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A B S T R A C T

The application areas of multi-hop wireless networks are expected to experience sustained growth in the next
years. This growth will be further supported by the current possibility of providing low-cost communication
capabilities to any device. One of the main issues to consider with this type of networks is congestion control,
that is, avoiding an excessive volume of data traffic that could lead to a loss of performance. In this work, a
distributed congestion control mechanism is proposed for generic multi-hop networks. Different categories of
data traffic are taken into account, each of them with different quality of service requirements. The mechanism
is based on machine learning techniques, specifically, the CatBoost algorithm that uses gradient boosting on
decision trees. The obtained decision trees are used to predict whether the packets to be transmitted over the
network will reach their destination on time or not. This prediction will be made based on the network load
state, which will be quantified by means of two parameters: the utilization factor of the different transmission
channels, and the occupancy of the buffers of the network nodes. To make the values of these parameters
available to all nodes in the network, an appropriate dissemination protocol has also been designed. Besides,
a method to assign different transmission priorities to each traffic category, based on the estimation of the
network resources required at any time, has also been included. The complete system has been implemented
and evaluated through simulations, which show the correct functionality and the improvements obtained in
terms of packet delivery ratio, network transit time, and traffic differentiation.
1. Introduction

Wireless communications networks are currently one of the tech-
nologies that are attracting the attention of many researchers in the
field of telecommunications. Among them, multi-hop wireless networks
offer very suitable solutions in many application environments. In this
type of networks, nodes can act both as source/destination of the data
flows, and as relays of the data packets belonging to the rest of the
nodes. On the other hand, depending on the purpose of the network, the
nodes may remain static or may be mobile. In the latter case, there are a
multitude of operational applications today, and there will undoubtedly
be more in the future: ad hoc networks in emergency situations or
protection missions [1], vehicular [2] and unmanned aerial vehicles
communication networks [3–5], cell phones networks, networks of
specific devices with a specific mission (e.g., robotic ants on a searching
mission ...). It can be said that the applications of this type of networks
will experience a constant increase in the following years, especially
considering the increasing possibility of integrating communications
capabilities in any device at a very low cost.
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With this scenario in mind, it is also interesting to note that network
traffic flows can be of different natures and generated by applications
with different needs. For instance, in a specific environment, all the
network nodes could generate traffic flows with the same destination
(for instance, to a gateway connected to the Internet). The opposite
situation is also possible (always the same source and different desti-
nations), and of course, a combination of both, as shown in Fig. 1a.
The most general situation would be a network in which all nodes
generate/receive data traffic to/from the rest of the nodes (Fig. 1b).
In this second scenario, a node could also act as a gateway to another
network or to the global Internet.

One of the main problems in this type of networks is the possi-
bility of trying to overuse the transmission channels, which can lead
to situations of network congestion. In these situations, the quality
of service offered to the applications becomes lower than required.
Therefore, a congestion control mechanism is needed to prevent the
network from getting into these situations. Traditionally, congestion
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Fig. 1. Wireless multi-hop networks.
control techniques have been divided into two main groups. In the
first group, the internal nodes of the network are responsible for de-
tecting the possible congestion situation, by monitoring the occupation
of the buffers associated with the transmission channels. When this
occupation is high, the nodes generate explicit congestion notification
(ECN) messages, which are sent to the endpoints of the communication.
When these messages are received, the endpoints must activate the
necessary functions to regulate the transmission rate. In the second
group, no action is taken by the network nodes, and the responsibility
for congestion control is left to the communication endpoints. This
is the solution most widely adopted by TCP/IP networks. Indeed,
depending on the transport protocol used, the approaches to obtain
the congestion control are different. For example, when using a reliable
control protocol (TCP alike), the proposed solutions are generally based
on the control of the size of the congestion window. On the other hand,
if the transport protocol is unreliable (UDP alike), other mechanisms
must be used since there are no transport-layer connections between
the source and the destination processes of the data packet flows.

In this paper, a congestion control mechanism is proposed for
applications using an unreliable transport protocol. The mechanism is
based on machine learning (ML) techniques, namely the use of decision
trees. The use of ML techniques has been proven useful in many issues
related to communication networks [6–10]. The proposed mechanism
performs its predictions as a function of the network load state. For
this purpose, a protocol that disseminates, among all the network
nodes, the variables that quantify the network load state, has also been
designed and implemented. The first objective is to guarantee that the
transmitted data packets will arrive successfully at their destination. It
is not only taken into account that the packets must not be lost on their
way to their destination, but also that they must reach their destination
on time, i.e., with a delay lower than a maximum bound. This bound
depend on the time requirements of the applications that generate the
packets. In addition, it is considered that different applications using
the network may have different time requirements. On the other hand,
the relevance of these applications may also be different (some of them
may be critical for different reasons, while others may offer services
of lesser importance). Therefore, in this proposal, the applications are
grouped into different categories, being possible to assign different
priorities to each category.
2

The rest of this article is organized as follows. Some related work
is presented in the next section. Section 3 summarizes the general
design and operation of the proposed mechanism. Section 4 presents
the details of the machine learning techniques used. In this work, we
have selected the use of an advanced variation of decision trees. The
proposed strategy to generate the necessary datasets to train these
decision trees, and their performance evaluation, are also included.
Section 5 presents the designed protocol for the dissemination of the
data (features) used as inputs by the decision trees in every node, and
for the operation of the congestion control mechanism. The verification
of the correct operation of the protocol and its performance evaluation
has been carried out by means of simulations. The results are shown in
Section 6. Finally, Section 7 presents the conclusions of this work.

2. Related work

Nowadays, many research groups focus their work on improving
the performance of multi-hop wireless networks. If the network nodes
building are mobile, some fundamental issues to take into account are
packet routing and congestion control. Depending on the degree of
mobility of the nodes and the applications that will transmit/receive
messages over the network, the solutions to be considered are dif-
ferent. Looking at the routing of data packets, there are multiple
proposals, among which the use of the Optimized Link State Protocol
(OLSR) [11,12] is one of the most widely accepted, given its particular
ability to reduce routing control traffic. Another interesting approach
is B.A.T.M.A.N. (Better Approach To Mobile Ad-hoc Networking), a
project whose development can be followed at [13]. A proposal spe-
cially designed for vehicular ad-hoc networks (VANETs) can be found
in [14], where authors present a new routing protocol which try to
improve the decision of the next forwarding node based on four routing
metrics: distance to destination, vehicles density, vehicles trajectory
and available bandwidth.

On the other hand, congestion control involves a set of techniques
to detect and correct a possible overuse of the network resources,
which leads to performance degradation. Basically, an unregulated
traffic generation rate by some source nodes, or even their geographical
position or the network size, can give rise to a partial or complete
congestion situation. The applied techniques differ depending on the
type of transport protocol used. When using a connection-oriented
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protocol, such as Transmission Control Protocol (TCP), proposals are
generally oriented towards congestion window size management [15].
However, this possibility is not available for applications that use a non-
connection-oriented protocol, like the User Datagram Protocol (UDP),
and therefore other mechanisms must be employed.

In [16,17], some proposals are presented and applied to wireless
multi-hop networks with static nodes. The first of them is implemented
on the intermediate nodes and considers the possibility of being in
emergency situations. The second one delves into the need to offer an
equitable distribution of network resources among all traffic generating
nodes. Authors compare their proposal with the Enhanced Distributed
Channel Access (EDCA) mechanism. EDCA is a link layer access control
mechanism that provides transmission priority to higher access cate-
gories. However, as indicated in the article, the EDCA mechanism has
limitations, such as inequity in network resource allocation. Although
EDCA uses a scheme based on the priority of traffic classes, it may result
in high-priority traffic consuming most of the available bandwidth,
depriving low-priority traffic of access to the wireless medium. In
addition, EDCA does not guarantee minimum delay or maximum jitter
for high-priority traffic. As another example, although not directly
applied to multi-hop wireless networks, in [18], the authors present the
mechanism used in WebRTC, where the Real-time Transport Protocol
(RTP) over UDP is used. In this case, the rate control is performed
using the information available in the receiver reports of the RTP
Control Protocol (RTCP). One of the main limitations of WebRTC is
that it requires a stable and reliable internet connection for proper
functioning. It is highly dependent on network conditions, and low-
bandwidth or unstable connections can result in poor audio and video
quality or even dropped calls.

There are some congestion control schemes adapted to specific
application environments, such as Data Center Transmission Control
Protocol (DCTCP) [19,20], Data Center Quantized Congestion Notifica-
tion (DCQCN) [21,22], SWIFT (Scalable and Stable Congestion Control
with Rapid Fast Recovery) [23,24], and HOMA (High-speed On-chip
Multiprocessor Architecture) [25]. DCTCP and DCQCN are designed
for a data center environment, and require explicit network congestion
notification (ECN) support, which may not be available in all scenarios.
DCTCP estimates network congestion by calculating the fraction of
packets marked with the ECN bit, while DCQCN assigns priorities
to traffic classes and adjusts transmission rates based on congestion
levels. On the other hand, SWIFT is based on the principles of delay-
based and loss-based congestion control mechanisms. It uses a feedback
loop to estimate the congestion level in the network and adjusts the
transmission rate of the TCP flow accordingly. It requires modifications
to the transport layer and NIC (Network Interface Card) firmware.
With respect to HOMA, it uses a flow-based approach to provide low
latency and high throughput while ensuring fairness among competing
flows. It also requires explicit feedback from the network to allocate
credits to each flow, which may introduce additional overhead and
delay. Additionally, it assumes that all flows have the same level of
congestion sensitivity. Therefore, DCTCP, DCQCN, SWIFT, and HOMA
are very good congestion control mechanisms, but applied in specific
environments, based on TCP and with the need for some kind of
feedback, and so they are not applicable to control UDP traffic flows
over generic wireless multihop networks.

Apart from the two most used transport protocols, TCP and UDP,
there are other possibilities, such as QUIC, which is a UDP-Based
Multiplexed and Secure Transport protocol, standardized in [26]. Some
studies have shown that QUIC can reduce latency and increase through-
put, particularly in scenarios with high packet loss rates and long
round-trip times (RTTs) [27]. It focuses on flow-controlled streams
for structured communication, low-latency connection establishment,
and network path migration. It includes security measures that ensure
confidentiality and integrity. Besides, a congestion control algorithm
is also proposed in [28], but it is similar to the one used by TCP in
3

TCP NewReno [29], and so it is also based in ECN, congestion window,
and congestion control states (Slow Start, Congestion Avoidance and
Recovery Period). Therefore, this is also a very well designed and
promising protocol, but not applicable in the environment considered
in this work.

The use of machine learning techniques is now widespread in many
research fields. In the area of communication networks, relevant work
has recently been proposed that improves the performance at the data
link, network, transport, and application layers. Regarding wireless
communication networks, numerous recent works can be found. A very
good survey can be found in [30]. Furthermore, with respect to the
congestion control issue, an excellent and recent review can be found
in [31]. As can be read in this article, most of the works are mainly
oriented again to the use of the TCP transport protocol.

For instance, authors in [32] present a proposal to be applied to the
global Internet, combining classical congestion control techniques with
new ones based on reinforcement learning. The proposal is called Orca
and is deployed and evaluated over a global testbed on the Internet
with servers located on five different continents. The evaluation shows
the achievement of consistent high performance in different network
conditions. In [33], a solution for cross-datacenter networks (multiple
data center networks, DCNs, connected by a wide area network, WAN)
is developed. Here, geographically distributed applications hosted on
the cloud are taken into account. Delay signals are combined with
explicit congestion notification (ECN) to form the proposed GEMINI
strategy, which authors have implemented in the Linux kernel. The
mechanism has been evaluated on a testbed, showing a low latency,
high throughput, and fair and stable convergence.

In a previous work [34], we presented our first approach to con-
gestion control based on machine learning techniques. The considered
scenario was a Smart Grid Neighborhood Area Network. The main char-
acteristic of these networks is that the nodes are static, and therefore
the communication links between the network nodes and the network
paths are also static and known a priori. Thus, the proposal was based
on the characterization of all the data links of the network and their use
to train the machine learning algorithms. In addition, communications
(data flows) occur only between the network nodes and a special node
with gateway functionality. In other words, the gateway is always
either the source or the destination of the communication (nodes-
to-sink/sink-to-nodes scenarios). On the other hand, the protocol for
disseminating the necessary features was not implemented.

2.1. Contributions

The contributions of this work can be summarized as follows. First,
we consider a much more generic scenario, where network nodes are
mobile, and then the communication channels are not known a priori
and variable over time. Second, the source and the destination of the
data flows can be any pair of nodes in the network (nodes-to-nodes
scenario). These generalizations required a redesign of the proposed
mechanism and a new approach to training the ML algorithms. Be-
sides, we have designed and implemented the complete protocol to
disseminate the values of the selected features. In addition, an explicit
mechanism to provide priority differentiation to the traffic categories
has also been designed and included. These contributions collectively
enhance the applicability, effectiveness, flexibility, and performance of
the proposed congestion control mechanism.

3. General design and operation

The congestion control mechanism to be implemented has to satisfy
several requirements. First, a central control unit must not be required,
that is, the protocol must be distributed. Additionally, the mechanism
should be able to operate on changing network topologies, since the
network nodes are mobile. Moreover, the source and destination of
the data flows can be any pair of network nodes. The source nodes

must discard the transmission of a data packet if there is no guarantee
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Fig. 2. Data packet path.

that it will reach its destination on time. This approach ensures that
network resources are not wasted by transmitting data packets that will
not be useful at their destination. Furthermore, the mechanism must
be able to handle applications with different quality of service (QoS)
requirements, particularly in terms of maximum network transit time
(NTT). Finally, the mechanism must allow the assignment of different
priorities to the applications, depending on how critical they are for the
network or the users.

The mode of operation will be as follows. Each time a source node
must transmit a data packet to a certain destination node, it must
predict (by means of ML techniques) whether that packet will arrive on
time (before a maximum NTT, which depends on the traffic category)
at its destination. This prediction will be made based on the network
load state at any time. The network load state will be quantified based
on two parameters measured by each network node: the channel busy
ratio (CBR) and the queued (buffered) packets (QP). Specifically, the
source node is interested in knowing the value of these parameters at
the nodes through which the data packet will travel. For instance, in
Fig. 2, the source node (node 1) would be interested in the values at
nodes 1, 3, 5 and 6.

In fact, different possibilities arise at this point, depending on the
number of input features to be used in the prediction algorithm. That is,
node 1 could use the parameters of all the nodes on the path, or it could
reduce the number of parameters, using, for instance, only the values
measured by the source and destination nodes (nodes 1 and 6 in the
figure). It must also be noted that the source node does not know the
complete list with all the intermediate nodes. It only knows which is the
source node (itself), the destination node, and the second hop node (the
node to which it must transmit the packet and which will be in charge
of relaying it to its destination) provided by the routing algorithm. To
find out which are the rest of the nodes in the path (node 5 in this exam-
ple), additional control messages must be added to the protocol, which
would increase the added overhead. In addition, given the dynamic
nature of the networks under consideration, the intermediate nodes
could change during packet hop-by-hop retransmissions, so that the
algorithm would be using incorrect nodes. Therefore, in this proposal,
we will consider only the cases in which the input parameters are those
measured by the source node, second hop node, and destination node.
In fact, in the training phase of the prediction algorithms, the resulting
performance will be compared in three cases: (i) using only the source
node, (ii) using source and destination nodes, and (iii) using source,
second hop, and destination nodes. The details about the prediction
algorithm are provided in Section 4.

On the other hand, as can be seen from the exposed mode of
operation, all nodes must know the CBR and QP values measured
by the rest of the nodes in the network. Therefore, all nodes in the
network must periodically measure their own CBR and QP parameters
and disseminate them to the rest of the nodes. The operation mode
and the designed protocol are detailed in Section 5. As a result of the
application of this protocol, the nodes will have the more recent values
measured by the rest of the nodes, and will be able to apply them as
input features in the prediction algorithm. Note that the application
of the congestion control mechanism is only carried out by the source
nodes. These nodes are the ones that predict if the total network transit
time of each new data packet will be less than the maximum limit. If
4

so, the packet is transmitted, otherwise it is discarded. Intermediate
nodes in the network do not need to apply congestion control, since
the source node has already done it. In fact, intermediate nodes have
no information on how long the packet has been in the network since
it was transmitted at its source, and therefore they could not apply the
congestion control mechanism properly.

Finally, an optional second block is included in the mechanism to as-
sign different transmission priorities to the traffic categories, depending
on the relevance of each application (Section 5.4).

4. Machine learning based congestion control mechanism

4.1. Machine learning model design and operation

Predicting the state of a network is challenging, especially when
we have mobile nodes in a wireless multi-hop scenario, due to several
factors, such as the dynamic network topology, unpredictable interfer-
ences, limited bandwidths, and the lack of global knowledge, among
others. Then, in this proposal, we are not trying to predict the state
of the network. What we predict is, given a network state at the time
of transmission of each data packet, whether this packet will arrive at
its destination on time or not. That is, we know (to some extent) the
network’s state at the time of transmission of each packet (thanks to the
disseminated CBR and QP values, which are current and real measures),
and we predict, given this network state, whether the packet will arrive
at its destination on time or not. These measures (CBR and QP values)
are taken periodically by each network node, and disseminated to the
rest of the nodes using, as will be explained in Section 5, the proposed
DICCP protocol.

Supervised learning algorithms have shown promising results in
wireless data transmission scenarios, such as vehicular communications
and smart grids [8–10]. The accuracy of these algorithms relies on
the quality and quantity of the labeled data used in the training phase.
Thus, in this work, we propose a congestion control mechanism based
on supervised learning. The general steps followed for the development
and operation of the model are detailed in Fig. 3. As we are trying
to keep the algorithm as simple as possible, to be executed in simple
devices, we do not include all possible inputs as features for the
learning algorithm (RSSI of neighboring devices, SNR, BER, MAC layer
losses, . . . ), because these parameters are reflected to some degree in
the selected features (CBR and QP).

The chosen supervised machine learning algorithm is an advanced
version of decision trees. Fig. 3 shows the workflow diagram used
to build and operate this algorithm. The first stage contemplates the
data collection scenario, where extensive simulations were conducted
to collect representative samples, allowing the algorithm to learn from
various traffic link and network state situations.

The obtained dataset is unstructured, so the second stage comprises
the processing of the gathered data to extract the features and labels,
which will be used later as inputs and outputs to train the ML models.
Then, the third stage is the training phase, in which we will build and
train the most suitable learning algorithm. In this phase, we have em-
ployed hyperparameter optimization techniques to efficiently select the
best model configuration, seeking the highest possible level of accuracy.
We have evaluated and validated the generated models by means of
well-known ML metrics, such as the Receiver Operating Characteristic
(ROC) curve. Finally, the last phase represents the operation of the
congestion control mechanism, where the learning models are exported
and operated in a realistic network.

In the following subsections, we will explain each of these phases
in detail.
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Fig. 3. Machine learning algorithm development and operation phases.
4.2. Data collection

The basis of any machine learning-based algorithm is data. For
our network scenario, general datasets are not useful, because we are
working with specific features and a generic scenario, with traffic flows
belonging to different categories and with different QoS requirements.
Therefore, we have built a data collection scenario using the ns-3
simulator [35]. Fig. 4 illustrates a simple network topology to explain
the data collection process. In this example, we have a network topol-
ogy consisting of a source node, a destination node, and four relay
nodes. In this case, a packet is transmitted from node 1 to node 6
through nodes 2 and 4, which is the best route to the destination
calculated by the routing protocol. We have collected the network state
information perceived by the current node, the second-hop node, and
the destination node as the packet travels through each node in the
network, along with the sampling time values. As can be seen, the
different events associated with each packet transmitted or received
during the simulation are captured.

To build the training dataset, we have conducted several sets of
simulation runs, taking into account different traffic patterns for the
UDP applications generated by each node. Each simulation consists of
five hundred seconds of network operation, where different seeds of
pseudorandom generators are used. Table 1 shows the configuration
values used in the simulator to obtain the widest possible range of
values for each variable measured during the data collection process.
To prevent issues of underfitting or overfitting, the size of the datasets
was determined by analyzing the learning curve. This curve illustrates
the relationship between the accuracy of classification and the number
of samples present in the dataset.

We have considered a network size of sixteen wireless mobile
nodes which transmit using the IEEE 802.11ac wireless physical layer
standard. The selected VHT-MCS (Very High Throughput Modulation
5

and Coding Scheme) is VHT-MCS 0, with a single 20 MHz channel, and
a single spatial stream, so that transmissions occur at a physical rate
of 6.5 Mbps [36]. Moreover, for the UDP applications, an exponential
distribution has been chosen for the packet size and for the packet
inter-arrival time. Regarding the mobility model, a generic option has
been chosen, the random waypoint mobility model, since it is a very
generic model, with a node speed of 3.5 m/s. At this point, it is worth
mentioning that, if the proposed mechanism is to be applied to nodes
with a very different mobility model, to ensure the best performance
the machine learning algorithms should be trained again. This training
is done offline, prior to the network start-up, in order to make the
trained algorithms available to each network node.

With regard to the queueing discipline, we have chosen the default
ns-3 DropTailQueue, a simple queuing discipline that drops packets
when the queue reaches its maximum capacity. In this queue, packets
are transmitted on a First Come First Served (FCFS) basis. If the queue is
full when a new packet arrives, it is dropped. While this basic queuing
discipline can offer satisfactory performance in many situations, it lacks
the capability to manage congestion or prioritize packets based on their
importance. Therefore, a more complex queuing discipline could be
needed. However, with our proposal, this need is avoided, because we
provide fairness and/or priorities to the different traffic categories at
the application layer.

For instance, the EDCA (Enhanced Distributed Channel Access)
mechanism has been specifically designed to offer Quality of Service
(QoS) support for wireless networks. This mechanism is able to provide
QoS to four Access Categories (ACs), namely Voice (VO), Video (VI),
Best Effort (BE), and Background (BK). However, this mechanism works
at the data link layer, and in an independent way in each wireless hop.
Therefore, it cannot guarantee a maximum network transit time (NTT),
which is the most important issue for our proposal: being able to predict
and avoid the transmission of packets that will not arrive on time at
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Fig. 4. Data collection.
Table 1
Main simulation parameters.

Description Value

Network simulator. ns-3.33
Simulation time 500 s
Transport layer UDP
Random number generator MRG32k3a

Network size 16
Mobility model Random waypoint mobility model
Node speed 3.5 m/s

Packet length average (Bytes) and PDF 100 Exponential
Packet interarrival time and PDF Exponential

Routing protocol OLSR
Routing metric Hop count

Queue discipline first-in, first-out (FIFO)
Maximum queue size 500

Wireless physical layer IEEE 802.11ac
Channel width 20 MHz
RxSensitivity: The energy of a received signal should be higher than this threshold
(dBm) for the PHY to detect the signal

−101.0 dBm

CcaEdThreshold: The energy of a non Wi-Fi received signal should be higher than
this threshold (dBm) to allow the PHY layer to declare CCA BUSY state.

−62.0 dBm

Transmission and reception gain (dB) 0 dB
Transmission and reception power (dBm) 1 dBm
Modulation Coding Scheme (MCS) 0
Short guard interval 0
Frame aggregation factor 0
Number of spatial streams 1
their destination. Thus, as we are resolving this issue at the application
layer, also providing fairness and/or traffic prioritization (as desired
or needed in the possible different application scenarios), we have
considered that it is not necessary to activate the EDCA mechanism at
the data link layer, keeping it simpler.

Finally, the paths between source and destination nodes are found
using the OLSR protocol. It is worth mentioning that the proposed
congestion control mechanism does not rely on a specific routing
protocol, because the only need is to know which is the second hop
node to the destination, and this information must be provided by any
routing protocol.

4.3. Processing and feature extraction

As previously mentioned, the collected data are stored in an unstruc-
tured format. Therefore, we need to process and organize the variables
6

of the collected data in a structured way. The main objective of this
phase is to obtain the final dataset, which will be used to train the
machine learning algorithms. We have processed the data to have a
meaningful sample for each packet. Each processed sample represents
the network state perceived by a source node before transmitting a
packet to the destination, together with a label that represents whether
this transmission has been successful or not (that is, if the data packet
has reached its destination meeting the QoS requirements of the traffic
category to which it belongs). For this purpose, we have defined four
categories, each with a maximum allowed NTT. The first category is
the one that encompasses time-critical applications, while category 4
has the lowest time requirements, as shown in Table 2. In this way, if
the NTT is lower than the maximum allowed according to the respective
category, the packet is considered to have been successfully received.
Otherwise, the transmission is considered failed.
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Fig. 5. Example of stratified sampling.
Fig. 6. Final format of the training and testing dataset.
Table 2
Maximum NTT allowed for each category.

Category Network transit time

1 50 ms
2 200 ms
3 500 ms
4 1000 ms

Finally, before generating the final dataset, we have carried out
an additional processing step to split the dataset into subsets, called
stratified sampling [37]. The stratified sampling technique forces the
distribution of the target variable(s) (i.e., the network transit time)
among the different splits to be the same, or meet a specific condition.
In this sense, we have divided the original dataset as a function of the
NTT values, in 50 ms intervals. That is, we have a subset of sample data
with a NTT value from 0 to 50 ms, another from 51 to 100 ms, and so
on, where each subset has the same number of samples.

Fig. 5 shows an illustrative example of this process. In this example,
we have a dataset that has two strata or sets of samples. On the one
hand, a set of samples containing packets with an NTT from 0 to 50 ms
(stratum 1), and on the other hand, the second set of data containing
packets with an NTT from 51 to 100 ms (stratum 2). As can be seen,
stratum 1 has more samples than stratum 2, and with the stratified
sampling technique, we get the same amount of samples for each
stratum. This small change results in an improved model prediction
accuracy [38].

As a result of all the above operations, a dataset as shown in Fig. 6
is obtained, which contains the desired data to train the ML algorithms.
Each training sample represents the parameters of a single packet from
the point of view of the source node. The size of the datasets obtained in
our experiments is around 46 GBytes before applying the stratification
technique, and 2.4 GBytes after its application.
7

4.4. Learning phase

This section presents the ML algorithm chosen. In addition, we
use the Exhaustive Grid Search method, which belongs to the set of
hyperparameter optimization algorithms [39]. It allows a more efficient
selection of the parameters of a learning model. Finally, the prediction
models are evaluated using well-known ML metrics such as accuracy,
ROC curve, F-score [40], and Cohen’s kappa [41,42].

4.4.1. Model selection
The proposed mechanism corresponds to a binary classification

problem, since the source node will decide between transmitting or
discarding each packet depending on the current network load state.
We have considered decision trees as a suitable option for this task.
However, we have decided not to use simple decision trees, as they are
susceptible to underfitting and overfitting problems [43]. For this rea-
son, we have chosen the CatBoost algorithm [44], which uses the theory
of decision trees and gradient boosting to combine several weak models
sequentially into a robust competitive prediction model. CatBoost has
been applied in multiple applications and provides promising results in
recommendation systems, personal assistant, self-driving cars, weather
prediction, and many other applications [44].

As previously said, different combinations of features can be used
as inputs for the CatBoost algorithm (CBR and QP of the source node,
destination node, etc.) We have compared the performance obtained
with different combinations, as shown in Table 3. The first three
versions consider only the CBR values of the source node, destination
node, and second hop node, while the last three versions also consider
the number of packets in the queue. In this way, we will be able to
determine which combination is the most appropriate.

The operation of the CatBoost algorithm is shown in Algorithm 1.
The full version of the algorithm can be found in [44]. The inputs to
the algorithm are the training data 𝑋 (features) and 𝑦 (labeled class), as
well as the hyperparameters 𝑝. The hyperparameters are the parameters
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Table 3
Different versions considered for the ML algorithm.

Strategy Features used to train the machine learning model

S_CBR CBR𝑆𝑂𝑈𝑅𝐶𝐸
SD_CBR CBR𝑆𝑂𝑈𝑅𝐶𝐸 , CBR𝐷𝐸𝑆𝑇𝐼𝑁𝐴𝑇𝐼𝑂𝑁
SDS_CBR CBR𝑆𝑂𝑈𝑅𝐶𝐸 , CBR𝐷𝐸𝑆𝑇𝐼𝑁𝐴𝑇𝐼𝑂𝑁 , CBR𝑆𝐸𝐶𝑂𝑁𝐷𝐻𝑂𝑃
S_CBR_S_QP CBR𝑆𝑂𝑈𝑅𝐶𝐸 , QP𝑆𝑂𝑈𝑅𝐶𝐸
SD_CBR_SD_QP CBR𝑆𝑂𝑈𝑅𝐶𝐸 , QP𝑆𝑂𝑈𝑅𝐶𝐸 , CBR𝐷𝐸𝑆𝑇𝐼𝑁𝐴𝑇𝐼𝑂𝑁 , QP𝐷𝐸𝑆𝑇𝐼𝑁𝐴𝑇𝐼𝑂𝑁
SDS_CBR_SDS_QP CBR𝑆𝑂𝑈𝑅𝐶𝐸 , QP𝑆𝑂𝑈𝑅𝐶𝐸 , CBR𝐷𝐸𝑆𝑇𝐼𝑁𝐴𝑇𝐼𝑂𝑁 , QP𝐷𝐸𝑆𝑇𝐼𝑁𝐴𝑇𝐼𝑂𝑁 , CBR𝑆𝐸𝐶𝑂𝑁𝐷𝐻𝑂𝑃 , QP𝑆𝐸𝐶𝑂𝑁𝐷𝐻𝑂𝑃
1

1

that are not updated during the learning process but are used to set
up the model. For gradient boosting decision trees, the most important
hyperparameters are the depth of the trees, the number of trees to
combine in the boosting process, the learning rate, and the algorithm
used to reduce the cost function. The result is a trained 𝑟 model.
Algorithm 1: CatBoost Classifier

Input: Training data 𝑋 (features) and 𝑦 (labeled class),
hyperparameters 𝑝

Output: Trained model 𝑟

1 Initialize model 𝑟 with hyperparameters 𝑝;
2 for iteration 𝑖 in 1 to 𝑝.𝑛𝑢𝑚_𝑡𝑟𝑒𝑒𝑠 do
3 Compute the gradient and hessian of the loss function for each

training instance;
4 Train a new tree 𝑡 using the computed gradient and hessian;
5 Update the training loss using the trained tree 𝑡;
6 if the training loss has not improved for 𝑘 iterations then
7 break;
8 end
9 Add the new tree 𝑡 to the model 𝑟;
0 end
1 return 𝑟

Algorithm 1 initializes the model 𝑟 with the specified hyperparame-
ters 𝑝 and then enters a loop that runs for 𝑝.𝑛𝑢𝑚_𝑡𝑟𝑒𝑒𝑠 iterations. In each
iteration, the algorithm computes the gradient and hessian of the loss
function for each training instance. The gradient and hessian are used
to train a new decision tree t. The algorithm then updates the training
loss using the trained tree 𝑡, which is added to the model 𝑟. Besides,
we use the Early stopping technique [45–47], to get the most adequate
value for the number of trees.

As can be seen, there are several hyperparameters to configure,
and these can have a wide range of values. Therefore, we will use
hyperparameter optimization to properly select the hyperparameter
values, which is explained in detail in the next section.

4.4.2. Hyperparameter optimization
During the training process, a proper selection of the model hyper-

parameters is essential to get the most accurate predictions. Note that
we have proposed different versions of the mechanism (i.e., a different
number of features used in the training phase), and each version must
deal with four different traffic categories (i.e., applications with differ-
ent time requirements). For this reason, we have considered it essential
to use hyperparameter optimization techniques, such as the Exhaustive
Grid Search method [39]. Algorithm 2 presents this technique, where
we have to provide a range of values for each hyperparameter that
will be further evaluated. Table 4 shows the range of values for each
hyperparameter and the percentage of data used in the training phase.
As can be seen, Algorithm 1 (Algorithm 2, line 4) is executed with each
combination of parameter grid values and is tested by calculating some
performance metrics. Finally, Grid Search returns the hyperparameter
configuration that showed the highest prediction score value.

To select the ranges of initial values provided for the hyperparam-
eters, we have taken into account the following considerations. On the
one hand, we try to get a good trade-off between model complexity and
generalization capability using a tree depth range from 6 to 10, which
is recommended by the authors of CatBoost [44]. Lower values do not
provide adequate performance, while excessively high values may lead
8

to overfitting.
Algorithm 2: Grid Search with CatBoost Classifier
Input: Training data 𝑋 and 𝑦, hyperparameters grid 𝑝𝑎𝑟𝑎𝑚𝑠, 𝐾-fold

cross-validation folds 𝑓
Output: Best hyperparameters �̂�, best validation score �̂�

1 �̂� ← ∅, �̂� ← −∞;
2 foreach 𝑝 in 𝑝𝑎𝑟𝑎𝑚𝑠 do
3 foreach 𝑓𝑖 in 𝑓𝑜𝑙𝑑𝑠 do
4 Train 𝑚𝑜𝑑𝑒𝑙 ← 𝐶𝑎𝑡𝐵𝑜𝑜𝑠𝑡𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑟(𝑝) using (𝑋𝑓 , 𝑦𝑓 );
5 Validate 𝑚𝑜𝑑𝑒𝑙 ← trained model on 𝑋𝑓val

;
6 𝑠 ← Validation score of 𝑚𝑜𝑑𝑒𝑙;
7 if 𝑠 > �̂� then
8 �̂� ← 𝑝, �̂� ← 𝑠;
9 end
10 end
1 end
2 return �̂�, �̂�

Table 4
Training parameters and characteristics used for the hyperparameters
optimization.

Parameter Value

Training dataset 70%
Testing dataset 30%
Cross-validation 20

Maximum number of trees 3000
Loss function Logloss
Validation-based Early stopping
Number of CPUs used in parallel for training 80
Learning rate [0.03, 0.1]
Tree depth [6, 7, 8, 9, 10]

With respect to the number of trees, a high value can improve
performance but also increase training time and memory requirements.
As previously said, here we have used the Early stopping technique,
which consists of repeating the training phase, using an increasing
number of trees in each repetition, and stopping when no improvement
in the accuracy is observed (Algorithm 1, line 6), avoiding overfitting.
In order not to increase the number of trees indefinitely, a maximum
value is taken. Here, we have chosen a value of 3000. This value is
taken simply to have a high value so that it will not affect the number
of trees finally chosen, but it will prevent the algorithm from running
in an endless loop due to a bad configuration.

Fig. 7 shows the model configuration (i.e., the tree depth and the
number of trees used to build the final tree model) and the testing accu-
racy of the resulting decision trees. As can be seen, the maximum value
of 3000 for the number of trees is never reached in our experiments. We
have generated twenty-four learning models based on gradient boosting
decision trees thanks to hyperparameter optimization. There are six
versions (see again Table 3), and each one includes four different traffic
categories. As can be seen, the trees generated for category 1, which
has the highest time requirements, are less complex, while the decision
trees for categories 3 and 4, which are more permissive with respect
to time, require a higher complexity of the model to have a high level
of accuracy. Finally, it can be observed that as the number of features
used for training increases, the model becomes more complex, and a

higher predictive power is obtained, as shown in the accuracy plot.
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Fig. 7. Hyperparameter selection and accuracy.
Table 5
Decision trees performance metrics.

Strategy F-score Cohen’s kappa

Category 1 Category 2 Category 3 Category 4 Category 1 Category 2 Category 3 Category 4

S_CBR 0.448 0.218 0.285 0.904 0.432 0.172 0.133 0.0
SD_CBR 0.560 0.229 0.402 0.905 0.546 0.184 0.181 0.014
SDS_CBR 0.475 0.245 0.579 0.916 0.461 0.200 0.299 0.458
S_CBR_S_QP 0.528 0.55 0.749 0.904 0.514 0.472 0.561 0.0
SD_CBR_SD_QP 0.658 0.591 0.781 0.908 0.645 0.517 0.619 0.153
SDS_CBR_SDS_QP 0.725 0.686 0.879 0.942 0.713 0.627 0.792 0.618
4.4.3. Model validation
In this section, the performance evaluation of the built models

is presented. In a first evaluation, the predictive models have been
assessed using the ROC curve and AUC (Area Under the Curve) metric.
On the one hand, the ROC curve represents in a two-dimensional plot
the true positive rate (TPR) on the 𝑦-axis versus the false positive rate
FPR) on the 𝑥-axis. The TPR (also called sensitivity or recall) represents

the proportion of positive samples that were correctly classified as
positive. The FPR (also called fall-out) represents the proportion of
negative samples that were incorrectly classified as positive. Therefore,
we would expect a good classifier to show the ROC curve as close to the
upper left corner as possible (i.e., values close to 1 for TPR and close
to 0 for FPR). Besides, the red diagonal in the ROC curves represents a
random model which does not have any ability to distinguish between
the two classes (i.e., the predicted probabilities of the two classes
overlap), and therefore, TPR = FPR at any threshold. On the other hand,
we have also used the Area Under the Curve (AUC), which numerically
complements the result obtained by the ROC curve. The closer the AUC
value is to 1, the more accurate the model predictions are.

Fig. 8 shows the ROC curves and AUC values for the different
versions of the prediction model and for the different traffic categories.
Two main conclusions can be drawn from the graphs. First, as the
number of features increases, the model predictions become more ac-
curate. Second, the performances obtained are better when both types
of available features (CBR and QP) are used, than when only one (CBR)
is used. On the other hand, similar to what happens with the accuracy
metric, applications with the lowest time requirements show the worst
results, especially when few features are used for training. Therefore,
from these first results, we can conclude that the designed decision tree-
based classifiers show a high percentage of accurate predictions when
using all CBR and QP features in the learning phase.

In a second evaluation, the ML models have also been assessed
through F-Score and Cohen’s kappa metrics. The F-Score metric repre-
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sents the weighted harmonic mean of the precision and recall metrics,
where the best score is 1, and the worst is 0. On the other hand, Cohen’s
kappa indicates the level of agreement between two different raters.
Here, the best score is also 1 [48], and negative values are possible
for inaccurate models. The results are presented in Table 5, showing
again that better results are obtained when the CBR and QP features
for the source, second hop, and destination node are taken into account
in the training process. Furthermore, looking closely at the results,
we have Cohen’s kappa values of 0 for category 4. Specifically, this
happens when only the features of the source node are used in the
training phase. Notice that a Cohen’s kappa score of 0 means random
agreement among raters, whereas a score of 1 means a complete
agreement between the raters. In other words, if the Cohen’s kappa is
0, the observed concordance coincides with that which would occur by
pure random chance. Positive values indicate greater agreement than
would be expected by pure chance. If the result is 1, it would be a
perfect match. Finally, the value for Cohen’s kappa can be less than
0 (negative), meaning there is less agreement than random chance, a
situation that does not occur in the presented models.

In this second evaluation, we can conclude again that the highest
level of accurate predictions is achieved, for all versions and for all
categories, when the CBR and QP features of the source, second hop,
and destination node are used. Therefore, the SDS_CBR_SDS_QP strategy
is the one that would be implemented and evaluated in the following
sections.

4.5. Operation phase

Once the model is suitably adjusted, it can be installed in the
network nodes and put into operation. This way, each time a node has
to transmit a new data packet generated by one of its applications,
it can predict whether the packet will reach its destination on time
or not, depending on the time requirements of each traffic category.
The process to be followed is detailed in Algorithm 3. The node checks
the traffic category to which the data packet belongs, and applies the
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Fig. 8. ROC curves.
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corresponding decision tree. As a result, it will obtain the prediction
of whether the packet will arrive on time or not. Therefore, the packet
will only be transmitted if it is predicted to arrive on time, otherwise
it will be discarded. As an additional functionality, it can be taken into
account if the traffic prioritization mechanism must be applied. This
functionality is explained in detail in Section 5.4.

It is worth mentioning that recent developments in machine learn-
ing have been deployed with Python-based frameworks because of their
flexibility, extensive library support, and active community of users.
Nevertheless, sometimes the models must be ported to C or C++ code
to run them on real low-cost devices or to be included in some network
simulators, such as ns-3. Therefore, we have converted the models
generated in Python through the CatBoost framework into readable
C++ code for the network simulator.

5. Distributed Congestion Control Protocol

As previously explained, each network node performs periodic CBR
and QP measurements. The measured values must be disseminated to
the rest of the nodes so that they can be used by their congestion
control algorithms. To perform this dissemination, we have developed
the DIstributed Congestion Control Protocol (DICCP). As will be seen
later, the messages of this protocol include the necessary fields for
the dissemination of the CBR and QP values. Additionally, some other
features have been added to the protocol that are also detailed in
this section. The ideal transport mode for this type of protocols is
unreliable transport, and so DICCP messages are encapsulated over
10
Algorithm 3: Operation phase
Input: Supervised learning model, consisting of 4 CatBoost decision

trees, one for each traffic category: 𝐷𝑇 (𝑘), 𝑘 = 1..4.
Prioritization function.

Output: Transmission decision (Boolean)
1 Get the traffic category, 𝑘, of the data packet.
2 Get, from the data repository, the CBR and QP values needed as

features for the decision tree.
3 Run the decision tree, 𝐷𝑇 (𝑘), obtaining the desired prediction

(whether the packet will arrive to its destination on time or not)
4 if packet will arrive on time then
5 if traffic prioritization enabled then
6 Apply the prioritization function
7 if packet is prioritized then
8 Transmit packet
9 else
10 Discard packet
11 end
12 else
13 Transmit packet
14 end
5 else
16 Discard packet
7 end

UDP. Note that the proposed mechanism regulates the transmission
of UDP flows corresponding to the different applications that use the
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Table 6
DICCP parameters

Name Description Default value

DICCP_MIT Interval time between DICCP messages 1 s.
DICCP_SIT Interval time between CBR and QP samples 1 ms.
DICCP_CAT Number of traffic categories 4
DICCP_EWMA_W Weight applied to the new CBR and QP measures in the EWMA 0.005
DICCP_NThres Threshold for the number of neighbors used by the forwarding algorithm 4
DICCP_NVT Neighbors valid time 5 s
DICCP_ADP_PRI Priority differentiation True
DICCP_PRI_Factor Priority Intensity Factor 1
Table 7
Network state (NS) table.

Name Size [octets] Description

NID 4 Node Id (IP Address)
CBR 2 Channel Busy Ratio
QP 2 Queued Packets
TS 8 Timestamp
RCAEst 2 ⋅ DICCP_CAT RCA Estimation (optional)

Table 8
Neighborhood (NBH) table.

Name Size [octets] Description

NID 4 Node Id (IP Address)
TS 8 Timestamp

Table 9
RCA estimation (RCAEst) table.

Name Size [octets] Description

TC 1 Traffic Category
LAT 8 Last Arrival Time
RCAEst 2 RCA Estimated value

network. However, the UDP flow corresponding to the DICCP protocol
itself will not be regulated, that is, its messages are always transmitted.
This is not a problem with regard to the total load on the network, since
the number of DICCP messages is very small and negligible compared
to the rest of the flows.

5.1. DICCP parameters and repository tables

This section introduces, for reference, the protocol parameters, as
well as the tables that each node must maintain for its operation.
Table 6 summarizes the configurable parameters of the protocol, to-
gether with their default values. They will be explained in the following
sub-sections.

On the other hand, the values necessary for the operation of the
protocol are stored in three repository tables: the Network State (NS)
Table, the Neighborhood (NBH) Table, and the Required Channel Avail-
ability Estimation (RCAEst) Table. Their contents are shown in Ta-
bles 7–9 respectively. The NS Table stores the CBR and QP values
received from the rest of the nodes in the network, together with a
timestamp that specifies the time at which these values were measured.
As discussed, these values will be used as input features for the machine
learning algorithms used for congestion control. As an additional pos-
sibility, which will be explained in detail later, the Required Channel
Availability of each network node, and for each traffic category, is
also stored. These values represent an estimation of the proportion of
channel time that each node would require for each traffic category.
They will be used, if needed, by the proposed prioritization algorithm.
All the values in the NS Table are received, as will be seen in the next
section, in the DICCP messages. In the NBH Table, each node stores
the identifier of each of its neighbors (nodes from which it receives
direct transmissions), along with the time instant at which the last
11

transmission was received from each of them. The contents of this table
will be useful both in the process of retransmission of the protocol
messages and in the application of the proposed priority differentiation
algorithm. Finally, in the RCAEst Table, it is stored, for each traffic
category, the value of the arrival time of the last data packet, together
with an estimation of the necessary channel availability for that traffic
(the same information that, for the rest of the network nodes, is stored
in the NS table, as mentioned above). This information will be also
useful for the application of the priority differentiation algorithm, as
will be later explained.

The responsibility for maintaining this repository tables belongs
to the application layer, as the proposed mechanism works at this
layer, and the values included in the tables are a consequence of the
DICCP application protocol itself, and of the applications running on
the node. That is, the content of the NSTable table is maintained at the
application layer thanks to the values of the rest of the nodes (CBR,
QP, . . . ) received in the DICCP messages, as will be detailed in the next
section. The content of the NBH table is also a direct consequence of
the reception of DICCP messages generated by the neighbor nodes (the
transmitter node identifier is also in the DICCP message). And finally,
the content of the RCAEst table consists of values also generated and
maintained by the application layer, because they are directly related
to the applications running on the node. Additionally, when a node
generates a DICCP message, it must include its own CBR and QP values,
values that are available at the data link level, so for this functionality,
a cross-layer communication between the application and link layers is
necessary.

Regarding the memory size of the tables, the NS table has an
entry for each network node, and each entry needs a maximum of
24 bytes (considering 4 traffic categories), as can be seen in Table 7.
The NBH table has one entry per neighbor node, and each entry needs
12 bytes (Table 8). Finally, the RCAEst table has an entry for every
traffic category (Table 9). Thus, if we consider a network with M
nodes and with NN neighbors per node, the memory size needed for
is 24 ⋅M bytes for the NS table, 11 ⋅4 bytes for the RCAEst table and
12 ⋅NN bytes for the NBH table. In general, and for a network size
that is not excessively large, these memory needs should be assumed
without problems by the network nodes. Otherwise, if they have a
low amount of available memory, a reduction in the memory needs
can be contemplated, decreasing the resolution of the timestamps,
using 32 bits instead of 64. This will provide a valid resolution in the
vast majority of the cases. Exceptionally, if the memory availability is
extremely low, a maximum size for each table must be defined and
configured. In this case, it is possible that some necessary values are
not available to the nodes. Then, estimated values will be used by the
algorithms, with the consequent decrease in performance.

5.2. Message format

The messages of this protocol carry the information shown in
Fig. 9. The first 4 bits are used to specify the protocol version (PV, v1
currently). The next 4 bits indicate the message type (MT). Although
only one message type is currently defined (Node Data Message,
ND_MESSAGE), new types are planned to be added as new functional-
ities are incorporated in future versions of the protocol. The identifier

of the node that generated the message is included below (Source Node
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Fig. 9. DICCP message format.
Id, SNId), and then the identifier of the node which has (re-)transmitted
the message (Transmitter Node Id, TNId). As we are working with IP
networks, we use the IP addresses as node identifiers. Next, a timestamp
(TS) corresponding to the time at which the message was sent by the
generating node, followed by the CBR and QP values. To get these
values, the nodes take samples every DICCP_SIT seconds (Table 6).
To avoid large oscillations of these values, and to give importance to
the previous states of the network, the current values are averaged
with the previous ones by means of an exponentially weighted moving
average. To do this average, the weight DICCP_EWMA_W (Table 6) is
used. The next field corresponds to the number of neighbors of the
transmitter node. This value will be used by the forwarding algorithm,
as will be explained in the next section. The last fields are optional,
and correspond to the estimation made by the nodes of the channel
availability required for each traffic category. Their usefulness will
be detailed later when discussing the possibility of assigning different
priorities to the different categories.

5.3. Message processing and forwarding

Each network node generates and broadcasts a DICCP message ev-
ery DICCP_MIT seconds (see Table 6). The value of this parameter must
be adjusted according to the level of mobility of the network nodes. If
the mobility is very high, the time between DICCP messages must be
reduced, which has the disadvantage of a higher overload. On the other
hand, if the mobility of the nodes is low, the time between messages
can be longer, reducing the overload. To avoid node synchronization,
a random jitter is added to the DICCP_MIT value. The receiver nodes
must process and possibly retransmit the messages, following Algorithm
4. As it can be seen, the main mission of the message processing is to
update the NS and NBH tables.

Next, the message must be broadcast again by the receiver, to
disseminate the carried information to all the network nodes. There-
fore, the message would be retransmitted by all the neighbors of
the transmitting node, which may result in an excessive number of
broadcasts. As a practical solution to reduce the number of broadcasts,
the strategy adopted is that the nodes will retransmit the message with
a certain forwarding probability, 𝑃𝐹 , which will depend on the number
of neighbors of the transmitting node (this is the reason why this
number is included in the DICCP Message), following the expression
in Eq. (1). As can be seen, the forwarding probability will be equal to 1
if the number of neighbors is below a certain threshold (DICCP_NThres,
see Table 6). Otherwise, if the threshold is exceeded, the forwarding
probability will be inversely proportional to the number of neighbors.

𝑃𝐹 =

{

1 𝑁𝑁 ≤ 𝐷𝐼𝐶𝐶𝑃 _𝑁𝑇ℎ𝑟𝑒𝑠
𝐷𝐼𝐶𝐶𝑃 _𝑁𝑇ℎ𝑟𝑒𝑠

𝑁𝑁 𝑁𝑁 > 𝐷𝐼𝐶𝐶𝑃 _𝑁𝑇ℎ𝑟𝑒𝑠
(1)

The last step in the algorithm consists of updating the NBH Table.
As previously introduced, in this table each node stores the identifier
of each of its neighbors, together with a timestamp indicating the
time instant at which the last transmission was received from each
one. During the update, the node first queries its table to see if the
node transmitting the message is already included. In this case, the
timestamp is updated with the value of the current time instant. If
the node was not included, a new entry is created. The remaining
entries in the table (the rest of the neighbors) are then checked for
validity. It must be taken into account that, as the nodes are mobile,
existing neighbors can move out of the coverage range. This is why the
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Algorithm 4: DICCP message processing
Inputs : Message Type, 𝑀𝑇 ; Source Node Identifier, 𝑆𝑁𝐼𝑑;

Transmitter Node Identifier, 𝑇𝑁𝐼𝑑; Timestamp, 𝑇𝑆;
Channel Busy Ratio, 𝐶𝐵𝑅; Queued Packets, 𝑄𝑃 ; Required
Channel Availability Estimation, RCAEst; Neighbours
Number, 𝑁𝑁 ; Receiver Node Identifier, 𝑅𝑁𝐼𝑑; Network
State Table, 𝑁𝑆_𝑇 𝑎𝑏𝑙𝑒.

Result: DICCP Message processed (NS_Table and NBH_Table
updated); Exit Code, 𝐸𝐶.

1 if 𝑀𝑇 ≠ 𝑁𝐷_𝑀𝐸𝑆𝑆𝐴𝐺𝐸 then
2 Discard message //The Message Type is not defined.
3 Exit (𝐸𝐶 = 1 ∶ MT not defined)
4 end
5 if 𝑆𝑁𝐼𝑑 = 𝑅𝑁𝐼𝑑 then
6 Discard message //The message was generated by the receiver

node
7 Exit (𝐸𝐶 = 2 ∶ Self-generated message)
8 end
9 if Entry in NS_Table for node SNId exists then
10 NS_TS ← TS from NS_Table
11 if 𝑇𝑆 > 𝑁𝑆_𝑇𝑆 then
12 Update NS_Table entry with the received values

(CBR,QP,TS,RCAEst)
13 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝑁𝑁)
14 else
15 Discard message
16 end
17 else
18 Create new entry in NS_Table with the received values (CBR, QP

,TS, RCAEst)
19 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝑁𝑁)
20 end
21 𝑢𝑝𝑑𝑎𝑡𝑒𝑁𝐵𝐻_𝑇 𝑎𝑏𝑙𝑒(𝑇𝑁𝐼𝑑)
22 Exit (𝐸𝐶 = 0 ∶ Success)

time at which the last transmission was received from each neighbor
is stored in the table. If the difference between the current instant
and the timestamp stored for a particular node is greater than the
value DICCP_NVT (see Table 6), it is considered that no more direct
transmissions are received from that neighbor and consequently it is
removed from the table.

5.4. Quality of service and priority

As mentioned above, the proposed congestion control mechanism is
based on the prediction of the probability that application data packets
reach their destination with a delay (NTT) lower than the maximum
allowed. The machine learning algorithms detailed in the previous
section are used to obtain this probability. When the probability of
success (i.e., the packet arrives on time at the destination) is below a
certain threshold, the packet will be discarded at source, avoiding the
unnecessary waste of network resources. Besides, we have considered
the coexistence of different data packet flows (traffic categories) with
different QoS requirements, that is, different maximum allowed NTTs.
Therefore, each time a node wishes to transmit a packet of a certain
category 𝑘, it applies the decision tree corresponding to that category
and decides whether to transmit or discard the packet. To do so, it will
use as input features the values available in the NS Table, detailed in
the previous sections.
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On the other hand, the proposed protocol also provides the possi-
bility of assigning different priorities to the different traffic categories,
depending on the relevance of the applications that generate them. In
this way, the packets that have passed the previous phase, must go
through a new priority differentiation algorithm. For this new function-
ality, the proposed strategy is based on the knowledge of the proportion
of time the channel needs to be available for the transmission of the
packets of each category 𝑘 (Global Required Channel Availability for
category 𝑘, 𝐺𝑅𝐶𝐴𝑘). The packets belonging to a given category will
be transmitted with a certain probability, which will depend on the
proportion of time to be reserved for the transmission of the packets be-
longing to higher categories. That is, if there are a total of 𝐾 categories
(the value of DICCP_CAT in Table 6), the transmission probability for
packets with priority 𝑘 (considering 𝑘 = 1 the higher priority), 𝑃𝑇𝑘, will
e:

𝑇𝑘 =

{

1 𝑘 = 1
1 −

∑𝑘−1
𝑖=1 𝐺𝑅𝐶𝐴𝑖 1 < 𝑘 ≤ 𝐾

(2)

The problem now is how the network nodes can compute their own
𝑅𝐶𝐴𝑘 values, taking into account that these values are variable over

ime, since they depend on the traffic generated at each moment by the
unning applications. To this end, each network node, depending on the
ata packets it has to transmit generated by the different applications,
akes an estimation of the ratio of time it would need to use the

hannel to transmit them (an estimation of the node RCA for each
ategory 𝑘, 𝑅𝐶𝐴𝑘). This ratio can be ideally computed as the ratio
etween the average time required for the transmission of a data
acket and the average time between packet arrivals. Thus, each time
new packet becomes available for transmission, a new 𝑅𝐶𝐴𝑘 sample

s calculated and averaged with the previous values by means of an
WMA using the DICCP_EWMA_W weight. These averaged estimated
alues are stored in the RCAEst Table (Table 9).

In addition, it must be noted that each node shares the channel
ith all its neighbors. At this point, we have considered two possible
peration modes. The first and simpler mode would be applicable in
cenarios in which all nodes transmit the same amount of traffic. In
his case, the final 𝐺𝑅𝐶𝐴𝑘 value would be 𝑁𝑁 (Neighbors Number)
imes 𝑅𝐶𝐴𝑘. The value of 𝑁𝑁 for each node is nothing more than the
umber of entries in its NBH Table.

Besides, in order to provide more flexibility to the priority assign-
ent mechanism, reserving more or less channel resources for the
igher priority traffics, we have included a priority intensity factor
DICCP_PRI_Factor, see Table 6) in the protocol. Its influence will be
iscussed in detail in the results section. Thus, the 𝐺𝑅𝐶𝐴𝑘 values,
= 1..𝐾, are finally obtained as follows:

𝑅𝐶𝐴𝑘 = 𝐷𝐼𝐶𝐶𝑃 _𝑃𝑅𝐼_𝐹𝑎𝑐𝑡𝑜𝑟 ⋅𝑁𝑁 ⋅ 𝑅𝐶𝐴𝑘 (3)

The second mode of operation is applicable in network environ-
ents where the different network nodes do not transmit the same

mount of traffic. Now, in order to calculate the 𝐺𝑅𝐶𝐴𝑘 value, each
ode needs to know the RCA estimations of its neighboring nodes. To
his end, the nodes include their estimates in their generated DICCP
essages, using the optional fields (Fig. 9). Thus, the nodes have the
ecessary information for the calculation (storing the received values
n the NS_Table) at the expense of a higher channel utilization (larger
acket size) by the control protocol. In this case, the 𝐺𝑅𝐶𝐴𝑘 values,
= 1..𝐾, computed by node 𝑛 are:

𝑅𝐶𝐴𝑛
𝑘 = 𝐷𝐼𝐶𝐶𝑃 _𝑃𝑅𝐼_𝐹𝑎𝑐𝑡𝑜𝑟

∑

𝑚∈𝑁𝑆𝑛

𝑅𝐶𝐴
𝑚
𝑘 (4)

here 𝑁𝑆𝑛 represents the set of neighbors of node 𝑛. Obviously, this
econd mode also operates correctly in the case of networks with
odes generating the same amount of traffic, but we have considered
nteresting the possibility of reducing the channel utilization due to
13

ontrol traffic in simple scenarios, as well as the size of NS_Tables.
Table 10
Application data packets

Parameter Value

Packet generation rate (mean value) 0.5(Medium), 0.75(High) packets/s
Interarrival time distribution Exponential
Packet Size (mean value) 800 octets
Packet Size distribution Truncated exponential

Max: 1500 octets
Min: 46 octets

6. Simulation results

6.1. Scenario description

The basic scenario considered for the performance evaluation of
the proposed algorithms and protocols consists of a rectangular area
of 100 x 100 m. Within this area, 16 wireless stations are randomly
placed. Each of these stations generates four traffic flows (belonging to
four different categories) with destination in each of the other stations.
That is, each station generates 4x15=60 traffic flows, which means a
total of 16x60=960 traffic flows in the network. The packet generation
rate (for every traffic flow) and size are detailed in Table 10. As we
are interested in evaluating the different treatments that the proposed
mechanism offers to each traffic category, an identical network load has
been considered for each of them (i.e., equal values for both generation
rate and packet size). For low-load network states, the congestion
control mechanism has practically no impact in the nodes behavior
(as expected), and therefore no performance differences are observed.
Therefore, the results presented in this section have been obtained for
medium and high load states. The rest of the relevant parameters of the
simulation scenario are selected in the same way as previously done
in the training phase of the machine learning model (see Table 1).
Regarding the buffer size of the nodes, we have chosen the default
value (500) in ns-3. This is a relatively large value, which allows the
network to absorb more traffic. In a real network implementation, this
value will depend on the type of node being used. The smaller this
value is, the greater the probability of reaching a congestion situation,
and therefore the need for the congestion control algorithm. To avoid
a greater influence on the results presented, it has been decided to
leave the default value, although it is worth highlighting the fact
that the smaller the buffer size, the more relevant the improvements
introduced by the proposed mechanism will be. In the same way, the
QoS requirements considered for each of the traffic categories are the
same as those previously presented in Table 2.

6.2. Congestion control

First, the results obtained when only the mechanism for congestion
control is applied will be presented. In other words, each time a
node generates a new packet to be transmitted, a decision is made
as to whether to transmit it, based on the value returned by the
decision tree corresponding to the category to which the packet belongs
(see Algorithm 3). However, in this first set of results, the proposed
differentiation of traffic based on its priority is not applied.

Since, according to the performance analysis performed in Sec-
tion 4.4.3, the best performing strategy is the one that uses as features
both the CBR and the QP of the source, second hop and destination
nodes, this strategy is the one used for the evaluations performed in
this section.

Fig. 10 shows the total data flow sent by all nodes in the network
(Sent Throughput), separated by categories. The results obtained by
applying the congestion control mechanism (‘‘DICCP’’) are compared
with those obtained without its application (‘‘NO CC’’). Looking first at
the medium load case (Fig. 10(a)), we observe that, when no congestion
control is applied, the same throughput is transmitted for all categories.
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Fig. 10. Sent throughput [Kbps].
Fig. 11. Received throughput [Kbps].
However, when congestion control is applied, less throughput is trans-
mitted for the categories with more stringent NTT requirements. This
is the expected behavior, since the congestion control only enables the
transmission of a packet when it is predicted that the packet will reach
its destination meeting the NTT requirement of the category to which it
belongs. Also, as expected, if the network load is higher (Fig. 10(b)), the
transmission of categories with more stringent requirements is further
slowed down. Thus, the first conclusion we can draw is that the decision
trees have been well trained and are performing their mission correctly.

On the other hand, Fig. 11 shows the received throughput, i.e., the
data flow that finally reaches its destination in the network. Looking
again at the medium load case first (Fig. 11a), it can be seen that,
although more throughput was sent without congestion control, more
throughput is received, for most categories, when congestion control is
applied. This difference is even greater when the network load is higher
(Fig. 11b). The relationship between the received and sent throughput,
i.e., the packet delivery ratio (PDR), is shown in Fig. 12, where it can
be seen that this ratio is always higher when DICCP is applied. The
improvements obtained are evidently more relevant when the network
load is higher.

The next step consists of evaluating the ‘‘quality’’ of the received
throughput. As mentioned above, each traffic category has a maximum
value for the NTT, so packets received after this time are invalid and
must be discarded by the receiver. Fig. 13 shows the average value of
this time, separated again by traffic category. As can be seen, the appli-
cation of DICCP results in a reduction of the NTT, which becomes more
relevant again as the network load becomes higher. Finally, Fig. 14
14
shows the received throughput, but now taking into account only those
packets that have reached their destination in compliance with the
time requirements of their category (Compliant Received Throughput).
As can be seen, the application of the proposed congestion control
mechanism results in a significant increase in this throughput for all
traffic categories.

At this point it is worth justifying the throughput values obtained,
taking into account that the 802.11ac technology contemplates bit rates
that could reach even Gbps values. However, these values depend on
several factors, such as the modulation and coding scheme used (called
VHT-MCS in 802.11ac), the channel bandwidth (20, 40, 80, 160 MHz)
and the number of spatial streams (1, 2, 3). In our simulations, we
have chosen (see Table 1) to work with simpler devices, which work
correctly with the lowest modulation and coding scheme (VHT-MCS
0), 20 MHz channels, and a single spatial stream. This makes the
achievable bit rate around 6.5 Mbps. On the other hand, these 6.5
Mbps represent the rate at which bits can be transmitted over the
channel, not the throughput (valid data) that can finally be transmitted
or received. The medium access control (MAC) mechanism imposes
certain restrictions, such as idle channel time between frames, listening
periods prior to the transmission (CSMA/CA algorithm), etc. In addi-
tion, transmissions from different nodes may collide, adding back-off
times and retransmissions, which also contribute to the reduction of
the throughput finally obtained. All these issues are correctly taken into
account by the network simulator. On the other hand, the throughput
we are presenting is not a one-hop throughput, but the end-to-end
throughput in the network. That is, data packets must be retransmitted
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Fig. 12. Packet delivery ratio [%].
Fig. 13. Network transit time [ms].
Fig. 14. Compliant received throughput [Kbps].
several times in the multi-hop wireless network until they reach their
destination, which also reduces the throughput. Taking all these issues
into account, it is reasonable that the total throughput obtained is
around 1.5 Mbps, as shown in Fig. 14. Please note that we must add
up the throughputs obtained for all categories, since they are all being
transmitted over the same medium.

Another relevant issue to take into account is the energy consump-
tion by network nodes, which will decrease with the application of the
15
proposed mechanism. By avoiding the transmission of packets that are
not going to be useful at their destination, the consumption generated
by the transmission and reception of these packets is saved. In addition,
since it is a multi-hop network, these packets could also have been
retransmitted by some intermediate nodes, increasing the unnecessary
use of energy. On the other hand, it is true that running a new algorithm
includes an extra CPU consumption to execute it. However, as we are
working with decision trees, the algorithm introduced consists only of
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Fig. 15. Sent throughput [Kbps].
Fig. 16. Compliant received throughput [Kbps].
a few ‘‘if-then-else’’ steps that do not involve high energy consumption,
being negligible compared to the savings obtained by reducing the
transmission of packets.

6.3. Priority differentiation

As seen in the previous section, a consequence of the application
of the congestion control mechanism is that traffic categories with
higher time requirements suffer a greater reduction in their transmis-
sion capacity than the categories with less strict requirements. This
is because the categories with lower requirements can be transmitted
under higher load conditions, and therefore their packets cause the
CBR and QP values to remain high. In this way, the amount of time
with low CBR and QP values in the network, which is precisely the
necessary condition for the successful transmission of packets with high
QoS requirements, is reduced.

However, the applications with the strongest requirements are often
the most critical or relevant in the network, and therefore their packet
flows are the most important, i.e., the ones that should be discarded the
least. To this end, the prioritization algorithm proposed in Section 5.4 is
applied. Fig. 15 presents the results obtained in terms of sent through-
put. The chosen value for the priority intensity factor (Eq. (3)) is 1
(default value). The throughput obtained when the congestion control
mechanism includes the prioritization algorithm (‘‘PRI ON’’) is com-
pared with the obtained previously when the prioritization algorithm
was not included (‘‘PRI OFF’’). For the sake of clarity, the case where
no congestion control is applied is not shown anymore. As can be seen,
when the priority algorithm is applied, the throughput sent by the
16
categories with the highest requirements (1 and 2) is increased, while
the remaining categories (3 and 4) see their throughput reduced. As
in previous experiments, this effect is more relevant when the network
load is higher. Fig. 16 shows how the compliant received throughput
follows the same trend.

At this point, it is interesting to analyze how the priority mechanism
allows us to adjust the fairness with which network resources are
allocated to different traffic categories. This fairness can be quantified
by the Jain’s index, defined as 𝐽 = 1∕(1 + 𝐶𝑉 2), where CV is the
coefficient of variation of the considered variable (ratio between the
standard deviation and mean value). In our case the variable will be
the compliant throughput of each traffic category. As can easily be
seen, the value of the Jain’s index is always between 0 and 1, reaching
the maximum value when the compliant throughput is the same for all
traffic categories (coefficient of variation equal to zero). Without apply-
ing the priority mechanism, the value obtained for the Jain’s index is
0.863 (medium load) and 0.674 (high load). By applying priorities, the
value of the index increases to 0.988 and 0.956 respectively, observing
a greater uniformity and fairness in the allocation of resources.

On the other hand, depending on how critical the applications with
the highest requirements are for the users, the possibility of increasing
the priority assigned to these applications is included. For this purpose,
higher values of the priority intensity factor can be selected. The
results obtained can be seen in Fig. 17, where the compliant received
throughput obtained is shown for three values of this factor (1, 1.5, and
2). As can be seen, the algorithm operates as expected, increasing the
compliant throughput for the categories with higher requirements.
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Fig. 17. Compliant received throughput [Kbps].
Fig. 18. RCA estimation.

6.4. Dynamic behavior

Finally, it is relevant to note that all the proposed algorithms adapt
dynamically to the network load state. To show this behavior, the
results of a simulation in which the load state is variable are presented.
Specifically, it is a simulation with a duration of 1500 s. To be more
general, the load offered by each of the traffic categories is different
(the less restrictive the category, the higher the load). Besides, it is
assumed that categories 1 and 2 do not need to transmit during the
time interval between 500 and 1000 s. This network load behavior can
be seen in Fig. 18, where it is shown the temporal evolution of the
estimation made by one of the network nodes (randomly chosen, the
estimations made by all the nodes are very similar) of the RCA value
of each category.

Fig. 19 shows the temporal evolution of the compliant throughput
for each category. To make this figure, the throughput has been calcu-
lated in 60-second intervals. As can be seen, due to the absence of traffic
belonging to categories 1 and 2 during the time interval [500,1000],
the DICCP protocol allocates more transmission resources during this
period to categories 3 and 4. When categories 1 and 2 resume their
transmissions, the resource allocation returns to the previous situation.

7. Conclusions

In this paper, a new mechanism for congestion control in multi-
hop wireless networks has been proposed. The proposal is made for
networks as generic as possible, in which all nodes in the network
can act as source or destination of data flows (as well as intermediate
relay nodes). In addition, the applications that generate the data flows
17
Fig. 19. Compliant received throughput.

have been differentiated and classified according to two criteria. On the
one hand, it is taken into account that the required quality of service
(in terms of network transit time) is different for each application.
On the other hand, it has been considered that the relevance of each
application may also be different.

The proposed solution is based on the application of machine learn-
ing techniques, specifically the use of decision trees. The input charac-
teristics of these decision trees are parameters that define the network
load state: the channel busy ratio (CBR), and the number of queued
packets (QP) waiting in the buffers of the nodes. The output of the trees
is the probability that one data packet will reach its destination on time.
The trees have been trained from datasets generated by simulations
and processed appropriately. Each time an application generates a new
data packet to transmit over the network, the node applies the decision
tree to predict whether the packet will reach its destination on time.
If the prediction is positive, the packet is transmitted; otherwise, it is
discarded. In order to apply the decision trees, the nodes need to know
the features involved. Thus, these values have to be disseminated in
the network, for which the necessary protocol has been designed and
implemented.

Various feature configurations have been considered, and it has
been found that the best performance is obtained when using both
the CBR and the QP of the source, second hop, and destination nodes.
With this configuration, different simulations of the complete system
have been carried out, verifying the correct operation of the proposal:
the data traffics are adequately differentiated according to its time
requirements, and relevant improvements are obtained in terms of
compliant throughput, i.e., data packets that reach their destination in
less time than the maximum limit imposed by their category.
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On the other hand, the congestion control mechanism allows dif-
ferent priorities to be assigned to applications, depending on their
relevance to the network or to the final users. To this end, based
on the transmissions made in each of the categories, an estimation
is made of the channel resources required by each application. With
this estimation, it is possible to make a resource reservation, starting
with the most important category and continuing with the following
ones. The simulations carried out corroborate the correct operation of
the proposed technique. Finally, it has been proven that the proposed
method adapts dynamically to changes in the network load state,
caused by variations in the transmission rate of one or more traffic
categories.

As a future line of work, other machine learning algorithms will be
considered as possible options or extensions of the proposed protocol.
For example, reinforcement learning algorithms can be a good option
to avoid the need for the dataset generation and model training phase.
However, it will be necessary to add some type of feedback between
the end nodes of the communication, which can lead to an overload
due to this additional control traffic. Finding a good trade-off between
the added traffic and the dynamic adaptability of the new model will
be the most important part of this job.

Glossary

AUC Area Under the Curve
CBR Channel Busy Ratio
DICCP Distributed Congestion Control Protocol
DICCP_ADP_PRI DICCP Application Data Packet Priority
DICCP_CAT DICCP Categories
DICCP_EWMA_W DICCP Exponential EWMA Weight
DICCP_MIT DICCP Message Interval Time
DICCP_NThres DICCP Neighbors Threshold
DICCP_NVT DICCP Neighbors Valid Time
DICCP_PRI DICCP Priority
DICCP_SIT DICCP Sample Interval Time
DCN Data Center Network
ECN Explicit Congestion Notification
EDCA Enhanced Distributed Channel Access
EWMA Exponentially Weighted Moving Average
FPR False Positive Rate
GRCA Global Required Channel Availability
IP Internet Protocol
ML Machine Learning
NBH Neighborhood Table
NIC Network Interface Card
NN Number of Neighbors
NST Network State Table
NTT Network Transit Time
QoS Quality of Service
QP Queued Packets
RCA Required Channel Availability
RCAT RCA Estimation Table
ROC Receiver Operating Characteristic
RTT Round Trip Time
TCP Transmission Control Protocol
TPR True Positive Rate
UDP User Datagram Protocol
VHT-MCS Very High Throughput Modulation and

Coding Scheme
WAN Wide Area Network
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