

FINAL DEGREE PROJECT

TITLE: Scheduling in TSN Networks using machine learning

DEGREE: Bachelor’s degree in Network Engineering

AUTHOR: Arnau Martínez Lopera

DIRECTOR: Anna Agustí

DATA: July 7, 2023

Overview

The massive adoption of Ethernet technology in multiple sectors, produces the
need to provide deterministic solutions to ensure a Quality of Service (QoS) that
meets the requirements of time-triggered flows. For this, the Time-Sensitive
Networking (TSN) Task Group (TG) of the IEEE 802.1 developed a set of
standards that define mechanisms for time-sensitive transmissions of data over
Ethernet networks.

This project focuses on studying the feasibility of scheduling three classes of
time-triggered flows with different time constraints over a simple network
topology, which is made from two TSN (Time-Sensitive Networking) nodes
connected through a link. Scheduling multiple time-triggered flows is a complex
problem because the scheduling, if exists, must meet the time constraints of all
these flows.

To address this challenge, we explore the potential of using supervised machine
learning classification models to accurately predict the feasibility of scheduling a
given set of time-triggered flows, meeting their time-constraints, in a Time-
Sensitive Network (TSN).

Supervised models require a training dataset that contains a data matrix and a
class label vector. To obtain the class label vector of each observation, we use
an adaptation of the implementation developed in [27] of the Integer Linear
Programming (ILP) model introduced in [33].

Two different models are considered: K-Nearest Neighbours (K-NN) and Support
Vector Machine (SVM). These algorithms are tested and built from the
application of the Leave One Out Cross-Validation (LOOCV) technique with the
generated datasets, and the results obtained are compared and discussed.

Finally, a hybrid verification strategy is proposed to train and test machine
learning models, drastically reducing the resources and computation time
originally required to compute the class label of each observation of the dataset.

Title: Scheduling in TSN networks using machine learning

Author: Arnau Martínez Lopera

Director: Anna Agustí

Date: July 7, 2023

Título: Scheduling in TSN networks using machine learning

Autor: Arnau Martínez Lopera

Directora: Anna Agustí

Fecha: 7 de julio de 2023

Resumen

La adopción masiva de la tecnología Ethernet en múltiples sectores, produce la
necesidad de brindar soluciones deterministas para asegurar una Calidad de Servicio
(QoS) que cumpla con los requerimientos de los flujos sensibles al time (en adelante
TT por las siglas en inglés Time-Triggered). Para ello, el grupo de trabajo Time-
Sensitive Networking (TSN) del IEEE 802.1 desarrolló un conjunto de estándares que
definen mecanismos para transmitir flujos de datos con requisitos temporales estrictos
a través de redes Ethernet.

Este proyecto se enfoca en estudiar la viabilidad de programar varios flujos de tres
clases TT diferentes sobre una topología de red simple, compuesta de dos nodos TSN
(Time-Sensitive Networking) conectados a través de un enlace. Programar la
transmisión de múltiples flujos TT es un problema complejo ya que la solución, si existe,
debe garantizar que se cumplen todos los requisitos temporales de todos los flujos a
transmitir.

Para abordar este desafío, en este trabajo exploramos el potencial del uso de modelos
de clasificación de aprendizaje supervisado para predecir con precisión, la viabilidad
de programar un conjunto dado de flujos TT, cumpliendo con sus restricciones de
tiempo, en una red (TSN).

Los modelos supervisados requieren un conjunto de datos de entrenamiento formados
por una matriz de datos y un vector de etiquetas de clase. Para generar las etiquetas
de clase, en este trabajo utilizamos una adaptación de la implementación desarrollada
en [27] del modelo ILP definido en [33].

En este proyecto se consideran dos modelos diferentes: K-Nearest Neighbors (K-NN)
y Support Vector Machine (SVM). Estos algoritmos se prueban y se construyen a partir
de la aplicación de la técnica de validación cruzada llamada Leave One Out Cross-
Validation (LOOCV) con los conjuntos de datos generados, para posteriormente
comparar y discutir los resultados.

Finalmente, se propone una estrategia de verificación híbrida con el objetivo de
entrenar y probar modelos de aprendizaje automático, reduciendo drásticamente los
recursos y el tiempo de cómputo requerido originalmente para generar las etiquetas de
clase en la base de datos.

 Table of Contents
Introduction ... 1

CHAPTER 1. Introducing Time Sensitive Networks (TSN) 5

1.1. IEEE802.1Qav (Credit Based Shaper) ... 6

1.2. IEEE802.1Qbv (Time Aware Shaper) .. 7

1.3. Complexity Problems ... 9

1.4. Applying TSN ... 9

CHAPTER 2. Dataset Generation ... 11

2.1. Integer Linear Programming (ILP) .. 11

2.1.1 Preliminary definitions ... 12

2.1.2. ILP Model ... 13

2.2. Implementation ... 14

2.3. Enhancing the ILP implementation ... 16

2.4. Executing the ILP ... 16

2.4.1. Inputs ... 16

2.4.2. Outputs... 18

2.5. Implemented Scenarios ... 22

2.5.1. Scenario 1 .. 22

2.5.2. Scenario 2 .. 24

2.5.3. Scenario 3 .. 25

CHAPTER 3. Feasibility Prediction Algorithms ... 27

3.1. Binary Classification Algorithms ... 27

3.2. K-Nearest Neighbours (K-NN) .. 27

3.3. Support Vector Machine (SVM) .. 28

CHAPTER 4. Model Testing .. 29

4.1. Testing K-NN .. 30

4.1.1. Scenario 1 ... 30

4.1.2. Scenario 2 .. 32

4.1.3. Scenario 3 .. 33

4.2. Testing SVM ... 34

4.2.1. Scenario 1 .. 34

4.2.2. Scenario 2 .. 36

4.2.3. Scenario 3 .. 36

4.3. Conclusion ... 37

CHAPTER 5. Hybrid Verification ... 39

5.1. Strategy Application ... 39

5.2. Results ... 40

CHAPTER 6. Conclusions and Next Steps ... 43

6.1. Conclusions.. 43

6.2. Next Steps.. 44

References .. 45

Annex .. 49

Development Environment .. 49

List of Figures

Fig. 1.1 VLAN tag.. 6
Fig. 1.2 Two time slices example IEEE 802.1Qbv schedule. 7
Fig. 1.3 Best effort frame interfering the next transmission. 8
Fig. 1.4 Guard bands usage. .. 8
Fig. 1.5 Network topology ... 10

Fig 2.1 Convex polytope ... 11
Fig 2.2 ILP Core Implementation [27] ... 14
Fig 2.3 StreamsConfig.json Configuration file example. Size (Bytes), Period (ms),
Deadline (ms), Bandwidth (bps). ... 17
Fig 2.4 ILP execution configuration “distributions”: distribution file path, “timeout”: (s)
maximum iteration time ... 18
Fig 2.5 Combinations to compute by the ILP algorithm... 18
Fig 2.6 Output computation example .. 19
Fig 2.7 Gantt chart example .. 20
Fig 2.8 Scatter plot example ... 22
Fig 2.9 3D scatter plot of scenario 1 ... 23
Fig 2.10 3D scatter plot of scenario 2 ... 24
Fig 2.11 3D scatter plot of scenario 3 ... 26

Fig 4.1. 3D scatter plot of scenario 1 with wrong classified instances (K-NN) 31
Fig 4.2 3D scatter plot of scenario 2 with wrong classified instances (K-NN) 32
Fig 4.3 3D scatter plot of scenario 3 with a wrong classified instance (K-NN) 33
Fig 4.4 3D scatter plot of scenario 1 with wrong classified instances (SVM) 35
Fig 4.5 3D scatter plot of scenario 2 with wrong classified instances (SVM) 36
Fig 4.6 3D scatter plot of scenario 3 with wrong classified instances (SVM) 37

Fig 5.1 3D scatter plot of scenario 3 with support vectors and a wrong classified
combination ... 40
Fig 5.2 3D scatter plot of missing combinations including wrong classified and the
additional combinations selected to retrain the model. .. 41
Fig 5.3 3D scatter plot of missing and wrong classified combinations 42

List of Tables

Table 2.1 Traffic characteristics table of scenario 1 .. 23
Table 2.2 Traffic characteristics table of scenario 2 .. 24
Table 2.3 Traffic characteristics table of scenario 3 .. 25

Table 4.1 Wrong classified instances of K-NN in Scenario 1 31
Table 4.2 Wrong classified instances of K-NN with LOOCV in Scenario 2 33
Table 4.3 Wrong classified instances of K-NN with LOOCV in Scenario 3 34
Table 4.4 Wrong classified instances of SVM in Scenario 1 35

Table 5.1 Additional combinations .. 41
Table 5.2 Wrong predicted combinations after retraining...................................... 42

Acronyms Table

Acronym Description

TSN Time Sensitive Networks
SDN Software Defined Network
QoS Quality of Service
TG Task Group
TAS Time Aware Shaper
ILP Integer Linear Programming
SVM Support Vector Machines
K-NN K-Nearest Neighbours
ML Machine Learning
AVB Audio Video Bridging
LOOCV Leave One Out Cross Validation
PCA Principal Component Analysis
IEEE Institute of Electrical and Electronic Engineers
OSI Open Systems Interconnection
LAN Local Area Network
VLAN Virtual Local Area Network
PCP Priority Code Point
GCL Gate Control List
TDMA Time-division Multiple Access
CBS Credit Based Shaper
RAM Random Access Memory
OOM Killer Out Of Memory Killer
CPU Central Processing Unit
LDA
RBF

Linear Discriminant Analysis
Radial Basis Function

Introduction 1

Introduction

Due to the inherent characteristics of Ethernet, this technology has been adopted in many
sectors throughout these five decades of development. But even with the improvements
over these years, networks based on this technology lacks on determinism. This means
that lacks Quality of Service (QoS), being unable to guarantee maximum latencies,
reduced delay variations and other characteristics that belong to deterministic networks.

To provide this QoS requirements, the Audio Video Bridging (AVB) Task Group, renamed
later Time-Sensitive Networking (TSN) Task Group by the IEEE, have developed a set of
standards that define mechanisms for time-sensitive transmissions of data over Ethernet
networks. Although TSN provides a great variety of mechanisms to ensure QoS, it is a
huge challenge to set up properly the parameters of these mechanisms to achieve the
desired QoS requirements.

Given a set of time-critical flows (that we will refer as Time-Triggered flows or TT flows
for short) in a TSN network using the IEEE802.1Qbv (Time Aware Shaper) standard, this
project focus on the problem of computing a scheduling for this set of TT flows in which
every flow must meet its QoS requirements.

There exist many algorithms to solve this problem, but they are usually complex and time
consuming. Alternatively, we propose to speed up this evaluation process by
implementing supervised machine learning algorithms with the aim of determining if a
given set of time-critical flows, with a given set of characteristics, can be transmitted over
a certain link, satisfying all the QoS requirements.

Since we propose supervised machine learning algorithms, we previously need to
generate a labelled dataset to train these supervised models. That is why as a previous
step, we need to lean on another algorithm to serve as a source of data. To do this, in
this work, we adapt the implementation developed in [27] of the Integer Linear
Programming (ILP) model proposed in [33].

It is important to note that the ILP algorithm is NP-complete [28], which means that the
algorithm may not always find a solution within a reasonable timeframe. To address this
issue, a timeout is set to the ILP implementation. Which means that, it the ILP does not
find a solution before the timeout expires, we will not have the label class of the
corresponding experiment. Hence, we must assume that the provided datasets may be
incomplete.

In case of obtaining a result from the ILP implementation, a Boolean value, that we called
feasibility, is used to determine if a specific combination of flows can be scheduled
satisfying the time requirements of all flows.

In this work, the network topology considered is a single link and we try to schedule a
combination of 𝑁 Time-Triggered flows that belong to three different classes. All flows of

2 Scheduling in TSN Networks using machine learning

the same class share the same traffic characteristics in terms of bytes to be transmitted,
period and deadline. In each observation we consider a different number of flows of each
class to be transmitted over the link and we apply the ILP implementation to find a
schedule. If the combination of flows can be scheduled, the combination is proven to be
feasible. Otherwise, we consider the scheduling of the combination of flows as unfeasible.
If the timeout expires, we do not have a class value for the experiment.

After building the datasets, we normalize the features to ensure equal relevance and train
two different supervised Machine Learning classifications algorithms so the models can
predict if a given combination of TT flows has a feasible scheduling or not. The two
supervised models used in this work are K-Nearest Neighbours (K-NN) and Support
Vectors Machine (SVM), and we use the Leave One Out Cross-Validation (LOOCV)
technique, to evaluate and compare the performance of the two models.

Finally, a hybrid verification strategy is proposed to minimize the execution time of the
ILP implementation based on the use of a machine learning algorithm. The resulting
models obtained from this strategy should be capable of generating highly reliable results
in fractions of a second avoiding multiple hours of scheduling analysis.

This project is structured as follows:

In the first chapter, we introduce TSN, highlighting its key properties and emphasizing its
significance across various industries. Next, we briefly describe two widely used TSN
scheduling mechanisms and define the main characteristics of time-triggered flows. Then,
we present the network topology and the assumptions considered in this work.

In the second chapter, our focus lies in obtaining labelled datasets to train the machine
learning algorithms. To accomplish this, we adapted the ILP algorithm implemented in
[27]. This implementation allows us to generate the necessary input data along with their
corresponding class labels, enabling us to train the supervised machine learning models.
For that purpose, we define three different test scenarios. Each scenario is defined by the
characteristics of the three different classes of TT streams considered and the total
number of flows that must be scheduled over the link. Then, we execute the ILP for each
scenario and every possible combination of flows to later present the results obtained.

The third chapter briefly introduce the two supervised Machine Learning models that we
use in this work, that is K-Nearest Neighbours (K-NN) and Support Vectors Machine
(SVM).

Subsequently, the fourth chapter implements the previously presented supervised
algorithms adjusting their hyperparameters using the Leave One Out Cross Validation
(LOOCV) method to build the models. From these models, we later expose their
performance and make a comparison of their predictive capabilities.

The fifth chapter proposes an alternative strategy to train machine learning algorithms,
minimizing the use of the ILP implementation, and taking advantage of the implemented

Introduction 3

machine learning algorithms. This approach offers significant time savings, as the
machine learning algorithms can produce reliable results within milliseconds, whereas a
computational analysis or ILP algorithm could potentially take several hours to complete.

Finally, the conclusions section of this project serves as a comprehensive review of the
conducted work, where we carefully assess the results and outcomes achieved through
this project.

To continue with the developments made in this project and allow the reproducibility of
the experiments carried out, the annex includes a link to access the developed code.

4 Scheduling in TSN Networks using machine learning

Introducing Time Sensitive Networks (TSN) 5

CHAPTER 1. Introducing Time Sensitive Networks (TSN)

Due to its speed, low cost, and enormous versatility, Ethernet is the main communication
solution for most industries, with over 50 years of history.

Even with the improvements it has received over the years, especially in terms of speed,
the development of Ethernet is mostly governed by the Best Effort principle, which lacks
determinism.

Deterministic characteristics such as, ensuring maximum latency with reduced delay
variations, along with its reliability requirements, are necessary properties for some
networks. I.e., for industrial, automotive, telecommunications or aerospace networks.

To provide this Quality of Service (QoS) requirements, the Time-Sensitive Networking
(TSN) Task Group (TG) [1] of the IEEE 802.1 developed a set of standards that define
mechanisms for time-sensitive transmissions of data over Ethernet networks.

For that, the different standards specified by IEEE 802.1 TSN-TG present the following
key properties:

1. Time synchronization: All participating devices work in a synchronized way and in

real time, with microsecond precision. The standard IEEE802.1AS-Rev specifies
the protocol and procedures used to ensure that the synchronization requirements
are met.

2. Scheduling and traffic shaping: All the intervening devices work under the same
rules regarding processing and packet forwarding. The goal is to allow coexistence
in the same network, of different types of traffic with different priorities and latency
requirements. The most relevant standards that collect this property are
IEEE802.1Qbv and IEEE802.1Qav.

3. Selection and Path reservations: Every network device work under the same rules
when reserving bandwidth and time slots and when choosing paths. For path
reservation, it is possible of using more than one path for fault-tolerance. This is a
property specially defined in IEEE802.1Qat and IEEE802.1Qca.

These standards make use of the virtual LAN (VLAN) concept, which is a logical
independent network within the same physical network. VLANs works by including tags
to data frames, in order to handle them as if they were in the same domain. This tags
mechanism is defined in IEEE802.1Q from which the majority of TSN standards extend
from.

The VLAN tagging also includes a prioritization scheme inside the tag, as shown in Fig.
1.1, named as Priority Code Point (PCP), which with 3 bits, it is possible to define the
priority class of a particular frame in a range from 0 to 7. This traffic distinction will be later

6 Scheduling in TSN Networks using machine learning

used by a TSN mechanism to guarantee the coexistence of different traffic classes
accomplishing its QoS requirements.

Fig. 1.1 VLAN tag

TSN makes use of traffic shaping concept, which refers to bandwidth management
technique that distributes frames in time, smoothing out the traffic and preventing buffer
congestion, to ensure network performance for higher priority applications.

The main TSN scheduling, and traffic shaping mechanisms proposed for TSN Networks
are the IEEE802.1Qav Credit Based Shaper and the IEEE802.1Qbv Time Aware Shaper
which are explained in the following sections.

1.1. IEEE802.1Qav (Credit Based Shaper)

The IEEE802.1Qav standard plays a crucial role in defining traffic shaping mechanisms
using priority classes. One of the commonly employed shaping mechanisms is the Credit
Based Shaper, which follows a similar logic to the Leaky Bucket algorithm [28].

The Credit Based Shaper aims to shape the traffic by smoothing out its transmission rate,
ensuring a more uniform distribution over time. By limiting the burst size, it helps reduce
the occupancy of buffers, thereby minimizing congestion losses and mitigating
interferences within the network.

However, it is important to note that implementing the Credit Based Shaper introduces
additional network delay. This delay arises from the mechanism's design, as it regulates
the transmission of data packets based on available credits. While this delay may be
acceptable in many cases, it can be problematic when with very limited time constrains.

Introducing Time Sensitive Networks (TSN) 7

In such cases, even slight variations in network delay may disrupt the precise timing
constraints of time-sensitive applications, rendering the Credit Based Shaper unsuitable.

Therefore, when considering the implementation of traffic shaping mechanisms, including
the Credit Based Shaper, it is crucial to carefully evaluate the specific requirements of the
system.

1.2. IEEE802.1Qbv (Time Aware Shaper)

The IEEE 802.1Qbv standard describes the Time Aware Shaper (TAS), a scheduler that
defines fixed length, repeating time cycles and assigns time slices of this cycle to different
traffic classes. Thus, the transmission of time-critical flows can be granted. For each
egress port of a switch, eight different queues (one for each Ethernet priority) are defined
and the TAS determines which queues are allowed to transmit in each time slice. To this
end, the TAS defines a Gate Control List (GCL) and the frames in a queue are eligible for
transmission if the corresponding queue gate is open.

This standard is based on Time-division multiple Access (TDMA) mechanism [30], which
stablishes a shared medium to allow stream transmission, into many time slots that are
cyclically repeated. Therefore, within each of these slots, it is possible to guarantee the
exclusive use of the channel for several traffic classes. This way, it is possible to transmit
time critical traffic deterministically, without interruptions, avoiding buffer accumulations.

In Fig. 1.2, two transmission channels have been established in the same cycle. Within
the first temporary segment, only traffic tagged with VLAN priority 3 is transmitted. The
second cycle section, groups the rest of the traffic transmissions ignoring VLAN priority 3
tag.

Fig. 1.2 Two time slices example IEEE 802.1Qbv schedule.

8 Scheduling in TSN Networks using machine learning

As shown in Fig 1.3, it is possible that the transmission of a frame may not be completed
when a new cycle starts.

Fig. 1.3 Best effort frame interfering the next transmission.

To prevent this situation, a guard band can be defined before each time-critical traffic
segment, as shown in Fig. 1.4. During this guard band time, the start of a new
transmission is not permitted, so the termination of in progress transmissions is allowed.
Therefore, the duration of this guard band should correspond to the transmission required
time of the maximum Ethernet frame size, taking into account its headers and interframe
spacing.

Fig. 1.4 Guard bands usage.

Introducing Time Sensitive Networks (TSN) 9

As an alternative, frame pre-emption is presented in IEEE802.1Qbu, which consists in
momentarily pause low priority frames transmission when higher priority frames need to
be transmitted.

1.3. Complexity Problems

TSN protocols provide a great variety of possibilities to the network architecture, so these
can be combined in a certain way, to achieve the necessary requirements. For example,
in TSN network it is common to use TAS for higher priority traffic and, CBS for lower
priority traffic.

The fact of having many configuration possibilities within each defined standard, offers
flexibility and control to the network architect, although on the contrary results in a much
more complex configuration process, which is exacerbated considering the possible
interactions between the implemented protocols.

Furthermore, as mentioned in [28], configuring Time Aware Shaper to define the schedule
of the Gate Control List of all devices, is proven to be a nondeterministic polynomial time
problem, which means that there is no efficient algorithm found to solve it.

1.4. Applying TSN

In this project we decided to only consider IEEE802.1.Qbv standard to schedule time-
triggered traffic, transmitting periodic data streams with hard real-time requirements. On
the scheduling problem that we present, we focus on time-trigger traffic so the presence
of best effort and AVB traffic is filtered.

In this project, we designed and implemented three distinct scenarios with the aim to
explore the transmission of three classes of flows, each with different time requirements.
For each analysed case, we transmit 10 time-critical streams and utilize a topology
consisting of a single shared link connecting two nodes, as shown in Fig. 1.5. This choice
allowed us to create controlled and simplified environments, significantly reducing the
number of potential combinations that needed to be considered.

By simplifying the network topology, we could focus our efforts on understanding the
specific challenges associated with the scheduling of time-critical flows in these setups.

10 Scheduling in TSN Networks using machine learning

This topology assumes that:

1. All generated traffic is unicast.
2. There is no packet loss due to transmission errors or buffer overflows.
3. Node processing time is negligible.
4. Propagation time is negligible.

Fig. 1.5 Network topology

Dataset Generation 11

CHAPTER 2. Dataset Generation

In this project, supervised machine learning models are proposed to predict the feasibility
of transmitting a specific set of flows over a link. To train these models, a dataset is
required. This dataset is a data matrix and a class label vector.

In each scenario three different Time-Triggered classes. Each class has a specific set of
characteristics and time constraints. For each scenario, a dataset is built. Each row of this
dataset represents a different experiment (or observation), i.e., defines a specific
combination of flows of class 1, class 2 and class 3. The first three columns represent the
number of flows of class 1, class 2 and class 3, respectively, considered in each
experiment. The fourth column is the class label, and it is a boolean value that states if a
feasible scheduling exists for each experiment.

To set the class label of each combination of flows, we use an adaptation of the
implementation described in [27] of the Integer Linear Programming (ILP) approach
proposed in [33].

2.1. Integer Linear Programming (ILP)

An Integer Linear Programming (ILP) is a method to maximize or minimize an objective
function, subject to one or more restrictions or requirement, from linear relationships such
as, equalities and inequalities.

The intersections generated from these inequalities, creates a convex polytope whose
interior region is defined as a “feasible region” (see Fig. 2.1), since it fulfils all the
constraints of the problem. Then, an objective function is applied to obtain an optimal
solution.

Fig 2.1 Convex polytope

12 Scheduling in TSN Networks using machine learning

2.1.1 Preliminary definitions

In this project, we want to schedule a total of 𝑁 Time-Triggered flows or streams (𝑠 , where
𝑗 = {0, … , 𝑁 − 1}) in a link. Each stream belongs to a stream class 𝑐 that defines the
characteristics of the flow. In this work we consider three different classes, and hence,
𝑖 = {1, 2, 3}. Each stream of class 𝑖 must transmit a total of 𝐵 bytes during its period of
length 𝑃 . In the implementation used in this work, a maximum segment size (𝑀𝑆𝑆) in
bytes is defined. Then, the number of frames that a stream of class 𝑖 generates in 𝑃
(hereafter, 𝐹) is 𝐵 𝑀𝑆𝑆⁄ . The subindex 𝑟 identifies each frame of a given flow within its
period, thus, for a stream of class 𝑖 we have 𝑟 = {0, … , 𝐹 − 1}. The stream classes defined
for the scenarios of this project consider values of 𝐵 that are multiple of 𝑀𝑆𝑆 and,
therefore, 𝐹 is an integer, and the transmission time (𝑡) of any frame can be computed
as 𝑡 = 𝑀𝑆𝑆 𝑣⁄ , where 𝑣 is the link speed. In addition, each class 𝑖 has a deadline,
𝑑 , that in this work is defined as the maximum time between the arrival of the last bit of
the last frame generated in 𝑃 (that is, frame 𝐹 − 1) at the destination and the start of the
transmission of the first bit of the first frame generated in 𝑃 at the source.

In summary, if a stream 𝑗 belongs to class 𝑖, 𝑗 ∈ 𝑐 , then 𝑗 must transmit 𝐵 bytes within a
period 𝑃 , which is a total of 𝐹 frames of length 𝑀𝑆𝑆 bytes, each with a transmission time
𝑡 . All 𝐹 frames must be received at the destination before the deadline 𝑑 , starting to
count when the transmission of the first frame of the flow starts.

The offset of each frame is defined as the difference between the start transmission time
of a frame with respect to the beginning of its period. That is, for a stream 𝑗 of class 𝑖,
𝑗 ∈ 𝑐 , the offset of frame 𝑟 of flow 𝑗, ϕ , , is the difference between the start transmission
time of frame 𝑟 of flow 𝑗 and the beginning of 𝑃 , where 𝑟 = {0, … , 𝐹 − 1}.

The end-to-end latency of a stream, in this implementation, is defined as the difference
between the arrival time of the last bit of the last frame generated in a period and the
beginning of the transmission of the first frame of the period. Considering a topology with
only one link and assuming negligible the propagation delay, for a stream 𝑗 of class 𝑖, 𝑗 ∈
𝑐 , the end-to-end latency is defined as shown in Eq. 2.1:

 𝜆 = ϕ , + 𝑡 − ϕ , , 𝑗 ∈ 𝑐 (2.1)

The end-to-end latency lower bound is defined by the time required to transmit all the
frames that a flow generates in its period considering that no other stream would interfere.
Considering a topology with only one link and assuming negligible the propagation delay,
for a stream 𝑗 of class 𝑖, 𝑗 ∈ 𝑐 , the end-to-end latency lower bound is defined as show in
Eq. 2.2:
 𝜆 = 𝐹 𝑡 , 𝑗 ∈ 𝑐 (2.2)

The hyperperiod, 𝐻, also called base period, is the GCL cycle time and determines how
often the schedule is repeated. It is calculated applying the Least Common Multiple (LCM)
of all stream class periods. Hence, the 𝐹 frames that a stream 𝑗 of class 𝑖 generates in 𝑃

Dataset Generation 13

are repeated 𝐻 𝑃⁄ times in an Hyperperiod. It is important to mention that the scheduling
mechanism used in this work, considers that the same scheduling, that is the same offset
values, are assigned to all 𝐻 𝑃⁄ repetitions of the 𝐹 frames of flow 𝑗 of class 𝑖 within the
hyperperiod.

2.1.2. ILP Model

The objective of the scheduling problem considered here consists of minimizing the extra
end-to-end latency introduced due to the interference of other streams, while trying to
accomplish the time requirement of all flows.

The ILP model used in this work is as follows:

 𝑚𝑖𝑛 ∑ 𝜆 − 𝜆 (2.3)

 s.t. 𝜆 ≤ 𝑑 ∀𝑗, 𝑗 ∈ 𝑐 (2.4)

 𝜙 , = 0 ∀𝑗 (2.5)

 ϕ , ≤ P − 𝑡 ∀𝑗, 𝑗 ∈ 𝑐 (2.6)

 ϕ , + 𝑡 ≤ ϕ , ∀𝑗, 𝑗 ∈ 𝑐 , 𝑟 = {1, … , 𝐹 − 1} (2.7)

 α𝑃 + ϕ , + 𝑡 ≤ βP + ϕ , + 𝑀𝜎 (2.8)

 β𝑃 + ϕ , + 𝑡 ≤ αP + ϕ , + 𝑀(1 − 𝜎) (2.9)

∀𝑘, 𝑘 ∈ 𝑐 , 𝑛 = {1, … , 𝐹 − 1}, 𝛼 = {0, … , (𝐻 𝑃⁄) − 1}
∀ℎ ≠ 𝑘, ℎ ∈ 𝑐 , 𝑛 = 1, … , 𝐹 − 1 , 𝛽 = {0, … , (𝐻 𝑃⁄) − 1}

Eq. 2.3 is the objective function.

Without going into details of each constraint, here we just give an idea of their finality.

Eq. 2.4 ensures that the end-to-end latency of each flow is equal or less than the deadline
of its class.

Eq. 2.5 states that the lower bound of the offset value assigned to the first frame of any
flow is 0.

Eq. 2.6 defines that the maximum offset of the last frame of a flow in its period must be
equal or less than the period of its class minus the transmission time of a frame.

Eq. 2.7 ensures that all frames of the same flow are transmitted in order and that their
transmission do not overlap.

14 Scheduling in TSN Networks using machine learning

Eq. 2.8 and Eq. 2.9 are required to prevent overlapping between frames of different flows
within an hyperperiod. M represents a theoretically infinitely large constant which causes
ether the inequality of Eq. 2.8 or Eq. 2.9 to be trivially satisfied if 𝜎 = 1 or 𝜎 = 0,
respectively.

2.2. Implementation

In this subsection, we provide a description of the implementation and explain its inputs
and outputs. We also present the implemented studied cases from which we developed
this project.

The ILP solution has been implemented using Python 3.9 and it is originally made up from
a set of scripts on which the different responsibilities are divided during execution, see
Fig. 2.2.

The core implementation used in this project is an adaptation of the implementation made
in [27] of the ILP model of [33]. In this adaptation, the objective function and the
restrictions presented in this second chapter are considered.

Fig 2.2 ILP Core Implementation [27]

Throughout the following explanation, mentions are made of each of the implemented
services both from the ILP Core and the additional implementation set.

The ILP model, has been implemented with the provided tools included in the Pyomo
software collection package [5]. This is a BSD licensed project which can use multiple
linear programming solvers such as CBC [6] or GUROBI. [7].

Dataset Generation 15

The main script of the ILP core implementation is the Solutions_Visualizer.py through
which all core classes are orchestrated and executed. Firstly, networks are randomly
generated using the RanNet_Generator.py script. This process involves generating the
network topology and establishes connections between nodes.

Next, the path that the time-triggered flows should follow within the network is determined
using the Djisktra_Path_Calculator.py script. This step calculates the optimal paths for
the flows based on Djikstra algorithm.

Once the paths are determined, three classes of time-triggered traffic with specific
temporal requirements are randomly generated using the RandStream_Parameters.py
and Preprocessing.py scripts. These classes define the characteristics and timing
constraints of the flows.

Finally, the ILP_Generator.py script is used to schedule the generated time-triggered
flows based on the determined paths and temporal requirements.

Given that in this project we aim to use a fix topology, in this implemented adaptation we
prevented the execution of RanNet_Generator.py and Djisktra_Path_Calculator.py.
Instead, a fix network and fixed transmission paths are provided.

In addition, a set of scripts have been implemented which are essential for the proper
functioning of this solution. We have developed three scripts (init_combinations.py,
filter_combinations.py, provide_combinations.py) to control the combinations that are
executed in the ILP.

These scripts initialize, filter, persist and provide the flow combinations that will be
executed by the ILP algorithm. The init_combinations.py is capable of generating all
possible flow combinations, to ensure that all cases are analysed. Since the generated
combinations do not contain repetitions, each vector combination can only have one
specific format. I.e., if a vector combination [1, 1, 3] has been already generated, [3, 1, 1]
won’t be included.

Originally, the core itself, was in charge of randomly generating flow combinations
RandStream_Parameters.py. Therefore, there could be cases in which certain flows
combinations would not be analysed, or even cases in which many identical
configurations would be fed to the ILP algorithm.

After, generating the considered number of combinations, the filter_combinations.py
script filters every set of flows whose bitrate sum exceeds the link bandwidth and store
these results. Then the provide_combinations.py provides the actual vector of flow
combinations for every ILP Core iteration.

Next, the frame duration per flow type and the number of repetitions within a Hyperperiod
are determined. This calculation is performed also in "Preprocessing.py" as it was
originally implemented but preventing hard-coded parameters.

16 Scheduling in TSN Networks using machine learning

Afterward, the constraints inequalities explained in the previous section are applied to
each of the flows, so that we can obtain the polyhedron to be optimized with the objective
function. Then the ILP model tries to find the most optimal scheduling solution within the
defined constraints using a GUROBI [7] solver.

Every flow combination whose scheduling result has a feasible solution or not, is written
in a results file and a Gantt chart is stored by default to properly visualize the scheduling
result.

2.3. Enhancing the ILP implementation

This ILP model presents hard-coded parameters due to its original purpose. The link
bandwidth, the packet size, and the number of flow types to transmit among others, were
strongly hard-coded parameters, hard to change without affecting the correct functioning
of this implementation. Other parameters such as, the transmission periodicity and the
end-to-end deadline constraint, were easy to modify.

Therefore, we decided to apply some changes to disengage the main key parameters, so
that this ILP model could be controlled through a configuration file (JSON format). With
these configuration files, now it is possible to easily change; end-to-end deadline,
transmission periods, the link bandwidth, and the packet size of each flow class, as it is
explained in section 2.4.1.

2.4. Executing the ILP

Now that the implementation of the entire ILP program has been explained, this
subsection shows and clarifies the procedure to execute this solution explaining the
required inputs and resulting outputs to verify the feasibility of scheduling a given set of
streams. This feasibility label will later be used by the machine learning algorithms.

It is important to note that the execution of all scripts in this program were carried out
using Conda [10] as the package manager and environment handler, this allows
reproducibility of the same environment across different machines on which the ILP was
executed. The packages used and instructions for recreating the environment can be
found in the annex.

2.4.1. Inputs

The parameters for a specific scenario are defined in the “StreamsConfig.json”
configuration file. Fig. 2.3 provides an example of the content within this file, which

Dataset Generation 17

includes the flow classes, denoted as an array "streams," and the total number of
transmitted flows in a particular case, indicated by "n_streams."

For each class, the configuration includes the size of the transmitted flow, specified as
"size," the period of the flow denoted as "Period," and the maximum acceptable end-to-
end delay defined as "Deadline." Additionally, the link speed, represented by "Bandwidth,"
is also specified within the configuration file.

Fig 2.3 StreamsConfig.json Configuration file example. Size (Bytes), Period (ms),
Deadline (ms), Bandwidth (bps).

Once the characteristics of the streams have been set, the next step is to configure the
“ILPConfig.json”. Fig 2.4 shows and example of this file. The “timeout” parameter is the
maximum execution time give it to the ILP to say if the combination of flows can be
scheduled or not. Hence, it is important to set up this feature according to the used
machine resources. The "distributions" parameter should be set so it refers to the file path
where “init_combinations.py” has saved the combinations of flows to be computed. The”
base_path” parameter is necessary to set a default results folder where the output files
named as “results_filename” will be stored.

18 Scheduling in TSN Networks using machine learning

Fig 2.4 ILP execution configuration “distributions”: distribution file path, “timeout”: (s)
maximum iteration time

The next step is to run the “init_combinations.py” script, which automatically generates
and stores all possible flow combinations based on the total number of flows to be
transmitted in a given scenario, without repetition.

Then, the “filter_combinations.py” should be executed to filter those combinations whose
transmission rate sum is greater than the capacity of the link. These filtered combinations
are automatically saved in the resulting dataset so the machine learning can consider
them later.

If we consider the example shown in Fig. 2.3 which are the combinations after applying
“filter_combinations.py”, the ILP must analyse are the ones shown in Fig 2.5. These
combinations are then consumed by the ILP core implementation through the
“provide_combinations.py” service allowing the evaluation of their feasibility.

For that, the main script of the ILP solution “Solution_Visualizer.py” will iterate over every
combination and generates the corresponding outputs.

Fig 2.5 Combinations to compute by the ILP algorithm

2.4.2. Outputs

After each iteration of computation, the solution captures both the environment in which
the ILP was executed and its corresponding result. If applicable, a Gantt chart is
generated to visually represent the proposed scheduling by the algorithm. The results of

Dataset Generation 19

each iteration are stored in separate files, with results saved in a text file format and in a
CSV file format.

The following subsections explains the different outputs that can be obtained using this
ILP solution. Every example included in the subsequent figures corresponds to the
outputs generated from the computation of the combination [1,1,1], that is, one flow of
class 1, one flow of class 2 and one flow of class 3. The characteristics of each flow class
are the ones defined in the file shown in Fig. 2.3.

2.4.2.1. Text file

The text file follows a fixed structure, as indicated in Fig. 2.6.

Fig 2.6 Output computation example

• Distribution: Each vector position shows the number of transmitted flows per class
(T1, T2, T3).

• Adjacency_Matrix: Describes the network topology.

• Stream_Source_Destination: Indicates the sequence of hops that a flow must
traverse to reach its destination.

20 Scheduling in TSN Networks using machine learning

• Link_order_Descriptor: Defines the path where each stream is transmitted.

• Links_per_Stream: List of the number of links travelled per stream.

• Number_of_Streams: Total number of transmitted streams.

• Frames_per_Stream: Matrix containing vector of one’s for each transmitted frame
per flow.

• Deadline_Stream: Dictionary indicating the deadline in milliseconds per flow class.

• Streams_Period: Dictionary with the periods per flow class.

• Streams_size: Ordered vector showing the total transmission time for each flow
class.

• Clean_Offsets: A collection of frames specifying the timing at which each
transmission should begin (Start). The "Task" string denotes the frame, where "S"
represents the stream class, "L" denotes the link, and "F" identifies the frame
number.

• Latencies: Ordered vector where the end-to-end latency is shown.

• Feasibility: Indicates whether the combination is schedulable or not.

2.4.2.2. Gantt Chart

As previously mentioned, together with the text result, a Gantt Chart is generated to
provide a visual depiction of the output. Fig. 2.7 shows an example of a Gantt chart
generated from the results obtained when scheduling 3 flows, one of each class described
in the file shown in Fig. 2.3.

Fig 2.7 Gantt chart example

This example shows the influence of the deadlines in the scheduling problem.

In the given Gantt chart, 3 classes of streams with frames of 100ms are scheduled. It is
observed that the three frames belonging to flows "S":0 and the single frame of "S":2, can

Dataset Generation 21

be evenly distributed within the 600ms, as their periods align with the Hyperperiod. In
contrast, the flow "S":1 with 2 frames, has a period of 300ms, requiring a time difference
of 300ms between frames of the same class.

In this example, the deadline used for "S":0 is 400ms and the end-to-end latency of this
is also 400ms since, there are 3 frames that require 100ms and one of them has been
delayed 100ms (see the definition of end-to-end latency).

However, if we were to configure the deadline for "S":0 to 300ms, it would be necessary
to transmit all "S":0 frames as a burst, sending them consecutively without any time gap
in between so that its end-to-end delay would be equal to 300ms. However, due to the
influence of the "S":1 stream, there is no case where "S":0 can be transmitted as a burst
without overlapping with "S":1.

2.4.2.3. CSV File

This comma-separated file consists of 5 fields:

• T1, T2, T3: Are variables describing the number of flows assigned to each flow
classes.

• Feasibility: Is the class label to be predicted. It is a boolean that indicates whether
the flow combination is schedulable or not, according to the ILP algorithm.

• Exceeds Bandwidth: Is a boolean value that distinguishes combinations whose
bitrate exceeds the bandwidth capacity. Since it is evident that these combinations
cannot have a feasible scheduling, they are automatically included in the dataset
without being computed by the ILP algorithm. This value will allow us to visualize
combinations with evident scheduling unfeasibility, see 2.4.2.4.

To train the ML models, the selected features are T1, T2 and T3. Although other
features have been tested, none have managed to enrich the dataset and improve the
performance of the machine learning models trained in chapter 4.

2.4.2.4. Scatter Plot

The results of the different implemented scenarios are presented along with a three-
dimensional graph where each set of flow distributions is shown as a dot, see Fig. 2.8.

Each axis references a flow class, and the dot colours show whether the distributions are
feasible or not, according to traffic characteristics of each scenario. In addition, those
combinations that are non-feasible due to exceeding the capacity of the shared link have
been marked with purple.

The combination [1, 1, 1], where one stream of each class is transmitted, is located in the
centre of the scatter plot in Fig. 2.8, and it refers to the example case analysed in 2.4.2.2.

22 Scheduling in TSN Networks using machine learning

Fig 2.8 Scatter plot example

2.5. Implemented Scenarios

This section provides an overview of three scenarios and their corresponding results
obtained from executing the ILP implementation. In each scenario, the same network
topology is implemented, and changes are made to characteristics of the transmitted
traffic.

The traffic characteristics table of every scenario describes the transmitted flows classes
(T1, T2, T3), including its packet size, as well as its transmission period and its end-to-
end transmission delay deadline that must be satisfied.

2.5.1. Scenario 1

• Total flows: 10
• Link bandwidth: 800Kbps
• Frame transmission time: 15ms

Table 2.1 describes the characteristics of each flow class in this scenario., Streams of
class T1 transmit 3 frames of 1500 bytes each, with a period of 600ms. Streams of class
T2 transmit 2 frames of 1500 bytes, with a period of 300ms. Lastly, streams of class T3
transmit 1 frame of 1500 bytes, with a period of 200ms.

Given a link speed of 800Kbps, each 1500 bytes frame is transmitted in 15ms. In this
scenario, a total of 10 flows are transmitted.

Dataset Generation 23

Table 2.1 Traffic characteristics table of scenario 1

Flow Class Packet Size (Bytes) Period (ms) Deadline (ms)

T1 4500 600 60

T2 3000 300 30

T3 1500 200 15

As show in Fig 2.9 the ILP has been able to obtain results on each of the combinations.
None of these combinations exceed the capacity of the shared link, so they are all
potentially schedulable. However, it can be observed how the group of not feasible
appears dispersed on the right side of the graph where there is a greater presence of T2
flows.

The T3 type flows do not present an impediment for scheduling since they only need to
allocate 15ms every 200ms. Although they must respect the end-to-end delay deadline,
in the case of T1 flows they also facilitate scheduling since they are flows that must
allocate 3 frames of 15ms in every 600ms.

Fig 2.9 3D scatter plot of scenario 1

24 Scheduling in TSN Networks using machine learning

2.5.2. Scenario 2

• Total flows: 10
• Link bandwidth: 1Mbps
• Frame transmission time: 12ms

In this scenario a total of 10 flows are being transmitted over a 1Mbps link. Table 2.2
describes the characteristics of each flow class. Streams of class T1 are configured to
transmit 3 frames of 1500 bytes within a time interval of 600ms between transmissions.
The streams of class T2 also transmit 3 frames of 1500 bytes, but with a shorter time
interval of 300ms. Lastly, the streams of class T3 transmit 2 frames of 1500 bytes every
200ms.

Table 2.2 Traffic characteristics table of scenario 2

Flow Class Packet Size (Bytes) Period (ms) Deadline (ms)

T1 4500 600 48

T2 4500 300 36

T3 3000 200 24

As Fig.2.10 shows, the ILP algorithm has been able to generate results on all
combinations. However, in this case the number of iterations that have been carried out
has been less, since many of the combinations have been previously filtered due to
exceeding the capacity of the shared link.

The configurations that exceeded the capacity of the link (marked in purple) are mainly
due to the presence of type 2 and 3 flows, since they are the flows with the highest bitrate.
The rest of the non-feasible combinations are close to this large group.

Fig 2.10 3D scatter plot of scenario 2

Dataset Generation 25

2.5.3. Scenario 3

As the number of frames included in the scheduling process increases, the computation
time required by the ILP implementation also escalates significantly. Consequently, there
are cases where the resulting dataset may not include all the desired results due to a
preconfigured timeout.

As an example of an incomplete scenario, the scenario 3 has been implemented reducing
the “timeout” parameter. The resulting dataset then has missing results that we later
discuss in chapter 5, where we try to predict those missing combinations.

Furthermore, this scenario combines the results obtained from computing the same
scenario with different total transmitted flows: 10 and 12, resulting in the generation of
distinct planes of data points. Despite the variations in the total number of flows, both
cases share the same traffic characteristics.

This third scenario allows us to examine and compare the machine learning models
behaviour over datasets with missing results and including different planes of data points.

• Total flows: 10 and 12
• Link bandwidth: 1.5Mbps
• Frame transmission time: 8ms

In this scenario, streams are transmitted over a 1.5Mbps capacity link. Table 2.3
describes the characteristics of each flow class. Streams of class T1 transmit 3 frames of
1500 bytes every 600ms. Streams of class T2 transmit 3 frames of 1500 bytes every
300ms. Finally, streams of class T3 transmit 4 frames of 1500 bytes every 200ms. Given
the link speed, the transmission time of each frame of 1500 bytes is 8ms.

Table 2.3 Traffic characteristics table of scenario 3

Flow Class Packet Size (Bytes) Period (ms) Deadline (ms)

T1 4500 600 24

T2 4500 300 24

T3 6000 200 32

26 Scheduling in TSN Networks using machine learning

As shown in Fig. 2.11, the graph presents a gap that separates feasible and non-feasible
combinations. This gap refers to the portion of the problem space where the instances
require the longest computation time when executing the ILP algorithm. By utilizing
machine learning techniques, we can make predictions and gain insights into the areas
of the space where the computation time is longer.

Fig 2.11 3D scatter plot of scenario 3

Feasibility Prediction Algorithms 27

CHAPTER 3. Feasibility Prediction Algorithms

Once we know and understand the generated data, we can consider using it as training
for supervised machine learning models, with which to determine the feasibility of a
certain flow configuration. In the following subchapters, we introduce a brief explanation
of the predictors used in this project.

3.1. Binary Classification Algorithms

Classifications models can be classified as generative and discriminative [35].

Generative models are those that focus on the distribution of the dataset modelling the
data to find the joint probability in which the two events occur simultaneously according
to the results obtained. These are typically used to estimate probabilities and likelihoods
by modelling data points and discriminating between classes or groups based on these
probabilities. Because the model learns a probability distribution, it is possible to use that
probability distribution to generate new data instances.

Instead, discriminative models aim to learn about the boundary between classes within a
dataset in order to identify the decision boundary between classes to label the data and
perform a classification.

For this project we have considered the use of two discriminative algorithms: Support K-
Nearest Neighbor (K-NN) and Vector Machine (SVM).

3.2. K-Nearest Neighbours (K-NN)

The authors in [2], where a similar problem appears, propose to use a K-NN algorithm.
Below is an introduction to the fundamentals of K-NN to understand the obtained results.

K-NN [36] is a non-parametric supervised algorithm that uses proximity to make
classifications or predictions about the grouping of an individual data point. This is an
instance-based lazy algorithm, meaning that instead of undergoing a training stage, it
heavily relies on memory to store all its training data which is used to perform all the
necessary computation to make a classification.

For a new instance, a classification is made by finding the K closest instances in the
dataset. For this algorithm the Euclidean distance [26] has been used. To choose the K
value, we must take into account that there are no predefined statistical methods to find
the best K value.

About K value, it is important to consider that:

28 Scheduling in TSN Networks using machine learning

1. Using small values of K means that noise will have higher influence on the results.

2. Employing large K values will be more computationally expensive and will result in
a less generic model.

In this project, we conducted multiple iterations to evaluate the appropriate K value to
implement in a K-NN model.

3.3. Support Vector Machine (SVM)

A Support Vector Machine (SVM) [32] classifies observations by constructing a
hyperplane also called decision boundary, that separates observations belonging to two
groups (classes) of data. The goal of SVM is to find an optimal hyperplane that separates
different classes of data points.

To generate the hyperplane, before a mathematical function know as kernel is performed.
This function transforms the input data into a higher-dimensional feature space, where
the classes can be separated by a hyperplane. This process is known as the kernel trick.

Later, the support vectors are selected. We call support vectors to those observations
that lie on the margin surrounding the data-separating hyperplane, which are the only
points that have a real impact on the model. We can even discard the rest without
affecting the results.

There are two key concepts related to the hyperplane margin: hard margin and soft
margin.

Hard margin aims to find a hyperplane that perfectly separates the classes without
allowing misclassifications. This means that the hyperplane can even be a two-
dimensional straight line or a flat plane. Therefore, hard margin models are suitable for
situations where the data is perfectly separable. However, hard margin SVMs have some
limitations. They are sensitive to outliers and noise since a single misclassified point can
significantly affect the placement of the decision boundary. Soft margin SVM’s address
the limitations by allowing a certain degree of misclassification in the training data.

This trade-off is controlled by the C parameter, which adds a directly proportional penalty
to the distance from the decision boundary, for each misclassified data point. For a small
C the penalty is low while for a large C the reverse occurs.

When the data is not linearly separable, using a Radial Basis Function (RBF) as a kernel
function is commonly used.

The Radial Basis Function (RBF) measures the similarity between data points based on
their distance in the feature space, allowing SVM’s to model nonlinear decision
boundaries. To tune the RBF kernel the gamma parameter is used. The gamma value
determines the reach of the kernel function, with higher values leading to a narrower
decision boundary.

Model Testing 29

CHAPTER 4. Model Testing

In this section, the supervised algorithms explained in the previous section are trained
using the complete datasets from the scenarios of this project to compare which algorithm
is able to perform a classification of feasible and unfeasible schedulings.

In the first two scenarios, where we have access to all the available data, we conducted
a comparison of the resulting models to determine their effectiveness and identify the
best-performing supervised model. However, it is important to note that in some cases,
the scenario results may be incomplete due to a configured timeout (Scenario 3).

Before training any algorithm, a standard scaler is applied to the dataset to ensure that
all features have the same impact in algorithm training and speed up training process.
These algorithms use Euclidean distances to train its decision boundaries, so these are
very sensitive and are more likely to yield poor results if standardization or normalization
is not applied.

Although scaling from a given complete dataset with the same the scaling would be
unnecessary, it is a good practice to implement it since exists cases in which the dataset
would not be complete. Therefore, we decided to apply a standard scaler because we
already know that all features are limited to the same range, and it is less sensitive to
outliers than a “Minmax” normalization.

To train both algorithms, a method called “GridSearch” of the Sklearn Library [19] together
with Leave One Out cross-validation (LOOCV) [38] is applied in order to build the most
robust models with the actual available data.

This “GridSearch” method helps to automate the process of finding an optimal set of
hyperparameters. This is done by providing a range parameter to train every combination
and then evaluate them using an evaluation metric, which in our case is accuracy. This
performance metric represents the proportion of correctly classified predictions out of the
total number of instances.

In our case, these evaluation metrics result from the application of the LOOCV. This
technique divides the provided dataset into subset, where each subset consists of all but
one data point. The model is then trained on the remaining data points and tested on the
single data point that was left out.

This process is repeated for each data point in the dataset and its performance is
evaluated also using the accuracy metric. This evaluation allows us to identify the model
with the best performance, which can be selected for further analysis.

Although cross-validation methods can be computationally expensive, we took advantage
of having a small dataset to obtain the most representative models, less biased by the
provided training data.

30 Scheduling in TSN Networks using machine learning

This chapter presents and reviews results obtained from training and applying the K-NN
and SVM algorithms. Its subsections include a scatter plot resulting from applying the
model, a table displaying instances that were incorrectly classified, and an analysis of the
results.

4.1. Testing K-NN

The K-NN algorithm is an attractive option due to its simplicity and ease of
implementation. It is important to note that, as a lazy learner, it does not require a training
phase, as it only stores the training data.

However, it can be computationally expensive when working with large datasets or high-
dimensional data. In this case, since the dataset is small, computational cost is not an
issue, but it is important to keep it in mind that as the dataset grows, this may become a
concern.

Here is an analysis of the results obtained from applying the machine learning algorithm
to the dataset in the first two scenarios described in 2.5. As mentioned above, LOOCV
has been applied to the K-NN algorithm in each scenario considering a Euclidean
distance as a metric.

4.1.1. Scenario 1

An important factor to consider when applying K-NN is the maximum value of K. In this
specific case, since the dataset contains 16 samples of unfeasible configurations, which
is 24.24% of all the data, it would be wise to avoid models with a value of K greater than
16, as this could lead to the unfeasible instances being outvoted by feasible instances.

The best predictor obtained from the application of the LOOCV is when K=7 resulting in
an 87.88% of accuarcy. Since the dataset is made up of 75.76% of instances in which the
combination of flows is feasible, the application of this predictor gives us an extra 12.24%.

In the resulting scatter plot, which is Fig. 4.2, the predictor has not correctly predicted
instances 1, 2 and 3 from Table 4.1, located on the right margin of the figure since they
are outliers.

It is worth noting that using 7 neighbors in this scenario may be considered excessive, as
it represents almost 50% of the unfeasible instances concentrated in the lower right
margin. This supposes a greater difficulty for the classifier when classifying instances 4,
5, 6 and 7 from Table 4.1.

Model Testing 31

Fig 4.1. 3D scatter plot of scenario 1 with wrong classified instances (K-NN)

Table 4.1 Wrong classified instances of K-NN in Scenario 1

Instance Id T1 T2 T3 Feasibility

1 0 1 9 False
2 0 6 4 True
3 0 10 0 True
4 1 3 6 False
5 2 5 3 False
6 2 6 2 True
7 3 6 1 False
8 2 8 0 True

32 Scheduling in TSN Networks using machine learning

4.1.2. Scenario 2

For this scenario, a maximum value of K equal to 21 has been used in the training of the
K-NN algorithm models since the maximum of feasible instances is 21.

Within this dataset, there are 38 combinations that exceed the maximum capacity of the
shared link. This represents a significant portion of the unfeasible combinations,
considering that there are a total of 45 unfeasible instances.

Consequently, the challenge in this scenario lies in accurately predicting the infeasible
instances among those combinations where the unfeasibility is not obvious. These cases
require careful consideration.

The best predictor obtained from applying the LOOCV method is achieved when K=12,
resulting in an accuracy of 94%. However, it is important to note that this accuracy is
biased by the presence of unreliable instances within the dataset.

When considering the instances located on the diagonals where misclassifications occur
in Fig. 4.2, 4 out of a total of 13 instances have been incorrectly classified, resulting in an
error rate of approximately 30%, which is a poor performance. See incorrectly classified
instances in Table 4.2.

Fig 4.2 3D scatter plot of scenario 2 with wrong classified instances (K-NN)

Model Testing 33

Table 4.2 Wrong classified instances of K-NN with LOOCV in Scenario 2

Instance Id T1 T2 T3 Feasibility

1 5 0 5 True

2 4 4 2 True

3 5 4 1 False

4 4 6 0 True

4.1.3. Scenario 3

In this scenario the dataset contains a larger number of instances compared to previous
scenarios and there are no unfeasible combinations that do not exceed the bandwidth of
the shared link. As a result, there is a clear separation between feasibility areas indicating
that the classifier should be able to achieve 100% accuracy.

However, the K-NN model with K=5 achieves an accuracy of 99%, meaning that it
incorrectly predicts a single combination (Table 4.3), as shown in Fig 4.3.

Fig 4.3 3D scatter plot of scenario 3 with a wrong classified instance (K-NN)

34 Scheduling in TSN Networks using machine learning

Table 4.3 Wrong classified instances of K-NN with LOOCV in Scenario 3

Instance Id T1 T2 T3 Feasibility

1 1 11 1 False

4.2. Testing SVM

The inner workings of the Support Vector Machine (SVM) algorithm can be intricate, but
its main concept is relatively straightforward to understand. Particularly in scenarios
where combinations can be represented as points in a three-dimensional graph, there is
often a distinct separation between feasible and unfeasible instances.

To build the SVM models, the focus was on adjusting the regularization “C” and “gamma”
parameters so that the model creates an adequate hyperplane. Given that these
parameters can differ depending on the provided training dataset, the resulting
hyperparameters cannot be compared.

The considered “GridSearch” parameters are C values from 0.1 to 50 with a step size
value of 1, and a range of values from 1.e-09 to 1.e+03 in 13 steps for the “gamma” value.
The results obtained from the application of the SVM training with LOOCV using the RBF
kernel, are presented in the next subsections.

4.2.1. Scenario 1

In this first scenario, the SVM model with hyperparameters C=5.1 and gamma=0.1 serves
as the optimal predictor, achieving an accuracy of 89.4%. This accuracy is slightly
superior to that of the K-NN model. It is worth emphasizing that instances 1, 2, and 3 from
Table 4.3, situated on the right margin of the Fig. 4.3, are considered outliers, and should
not be expected to be correctly classified by a non-overfitted model.

These instances are introducing an error of approximately 4.45% into the model, so
consequently, the maximum attainable accuracy for this dataset is 95.45%.

Model Testing 35

Fig 4.4 3D scatter plot of scenario 1 with wrong classified instances (SVM)

Table 4.4 Wrong classified instances of SVM in Scenario 1

Instance Id T1 T2 T3 Feasibility

1 0 1 9 False

2 0 6 4 True

3 0 10 0 True

4 1 3 6 False

5 2 6 2 True

6 3 6 1 False

7 2 8 0 True

36 Scheduling in TSN Networks using machine learning

4.2.2. Scenario 2

In this scenario, the application of the LOOCV identified SVM (C=4.1, gamma=0.01) as
the best estimator. The results achieved by this algorithm were the same as the K-NN
model, see Fig. 4.4 where prediction results are shown.

Fig 4.5 3D scatter plot of scenario 2 with wrong classified instances (SVM)

4.2.3. Scenario 3

In this scenario with data points belonging to different planes, the most optimal classifier
is an SVM with a hyperparameter configuration of C=10.1 and gamma=0.1. This model
with a 99% of accuracy, exhibits the same performance as the K-NN, what is expected
since feasible and non-feasible zones are separated.

There is only one misclassified point which is located in the lower right margin of the
dataset, see Fig 4.6. This misprediction suggests that the classifier may encounter issues
when correctly classifying instances within that specific area.

Model Testing 37

Fig 4.6 3D scatter plot of scenario 3 with wrong classified instances (SVM)

4.3. Conclusion

In the first scenario, we found that SVM performed slightly better than K-NN when trained
and applied to the implemented scenarios. However, it is important to highlight that these
results are based on limited dataset therefore, we cannot obtain a conclusion determining
the superiority of one model over the other.

The results of the models in scenario 3 showed a 99% accuracy, which is not a
representative result for comparing the models due to the existence of a clear separation
between feasible and non-feasible because of missing values in the dataset.

The current datasets used in this project have limitations in capturing variations present
in real-world scenarios. Further exploration is needed to obtain reliable conclusions about
a preferable model. This involves conducting experiments with a wider range of scenarios
collecting more data to provide a comprehensive understanding of the models
performance.

38 Scheduling in TSN Networks using machine learning

Hybrid Verification 39

CHAPTER 5. Hybrid Verification

Once a machine learning algorithm has been trained, it can produce immediate results
for any given instance unlike other solutions such as the ILP implementation used in this
project, which may not produce results in certain cases due to the configured timeout.

Missing results are precisely where a machine learning algorithm can be used so we can
prevent the execution of time-consuming solutions. Given that we still need to lean on
these time-consuming algorithms, a hybrid verification strategy approach is proposed,
combining the use of machine learning algorithms and the ILP implementation.

In this section, we also intend to demonstrate the capability of accurately predicting
unknown combinations of data in different planes, using a machine learning algorithm.
For that purpose, we applied the mentioned strategy over the scenario 3 and then
analysed the results. Given that the scenario 3 is a controlled scenario in which we tunned
the “timeout” parameter, we can afford computing the complete scenario 3 to serve as a
base truth, with which comparing the results obtained from the application of this hybrid
verification method.

In the following sections, the strategy is explained, and the results obtained from its
application on scenario 3 are analysed.

5.1. Strategy Application

This hybrid verification strategy consists of minimizing the use of the ILP implementation,
by only executing it to obtain results from those combinations that may be more significant
to improve the accuracy of a model predictor.

The challenge for the ML algorithm is to accurately predict missing data points or
predicting those located in a zone where feasible and non-feasible combinations are not
well distinguished. The data points within this zone are the most informative combinations
in the whole dataset and may be the ones that optimizes the performance of the classifier.

Therefore, this strategy proposes to avoid the application of the ILP algorithm on data
points where the feasibility is already evident to the predictor. Identifying the most
informative data points enable us to optimize the scheduling verification process
drastically reducing the total computation time required.

A first iteration of the strategy consists of:

40 Scheduling in TSN Networks using machine learning

1. Obtain results with the ILP implementation on distributions require less time to
compute.

2. Train the models with existing data.
3. Analyse results.
4. Select possible crucial combinations to compute the ILP implementation.

5.2. Results

In this section, the results obtained from the application of the aforementioned strategy
over a SVM are presented.

The initial training data considered to apply this strategy appertains to the dataset of
scenario 3. This dataset has a total of 131 instances, from which 55 are feasible
combinations and the remaining are unfeasible.

After training an SVM model with this dataset (4.2.3), we obtained a SVM model with a
99% accuracy, indicating that the predictor has no difficulty in classifying the provided
data, see Fig. 5.1. As mentioned before, this high accuracy was expected due to the clear
separation between the classes in the dataset.

If we compare these results with the complete dataset, we observe that the model
achieves an error rate of approximately 9.55% (Fig. 5.2), which means that it incorrectly
predicts 15 out of the 157 instances in the complete dataset.

Fig 5.1 3D scatter plot of scenario 3 with support vectors and a wrong classified
combination

Hybrid Verification 41

Fig 5.2 3D scatter plot of missing combinations including wrong classified and the
additional combinations selected to retrain the model.

Table 5.1 Additional combinations

Instance Id T1 T2 T3 Feasibility
1 3 5 2 False
2 4 3 3 False
3 3 8 1 False
4 1 8 1 False
5 6 3 3 False

After this initial result, the next step is to retrain the model incorporating additional
combinations to the initial training dataset, see additional combinations in Table 5.1.

In Fig 5.1 it is possible to observe that support vectors are located near the feasibility
boundary. These support vectors were selected by “GridSearch” so that the margin
between the class labels is maximized while minimizing the classification errors, which
results in the most optimal decision boundary. Therefore, when incorporating new
combinations to the dataset, it is crucial to prioritize those that are near to that decision
boundary. Such combinations have a greater potential to improve the classifier
performance.

After retraining the classifier and comparing it with the complete dataset, we observed
that it incorrectly predicted 4 combinations, see Table 5.2. This results in an error rate of
2.55%, what is significantly lower than the previous model.

Analyzing the incorrectly predicted combinations in Fig. 5.3, we observe that they are
located in the left margin of the figure. Therefore, in a third iteration of this strategy,
probably selecting combinations located within that zone suggests that the classifier
would adjust its decision boundary improving its accuracy.

42 Scheduling in TSN Networks using machine learning

Therefore, through the addition of new combinations to the training dataset and observing
the resulting increase in accuracy, we can affirm that the predictive capabilities of an SVM
model can be greatly improved.

Table 5.2 Wrong predicted combinations after retraining

Instance Id T1 T2 T3 Feasibility
1 4 7 1 False
2 7 1 4 False
3 7 2 3 False
4 6 4 2 False

Fig 5.3 3D scatter plot of missing and wrong classified combinations

Conclusions and Next Steps 43

CHAPTER 6. Conclusions and Next Steps

6.1. Conclusions

The present work has been a first contribution to provide trained Machine Learning
models as an alternative to determine whether, a certain resource allocation within a Time
Sensitive Network meets a set of timing constraints following [2].

Despite the complexity related to scheduling verification, it has been possible to generate
multiple datasets from the Integer Linear Programming implementation of [27] which has
been crucial to the proper development of this project. To obtain the dataset we applied
the pertinent code modifications to adapt the results to the needs of this project.

For every dataset scenario, we have implemented the K-NN and SVM models and we
have tested them, analysing, and graphically exposing their predictive performance when
adjusting its hyperparameters.

To obtain a comparison that is not biased by the training data provided to both algorithms,
we have applied the Leave One Out Cross Validation method so that, multiple models of
each of the algorithms have been generated, ending up with the two best models for each
machine learning algorithm.

With all this, it is shown that no algorithm stands out over the other, since the obtained
results are based on limited dataset with clear separated instances in the last 2 scenarios.
Therefore, we cannot obtain a conclusion determining which one is the most performant.

Taking advantage of the fast response of machine learning algorithms to quickly obtain
results, we propose a hybrid verification strategy, in which the models predict every flow
combination and the ILP implementation is only used to verify those whose prediction is
more likely to fail.

The results demonstrate that the model positively responds to the inclusion of more
relevant data during the training process, highlighting the importance of training a
machine learning model with a representative dataset.

Therefore, we can conclude that, although the number of scenarios generated to test
machine learning models are limited and the datasets are small, the preliminary findings
suggest that machine learning models can be a promising tool to optimize the scheduling
verification process.

44 Scheduling in TSN Networks using machine learning

6.2. Next Steps

Although, the applied models performed as planned, we would have preferred to carry
out this project on with more realistic scenarios with a greater amount of data. For this, it
is necessary, to improve the efficiency of the ILP implementation or to go deeper in other
types of algorithms such as Satisfiability Modulo Theories (SMT) [20].

Regarding the application of prediction models, it would be interesting to also implement
algorithms such as LDA or Naive Bayes, to compare the performance between generative
and discriminative classification algorithms.

Finally, assuming that it is possible to obtain a greater amount of data, a fascinating next
step would be to propose a new line of research around reinforcement learning using
neuronal networks for scheduling verification.

References 45

References

[1] IEEE802, Time-Sensitive Networking (TSN) Task Group [Online] Available at:
https://1.ieee802.org/tsn/

[2] N. Navet, T. L. Mai, J. Migge, “Using Machine Learning to Speed Up the Design

Space Exploration of Ethernet TSN Networks”, University of Luxemburg, 12-13
(2019)

[3] Wikipedia, Time-division multiple access. [Online], Available at:

https://en.m.wikipedia.org/wiki/Time-division_multiple_access

[4] Time-Sensitive Networking. [Online] Available at:

https://en.wikipedia.org/wiki/Time-Sensitive_Networking

[5] Pyomo. [Online] Available at:

http://www.pyomo.org/

[6] CBC Solver. [Online] Available at:

https://coin-or.github.io/

[7] Gurobi Solver. [Online] Available at:

https://www.gurobi.com/

[8] Nicolas, N., Tieu. Long, M. and Jörn, M. “A Hybrid Machine Learning
Schedulability Analysis Method for the Verification of TSN Networks”, IEEE
International Workshop on Factory Communication Systems, 1-2 (2019)

[9] José, R. in “Linux Out of Memory Killer” (2017). Available at:

https://neo4j.com/developer/kb/linux-out-of-memory-killer/

[10] Conda Package. [Online], Available at:

https://docs.conda.io/

[11] Psutil Library. [Online], Available at:

https://github.com/giampaolo/psutil

[12] Brownnlee, J. “Feature Selection Methods” in Applied Predictive Modeling., pp

499 (2013) Available at:
https://machinelearningmastery.com/feature-selection-with-real-and-
categorical-data/

[13] Chao, S. R. Dougherty, E. The peaking phenomenon in the presence of feature-

selection, DBLP Computer Science, 29 (11), 1672-1674 (2008) Available at:
http://gsp.tamu.edu/wp-
content/uploads/sites/71/2017/01/pap_PRL_Peaking.pdf

46 Scheduling in TSN Networks using machine learning

[14] Kaiser Rule. [Online], Available at:

https://docs.displayr.com/wiki/Kaiser_Rule

[15] Andrew Y. Ng. and Jordan, M. I. “On Discriminative vs. Generative classifiers:
A comparison of logistic regression and naïve Bayes”, AI-Stanford, 7-8 (2001).
Available at:
http://ai.stanford.edu/~ang/papers/nips01-discriminativegenerative.pdf

[16] Thirumuruganathan, A Detailed Introduction to K-Nearest Neighbor (KNN)

Algorithm [Online] Available at :
https://saravananthirumuruganathan.wordpress.com/2010/05/17/a-detailed-
introduction-to-k-nearest-neighbor-knn-algorithm/

[17] Machine Learning Sharing-KNN Algorithms and Numpy Implementation.

[Online]. Available at :
https://developpaper.com/machine-learning-sharing-knn-algorithms-and-
numpy-implementation/

[18] Scikit-Learn, Gaussian Process Kernels RBF. [Online], Available at:

https://scikit-
learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.RBF.ht
ml

[19] Scikit-Learn, GridSearchCV. [Online], Available at :

https://scikit-
learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.ht
ml

[20] Wikipedia, Satisfiability modulo theories. [Online], Available at:

https://en.wikipedia.org/wiki/Satisfiability_modulo_theories

[21] Kendarps, Why do you need to scale data in KNN [Online] Available at:

https://stats.stackexchange.com/questions/287425/why-do-you-need-to-scale-
data-in-knn

[22] IEEE 802.1Q Frame Format. [Online] Available at:

https://support.huawei.com/enterprise/en/doc/EDOC1100088104

[23] Wikipedia, Time-division multiple access. [Online], Available at:

https://en.m.wikipedia.org/wiki/Time-division_multiple_access

[24] StatisticalHelp, Gini Coefficient of Inequality. [Online] Available at :

https://www.statsdirect.com/help/default.htm#nonparametric_methods/gini.htm

References 47

[25] Sang Gyu Kwak, Jong Hae Kim. “Central Limit Theorem: The Cornestone of
modern statistics”, National Library of Medicine, 2(70), 2-4 (2017) Available at:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5370305/

[26] Hla Stanford, Euclidean Distance in ‘N’-Dimensional Space. [Online] Available

at:
https://hlab.stanford.edu/brian/euclidean_distance_in.html

[27] Orozco Urrutia, G.D., “A Microservices-based Control Plane for Time Sensitive

Networks”, Master’s Thesis, UPC, Castelldefels, Spain. [In progress]

[28] G.Sierra, “Algoritmos de gestión de tráfico: Leaky Bucket, Token Bucket y
Virtual”, Tecnura,15 (29), 78-80 (2011). Available at:
https://www.researchgate.net/publication/277261423_Algoritmos_de_gestion_
de_trafico_Leaky_Bucket_Token_Bucket_y_Vir_tual

[29] Castaño Cid, J.O., “Proves amb equipament Time-Sensitive Networking

(TSN)”, UPC Grade Thesis, 3-4 (2018) Available at:
https://upcommons.upc.edu/handle/2117/121567

[30] Wikipedia, Time-division multiple access. [Online] Available at:

https://en.m.wikipedia.org/wiki/Time-division_multiple_access

[31] Qing Li, Dong Li, Xi Jin, Qizhao Wang, Peng Zeng. “A simple and efficient Time-

Sensitive Networking Traffic Scheduling Method for Industrial Scenarios”, MDPI
Electronics, 2-11 (2020)

[32] Fletcher T. “Support Vector Machines Explained”. [Online]. UCL Computer

Science, 2-5 (2008)

[33] Lander Raagaard M., Pop P., “Optimization algorithms for the scheduling of
IEEE 802.1 Time-Sensitive Networking (TSN)”, DTU Technical Report, 35-40
(2017)

[34] LoBello, L. and Steiner, W. “A Perspective on IEEE Time-Sensitive Networking

for Industrial Communication and Automation Systems”. Proc. IEEE, 107, 1094–
1120 (2019)

[35] [15] Andrew Y. Ng. and Jordan, M. I. “A comparison of logistic regression and

naive Bayes”. StanFord University, (2002)

[36] Sanjukta, D. and Kashvi, T. “A Brief Review of Nearest Neighbor Algorithm for
Learning and Classification”. ICCS (2019)

48 Scheduling in TSN Networks using machine learning

[37] Scikit-Learn, “Tuning the hyper-parameters of an estimator.” [Online]:
https://scikit-learn.org/stable/modules/grid_search.html

[38] Scikit-Learn, “Leave One Out Cross Validation.” [Online]: https://scikit-
learn.org/stable/modules/generated/sklearn.model_selection.LeaveOneOut.ht
ml

[39] Baeldung, “Cross Validation: K-Fold vs Leave-One-Out.” [Online]:

https://www.baeldung.com/cs/cross-validation-k-fold-loo

Annex 49

Annex

Development Environment

Here is the link to access the entire development environment, as well as all analysis
files and files related to Machine Learning work:
https://drive.google.com/drive/folders/1nL5dp_RYehDlpERml5RST19Ld_NgDU5w?usp
=sharing

