to
take into account their strengths, weaknesses, opportunities, and
threats.

The strengths of these technologies include their potential for
engaging and immersive user experiences and their ability to
provide a new level of interactivity for web applications. However,
these technologies also have weaknesses, such as the need for a high
level of technical expertise to develop and limited support for older
browsers or devices. Opportunities for 3D web graphics and
interactive applications are growing, and this field holds promise for
new revenue streams and innovative user experiences.

However, there are also potential threats, such as competition from
other emerging web technologies, security concerns, and changes to
web standards or browser capabilities. This SWOT analysis provides
a framework for understanding the potential of cutting-edge web
technologies for creating immersive 3D experiences in the browser.

37



Rubén Chiquin
Gallery of interactive applications with 3D components

Strengths Weaknesses

High potential for engaging and

immersive user experiences

Requires a high level of technical expertise

to develop

Can provide a new level of interactivity

for web applications

Limited support for older browsers or

devices

Growing demand for 3D content and

interactivity on the web

Potential for slower load times and

decreased performance

Enables the creation of highly

customized and personalized

experiences

Limited availability of skilled developers

with expertise in 3D web technologies

38



Rubén Chiquin
Gallery of interactive applications with 3D components

Opportunities Threats

Increasing demand for immersive 3D

experiences on the web

Potential competition from other

emerging web technologies

Growing market for web-based 3D

graphics and interactive applications

Security concerns and potential

vulnerabilities associated with web-based

3D experiences

Potential for new revenue streams

through the development of 3D web

applications

Limited market adoption of 3D web

technologies

The ability to create new and innovative

web-based experiences that stand out

from competitors

Changes to web standards or browser

capabilities that could affect the viability of

3D web technologies

39



Rubén Chiquin
Gallery of interactive applications with 3D components

3.2. Risks and contingencies plan

It is vitally important to detect the risks that could endanger the work and
look for solutions so that, if necessary, the project can be resumed.

The possible risks identified for this project, and their corresponding
solutions, are as follows, ordered from least to most important:

Risk Contingency plan

Lack of Access to Necessary Technology

Research alternative technologies and

tools, or collaborate with other individuals

or institutions who have access to the

necessary resources.

Technical Issues during Development

Create a comprehensive testing plan and

budget extra time for troubleshooting and

debugging.

Difficulty in Achieving Desired User

Experience

Conduct user testing and seek feedback

from experts in the field to identify areas

for improvement and refine the design.

40



Rubén Chiquin
Gallery of interactive applications with 3D components

Insufficient Time to Complete Project

Prioritize tasks and create a realistic

timeline, and be willing to adjust goals and

expectations if necessary.

Unexpected Delays or Setbacks

Stay flexible and adaptable, and have

contingency plans in place for potential

disruptions to the project schedule.

Difficulty in Optimizing Performance

Continuously monitor and test the

performance of the applications, and make

adjustments as needed to ensure optimal

speed and responsiveness.

3.3. Initial cost analysis

The costs of this project are fortunately low budget. As it has no intention
to be selled in the market, but rather to investigate over a certain topic, the
only costs obtained fall down to academic and utility expenses.

Academic expenses Cost

Three.js Journey course 95$

Utility expenses Cost

Laptop hardware 1000$

8 Months of internet and electricity 800$

41



Rubén Chiquin
Gallery of interactive applications with 3D components

4. Methodology

For this thesis, I employed a combination of the iterative design process
and the agile methodology to ensure that the final product met the goals
that the project was set out to achieve at the beginning.

I began by creating prototypes of the so�ware, which I then tested and
gathered feedback on from peer designers and developers, as well as my
mentor. Based on their feedback, I made changes and created a new
prototype, repeating the process until I had a satisfactory solution.

There were times where certain projects and ideas were promising at first,
but resulted in a not so well desired result. These ideas were discontinued
and reformed in new ways for other future prototypes, making the creative
process much easier.

Throughout the development process, I also utilized the agile
methodology, working in short sprints to build small, working pieces of
so�ware. A�er each sprint, I reviewed the work, gathered feedback and
using it to refine and improved the product in subsequent sprints.

Figure x: An example of Agile methodology on a diagram

42



Rubén Chiquin
Gallery of interactive applications with 3D components

Overall, the use of the iterative design process and the agile methodology
were critical in the development of my thesis so�ware. By emphasizing
flexibility, collaboration, and communication, I was able to deliver a
high-quality product that I set out to achieve.

43



Rubén Chiquin
Gallery of interactive applications with 3D components

5. Project development

As the nature of this thesis is interactive, it is best explained with interactive
documentation. Please refer to the live web for further reading.
Additionally, the web version will be included in the annex, without the
interactivity.

https://tfg-docs.vercel.app/

44

https://tfg-docs.vercel.app/


Rubén Chiquin
Gallery of interactive applications with 3D components

6. Conclusions

In conclusion, this thesis has demonstrated the vast potential of
cutting-edge web technologies in facilitating the creation of immersive 3D
experiences within the browser. By leveraging the power of libraries such as
those developed by the pmdnrs collective, the thesis has showcased the
practicality and effectiveness of the declarative approach offered by React
in enabling the development of sophisticated 3D applications.

The adoption of a declarative coding paradigm, as exemplified by React,
has proven to be highly advantageous in the context of 3D web
development. By allowing developers to define the desired outcome or
state of an application without explicitly specifying the low-level
implementation details, declarative code fosters a more intuitive and
maintainable development process. This approach enables developers to
focus on the higher-level logic and creative aspects of 3D experiences,
rather than getting entangled in the intricacies of the GLSL canvas
manipulation or imperative code.

Moreover, the strong support and vibrant community surrounding the
development of 3D libraries within the React ecosystem have been
instrumental in driving advancements in web-based 3D graphics and
interactivity. The contributions and collaborative efforts of developers
within the community have resulted in the creation of powerful and
feature-rich libraries, which simplify the implementation of complex 3D
functionalities. These libraries, developed by the pmdnrs collective and
other contributors, provide a solid foundation for developers to build
upon, accelerating the development process and enhancing the quality of
3D applications.

In conclusion, this thesis has underscored the transformative potential of
cutting-edge web technologies, particularly within the React ecosystem, for
cra�ing immersive 3D experiences. The declarative coding paradigm,
coupled with the support of robust libraries like those developed by the
pmdnrs collective, presents a practical and efficient approach for
developers to create remarkable 3D applications. As the developer
community continues to expand and collaborate, the future holds exciting
possibilities for further advancements in web-based 3D graphics and
interactivity.

45



Rubén Chiquin
Gallery of interactive applications with 3D components

7.1. Future expansion

The future of 3D graphics and web development is promising, with the
recent stable release of WebGPU32 poised to bring about a transformative
shi� in the field. This significant development directly relates to how web
components will be developed in the future.

With the stable release of WebGPU, a new era of web-based 3D graphics is
on the horizon. This low-level graphics and compute API empowers
developers to fully leverage the capabilities of modern GPUs, resulting in
visually stunning and high-performance 3D graphics within web
applications. The arrival of WebGPU opens up exciting possibilities for this
thesis research, as it provides a powerful tool for creating interactive
applications that can deliver immersive and engaging user experiences.

The stable release of WebGPU also signifies a big shi� in the web
development landscape. With its standardized API and cross-platform
compatibility, WebGPU is set to be widely adopted across major browsers,
offering a consistent and efficient way to interact with GPUs. This shi�
creates a more unified and accessible ecosystem for web-based 3D graphics,
enabling developers to reach a broader audience and deliver seamless
experiences across different devices and platforms.

To conclude, by embracing this shi� towards WebGPU, this thesis could be
expanded to use these new technologies, by showcasing the advancements
in web development and the potential it holds for the future of 3D
graphics.

32 (Chrome Ships WebGPU, 2023)

46



Rubén Chiquin
Gallery of interactive applications with 3D components

8.E-graphy

(n.d.). Turborepo. Retrieved June 29, 2023, from https://turbo.build/

(n.d.). Nx: Smart, Fast and Extensible Build System. Retrieved June 29,

2023, from https://nx.dev/

(n.d.). Lerna: Documentation. Retrieved June 29, 2023, from

https://lerna.js.org

A11y Documentation. (n.d.). Pmndrs.docs. Retrieved March 24, 2023, from

https://docs.pmnd.rs/a11y/introduction

Awwards - Website Awards. (n.d.). Awwwards - Website Awards - Best Web

Design Trends. Retrieved March 24, 2023, from

https://www.awwwards.com

Chrome ships WebGPU. (2023, April 6). Chrome Developers. Retrieved June

29, 2023, from https://developer.chrome.com/blog/webgpu-release/

Cine Shader. (n.d.). CineShader. Retrieved March 24, 2023, from

https://cineshader.com

Github. (n.d.). GitHub: Let's build from here · GitHub. Retrieved March 24,

2023, from https://github.com

How we built the GitHub globe. (2020, December 21). The GitHub Blog.

Retrieved March 24, 2023, from

https://github.blog/2020-12-21-how-we-built-the-github-globe/

Inbound Call Tracking for Pay Per Call. (n.d.). Ringba. Retrieved March 24,

2023, from https://www.ringba.com/caller-profile/

Monorepo. (2020, May 20). Retrieved June 29, 2023, from

https://github.com/randreu28/TFG.monorepo

47



Rubén Chiquin
Gallery of interactive applications with 3D components

Needle Tools. (n.d.). Needle Tools. Retrieved March 24, 2023, from

https://needle.tools

Personal Cloud Storage & File Sharing Platform. (n.d.). Google. Retrieved

March 24, 2023, from https://www.google.com/drive/

Poimandres collective. (n.d.). Poimandres. Retrieved March 24, 2023, from

https://pmnd.rs/

Poinmanders list of libraries. (n.d.). pmnd.rs docs. Retrieved March 24, 2023,

from https://docs.pmnd.rs/

React Postprocessing Documentation. (n.d.). Pmndrs.docs. Retrieved March 24,

2023, from https://docs.pmnd.rs/react-postprocessing/introduction

React Spring. (n.d.). react-spring. Retrieved March 24, 2023, from

https://www.react-spring.dev

React Three Fiber. (n.d.). Pmndrs.docs. Retrieved March 24, 2023, from

https://docs.pmnd.rs/react-three-fiber/getting-started/introduction

Shopify. (n.d.). Start and grow your e-commerce business - 3-Day Free Trial.

Retrieved March 24, 2023, from https://www.shopify.com

Spline. (n.d.). Spline - Design tool for 3D web browser experiences.

Retrieved March 24, 2023, from https://spline.design

Stack Overflow. (n.d.). Stack Overflow Developer Survey 2022. Stack Overflow

Annual Developer Survey. Retrieved March 12, 2023, from

https://survey.stackoverflow.co/2022/#most-loved-dreaded-and-wan

ted-language-love-dread

Threate. (n.d.). Theatre.js - animation toolbox for the web. Retrieved March

24, 2023, from https://www.theatrejs.com

3DFY. (n.d.). 3DFY.ai. Retrieved March 24, 2023, from https://3dfy.ai

48



Rubén Chiquin
Gallery of interactive applications with 3D components

Three.js. (n.d.). Three.js – JavaScript 3D Library. Retrieved March 24, 2023,

from https://threejs.org

Three.js docs. (n.d.). Three.js. Retrieved March 24, 2023, from

https://threejs.org/docs/

Three.js Journey. (n.d.). Three.js Journey — Learn WebGL with Three.js.

Retrieved March 24, 2023, from https://threejs-journey.com

ThreeKit. (n.d.). Threekit: 3D Product Configurator & Augmented Reality

For Commerce. Retrieved March 24, 2023, from

https://www.threekit.com

Threlte. (n.d.). Threlte: Introduction. Retrieved March 24, 2023, from

https://threlte.xyz

The top programming languages | The State of the Octoverse. (n.d.). GitHub

Octoverse. Retrieved March 24, 2023, from

https://octoverse.github.com/2022/top-programming-languages

TroisJS. (n.d.). TroisJS: Home. Retrieved March 24, 2023, from

https://troisjs.github.io

Useful helpers for react-three-fiber. (n.d.). GitHub. Retrieved March 24, 2023,

from https://github.com/pmndrs/drei#readme

9. Annex

49



TFG Documentation

by Rubén Chiquin

1. An introduction

The purpose of this documentation is to present the �ndings and outcomes of the

author’s bachelor thesis. The thesis focuses on the development and implementation of

a gallery comprising interactive applications with 3D components. This chapter provides

an introduction to the thesis and outlines the structure of the documentation, as well as

some key concepts that will later be of utility for the rest of the documentation.

1.1 Scope

This documentation assumes a basic understanding of React.js and TypeScript, while no

prior knowledge of 3D engines is required.

1.2 Technology stack

It is essential to understand the layers of abstraction that exist between the code and

the visual output on the screen. The following technologies are utilized:

1.2.1 WebGL

WebGL serves as the primary framework for rendering 3D graphics in web browsers. It

offers low-level control over the rendering process and is encapsulated within the

HTML <canvas> element.

1.2.2 Three.js

Three.js is a JavaScript library that provides a higher level of abstraction for creating 3D

graphics. It simpli�es the process of generating geometric shapes, such as cubes and

http://localhost:3000/
https://randreu.dev/
https://react.dev/
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API
https://threejs.org/


spheres, by utilizing JavaScript classes.

1.2.3 React Three Fiber (R3F)

React Three Fiber is a library that further abstracts the development process by

enabling the creation of React components for modern and interactive 3D elements. It

combines the declarative nature of React with the imperative approach of Three.js.

It is worth mentioning that the current era of 3D visualization is changing. In this

docuemntation’s case, it was chosen to work with the currently established WebGL

3D render motor, which has been the standard for the web for many years now.

But do note that the upcoming WebGPU technology might replace it in the incoming

years.

1.3 An Overview of Shaders

This chapter provides an overview of shaders, which play a signi�cant role in several

projects within the gallery. Shaders enable low-level control over the rendering of

speci�c objects by interacting directly with the WebGL GLSL compiler.

Shaders are primarily used for tasks that require precise control over the rendering

process. As expressed by Patricio Gonzalez in his book ”The Book of Shaders“:

https://docs.pmnd.rs/react-three-fiber/getting-started/introduction
https://developer.chrome.com/blog/webgpu-release/
https://thebookofshaders.com/


“In shader-land we don’t have too many resources for debugging besides assigning

strong colors to variables and trying to make sense of them. You will discover that

sometimes coding in GLSL is very similar to putting ships inside bottles. Is equally

hard, beautiful and gratifying.”

1.4 React 3D Components

Fortunately, not all aspects of the project necessitate handling in GLSL. React Three

Fiber provides signi�cant assistance to developers in simplifying the interactivity and

rendering process. To illustrate this, let’s examine an exemplary code snippet from React

Three Fiber. If you are familiar with React, you will �nd this code structure familiar:

import { createRoot } from "react-dom/client";

import React, { useRef, useState } from "react";

import { Canvas, useFrame } from "@react-three/fiber";

function Box(props) {

  // This reference will give us direct access to the mesh

  const mesh = useRef();

  // Set up state for the hovered and active state

  const [hovered, setHover] = useState(false);

  const [active, setActive] = useState(false);

  // Subscribe this component to the render-loop, rotate the mesh every frame

  useFrame((state, delta) => (mesh.current.rotation.x += delta));

  // Return view, these are regular three.js elements expressed in JSX



  return (

    <mesh

      {...props}

      ref={mesh}

      scale={active ? 1.5 : 1}

      onClick={(event) => setActive(!active)}

      onPointerOver={(event) => setHover(true)}

      onPointerOut={(event) => setHover(false)}

    >

      <boxGeometry args={[1, 1, 1]} />

      <meshStandardMaterial color={hovered ? "hotpink" : "orange"} />

    </mesh>

  );

}

createRoot(document.getElementById("root")).render(

  <Canvas>

    <ambientLight />

    <pointLight position={[10, 10, 10]} />

    <Box position={[-1.2, 0, 0]} />

    <Box position={[1.2, 0, 0]} />

  </Canvas>

);



2. Gallery

All the projects are open source and at anyone’s disposal. As the projects are very visual,

there is also preview links to experience the end result in live.

Do take into account that all projects rely heavily on WebGL’s render motor, which

requieres a computer with decent computing capabilites in order to achieve 60fps.

Particle showcase

A parametrized particle shader.

Repository Live version

TriArt

https://particle-showcase.vercel.app/
https://github.com/randreu28/TFG.particle-showcase
https://particle-showcase.vercel.app/


A 3D art-sharing space where you can promote your work to the world.

Repository Live version

Mirror efect

An experimental re�ective mirror cloud with post-processing effects.

https://tfg-triart.vercel.app/
https://github.com/randreu28/TFG.triart
https://tfg-triart.vercel.app/


Repository Live version

Buckle up

A parametrized shader showcase of an in�nite vortex.

https://tfg-mirror-effect.vercel.app/
https://github.com/randreu28/TFG.mirror-effect
https://tfg-mirror-effect.vercel.app/


Repository Live version

Talking stars

An interactive shader that can hear you speak.

http://tfg-buckle-up.vercel.app/
https://github.com/randreu28/TFG.buckle-up
http://tfg-buckle-up.vercel.app/
https://tfg-talking-stars.vercel.app/


Repository Live version

Halo inspector

An armor inspector of the famous halo charcater.

Repository Live version

https://github.com/randreu28/TFG.talking-starsup
https://tfg-talking-stars.vercel.app/
https://halo-inspector-randreu28.vercel.app/
https://github.com/randreu28/TFG.halo-inspector
https://halo-inspector-randreu28.vercel.app/


3. Common libraries

Throughout all the projects, there are some libraries that were used repeatedly that

aren’t meant to be the main focus of the thesis. This chapter intends to give a quick

summary of how they work.

3.1 Leva Controls

Leva is a GUI library commonly used alongside R3F to debug and have some visual

controls over the parameters of your 3D scene.

These controls are commonly employed for debugging purposes, as it may be necessary

to experiment with different values to achieve the desired outcome. Using an interactive

user interface allows for easier adjustment of these values, eliminating the need to

reload the application each time changes are made in order to validate their effects.

Leva was created by the Pmndrs collective, the same open-source developer

collective who created R3F. This is why there are many examples of 3D scenes with

these controls:

3.2 Zustand / Jotai

Zustand, as well as Jotai are both state management libraries to create stores and share

values across a React application. They are often used throughout the projects to avoid

Prop drilling. Here’s a Zustand example:

3.3 @a7sc11u/scramble

@a7sc11u/scramble is a library that provides scrambling text animations with a simple

React component.

https://github.com/pmndrs/leva
https://github.com/pmndrs/zustand
https://jotai.org/
https://dev.to/codeofrelevancy/what-is-prop-drilling-in-react-3kol#:~:text=Prop%20drilling%20is%20the%20process,layers%20of%20a%20component%20hierarchy.


<TextScramble className="..." as="span" text={"Hello scramble"} />

By the time this documentation was written, the the creator of this small library

discontinuated it. Now, a new lightweight package (1KB) with the same creator was

made, which offers a new recommended way with a custom hook approach, written

in TypeScript:



4 Particle Showcase

Repository Live version

4.0.1 Installation

To set up the project, follow these installation steps:

git clone https://github.com/randreu38/TFG.particle-showcase.git

cd TFG.particle-showcase

yarn install

yarn dev

4.0.2 Project Overview

https://particle-showcase.vercel.app/
https://github.com/randreu38/TFG.particle-showcase
https://particle-showcase.vercel.app/


The project consists of a particle system made with a particle shader, that changes its

internal state every x seconds, alongside some text. The project incorporates Leva

controls for manipulating various aspects of the scene. The following code snippet

showcases the structure of the <Canvas/> component:

<Canvas>

  <PerspectiveCamera makeDefault position={camPosition} />

  <color attach="background" args={[backgroundColor]} /> // A simple solid ba

  color

  <EffectComposer>

    <Vignette eskil={true} opacity={vignette} offset={0.1} darkness={1.5} />

  </EffectComposer>

  <OrbitControls />

  <Buffer />

</Canvas>

Furthermore, outside the canvas, the <DynamicText/> component is responsible for

rendering dynamic text elements:

<h1 className="...">

  <span>{title}</span>

  <br />

  <DynamicText />

</h1>

4.0.3 The Canvas

Let’s delve into the details of the <Canvas/> component. It includes a perspective camera

with a position managed by the Leva controls. Notably, there is also an

<OrbitControls/> component present. One might wonder how these two elements

coexist without con�icting:

<Canvas>

  <PerspectiveCamera makeDefault position={camPosition} />

http://localhost:3000/projects/common-libraries#31-leva-controls


  <color attach="background" args={[backgroundColor]} />

  <OrbitControls />

  <Buffer />

  ...

</Canvas>

The reason for their compatibility lies in the fact that the <OrbitControls/> component

merely modi�es the transform properties of the default canvas camera. In React Three

Fiber, the default camera is implicit. By introducing the <PerspectiveCamera/>

component with speci�c properties, we can modify the default camera’s values.

In the context of 3D objects, the term transform encompasses both position and

rotation.

Additionally, the <EffectComposer/> component from React Three Postprocessing is

employed to apply a subtle vignette effect to the scene:

<Canvas>

  {/* ... */}

  <EffectComposer>

      <Vignette eskil={true} opacity={vignette} offset={0.1} darkness={1.5} /

  </EffectComposer>

<Canvas/>

In Eskil’s vignette technique, the effect originates from the outside and moves

inwards, as opposed to the traditional inside-out approach. When the eskil prop is

set to true, the offset value should be greater than 1.

4.0.4 Modeling work�ow

In this project, although the primary focus of the thesis was not on modeling, the author

took personal responsibility for creating basic models. To achieve this, it was crucial to

have real-time feedback on how the models would appear within the particle system.

https://docs.pmnd.rs/react-postprocessing/introduction


Fortunately, Blender, the chosen 3D modeling software, offers a command-line interface

(CLI) that allows the execution of Python scripts to automate work�ows.

To enable constant feedback during the modeling process, the project utilized two

scripts de�ned in the package.json �le: yarn model and yarn watch. These scripts

allowed the execution of the Python script while maintaining synchronization between

the Blender scene and the R3F scene. Here are the scripts declared on the package.json

�le:

  "scripts": {

    "model": "blender modeling/king.blend --background --python modeling/expo

    "watch": "watch 'yarn model' ./modeling"

  },

The model script executes Blender commands, invoking the Python script for each

model, resulting in the export of the models to the GLB format in the speci�ed output

directory. Here is the Python script that is executed:

import bpy

import sys

print("")

print(" Blender export scene in GLB Format in file "+sys.argv[-1])

# https://docs.blender.org/api/current/bpy.ops.export_scene.html

bpy.ops.export_scene.gltf(

    filepath=sys.argv[-1],

    check_existing=False,

    export_format='GLB',

    ...

    )

The watch script enables the continuous execution of the Python script on different

models, ensuring that the R3F scene remains synchronized with the corresponding

https://www.blender.org/


.blend �les. This iterative work�ow enables quick iterations and feedback during the

modeling process.



4.1 The Shader

This project heavily relies on GLSL (OpenGL Shading Language) for its rendering and

interactivity. In this documentation, we will cover the essential aspects of the shader

code. If you are new to shaders and would like to learn more, I recommend checking

out the Book of shaders for a comprehensive introduction.

If you have scouted around the <Buffer/> component, you may have noticed that there a

lot of elements orchestrating it. Let’s try to understand it before diving into the code.

The component is named “Buffer” because it serves as a temporary container of

information. In the context of 3D objects, each object has various properties such as

materials, position, rotation, scale, and opacity. However, in this discussion, we will

focus on the object’s geometry.

The geometry of a 3D object consists of two key elements: vertices and fragments.

Vertices are 3D points in space. They do not occupy physical space themselves but

serve as connectors for the fragments.

Fragments connect the vertices and are responsible for painting pixels on the

screen. In this component, the emphasis is on the vertices, which are represented as

particles or small dots in space. These particles are not directly connected to each

other like traditional geometry; instead, they exist independently.

Now let’s explore the code and dive deeper into the implementation of the shader.

https://thebookofshaders.com/


The vertices are saved in a Float32Array, which saves thousands of numbers that are

later decoded into what you see, in an attribute called position.

In our implementation, the <Buffer/> component represents not just a single object, but

rather a collection of objects that change over time. To achieve this, we utilize a box-like

structure where we de�ne different positions for various objects such as a lightbulb, a

chess piece, a box, etc. These positions are then interchanged dynamically.

Within the shader code, we declare attributes to represent these different geometries,

like so:

attribute vec3 position; // Box geometry

attribute vec3 position2; // Random cloud geometry

attribute vec3 position3; // Rocket geometry

attribute vec3 position4; // Lightbulb geometry

attribute vec3 position5; // Chess piece

...

The purpose of these attributes is to allow us to change the geometries of the objects

dynamically. Additionally, we also want to modify other aspects of the shader, such as

particle size, color, transparency, and speed. To achieve this, we use uniforms, which can

be modi�ed from our TSX code as usual.

It’s important to note that a uniform serves as a bridge between the GLSL code and

the TSX code. They act as parameters that are passed into the shader and computed

to create the visual effects we observe on the screen.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Float32Array


These uniforms are then used to interpolate between the different geometries using the

mix GLSL function:

//Cycles between geometries

vec3 switchGeometry3 = mix(position5, position, state3);

vec3 switchGeometry2 = mix(position4, switchGeometry3, state2);

vec3 switchGeometry1 = mix(position3, switchGeometry2, state1);

vec3 switchGeometry = mix(position2, switchGeometry1, randomState);

Think of the mix function as a scale. The �rst two parameters are both sides of the scale.

The third value (a number between 0 and 1) is what determines how left or how right will

the balance end up going.



To add some idle animations to the geometries and make them look organic and alive,

we utilize a simple sinus animation and incorporate Perlin noise using Stefan

Gustavson’s Perlin noise function.

The sinus animation creates an up-and-down movement effect by applying the sin

function to the x coordinate of the model position, multiplied by a factor of 5, and the

current time multiplied by 2.5. This value is then multiplied by 0.02 to control the

magnitude of the animation.

The Perlin noise animation is achieved by using the cnoise function with the

modelPosition.yz (excluding the x coordinate) and the current time multiplied by 0.5.

The resulting noise is later toned down by bein multiplied by 0.05.

To combine these two animations, we use the mix function, which blends the sinus

animation and the Perlin noise animation together with a balance of 0.5. The resulting

value is stored in the idleAnimation variable.

//IdleAnimation

float sinusAnimation = sin(modelPosition.x * 5.0 + time*2.5) * 0.02;

float perlinNoiseAnimation = cnoise(vec3(modelPosition.yz, time*0.5))*0.05;

float idleAnimation = mix(sinusAnimation,perlinNoiseAnimation, 0.5);

In the fragment shader, the main goal is to determine the color and transparency of the

pixels. The bufferColor uniform represents the color of the particles, and the

transparencyState uniform controls the transparency.



The particles are made to appear round by creating circles in the middle of each

particle. This is achieved by calculating the distance of the current fragment coordinate

from the center of the particle and comparing it to a threshold value of 0.5. If the

distance is less than 0.5, the fragment is inside the circle and is assigned a value of 1;

otherwise, it is outside the circle and is assigned a value of 0. This value is then

multiplied by the transparencyState to control the overall transparency of the particle.

uniform vec3 bufferColor;

uniform float transparencyState;

void main()

{

    //make particles round

    vec2 xy = gl_PointCoord.xy - vec2(0.5);

    float ll = length(xy);

    float round = step(ll, 0.5);

    float finalAlpha = round;

    finalAlpha *= transparencyState;

    gl_FragColor = vec4(bufferColor, finalAlpha);

}

It’s important to note that transparency in the GLSL world is not truly achievable due

to the limitations of rendering techniques. In this implementation, each particle is

treated as a single vertex, resulting in square particles with circles in the middle to

create the impression of transparency:





4.2 Dynamic text

The dynamic text component in this project utilizes the scrambleUI library.for the text

animations. To implement this, we cycle between different texts based on the tick state,

which determines the speed at which the buffer changes its geometry.

To access the tick state, a Zustand store (similar to Redux) is used. The tick value is

obtained from the store using the useStore hook. This tick value is then used to retrieve

the corresponding text from an object of text values.

The useControls hook from the leva library is used to de�ne the texts and their initial

values in a control panel.

As seen beolow, the <TextScramble/> component receives the className prop for

styling purposes, the as prop to specify the HTML element to be rendered, and the text

prop, which is set to the current text based on the tick value:

import { TextScramble } from "@a7sc11u/scramble";

import useStore from "./store/store";

import { useControls } from "leva";

export default function DynamicText() {

  let tick = useStore((state) => state.tick);

  const [params] = useControls("Texts", () => ({

    text1: "design experiences",

    text2: "love to innovate",

    text3: "think creatively",

    text4: "solve problems",

  }));

  const text: string[] = Object.values(params);

  return <TextScramble className="..." as="span" text={text[tick]} />;

}

http://localhost:3000/projects/common-libraries#33-a7sc11uscramble
http://localhost:3000/projects/common-libraries#32-zustand--jotai
http://localhost:3000/projects/common-libraries#31-leva-controls


4.3 Buffer

In the <Buffer/> component, there are two main aspects: the geometry and the

material. These are de�ned within a <points> element, like so:

<points ref={ref}>

  <bufferGeometry>...</bufferGeometry>

  <shaderMaterial>...</shaderMaterial>

</points>

4.3.1 The shader material

The material of this object is nothing like any other. Luckily, R3F allows us to create

materials of our own, by creating a shaderMaterial and passing our own fragment and

vertex shaders, as well as any uniforms we might need:

import fragShader from "./shaders/fragment.glsl";

import vertShader from "./shaders/vertex.glsl";

import { shaderMaterial } from "@react-three/drei";

 const [params, setParams] = useControls("Particles",()=>...)

 const ShaderMaterial = shaderMaterial(

    {

      particleSize: params.particleSize,

      bufferColor: new THREE.Color(params.bufferColor),

      time: 0,

      transparencyState: params.transparencyState,

      randomState: params.randomState,

      state1: params.state1,

      state2: params.state2,

      state3: params.state3,

    },

    vertShader,

    fragShader



  );

When importing GLSL �les, Typescript doesn’t know what to make of them. To tell

typescript to import them as strings, you can create a declaration �le glsl.d.ts:

declare module "*.glsl" {

  const value: string;

  export default value;

}

One might have noticed that time is also uniform. This is to keep an internal state of how

fast animations go internally, as GLSL does not have access to the frames per second of

our <Canvas/>. To keep track of this, we use the useFrame hook of R3F:

const ref = useRef<myPoints>(null!); // Will later be referenced on the JSX

useFrame((state) => {

  ref.current.material.uniforms.time.value = state.clock.elapsedTime;

});

4.3.2 The geometries

Following up on what was discussed in the chapter 2.1, the Buffer contains different

position values, that store the different vertices that compose the geometry. For

declaring these values, R3F offers us Computed Attributes, which look like this:

<ComputedAttribute

  name="position"

  compute={() => {

    const geometry1 = new THREE.BoxGeometry(1, 1, 1, 16, 16, 16);

    const geometry1Attribute = new THREE.BufferAttribute(

      geometry1.attributes.position.array,

      3

    );

http://localhost:3000/projects/particle-showcase/shader


    return geometry1Attribute;

  }}

  usage={THREE.StaticReadUsage}

/>

This previous example stores in the position variable a simple Box Geometry divided in

16 for each axis (x,y and z). Now, in order to create the initial effect of assemblin the

geometry, we need a cloud of points.

In order to achieve this effect,we need to create another box geometry and randomize

the vertice’s position and return it as a THREE.BufferAtribute:

<ComputedAttribute

  name="position2"

  compute={() => {

    const geometry1 = new THREE.BoxGeometry(1, 1, 1, 16, 16, 16);

    const geometry2 = new Float32Array(geometry1.attributes.position.count * 

    for (let i = 0; i < geometry1.attributes.position.count * 3; i++) {

      geometry2[i] = (Math.random() - 0.5) * 10;

    }

    const geometry2Attribute = new THREE.BufferAttribute(geometry2, 3);

    return geometry2Attribute;

  }}

  usage={THREE.StaticReadUsage}

/>

The THREE.BufferAttribute takes two arguments, the Float32 array, and the item

size to decode it. As we’re working with 3 dimensions (a.k.a Vector3’s), we declare as

second parameter a 3

The rest of the models simply come from our .glb �les and we compute them the same

way:



import { GLTFLoader } from "three";

const king = useLoader(GLTFLoader, "models/king.glb");

const lightBulb = useLoader(GLTFLoader, "models/lightbulb.glb");

const rocket = useLoader(GLTFLoader, "models/rocket.glb");

const models = [king, lightBulb, rocket];

...

{models.map((model, index) => {

          return (

            <ComputedAttribute /

              name={`position${index + 3}`}

              compute={() => {

                const geometryAttribute = new THREE.BufferAttribute(

                  model.nodes.targetModel.geometry.attributes.position.array,

                  3

                );

                return geometryAttribute;

              }}

              usage={THREE.StaticReadUsage}

            />

          );

        })}

The targetModel node was speci�cally called like so in our 3D object inside the

.blender �les. Otherwise, the iteration would have to access different names.

4.3.3 Animations

For the animations, we use the useEffect hook to manage our shader uniforms and

change the position with the tic variable:

 let interval = setInterval(() => {

      if (tick == 3) {



        tick = 0;

        resetTick();

      } else {

        ++tick;

        incTick();

      }

Then we use Gsap to interpolate the values and create smooth animations based on the

tick value.

switch (tick) {

   case 0:

     gsap.to(params, {

       state1: 1.0,

       state2: 1.0,

       state3: 1.0,

       duration: 1.25,

       ease: "circ.out",

       onUpdate: () => {

         setParams({

           state1: params.state1,

           state2: params.state2,

           state3: params.state3,

         });

       },

     });

    break;

    ...

Gsap is an animation library. Their API can be quickly explained with this graph:

https://greensock.com/gsap/


5. TriArt

Repository Live version

There is a test user set up in place in case you might want to check out the project

without registering:

email: user@example.com

password: secret

5.0.1 Installation

To set up the project, follow these installation steps:

git clone https://github.com/randreu28/TFG.triart

cd TFG.triart

yarn install

yarn dev

https://tfg-triart.vercel.app/
https://github.com/randreu28/TFG.triart
https://tfg-triart.vercel.app/


Caution! This is a Full-Stack application. For security reasons, the environment

variables needed to access the database are not public access.

To run this locally, either create your supabase database instance or ask for the

private keys at the author’s contact page.

5.0.2 Overview

TriArt is a platform where you can upload your 3D artwork and share them with the

world. It creates unique links for each model, and the viewer can interact with them

with a given set of options. The authors can monitor the model’s views and visibility,

should they prefer to keep some of their models private.

This project was made with Next13, with the app directory. The styling was done with

TailwindCSS and HeadlessUI, and the database with Supabase. All of these pieces work

together to make the project possible, but the aspect we will focus on will be the 3D side

of it.

The reader needs not prior knowledeg of these technologies to follow along.

Whenever there are things speci�c to these techonologies, the documentation will

go over them. This documentation’s goal is on explaining the decision-making of it

all, not the intricacies of the chosen stack.

https://supabase.com/
https://www.randreu.dev/#contact-me
https://nextjs.org/
https://tailwindcss.com/
https://headlessui.com/
https://supabase.com/


5.1 Loading 3D models from the cloud

5.1.1 The usual approach

Loading 3D models has been well-considered by the 3D libraries utilized in this thesis, as

evidenced by their implementation in other projects. This process is generally

straightforward, thanks to the built-in loaders or helper functions provided by these

libraries.

What is usually done is to have the model in a public route, such as

https://yoursite.com/model.gltf. This model serves a speci�c function, and it is known

at build time know what shape it has: The materials it uses, the nodes, the animations,

etc. This allows us to write the models in JSX declaratively with the gltfJSX library:

But one might wonder, what if the model’s information is asynchronous and one doesn’t

know it’s shape beforehand? What if wemust evaluate the model at run-time? This is the

case when loading models from the cloud.

https://yoursite.com/model.gltf
https://github.com/pmndrs/gltfjsx


TriArt revolves around cloud integration, which enables users to store and retrieve their

3D models securely. However, a key challenge arises when interacting with these models

without prior knowledge of their speci�c details. Let’s delve into the process of

retrieving and interacting with 3D �les in such scenarios.

5.1.2 Database structure

In this documentation, we will brie�y discuss the structure of the Supabase instance

that has been set up for TriArt. While we won’t delve into excessive detail, it is important

to understand the key components. The Supabase instance utilizes PostgreSQL and

includes a table named “ArtWorks,” which resembles the following structure:

id user_id visibility url

1 292e4ad19628-9513 public https://supabase.com/storage/model.glb

The id column serves as the unique identi�er for each row, and the user_id column acts

as a foreign key referencing the corresponding user. The visibility column determines

whether the URL generated by TriArt has an authentication bypass or not. Lastly, the url

column represents a straightforward URL generated by Supabase’s storagefeature.

5.1.3 Server Side loading and validation

If you visit https://tfg-triart.vercel.app/artwork/32, for example, you’ll notice that the

URL structure takes the parameter id (in this case, 32) to select and display the chosen

artwork. This, in combination with React Server Components of Next13, allows us to load

the chosen artwork and handle the visibility status validation, without any line running

on the client:

type Props = {

  params: { id: string };

};

export default async function Artwork({ params: { id } }: Props) {

https://supabase.com/
https://supabase.com/storage/model.glb
https://supabase.com/docs/guides/storage
https://tfg-triart.vercel.app/artwork/32


  const {

    data: { session },

  } = await supabase.auth.getSession();

  const { data, error } = await supabase.from("artwork").select().eq("id", id

  if (data[0].visiblity === "private" && data[0].user_id !== session?.user.id

    throw Error("You don't have permission to see this artwork");

  }

  return <Scene url={data[0].url} />;

}

5.1.4 Loading unknown models

As previously discussed, knowing what model will you be working on has a lot of

bene�ts. But what if the model comes from a third-party API? R3F has a way of loading

models just by the use of a link (either local or public), with the useLoader hook:

import { useLoader } from "@react-three/fiber";

import { GLTFLoader } from "three/examples/jsm/loaders/GLTFLoader";

export default function Scene() {

  const gltf = useLoader(GLTFLoader, "/Poimandres.gltf");

  return <primitive object={gltf.scene} />;

}



5.2 Model Visualization

5.2.1 Animations

Loading unknown models can present challenges because the structure of the GLTF

scene and its animations may vary. However, TriArt addresses this issue with its

<Model/> component, which provides a solution for accessing animations:

function Model({ url }: Props) {

  const { scene, animations } = useGLTF(url);

  // Animations

  const { animationClips, defaultAnimationsControls, mixer } = useMemo(() => 

    const mixer = new THREE.AnimationMixer(scene);

    const animationClips: any = [];

    let defaultAnimationsControls: any = {};

    for (let a of animations) {

      let action = mixer.clipAction(a);

      animationClips[a.name] = action;

      defaultAnimationsControls[a.name] = false;

    }

    return { defaultAnimationsControls, animationClips, mixer };

  }, [animations, scene]);

}

When working with unknown models, maintaining type-safety can become challenging

because you lack information about the speci�c model’s structure. In such cases, it

becomes necessary to use the any type, which allows for �exibility in handling dynamic

and unknown data.

By using the any type, you can bypass strict type-checking and handle the model data in

a more generic and adaptable manner. This enables you to access properties and

perform operations on the model without explicitly de�ning their types, accommodating

the unknown nature of the data.



While relying on the any type sacri�ces some level of type-safety, it becomes justi�ed in

situations where the model’s structure is unknown or variable. It allows you to work with

the data without imposing strict type constraints, ensuring compatibility with different

model formats and variations.

The useMemo hooks from the previous code snippet gives us 3 variables: the

defaultAnimationsControls, which allow us to create the Leva controls later, the list of

animationClips available, and the mixer, which takes care of handling the animations.

Now let us not forget that the THREE.AnimationMixer needs to be updated with the

frame rate of our <Canvas/>, so we use the useFrame hook from R3F to keep it updated:

useFrame((_, delta) => {

  mixer.update(delta);

});

5.2.2 Scale normalization

Lastly, we need to take care of the size of the model. We don’t know how big or small the

model might be, but we want the user to be able to see it in a proportion that �ts on the

canvas. To do so, we check the size of it with useEffect:

useEffect(() => {

  const sceneSize = new THREE.Box3()

    .setFromObject(scene)

    .getSize(new THREE.Vector3()); //Measures the scenesice with a box

  const maxExtent = Math.max(sceneSize.x, sceneSize.y, sceneSize.z);

  const scale = (1 / maxExtent) * 5; //Sets the max scale to one standard `<C

  scene.scale.set(scale, scale, scale); //Sets the computed scale into the lo

}, [scene]);

http://localhost:3000/projects/common-libraries#31-leva-controls


6. Buckle up

Repository Live version

6.1 Installation

To set up the project, follow these installation steps:

git clone https://github.com/randreu28/TFG.buckle-up

cd TFG.buckle-up

yarn install

yarn dev

6.2 Overview

This project wouldn’t be possible without the help of dila, the creator of the shader

on which this project relies.

http://tfg-buckle-up.vercel.app/
https://github.com/randreu28/TFG.buckle-up
http://tfg-buckle-up.vercel.app/
https://www.shadertoy.com/user/dila


This project was meant to explore shaders. To be more concrete, the R3F approach to

using Shadertoy’s. Shadertoy is a library of shaders created by the community, and it

offers a lot of different options with shaders.

As the era of WebGPU approaches, the community for shaders is too. If you’re

interested in the next generation of shaders, you may refer to Compute Toys, a

library made only for WebGPU shaders.

The main objective of this project was to �nd a way to integrate pure GLSL shaders into

a React application and explore their potential for creating interesting visual effects.

Now, let’s examine the structure of the application:

<Suspense fallback={<Loading />}>

  <div className="...">

    <Canvas>

      <Shader />

    </Canvas>

  </div>

</Suspense>

6.3 Shader uniforms

In case you are not familiar with shaders, it is recommended that you’ve read the

Particle showcase project, as it gives the base understanding

The <Shader/> component is a simple <Plane/> geometry that occupies the whole

viewport, and the custom shader material.

<Plane

  ref={ref}

  args={[

    document.documentElement.clientWidth,

    document.documentElement.clientHeight,

  ]}

https://www.shadertoy.com/
https://compute.toys/
http://localhost:3000/projects/particle-showcase/shader


>

  <shaderMaterial key={ShaderMaterial.key} />

</Plane>

In this code snippet, the <Plane/> component is utilized with speci�c arguments to

de�ne its dimensions based on the client’s viewport size. Inside the <Plane/>, a

<shaderMaterial/> component is added with a unique key to ensure proper updates

and rendering of the custom shader material.

To ensure that the shader material receives the correct uniforms, we can de�ne the

appropriate types by extending the base types provided by R3F:

interface myMaterial extends THREE.Material {

  uniforms: {

    iTime: { value: number }; //Intenal time state of the shader

    iResolution: { value: THREE.Vector3 }; // Resolution of the shader (viewp

    iChannel0: { value: THREE.Texture }; // Textures for the shader rendering

    iChannel1: { value: THREE.Texture };

    iChannel2: { value: THREE.Texture };

  };

}

interface myMesh extends THREE.Mesh {

  material: myMaterial;

}

In this code snippet, we de�ne the myMaterial interface by extending the

THREE.Material type. It includes uniforms as a property, which speci�es the various

uniform values required by the shader. The iTime uniform represents the internal time

state of the shader, iResolution represents the resolution of the shader (viewport

dimensions), and iChannel0, iChannel1, and iChannel2 represent the textures used for

shader rendering.

Similarly, we de�ne the myMesh interface by extending the THREE.Mesh type. It includes

a material property of type myMaterial, ensuring that the custom shader material is



correctly assigned to the mesh.

The iVariableName naming convention comes from shadertoy, and it is being

respected to communicate with the shader the same way.

Next, the iTime and iResolution need to be updated every frame, so we can use the

useFrame custom hook from R3F:

useFrame((state) => {

  ref.current.material.uniforms.iTime.value = state.clock.elapsedTime * speed

  ref.current.material.uniforms.iResolution.value = new THREE.Vector3(

    document.documentElement.clientWidth,

    document.documentElement.clientHeight

  );

});

6.4 Shader material

To declare the initial shader material, we import the fragment and vertex shaders from

the respective �les:

import fragment from "../shaders/fragment.glsl"; // From shaderToy

import vertex from "../shaders/vertex.glsl"; // From shaderToy

To import GLSL �les as strings in TypeScript, you can create a declaration �le named

glsl.d.ts. In this �le, you declare a module for *.glsl �les and specify that they should

be treated as strings:

declare module "*.glsl" {

  const value: string;

  export default value;

}



Next, in the Model component, we create the ShaderMaterial using the shaderMaterial

function provided by react-three-�ber. We pass the necessary uniforms and shader

sources to the function:

export default function Model() {

  //...

  const ShaderMaterial = shaderMaterial(

    {

      iTime: 0,

      iResolution: new THREE.Vector3(

        document.documentElement.clientWidth,

        document.documentElement.clientHeight

      ),

      iChannel0: textures[activeTextures.iChannel0], // From the leva control

      iChannel1: textures[activeTextures.iChannel1],

      iChannel2: textures[activeTextures.iChannel2],

    },

    vertex,

    fragment

  );

  //...

}

Notice that the textures from the iChannels come from activeTextures. This comes

from the leva controls, which are set up in such a way that they can choose from 10

different textures. The textures chosen provide a wide range of colors and combinations

that allow the user to explore the different ways the shader relies on the materials:

http://localhost:3000/projects/common-libraries#31-leva-controls


6.5 Presets

The leva controls presets offer the user the possibility to interchange between the

textures, but there are some presets that the user could select.

const [activeTextures, setActiveTextures] = useControls("Textures", () => ({

  iChannel0: {

    value: 0,

    options: textureControlOptions, //The list of materials

  },

  iChannel1: {

    value: 2,

    options: textureControlOptions,

  },

  iChannel2: {

    value: 0,

    options: textureControlOptions,

  },

}));



This already gives the user the ability to get all the combinations possible, but we’d like

to create speci�c combination presets for the users to see:

const [activeTextures, setActiveTextures] = useControls("Textures", () => ({

  iChannel0: {

    value: 0,

    options: textureControlOptions,

  },

  iChannel1: {

    value: 2,

    options: textureControlOptions,

  },

  iChannel2: {

    value: 0,

    options: textureControlOptions,

  },

  1: buttonGroup({

    label: "Presets",

    opts: {

      Hell: () => {

        setActiveTextures({ iChannel0: 0, iChannel1: 6, iChannel2: 0 });

      },

      Christmas: () => {

        setActiveTextures({ iChannel0: 6, iChannel1: 1, iChannel2: 0 });

      },

      Ghost: () => {

        setActiveTextures({ iChannel0: 0, iChannel1: 2, iChannel2: 0 });

      },

    },

  }),

  2: buttonGroup({

    label: "Presets 2",

    opts: {

      Purpule: () => {

        setActiveTextures({ iChannel0: 7, iChannel1: 10, iChannel2: 5 });

      },

      Metal: () => {

        setActiveTextures({ iChannel0: 0, iChannel1: 4, iChannel2: 9 });



      },

      Nightmare: () => {

        setActiveTextures({ iChannel0: 0, iChannel1: 0, iChannel2: 4 });

      },

    },

  }),

}));

This way, the user can have a set of prede�ned texture combinations easily with the

click of a button.



7. Mirror effect

Repository Live version

7.1 Installation

To set up the project, follow these installation steps:

git clone https://github.com/randreu28/TFG.mirror-effect

cd TFG.mirror-effect

yarn install

yarn dev

7.2 Overview

This project was meant to be an exploratory approach to re�ections. The idea behind it

was to play around with some mirrors and try to get an interesting effect on them. I

used a Roman statue from the artist engine9 that helped me get the style I aimed for.

https://tfg-mirror-effect.vercel.app/
https://github.com/randreu28/TFG.mirror-effect
https://tfg-mirror-effect.vercel.app/
https://sketchfab.com/engine9


7.3 Consent bypass

As the project ended up becoming very artistic iIt was decided to add an intro message

before the actual scene. For that the app had a consent bypass that unclocked the main

App once the user interacted with the <Intro/> component:

export default function App() {

  ...

  const [consent, setConsent] = useState<boolean>(false);

  if (!consent) {

    return <Intro setConsent={setConsent} />;

  }

  return (

    <>

      <div className="w-screen h-screen absolute left-0 top-0 z-10">

        <Suspense fallback={<Spinner />}>

          <Canvas>

            <MyScene />

          </Canvas>

        </Suspense>

      </div>

    </>

  );

}

7.4 Mirror material

Before discussing the <MyScene/> component, we’ll explore how the mirror material’s

implementation was achieved. Luckily, R3F offers us a re�ector material with some

props to con�gure to get the desired effect. To do so, the use of Leva controls was

paramount. In matters like this, it is all about quick iterations and trial and error, and

Leva excels at that:

http://localhost:3000/projects/common-libraries#31-leva-controls


import { MeshReflectorMaterial } from "@react-three/drei";

import { useControls } from "leva";

export default function Mirror(props: JSX.IntrinsicElements["mesh"]) {

  const config = useControls({

    blur: [300, 100], // Blur ground reflections (width, heigt), 0 skips blur

    resolution: 256, // Off-buffer resolution, lower=faster, higher=better qu

    mixBlur: { value: 1, min: 0, max: 1 }, // How much blur mixes with surfac

    mixStrength: 50, // Strength of the reflections

    roughness: 0,

    depthScale: 4, // Scale the depth factor (0 = no depth, default = 0)

    minDepthThreshold: 4, // Lower edge for the depthTexture interpolation (d

    maxDepthThreshold: 10, // Upper edge for the depthTexture interpolation (

    color: "#743d8d",

    metalness: { value: 0, min: 0, max: 1 },

    mirror: 0,

  });

  const { size } = useControls({ size: [0.05, 3, 3] });

  return (

    <mesh {...props}>

      <boxGeometry args={size} />

      <MeshReflectorMaterial {...config} />

    </mesh>

  );

}

7.5 Mirror generation

For the positioning of the mirror, the mirrors were initially placed according to the

vertices of an Icosaedron geometry. Each vertex was the center of the geometry,

alongside their Euler angle. Each mirror looked at the center of the Icoshaderon. Take,

for example, the Three.js example of the Icosahedron and try to imagine the coordinates

of each vertex:



The Euler angles, in contrast to the common radiant angles, describe a rotational

transformation by rotating an object on its various axes in speci�ed amounts per

axis, and a speci�ed axis order.

Let us now examine how this process is accomplished within the React ecosystem. First,

we need a function to generate the mirror cloud based on a �oat32Array:

/**

 * Generates a cloud of points based on the data array of an object.

 *

 * @param data - The raw data array of an object

 * @param length - The length on which the data array must be subarrayed

 * @returns an array of transform elements

 */

function generateMirrorCloud(data: any, length: number, scale: number) {

  let mirrors: mirror[] = [];

  for (let i = 0; i < data.length; i += length) {

    const dataArray = data.subarray(i, i + length);

    const newPosition = new THREE.Vector3(

      dataArray[0] * scale, // x

      dataArray[1] * scale, // y

      dataArray[2] * scale // z

    );



    const newRotation = new THREE.Euler().setFromVector3(newPosition);

    mirrors.push({ position: newPosition, rotation: newRotation });

  }

  return mirrors;

}

This, in combination with the THREE.Icosahedron class and the useMemo hook for

performance purposes, we generate the cloud of mirrors:

function MyScene(){

const mirrors = useMemo(() => {

  const _Icoshaderon = new THREE.IcosahedronGeometry().attributes.normal;

  let Icosahedron: ArrayLike<number> | undefined;

  if (_Icoshaderon instanceof THREE.Float32BufferAttribute) {

    Icosahedron = _Icoshaderon.array;

  } else {

    throw Error("Type error");

  }

  return generateMirrorCloud(Icosahedron, 3, 6);

}, []);

...

return (

  ...

  <group ref={mirrorGroup}>

    {mirrors.map((mirror, key) => {

      return (

        <Mirror

          position={mirror.position}

          rotation={mirror.rotation}

          key={key}

        />

      );

    })}

  </group>



);

}

7.6 Animations

The animations of the mirror cloud are relatively straightforward. We utilize the

Math.sin() function to generate a waving effect along the y-axis of the Vector3 for the

entire group, as well as their Euler rotation.

The sinus animation is ideal for producing straightforward “�oating” animations, as

they are in�nite in nature and require minimal effort to implement using the

algorithm.

const mirrorGroup = useRef<THREE.Group>(null!);

useFrame((state) => {

  const t = state.clock.elapsedTime;

  const currentPosition = mirrorGroup.current.position;

  const currentRotation = mirrorGroup.current.rotation;

  currentPosition.set(

    currentPosition.x,

    currentPosition.y + Math.sin(t) * 0.005,

    currentPosition.z

  );



  currentRotation.set(t * 0.025, t * 0.025, t * 0.025);

});

7.7 Post-processing

Lastly, with the help of React-Postprocessing, we will include some glitch effects:

<EffectComposer>

  <Glitch // Vector2 as they indicate min amd max values

    strength={new Vector2(1, 1)}

    duration={new Vector2(0.25, 0.25)}

    delay={new Vector2(5, 5)}

  />

</EffectComposer>

You may experiment with the <Glitch/> props to see how they modify the effect on this

playground:

https://docs.pmnd.rs/react-postprocessing/introduction


8. Talking stars

Repository Live version

8.1 Installation

To set up the project, follow these installation steps:

git clone https://github.com/randreu28/TFG.talking-stars

cd TFG.talking-stars

yarn install

yarn dev

8.2 Overview

In case you are not familiar with shaders, it is recommended that you’ve read the

Particle showcase project, as it gives the base understanding of them.

https://tfg-talking-stars.vercel.app/
https://github.com/randreu28/TFG.talking-starsup
https://tfg-talking-stars.vercel.app/
http://localhost:3000/projects/particle-showcase/shader


This project was similar to the buckle up project, as both’s objectives aimed to play

around with shaders with the help of the community of shadertoy. This shader is special

from the rest, as it relies on the user’s microphone for its rendering process.

This project wouldn’t be possible without the help of CBS, the author of the

Simplicity Galaxy shader.

8.3 Media Stream

For the use of the user’s microphone, the user must give permission access to the

microphone. This comes in the form of a Media Stream and is accessible through the

navigator API:

navigator.mediaDevices

  .getUserMedia({ audio: true })

  .then((stream) => {

    setStream(stream);

  })

  .catch(() => {

    //...

  });

Once the user has granted access to the microphone, we save it in state. This way, we

make sure the <Shader/> component will always have the stream prop:

export default function App() {

  const [stream, setStream] = useState<null | MediaStream>(null);

  if (stream) {

    return (

      <>

        <Signature />

        <p className="absolute inset-0 z-10 flex items-center justify-center 

          Speak up!

        </p>

        <div className="fixed h-screen w-screen bg-gray-900">

http://localhost:3000/projects/buckle-up
https://shadertoy.com/
https://www.shadertoy.com/user/CBS
https://developer.mozilla.org/en-US/docs/Web/API/MediaStream


          <Canvas>

            <Shader stream={stream} />

          </Canvas>

        </div>

      </>

    );

  } else {

    return <PermGranter setStream={setStream} />;

  }

}

8.4 The shader’s uniforms

Similar to other projects, it is necessary to feed the shader with their necessary

uniforms, which are required for their rendering process. In this case, we only need

three:

The iTime, which controls the internal clock of the shader

The iResolution, which controls the size of the rendering canvas

The iChannel0, which in this case, is a THREE.DataTexture that we will explain later

Let’s �rst implement the types by extending them from the THREE classes:

interface myMaterial extends THREE.Material {

  uniforms: {

    iTime: { value: number };

    iResolution: { value: THREE.Vector3 };

    iChannel0: { value: THREE.DataTexture };

  };

}

interface myMesh extends THREE.Mesh {

  material: myMaterial;

}



The iVariableName naming convention comes from shadertoy, and it is being

respected to communicate with the shader the same way.

8.5 Creating the shader’s material

Once we have a clear view of what the material needs, let us declare its initial state:

import frag from "../shader/fragment.glsl";

import vert from "../shader/vertex.glsl";

//...

const ShaderMaterial = shaderMaterial(

  {

    iTime: 0,

    iResolution: new THREE.Vector3( //ViewPort's resolution

      document.documentElement.clientWidth,

      document.documentElement.clientHeight

    ),

    iChannel0: 1, //Temporaray, we will pass in a real value later

  },

  vert,

  frag

);

When importing GLSL �les, Typescript doesn’t know what to make of them. To tell

TypeScript to import them as strings, you can create a declaration �le glsl.d.ts:

declare module "*.glsl" {

  const value: string;

  export default value;

}

8.6 How the audio affects the shader



The shader is tied to the microphone input through the uniforms, as it requires a

THREE.DataTexture to pass in to the iChannel0 uniform. This is because the shader is

composed of three layers:

The base layers, which are the green galaxy that we see on the screen when we

don’t talk

The talking layer, which is what gets lighted up in blue when we do talk

The �lter. It only affects the talking layer, which isn’t a value from 0 to 1 as one

would expect, but a material, which either can be completely black, or completely

white (Or shades of gray in different areas!). If it’s black, the �lter would not let any

of the talking layer pass, and if it’s white, it would let it pass completely.

One may think of it as a camera �lter. The darker the �lter, the less you can see through.

8.7 Audio to Texture interpolation



To create a texture based on the material’s input, we need an Audio Context. This will be

in preparation for extracting the Hertz frequency of the media stream. You may think of

it as a DOM EventListener, we only connect the stream Media Source to an analyzer that

can calculate the Heartz without modifying the input.

export default function Shader({ stream }: Props) {

  //Creates an analyser for the media stream

  const audioCtx = new AudioContext();

  const mic = audioCtx.createMediaStreamSource(stream);

  const analyser = audioCtx.createAnalyser();

  const FFTData = new Uint8Array(analyser.frequencyBinCount);

  analyser.fftSize = analyser.fftSize / Math.pow(2, 3); // default is 2048

  mic.connect(analyser);

  //...

}

Then, we make use of the custom R3F hook useFrame to update the uniforms in every

frame. That is when the audio-to-texture interpolation occurs:

const ref = useRef<myMesh>(null!);

useFrame((state) => {

  //updates time and resolution uniforms

  ref.current.material.uniforms.iTime.value = state.clock.elapsedTime;

  ref.current.material.uniforms.iResolution.value = new THREE.Vector3(

    document.documentElement.clientWidth,

    document.documentElement.clientHeight

  );

https://developer.mozilla.org/en-US/docs/Web/API/AudioContext


  //Gets average mic hz

  analyser.getByteFrequencyData(FFTData);

  const avg = FFTData.reduce((prev, cur) => prev + cur / FFTData.length, 0);

  //Generates a gray scale image based on mic hz

  let amount = Math.pow(32, 2);

  let data = new Uint8Array(Math.pow(32, 2));

  for (let i = 0; i < amount; i++) {

    data[i] = avg * 20;

  }

  const audioTexture = new THREE.DataTexture(data, 12, 12);

  audioTexture.needsUpdate = true;

  //passes it as uniform

  ref.current.material.uniforms.iChannel0.value = audioTexture;

});

Lastly, to assure that the plane occupies the user’s viewport we create a simple plane

that occupies the document client dimensions:

<>

  <Plane

    ref={ref}

    args={[

      document.documentElement.clientWidth,

      document.documentElement.clientHeight,

    ]}

  >

    <shaderMaterial key={ShaderMaterial.key} />

  </Plane>

</>



9. Halo inspector

Repository Live version

9.1 Installation

To set up the project, follow these installation steps:

git clone https://github.com/randreu28/TFG.halo-inspector

cd TFG.halo-inspector

yarn install

yarn dev

9.2 Overview

This project was designed to be an inspector of a given object, in this case, a halo model.

The idea is to have each piece of the model be clickable and inspectable, with a

complementary text to accompany it.

https://halo-inspector-randreu28.vercel.app/
https://github.com/randreu28/TFG.halo-inspector
https://halo-inspector-randreu28.vercel.app/
https://sketchfab.com/3d-models/spartan-armour-mkv-halo-reach-57070b2fd9ff472c8988e76d8c5cbe66


The project couldn’t have been possible without the aid of, McCarthy3D the creator

of the 3D model.

Now, let’s examine the structure of the application. Note that we are using Jotai as state

management, as well as @a7sc11u/scramble

import { TextScramble } from "@a7sc11u/scramble";

import { useAtomValue } from "jotai";

import { Suspense } from "react";

import Loading from "./components/Loading";

import Scene from "./components/Scene";

import Signature from "./components/Signature";

import { matAtom } from "./lib/store";

import { getInfo } from "./lib/utils";

export default function App() {

  const material = useAtomValue(matAtom); // Gettting the selected material

  const info = getInfo(material); // Computing the complementary text based o

  return (

    <div className="h-screen w-screen flex justify-center items-center">

      <Suspense fallback={<Loading />}>

        <div className="absolute left-10 top-10 z-10 max-w-xl space-y-5">

          <TextScramble

            className="text-5xl font-bold"

            as="h2"

            speed={1}

            text={info.title}

          />

          <TextScramble

            className=" text-xl"

            as="p"

            speed={5}

            text={info.description}

          />

        </div>

        <Scene /> {/* Where the magic happens  */}

https://sketchfab.com/joshuawatt811
http://localhost:3000/projects/common-libraries#32-zustand--jotai
http://localhost:3000/projects/common-libraries#33-a7sc11uscramble


      </Suspense>

    </div>

9.3 The model

The model .glb �le was �rst imported as a React component using the gltf-to-jsx CLI.

As discussed in detail in the TriArt project. The generated result gives us a type-safe JSX

through the useGLTF hook from R3F. Here’s the generated result:

/*

Auto-generated by: https://github.com/pmndrs/gltfjsx

author: McCarthy3D (https://sketchfab.com/joshuawatt811)

license: CC-BY-4.0 (http://creativecommons.org/licenses/by/4.0/)

source: https://sketchfab.com/3d-models/spartan-armour-mkv-halo-reach-57070b2

title: Spartan Armour MKV - Halo Reach

*/

import * as THREE from "three";

import { useEffect, useRef } from "react";

import { useGLTF, useAnimations } from "@react-three/drei";

import { GLTF } from "three-stdlib";

export function Model(props: JSX.IntrinsicElements["group"]) {

  const group = useRef<THREE.Group>(null!);

  const { nodes, materials, animations } = useGLTF("/halo.glb") as GLTFResult

  const { actions } = useAnimations<Animations>(animations as any, group);

  return (

    <group ref={group} {...props} dispose={null}>

      <group name="Sketchfab_Scene">

        <group

          name="Sketchfab_model"

          rotation={[-Math.PI / 2, 0, 0]}

          scale={0.02}

        >

          <group

            name="4757fffebe2a4d47b38143266af5f1a9fbx"

http://localhost:3000/docs/projects/triart/loading-models#the-usual-approach


            rotation={[Math.PI / 2, 0, 0]}

          >

            <group name="Object_2">

              <group name="RootNode">

                <group name="Floor">

                  <mesh

                    name="Floor_lambert2_0"

                    castShadow

                    receiveShadow

                    geometry={nodes.Floor_lambert2_0.geometry}

                    material={materials.lambert2}

                  />

                </group>

                <group name="group">

                  <group name="Object_7">

                    <primitive object={nodes._rootJoint} />

                    <group name="Object_9" />

                    <group name="Object_11" />

                    <group name="Object_19" />

                    <group name="polySurface436" />

                    <group name="Helmet" />

                    <group name="Armour" />

                    <group name="Armour_LP" />

                    <skinnedMesh

                      name="Object_18"

                      geometry={nodes.Object_18.geometry}

                      material={materials.lambert1}

                      skeleton={nodes.Object_18.skeleton}

                    />

                    <skinnedMesh

                      name="Object_10"

                      geometry={nodes.Object_10.geometry}

                      material={materials.Spartan_Ear_Mat}

                      skeleton={nodes.Object_10.skeleton}

                    />

                    <skinnedMesh

                      name="Object_13"

                      geometry={nodes.Object_13.geometry}

                      material={materials.Spartan_Ear_Mat}

                      skeleton={nodes.Object_13.skeleton}



                    />

                    <skinnedMesh

                      name="Object_17"

                      geometry={nodes.Object_17.geometry}

                      material={materials.Spartan_Shoulders_Mat}

                      skeleton={nodes.Object_17.skeleton}

                    />

                    <skinnedMesh

                      name="Object_12"

                      geometry={nodes.Object_12.geometry}

                      material={materials.Spartan_Helmet_Mat}

                      skeleton={nodes.Object_12.skeleton}

                    />

                    <skinnedMesh

                      name="Object_16"

                      geometry={nodes.Object_16.geometry}

                      material={materials.Spartan_Legs_Mat}

                      skeleton={nodes.Object_16.skeleton}

                    />

                    <skinnedMesh

                      name="Object_20"

                      geometry={nodes.Object_20.geometry}

                      material={materials.Spartan_Undersuit_Mat}

                      skeleton={nodes.Object_20.skeleton}

                    />

                    <skinnedMesh

                      name="Object_15"

                      geometry={nodes.Object_15.geometry}

                      material={materials.Spartan_Arms_Mat}

                      skeleton={nodes.Object_15.skeleton}

                    />

                    <skinnedMesh

                      name="Object_14"

                      geometry={nodes.Object_14.geometry}

                      material={materials.Spartan_Chest_Mat}

                      skeleton={nodes.Object_14.skeleton}

                    />

                  </group>

                </group>

              </group>



            </group>

          </group>

        </group>

      </group>

    </group>

  );

}

useGLTF.preload("/halo.glb");

Although the output of the shader material might be verbose, it provides granular

control over each mesh, which is essential for the required tasks. Additionally, by using a

useEffect hook, we can initialize the breathing animation of the model on the initial

load, and thanks to TypeScript, we have full type safety when accessing it.

useEffect(() => {

  actions["Take 001"]?.play();

}, []);

9.4 Material selection

For the material selection, we relied on the React-Spring library, an animation library

similar to gsap, but with a modern react-based approach. The animations (besides the

camera movements) are on the material’s opacity, as they get more opaque or less

depending on whether they are selected or not.

The React-Spring library was made by the pnmdrs collective, the same collective that

created R3F, among many other libraries that we have used for this thesis. The

synergy with our tools is so much so that React-Spring even has a chapter in its

documentation dedicated to R3F integrations.

As we need to control multiple materials simultaneously, we utilized the useSprings

custom hook from React-Spring. This hook enabled us to create seamless opacity

interpolations with a user-friendly API.

https://www.react-spring.dev/
https://greensock.com/gsap/
https://www.react-spring.dev/docs/guides/react-three-fiber


/* Makes the materials transparent, so we can play with its opacity later */

for (let _mat in materials) {

  let mat = materials[_mat as keyof typeof materials];

  mat.transparent = true;

}

/* Creates a state using springs to interpolate the opacities */

const [opacities, opacitiesOptions] = useSprings(

  Object.keys(materials).length,

  () => ({

    opacity: 1,

  })

);

/* Links the spring state to the material's value each frame */

useFrame(() => {

  let i = 0;

  for (let _key in materials) {

    const key = _key as NonNullable<MatName>;

    materials[key].opacity = opacities[i].opacity.get();

    ++i;

  }

});

Once we have set up the useSprings hook, we can proceed to create the onClick

function handler.

/**

 * Reduces the opacity of every material except the one clicked

 */

function handleClick(e: ThreeEvent<MouseEvent>) {

  e.stopPropagation();

  let matName: MatName; // An array of strings representing all the possible 

  if (e.object instanceof THREE.Mesh) {

    matName = e.object.material.name;

  } else {

    console.error("You didn't click on a Mesh");



    return;

  }

  const arrayMats = Object.values(materials);

  opacitiesOptions.update((i) => ({

    opacity: matName === arrayMats[i].name ? 1 : 0.1,

  }));

  opacitiesOptions.start();

  setMat(matName); //Saves it on Jotai, our state management library

}

In addition to the onClick function handler for zooming in, we can create another

function to handle the zoom out functionality when the user clicks on any other part of

the screen.

function handlePointerMissed() {

  opacitiesOptions.update(() => ({

    opacity: 1,

  }));

  opacitiesOptions.start();

  setMat(undefined);

}

And we simply attach it to the parent group:

<group

  onClick={handleClick}

  onPointerMissed={handlePointerMissed}

  ref={group}

  {...props}

  dispose={null}

>

  {/* .... */}

</group>



9.5 Camera movements

Every time a material is selected, there is an interpolation of the camera’s position (a

Vector3, in Three.js lingo), and a position of the material in close-up. For that, it was

implemented a <CustomCamera/> component that handles all of these interpolations.

Before going into the <CustomCamera/> component, there is a small detail we might want

to add to the model, to appropriately reference the meshes later. On each skinned mesh,

it is pertinent to set the name attribute to the material’s name, like so:

<skinnedMesh

  name={materials.lambert1.name}

  geometry={nodes.Object_18.geometry}

  material={materials.lambert1}

  skeleton={nodes.Object_18.skeleton}

/>

This will allow us to �nd each particular mesh by its name on the <CustomCamera/>

component:

import { CameraControls } from "@react-three/drei";

import { useThree } from "@react-three/fiber";

import { useAtomValue } from "jotai";

import { useRef } from "react";

import { matAtom } from "../lib/store";

export default function CustomCamera() {

  const ref = useRef<CameraControls>(null!);

  const material = useAtomValue(matAtom); //From our store

  //Let's us get any value of the raw THREE.scene

  const get = useThree((state) => state.get);

  if (!material) {

    // When the user click's anywhere but the model

    ref.current?.setLookAt(3, 2, 6, 0, -0.5, 0, true);

    return <CameraControls ref={ref} distance={5} />;



  }

  //We're able to do this due to the previous step

  const selectedNode = get().scene.getObjectByName(material);

  if (!selectedNode) {

    //On loading stages there isn't any node and it returns undefined

    return <CameraControls ref={ref} distance={5} />;

  }

  ref.current?.fitToBox(selectedNode, true); // The native THREE.js way to in

  return <CameraControls ref={ref} distance={5} />;

}

Fortunately, R3F has a wide range of controllers for the camera. This time we’re using

the R3F adaptation of the camera controls library, which can be interpreted as an

inhereted extension of the more common <OrbitControls/>, with the addition of extra

features, such as methods for tridimensional interpolations:

At �rst, it was considered interpolating using the setPosition method, which already

out of the box supports a smooth camera transition, but had the inconvenience of

�nding the speci�c Vector3 for each material by hand. This approach assumed that the

object may never move from it’s original postion, and it was not the most elegant of the

approaches.

Luckily, the camera controls library also comes with the fitToBox method, which

creates a bounding box around the speci�ed object and makes it so that the camera

zoom’s in into said bounding box with a speci�ed padding from the viewport’s

dimension.

https://github.com/yomotsu/camera-controls


This allows us to delegate the �nding of the appropriate framing of the selected object,

no matter from which starting position the camera �nds itself, or if the object is moving

or has moved since we �rst declared the Vector3 for each material.



About the author @ CopyRight 2022. All rights reserved Github

https://randreu.dev/
https://github.com/randreu28

