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Overview 

 
The massive adoption of Ethernet technology in multiple sectors, produces the 
need to provide deterministic solutions to ensure a Quality of Service (QoS) that 
meets the requirements of time-triggered flows. For this, the Time-Sensitive 
Networking (TSN) Task Group (TG) of the IEEE 802.1 developed a set of 
standards that define mechanisms for time-sensitive transmissions of data over 
Ethernet networks. 
 
This project focuses on studying the feasibility of scheduling three classes of 
time-triggered flows with different time constraints over a simple network 
topology, which is made from two TSN (Time-Sensitive Networking) nodes 
connected through a link. Scheduling multiple time-triggered flows is a complex 
problem because the scheduling, if exists, must meet the time constraints of all 
these flows. 
 
To address this challenge, we explore the potential of using supervised machine 
learning classification models to accurately predict the feasibility of scheduling a 
given set of time-triggered flows, meeting their time-constraints, in a Time-
Sensitive Network (TSN).  
 
Supervised models require a training dataset that contains a data matrix and a 
class label vector. To obtain the class label vector of each observation, we use 
an adaptation of the implementation developed in [27] of the Integer Linear 
Programming (ILP) model introduced in [33]. 
 
Two different models are considered: K-Nearest Neighbours (K-NN) and Support 
Vector Machine (SVM). These algorithms are tested and built from the 
application of the Leave One Out Cross-Validation (LOOCV) technique with the 
generated datasets, and the results obtained are compared and discussed.  
 
Finally, a hybrid verification strategy is proposed to train and test machine 
learning models, drastically reducing the resources and computation time 
originally required to compute the class label of each observation of the dataset. 
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Resumen 

La adopción masiva de la tecnología Ethernet en múltiples sectores, produce la 
necesidad de brindar soluciones deterministas para asegurar una Calidad de Servicio 
(QoS) que cumpla con los requerimientos de los flujos sensibles al time (en adelante 
TT por las siglas en inglés Time-Triggered). Para ello, el grupo de trabajo Time-
Sensitive Networking (TSN) del IEEE 802.1 desarrolló un conjunto de estándares que 
definen mecanismos para transmitir flujos de datos con requisitos temporales estrictos 
a través de redes Ethernet. 
 
Este proyecto se enfoca en estudiar la viabilidad de programar varios flujos de tres 
clases TT diferentes sobre una topología de red simple, compuesta de dos nodos TSN 
(Time-Sensitive Networking) conectados a través de un enlace. Programar la 
transmisión de múltiples flujos TT es un problema complejo ya que la solución, si existe, 
debe garantizar que se cumplen todos los requisitos temporales de todos los flujos a 
transmitir. 
 
Para abordar este desafío, en este trabajo exploramos el potencial del uso de modelos 
de clasificación de aprendizaje supervisado para predecir con precisión, la viabilidad 
de programar un conjunto dado de flujos TT, cumpliendo con sus restricciones de 
tiempo, en una red (TSN). 
 
Los modelos supervisados requieren un conjunto de datos de entrenamiento formados 
por una matriz de datos y un vector de etiquetas de clase. Para generar las etiquetas 
de clase, en este trabajo utilizamos una adaptación de la implementación desarrollada 
en [27] del modelo ILP definido en [33]. 
 
En este proyecto se consideran dos modelos diferentes: K-Nearest Neighbors (K-NN) 
y Support Vector Machine (SVM). Estos algoritmos se prueban y se construyen a partir 
de la aplicación de la técnica de validación cruzada llamada Leave One Out Cross-
Validation (LOOCV) con los conjuntos de datos generados, para posteriormente 
comparar y discutir los resultados. 
 
Finalmente, se propone una estrategia de verificación híbrida con el objetivo de 
entrenar y probar modelos de aprendizaje automático, reduciendo drásticamente los 
recursos y el tiempo de cómputo requerido originalmente para generar las etiquetas de 
clase en la base de datos. 
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Introduction 
 
 
Due to the inherent characteristics of Ethernet, this technology has been adopted in many 
sectors throughout these five decades of development. But even with the improvements 
over these years, networks based on this technology lacks on determinism. This means 
that lacks Quality of Service (QoS), being unable to guarantee maximum latencies, 
reduced delay variations and other characteristics that belong to deterministic networks.  
 
To provide this QoS requirements, the Audio Video Bridging (AVB) Task Group, renamed 
later Time-Sensitive Networking (TSN) Task Group by the IEEE, have developed a set of 
standards that define mechanisms for time-sensitive transmissions of data over Ethernet 
networks. Although TSN provides a great variety of mechanisms to ensure QoS, it is a 
huge challenge to set up properly the parameters of these mechanisms to achieve the 
desired QoS requirements.  
 
Given a set of time-critical flows (that we will refer as Time-Triggered flows or TT flows 
for short) in a TSN network using the IEEE802.1Qbv (Time Aware Shaper) standard, this 
project focus on the problem of computing a scheduling for this set of TT flows in which 
every flow must meet its QoS requirements. 
 
There exist many algorithms to solve this problem, but they are usually complex and time 
consuming. Alternatively, we propose to speed up this evaluation process by 
implementing supervised machine learning algorithms with the aim of determining if a 
given set of time-critical flows, with a given set of characteristics, can be transmitted over 
a certain link, satisfying all the QoS requirements. 
 
Since we propose supervised machine learning algorithms, we previously need to 
generate a labelled dataset to train these supervised models. That is why as a previous 
step, we need to lean on another algorithm to serve as a source of data. To do this, in 
this work, we adapt the implementation developed in [27] of the Integer Linear 
Programming (ILP) model proposed in [33]. 

It is important to note that the ILP algorithm is NP-complete [28], which means that the 
algorithm may not always find a solution within a reasonable timeframe. To address this 
issue, a timeout is set to the ILP implementation. Which means that, it the ILP does not 
find a solution before the timeout expires, we will not have the label class of the 
corresponding experiment. Hence, we must assume that the provided datasets may be 
incomplete. 

In case of obtaining a result from the ILP implementation, a Boolean value, that we called 
feasibility, is used to determine if a specific combination of flows can be scheduled 
satisfying the time requirements of all flows.  
 
In this work, the network topology considered is a single link and we try to schedule a 
combination of 𝑁 Time-Triggered flows that belong to three different classes. All flows of 
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the same class share the same traffic characteristics in terms of bytes to be transmitted, 
period and deadline. In each observation we consider a different number of flows of each 
class to be transmitted over the link and we apply the ILP implementation to find a 
schedule. If the combination of flows can be scheduled, the combination is proven to be 
feasible. Otherwise, we consider the scheduling of the combination of flows as unfeasible. 
If the timeout expires, we do not have a class value for the experiment. 
 
After building the datasets, we normalize the features to ensure equal relevance and train 
two different supervised Machine Learning classifications algorithms so the models can 
predict if a given combination of TT flows has a feasible scheduling or not. The two 
supervised models used in this work are K-Nearest Neighbours (K-NN) and Support 
Vectors Machine (SVM), and we use the Leave One Out Cross-Validation (LOOCV) 
technique, to evaluate and compare the performance of the two models. 
 
Finally, a hybrid verification strategy is proposed to minimize the execution time of the 
ILP implementation based on the use of a machine learning algorithm. The resulting 
models obtained from this strategy should be capable of generating highly reliable results 
in fractions of a second avoiding multiple hours of scheduling analysis. 
 
This project is structured as follows: 
 
In the first chapter, we introduce TSN, highlighting its key properties and emphasizing its 
significance across various industries. Next, we briefly describe two widely used TSN 
scheduling mechanisms and define the main characteristics of time-triggered flows. Then, 
we present the network topology and the assumptions considered in this work. 
 
In the second chapter, our focus lies in obtaining labelled datasets to train the machine 
learning algorithms. To accomplish this, we adapted the ILP algorithm implemented in 
[27]. This implementation allows us to generate the necessary input data along with their 
corresponding class labels, enabling us to train the supervised machine learning models. 
For that purpose, we define three different test scenarios. Each scenario is defined by the 
characteristics of the three different classes of TT streams considered and the total 
number of flows that must be scheduled over the link. Then, we execute the ILP for each 
scenario and every possible combination of flows to later present the results obtained. 
 
The third chapter briefly introduce the two supervised Machine Learning models that we 
use in this work, that is K-Nearest Neighbours (K-NN) and Support Vectors Machine 
(SVM). 
 
Subsequently, the fourth chapter implements the previously presented supervised 
algorithms adjusting their hyperparameters using the Leave One Out Cross Validation 
(LOOCV) method to build the models. From these models, we later expose their 
performance and make a comparison of their predictive capabilities. 
 
The fifth chapter proposes an alternative strategy to train machine learning algorithms, 
minimizing the use of the ILP implementation, and taking advantage of the implemented 
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machine learning algorithms. This approach offers significant time savings, as the 
machine learning algorithms can produce reliable results within milliseconds, whereas a 
computational analysis or ILP algorithm could potentially take several hours to complete. 
 
Finally, the conclusions section of this project serves as a comprehensive review of the 
conducted work, where we carefully assess the results and outcomes achieved through 
this project.  
 
To continue with the developments made in this project and allow the reproducibility of 
the experiments carried out, the annex includes a link to access the developed code. 
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CHAPTER 1. Introducing Time Sensitive Networks (TSN) 
 
 
Due to its speed, low cost, and enormous versatility, Ethernet is the main communication 
solution for most industries, with over 50 years of history.  
 
Even with the improvements it has received over the years, especially in terms of speed, 
the development of Ethernet is mostly governed by the Best Effort principle, which lacks 
determinism. 
 
Deterministic characteristics such as, ensuring maximum latency with reduced delay 
variations, along with its reliability requirements, are necessary properties for some 
networks. I.e., for industrial, automotive, telecommunications or aerospace networks. 
 
To provide this Quality of Service (QoS) requirements, the Time-Sensitive Networking 
(TSN) Task Group (TG) [1] of the IEEE 802.1 developed a set of standards that define 
mechanisms for time-sensitive transmissions of data over Ethernet networks. 
 
For that, the different standards specified by IEEE 802.1 TSN-TG present the following 
key properties: 

 
1. Time synchronization: All participating devices work in a synchronized way and in 

real time, with microsecond precision. The standard IEEE802.1AS-Rev specifies 
the protocol and procedures used to ensure that the synchronization requirements 
are met. 
 

2. Scheduling and traffic shaping: All the intervening devices work under the same 
rules regarding processing and packet forwarding. The goal is to allow coexistence 
in the same network, of different types of traffic with different priorities and latency 
requirements. The most relevant standards that collect this property are 
IEEE802.1Qbv and IEEE802.1Qav. 
 

3. Selection and Path reservations: Every network device work under the same rules 
when reserving bandwidth and time slots and when choosing paths. For path 
reservation, it is possible of using more than one path for fault-tolerance. This is a 
property specially defined in IEEE802.1Qat and IEEE802.1Qca. 

 
These standards make use of the virtual LAN (VLAN) concept, which is a logical 
independent network within the same physical network. VLANs works by including tags 
to data frames, in order to handle them as if they were in the same domain. This tags 
mechanism is defined in IEEE802.1Q from which the majority of TSN standards extend 
from.  
 
The VLAN tagging also includes a prioritization scheme inside the tag, as shown in Fig. 
1.1, named as Priority Code Point (PCP), which with 3 bits, it is possible to define the 
priority class of a particular frame in a range from 0 to 7. This traffic distinction will be later 
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used by a TSN mechanism to guarantee the coexistence of different traffic classes 
accomplishing its QoS requirements.  
 
 
 

 
 

Fig. 1.1 VLAN tag 
 
 
TSN makes use of traffic shaping concept, which refers to bandwidth management 
technique that distributes frames in time, smoothing out the traffic and preventing buffer 
congestion, to ensure network performance for higher priority applications. 
 
The main TSN scheduling, and traffic shaping mechanisms proposed for TSN Networks 
are the IEEE802.1Qav Credit Based Shaper and the IEEE802.1Qbv Time Aware Shaper 
which are explained in the following sections. 
 
 

1.1. IEEE802.1Qav (Credit Based Shaper) 
 
The IEEE802.1Qav standard plays a crucial role in defining traffic shaping mechanisms 
using priority classes. One of the commonly employed shaping mechanisms is the Credit 
Based Shaper, which follows a similar logic to the Leaky Bucket algorithm [28]. 
 
The Credit Based Shaper aims to shape the traffic by smoothing out its transmission rate, 
ensuring a more uniform distribution over time. By limiting the burst size, it helps reduce 
the occupancy of buffers, thereby minimizing congestion losses and mitigating 
interferences within the network. 
 
However, it is important to note that implementing the Credit Based Shaper introduces 
additional network delay. This delay arises from the mechanism's design, as it regulates 
the transmission of data packets based on available credits. While this delay may be 
acceptable in many cases, it can be problematic when with very limited time constrains. 
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In such cases, even slight variations in network delay may disrupt the precise timing 
constraints of time-sensitive applications, rendering the Credit Based Shaper unsuitable. 
 
Therefore, when considering the implementation of traffic shaping mechanisms, including 
the Credit Based Shaper, it is crucial to carefully evaluate the specific requirements of the 
system. 
 
 

1.2. IEEE802.1Qbv (Time Aware Shaper) 
 
The IEEE 802.1Qbv standard describes the Time Aware Shaper (TAS), a scheduler that 
defines fixed length, repeating time cycles and assigns time slices of this cycle to different 
traffic classes. Thus, the transmission of time-critical flows can be granted. For each 
egress port of a switch, eight different queues (one for each Ethernet priority) are defined 
and the TAS determines which queues are allowed to transmit in each time slice. To this 
end, the TAS defines a Gate Control List (GCL) and the frames in a queue are eligible for 
transmission if the corresponding queue gate is open. 
 
This standard is based on Time-division multiple Access (TDMA) mechanism [30], which 
stablishes a shared medium to allow stream transmission, into many time slots that are 
cyclically repeated. Therefore, within each of these slots, it is possible to guarantee the 
exclusive use of the channel for several traffic classes. This way, it is possible to transmit 
time critical traffic deterministically, without interruptions, avoiding buffer accumulations. 
 
In Fig. 1.2, two transmission channels have been established in the same cycle. Within 
the first temporary segment, only traffic tagged with VLAN priority 3 is transmitted. The 
second cycle section, groups the rest of the traffic transmissions ignoring VLAN priority 3 
tag. 
 

  
 

Fig. 1.2 Two time slices example IEEE 802.1Qbv schedule. 
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As shown in Fig 1.3, it is possible that the transmission of a frame may not be completed 
when a new cycle starts.  
 
 

 
 

Fig. 1.3 Best effort frame interfering the next transmission. 
 
 
To prevent this situation, a guard band can be defined before each time-critical traffic 
segment, as shown in Fig. 1.4. During this guard band time, the start of a new 
transmission is not permitted, so the termination of in progress transmissions is allowed. 
Therefore, the duration of this guard band should correspond to the transmission required 
time of the maximum Ethernet frame size, taking into account its headers and interframe 
spacing. 
 
 

  
 

Fig. 1.4 Guard bands usage. 
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As an alternative, frame pre-emption is presented in IEEE802.1Qbu, which consists in 
momentarily pause low priority frames transmission when higher priority frames need to 
be transmitted.  
 
 
1.3. Complexity Problems 
 
TSN protocols provide a great variety of possibilities to the network architecture, so these 
can be combined in a certain way, to achieve the necessary requirements. For example, 
in TSN network it is common to use TAS for higher priority traffic and, CBS for lower 
priority traffic. 
 
The fact of having many configuration possibilities within each defined standard, offers 
flexibility and control to the network architect, although on the contrary results in a much 
more complex configuration process, which is exacerbated considering the possible 
interactions between the implemented protocols. 
 
Furthermore, as mentioned in [28], configuring Time Aware Shaper to define the schedule 
of the Gate Control List of all devices, is proven to be a nondeterministic polynomial time 
problem, which means that there is no efficient algorithm found to solve it.  
 
 
1.4. Applying TSN 
 
In this project we decided to only consider IEEE802.1.Qbv standard to schedule time-
triggered traffic, transmitting periodic data streams with hard real-time requirements. On 
the scheduling problem that we present, we focus on time-trigger traffic so the presence 
of best effort and AVB traffic is filtered. 
 
In this project, we designed and implemented three distinct scenarios with the aim to 
explore the transmission of three classes of flows, each with different time requirements. 
For each analysed case, we transmit 10 time-critical streams and utilize a topology 
consisting of a single shared link connecting two nodes, as shown in Fig. 1.5. This choice 
allowed us to create controlled and simplified environments, significantly reducing the 
number of potential combinations that needed to be considered.  
 
By simplifying the network topology, we could focus our efforts on understanding the 
specific challenges associated with the scheduling of time-critical flows in these setups. 
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This topology assumes that: 
 

1. All generated traffic is unicast. 
2. There is no packet loss due to transmission errors or buffer overflows. 
3. Node processing time is negligible. 
4. Propagation time is negligible. 

 
 

 
 

Fig. 1.5 Network topology 
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CHAPTER 2. Dataset Generation 
 
 
In this project, supervised machine learning models are proposed to predict the feasibility 
of transmitting a specific set of flows over a link. To train these models, a dataset is 
required. This dataset is a data matrix and a class label vector. 
 
In each scenario three different Time-Triggered classes. Each class has a specific set of 
characteristics and time constraints. For each scenario, a dataset is built. Each row of this 
dataset represents a different experiment (or observation), i.e., defines a specific 
combination of flows of class 1, class 2 and class 3. The first three columns represent the 
number of flows of class 1, class 2 and class 3, respectively, considered in each 
experiment. The fourth column is the class label, and it is a boolean value that states if a 
feasible scheduling exists for each experiment. 
 
To set the class label of each combination of flows, we use an adaptation of the 
implementation described in [27] of the Integer Linear Programming (ILP) approach 
proposed in [33]. 
 
 
2.1. Integer Linear Programming (ILP) 
 
An Integer Linear Programming (ILP) is a method to maximize or minimize an objective 
function, subject to one or more restrictions or requirement, from linear relationships such 
as, equalities and inequalities.  
 
The intersections generated from these inequalities, creates a convex polytope whose 
interior region is defined as a “feasible region” (see Fig. 2.1), since it fulfils all the 
constraints of the problem. Then, an objective function is applied to obtain an optimal 
solution.  

 
 

Fig 2.1 Convex polytope 
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2.1.1 Preliminary definitions 
 
In this project, we want to schedule a total of 𝑁 Time-Triggered flows or streams (𝑠 , where 
𝑗 = {0, … , 𝑁 − 1}) in a link. Each stream belongs to a stream class 𝑐  that defines the 
characteristics of the flow. In this work we consider three different classes, and hence, 
𝑖 =  {1, 2, 3}. Each stream of class 𝑖 must transmit a total of 𝐵  bytes during its period of 
length 𝑃 . In the implementation used in this work, a maximum segment size (𝑀𝑆𝑆) in 
bytes is defined. Then, the number of frames that a stream of class 𝑖 generates in 𝑃  
(hereafter, 𝐹 ) is 𝐵 𝑀𝑆𝑆⁄ . The subindex 𝑟 identifies each frame of a given flow within its 
period, thus, for a stream of class 𝑖 we have 𝑟 = {0, … , 𝐹 − 1}. The stream classes defined 
for the scenarios of this project consider values of 𝐵  that are multiple of 𝑀𝑆𝑆 and, 
therefore, 𝐹  is an integer, and the transmission time (𝑡 ) of any frame can be computed 
as 𝑡 = 𝑀𝑆𝑆 𝑣⁄ , where 𝑣  is the link speed. In addition, each class 𝑖 has a deadline, 
𝑑 , that in this work is defined as the maximum time between the arrival of the last bit of 
the last frame generated in 𝑃  (that is, frame 𝐹 − 1) at the destination and the start of the 
transmission of the first bit of the first frame generated in 𝑃  at the source. 
 
In summary, if a stream 𝑗 belongs to class 𝑖, 𝑗 ∈ 𝑐 , then 𝑗 must transmit 𝐵  bytes within a 
period 𝑃 , which is a total of 𝐹  frames of length 𝑀𝑆𝑆 bytes, each with a transmission time 
𝑡 . All 𝐹  frames must be received at the destination before the deadline 𝑑 , starting to 
count when the transmission of the first frame of the flow starts. 
 
The offset of each frame is defined as the difference between the start transmission time 
of a frame with respect to the beginning of its period. That is, for a stream 𝑗 of class 𝑖, 
𝑗 ∈ 𝑐 , the offset of frame 𝑟 of flow 𝑗, ϕ , , is the difference between the start transmission 
time of frame 𝑟 of flow 𝑗 and the beginning of 𝑃 , where 𝑟 = {0, … , 𝐹 − 1}. 
 
The end-to-end latency of a stream, in this implementation, is defined as the difference 
between the arrival time of the last bit of the last frame generated in a period and the 
beginning of the transmission of the first frame of the period. Considering a topology with 
only one link and assuming negligible the propagation delay, for a stream 𝑗 of class 𝑖, 𝑗 ∈
𝑐 , the end-to-end latency is defined as shown in Eq. 2.1: 

 𝜆 = ϕ , + 𝑡 − ϕ , ,       𝑗 ∈ 𝑐  (2.1)  

 

The end-to-end latency lower bound is defined by the time required to transmit all the 
frames that a flow generates in its period considering that no other stream would interfere. 
Considering a topology with only one link and assuming negligible the propagation delay, 
for a stream 𝑗 of class 𝑖, 𝑗 ∈ 𝑐 , the end-to-end latency lower bound is defined as show in 
Eq. 2.2: 
 𝜆 = 𝐹  𝑡 ,       𝑗 ∈ 𝑐  (2.2)  

 
The hyperperiod, 𝐻, also called base period, is the GCL cycle time and determines how 
often the schedule is repeated. It is calculated applying the Least Common Multiple (LCM) 
of all stream class periods. Hence, the 𝐹  frames that a stream 𝑗 of class 𝑖 generates in 𝑃  
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are repeated 𝐻 𝑃⁄  times in an Hyperperiod. It is important to mention that the scheduling 
mechanism used in this work, considers that the same scheduling, that is the same offset 
values, are assigned to all 𝐻 𝑃⁄  repetitions of the 𝐹  frames of flow 𝑗 of class 𝑖 within the 
hyperperiod.  
 
 

2.1.2. ILP Model 
 
The objective of the scheduling problem considered here consists of minimizing the extra 
end-to-end latency introduced due to the interference of other streams, while trying to 
accomplish the time requirement of all flows.  

The ILP model used in this work is as follows: 

 
 

 𝑚𝑖𝑛 ∑ 𝜆 − 𝜆  (2.3)  

 s.t. 𝜆 ≤ 𝑑  ∀𝑗, 𝑗 ∈ 𝑐  (2.4)  

 𝜙 , = 0 ∀𝑗 (2.5)  

   ϕ , ≤ P − 𝑡  ∀𝑗, 𝑗 ∈ 𝑐  (2.6)  

   ϕ , + 𝑡 ≤ ϕ ,  ∀𝑗, 𝑗 ∈ 𝑐 , 𝑟 = {1, … , 𝐹 − 1}  (2.7)  

   α𝑃 + ϕ , + 𝑡 ≤ βP + ϕ , + 𝑀𝜎   (2.8)  

   β𝑃 + ϕ , + 𝑡 ≤ αP + ϕ , + 𝑀(1 − 𝜎) (2.9)  

∀𝑘, 𝑘 ∈ 𝑐 , 𝑛 = {1, … , 𝐹 − 1}, 𝛼 = {0, … , (𝐻 𝑃⁄ ) − 1} 
∀ℎ ≠ 𝑘, ℎ ∈ 𝑐 , 𝑛 = 1, … , 𝐹 − 1 , 𝛽 = {0, … , (𝐻 𝑃⁄ ) − 1} 

 
 
Eq. 2.3 is the objective function.  
 
Without going into details of each constraint, here we just give an idea of their finality.  
 
Eq. 2.4 ensures that the end-to-end latency of each flow is equal or less than the deadline 
of its class. 
 
Eq. 2.5 states that the lower bound of the offset value assigned to the first frame of any 
flow is 0. 
 
Eq. 2.6 defines that the maximum offset of the last frame of a flow in its period must be 
equal or less than the period of its class minus the transmission time of a frame. 

Eq. 2.7 ensures that all frames of the same flow are transmitted in order and that their 
transmission do not overlap. 
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Eq. 2.8 and Eq. 2.9 are required to prevent overlapping between frames of different flows 
within an hyperperiod. M represents a theoretically infinitely large constant which causes 
ether the inequality of Eq. 2.8 or Eq. 2.9 to be trivially satisfied if 𝜎 = 1 or 𝜎 = 0, 
respectively. 

 
 
2.2. Implementation 
 
In this subsection, we provide a description of the implementation and explain its inputs 
and outputs. We also present the implemented studied cases from which we developed 
this project. 
 
The ILP solution has been implemented using Python 3.9 and it is originally made up from 
a set of scripts on which the different responsibilities are divided during execution, see 
Fig. 2.2. 
 
The core implementation used in this project is an adaptation of the implementation made 
in [27] of the ILP model of [33]. In this adaptation, the objective function and the 
restrictions presented in this second chapter are considered. 

 
 

 
 

Fig 2.2 ILP Core Implementation [27] 
 
 

Throughout the following explanation, mentions are made of each of the implemented 
services both from the ILP Core and the additional implementation set. 
 
The ILP model, has been implemented with the provided tools included in the Pyomo 
software collection package [5]. This is a BSD licensed project which can use multiple 
linear programming solvers such as CBC [6] or GUROBI. [7]. 
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The main script of the ILP core implementation is the Solutions_Visualizer.py through 
which all core classes are orchestrated and executed. Firstly, networks are randomly 
generated using the RanNet_Generator.py script. This process involves generating the 
network topology and establishes connections between nodes. 
 
Next, the path that the time-triggered flows should follow within the network is determined 
using the Djisktra_Path_Calculator.py script. This step calculates the optimal paths for 
the flows based on Djikstra algorithm. 
 
Once the paths are determined, three classes of time-triggered traffic with specific 
temporal requirements are randomly generated using the RandStream_Parameters.py 
and Preprocessing.py scripts. These classes define the characteristics and timing 
constraints of the flows. 
 
Finally, the ILP_Generator.py script is used to schedule the generated time-triggered 
flows based on the determined paths and temporal requirements.  
 
Given that in this project we aim to use a fix topology, in this implemented adaptation we 
prevented the execution of RanNet_Generator.py and Djisktra_Path_Calculator.py. 
Instead, a fix network and fixed transmission paths are provided. 
 
In addition, a set of scripts have been implemented which are essential for the proper 
functioning of this solution. We have developed three scripts (init_combinations.py, 
filter_combinations.py, provide_combinations.py) to control the combinations that are 
executed in the ILP.  
  
These scripts initialize, filter, persist and provide the flow combinations that will be 
executed by the ILP algorithm. The init_combinations.py is capable of generating all 
possible flow combinations, to ensure that all cases are analysed. Since the generated 
combinations do not contain repetitions, each vector combination can only have one 
specific format. I.e., if a vector combination [1, 1, 3] has been already generated, [3, 1, 1] 
won’t be included.  
 
Originally, the core itself, was in charge of randomly generating flow combinations 
RandStream_Parameters.py. Therefore, there could be cases in which certain flows 
combinations would not be analysed, or even cases in which many identical 
configurations would be fed to the ILP algorithm. 
 
After, generating the considered number of combinations, the filter_combinations.py 
script filters every set of flows whose bitrate sum exceeds the link bandwidth and store 
these results. Then the provide_combinations.py provides the actual vector of flow 
combinations for every ILP Core iteration. 
 
Next, the frame duration per flow type and the number of repetitions within a Hyperperiod 
are determined. This calculation is performed also in "Preprocessing.py" as it was 
originally implemented but preventing hard-coded parameters.  
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Afterward, the constraints inequalities explained in the previous section are applied to 
each of the flows, so that we can obtain the polyhedron to be optimized with the objective 
function. Then the ILP model tries to find the most optimal scheduling solution within the 
defined constraints using a GUROBI [7] solver. 
 
Every flow combination whose scheduling result has a feasible solution or not, is written 
in a results file and a Gantt chart is stored by default to properly visualize the scheduling 
result.  
 
 

2.3. Enhancing the ILP implementation 
 
This ILP model presents hard-coded parameters due to its original purpose. The link 
bandwidth, the packet size, and the number of flow types to transmit among others, were 
strongly hard-coded parameters, hard to change without affecting the correct functioning 
of this implementation. Other parameters such as, the transmission periodicity and the 
end-to-end deadline constraint, were easy to modify.  
 
Therefore, we decided to apply some changes to disengage the main key parameters, so 
that this ILP model could be controlled through a configuration file (JSON format). With 
these configuration files, now it is possible to easily change; end-to-end deadline, 
transmission periods, the link bandwidth, and the packet size of each flow class, as it is 
explained in section 2.4.1. 
 
 
2.4. Executing the ILP  
 
Now that the implementation of the entire ILP program has been explained, this 
subsection shows and clarifies the procedure to execute this solution explaining the 
required inputs and resulting outputs to verify the feasibility of scheduling a given set of 
streams. This feasibility label will later be used by the machine learning algorithms. 
 
It is important to note that the execution of all scripts in this program were carried out 
using Conda [10] as the package manager and environment handler, this allows 
reproducibility of the same environment across different machines on which the ILP was 
executed. The packages used and instructions for recreating the environment can be 
found in the annex. 
 
 
2.4.1. Inputs 
 
The parameters for a specific scenario are defined in the “StreamsConfig.json” 
configuration file. Fig. 2.3 provides an example of the content within this file, which 
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includes the flow classes, denoted as an array "streams," and the total number of 
transmitted flows in a particular case, indicated by "n_streams." 
 
For each class, the configuration includes the size of the transmitted flow, specified as 
"size," the period of the flow denoted as "Period," and the maximum acceptable end-to-
end delay defined as "Deadline." Additionally, the link speed, represented by "Bandwidth," 
is also specified within the configuration file. 
 
 

 
 

Fig 2.3 StreamsConfig.json Configuration file example. Size (Bytes), Period (ms), 
Deadline (ms), Bandwidth (bps). 

 
 

Once the characteristics of the streams have been set, the next step is to configure the 
“ILPConfig.json”. Fig 2.4 shows and example of this file. The “timeout” parameter is the 
maximum execution time give it to the ILP to say if the combination of flows can be 
scheduled or not. Hence, it is important to set up this feature according to the used 
machine resources. The "distributions" parameter should be set so it refers to the file path 
where “init_combinations.py” has saved the combinations of flows to be computed. The” 
base_path” parameter is necessary to set a default results folder where the output files 
named as “results_filename” will be stored. 
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Fig 2.4 ILP execution configuration “distributions”: distribution file path, “timeout”: (s) 
maximum iteration time 

 
The next step is to run the “init_combinations.py” script, which automatically generates 
and stores all possible flow combinations based on the total number of flows to be 
transmitted in a given scenario, without repetition.  
 
Then, the “filter_combinations.py” should be executed to filter those combinations whose 
transmission rate sum is greater than the capacity of the link. These filtered combinations 
are automatically saved in the resulting dataset so the machine learning can consider 
them later. 
 
If we consider the example shown in Fig. 2.3 which are the combinations after applying 
“filter_combinations.py”, the ILP must analyse are the ones shown in Fig 2.5. These 
combinations are then consumed by the ILP core implementation through the 
“provide_combinations.py” service allowing the evaluation of their feasibility. 
 
For that, the main script of the ILP solution “Solution_Visualizer.py” will iterate over every 
combination and generates the corresponding outputs.  
 
 

 
 

Fig 2.5 Combinations to compute by the ILP algorithm 
 

 
2.4.2. Outputs 
 
After each iteration of computation, the solution captures both the environment in which 
the ILP was executed and its corresponding result. If applicable, a Gantt chart is 
generated to visually represent the proposed scheduling by the algorithm. The results of 
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each iteration are stored in separate files, with results saved in a text file format and in a 
CSV file format.  
 
The following subsections explains the different outputs that can be obtained using this 
ILP solution. Every example included in the subsequent figures corresponds to the 
outputs generated from the computation of the combination [1,1,1], that is, one flow of 
class 1, one flow of class 2 and one flow of class 3. The characteristics of each flow class 
are the ones defined in the file shown in Fig. 2.3. 
 
 
2.4.2.1. Text file 
 
The text file follows a fixed structure, as indicated in Fig. 2.6.  
 
 

 
 

Fig 2.6 Output computation example 
 
 

• Distribution: Each vector position shows the number of transmitted flows per class 
(T1, T2, T3). 

• Adjacency_Matrix: Describes the network topology.  

• Stream_Source_Destination: Indicates the sequence of hops that a flow must 
traverse to reach its destination. 
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• Link_order_Descriptor: Defines the path where each stream is transmitted. 

• Links_per_Stream: List of the number of links travelled per stream. 

• Number_of_Streams: Total number of transmitted streams. 

• Frames_per_Stream: Matrix containing vector of one’s for each transmitted frame 
per flow. 

• Deadline_Stream: Dictionary indicating the deadline in milliseconds per flow class. 

• Streams_Period: Dictionary with the periods per flow class. 

• Streams_size: Ordered vector showing the total transmission time for each flow 
class. 

• Clean_Offsets: A collection of frames specifying the timing at which each 
transmission should begin (Start). The "Task" string denotes the frame, where "S" 
represents the stream class, "L" denotes the link, and "F" identifies the frame 
number. 

• Latencies: Ordered vector where the end-to-end latency is shown. 

• Feasibility: Indicates whether the combination is schedulable or not. 
 
 
2.4.2.2. Gantt Chart 
 
As previously mentioned, together with the text result, a Gantt Chart is generated to 
provide a visual depiction of the output. Fig. 2.7 shows an example of a Gantt chart 
generated from the results obtained when scheduling 3 flows, one of each class described 
in the file shown in Fig. 2.3. 
 
 

 
 

Fig 2.7 Gantt chart example 
 
 
This example shows the influence of the deadlines in the scheduling problem. 
 
In the given Gantt chart, 3 classes of streams with frames of 100ms are scheduled. It is 
observed that the three frames belonging to flows "S":0 and the single frame of "S":2, can 
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be evenly distributed within the 600ms, as their periods align with the Hyperperiod. In 
contrast, the flow "S":1 with 2 frames, has a period of 300ms, requiring a time difference 
of 300ms between frames of the same class. 
  
In this example, the deadline used for "S":0 is 400ms and the end-to-end latency of this 
is also 400ms since, there are 3 frames that require 100ms and one of them has been 
delayed 100ms (see the definition of end-to-end latency).  
 
However, if we were to configure the deadline for "S":0 to 300ms, it would be necessary 
to transmit all "S":0 frames as a burst, sending them consecutively without any time gap 
in between so that its end-to-end delay would be equal to 300ms. However, due to the 
influence of the "S":1 stream, there is no case where "S":0 can be transmitted as a burst 
without overlapping with "S":1. 
 
 
2.4.2.3. CSV File 
 
This comma-separated file consists of 5 fields: 
 

• T1, T2, T3: Are variables describing the number of flows assigned to each flow 
classes. 

• Feasibility: Is the class label to be predicted. It is a boolean that indicates whether 
the flow combination is schedulable or not, according to the ILP algorithm. 

• Exceeds Bandwidth: Is a boolean value that distinguishes combinations whose 
bitrate exceeds the bandwidth capacity. Since it is evident that these combinations 
cannot have a feasible scheduling, they are automatically included in the dataset 
without being computed by the ILP algorithm. This value will allow us to visualize 
combinations with evident scheduling unfeasibility, see 2.4.2.4. 

 
To train the ML models, the selected features are T1, T2 and T3. Although other 
features have been tested, none have managed to enrich the dataset and improve the 
performance of the machine learning models trained in chapter 4.  
 
 
2.4.2.4. Scatter Plot 
 
The results of the different implemented scenarios are presented along with a three-
dimensional graph where each set of flow distributions is shown as a dot, see Fig. 2.8.  
 
Each axis references a flow class, and the dot colours show whether the distributions are 
feasible or not, according to traffic characteristics of each scenario. In addition, those 
combinations that are non-feasible due to exceeding the capacity of the shared link have 
been marked with purple. 
 
The combination [1, 1, 1], where one stream of each class is transmitted, is located in the 
centre of the scatter plot in Fig. 2.8, and it refers to the example case analysed in 2.4.2.2. 
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Fig 2.8 Scatter plot example 
 

 
2.5. Implemented Scenarios 
 
This section provides an overview of three scenarios and their corresponding results 
obtained from executing the ILP implementation. In each scenario, the same network 
topology is implemented, and changes are made to characteristics of the transmitted 
traffic.  
 
The traffic characteristics table of every scenario describes the transmitted flows classes 
(T1, T2, T3), including its packet size, as well as its transmission period and its end-to-
end transmission delay deadline that must be satisfied.  
 
 
2.5.1. Scenario 1 
 

• Total flows: 10 
• Link bandwidth: 800Kbps 
• Frame transmission time: 15ms 

 
Table 2.1 describes the characteristics of each flow class in this scenario., Streams of 
class T1 transmit 3 frames of 1500 bytes each, with a period of 600ms. Streams of class 
T2 transmit 2 frames of 1500 bytes, with a period of 300ms. Lastly, streams of class T3 
transmit 1 frame of 1500 bytes, with a period of 200ms.  
 
Given a link speed of 800Kbps, each 1500 bytes frame is transmitted in 15ms. In this 
scenario, a total of 10 flows are transmitted.  
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Table 2.1 Traffic characteristics table of scenario 1 
 

Flow Class Packet Size (Bytes) Period (ms) Deadline (ms) 

T1 4500 600 60 

T2 3000 300 30 

T3 1500 200 15 

 
 
As show in Fig 2.9 the ILP has been able to obtain results on each of the combinations. 
None of these combinations exceed the capacity of the shared link, so they are all 
potentially schedulable. However, it can be observed how the group of not feasible 
appears dispersed on the right side of the graph where there is a greater presence of T2 
flows. 
 
The T3 type flows do not present an impediment for scheduling since they only need to 
allocate 15ms every 200ms. Although they must respect the end-to-end delay deadline, 
in the case of T1 flows they also facilitate scheduling since they are flows that must 
allocate 3 frames of 15ms in every 600ms. 
 
 
 

 
 

Fig 2.9 3D scatter plot of scenario 1 
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2.5.2. Scenario 2 
 

• Total flows: 10 
• Link bandwidth: 1Mbps 
• Frame transmission time: 12ms 

 
In this scenario a total of 10 flows are being transmitted over a 1Mbps link. Table 2.2 
describes the characteristics of each flow class. Streams of class T1 are configured to 
transmit 3 frames of 1500 bytes within a time interval of 600ms between transmissions. 
The streams of class T2 also transmit 3 frames of 1500 bytes, but with a shorter time 
interval of 300ms. Lastly, the streams of class T3 transmit 2 frames of 1500 bytes every 
200ms. 
 
Table 2.2 Traffic characteristics table of scenario 2 

Flow Class Packet Size (Bytes) Period (ms) Deadline (ms) 

T1 4500 600 48 

T2 4500 300 36 

T3 3000 200 24 

 
 
As Fig.2.10 shows, the ILP algorithm has been able to generate results on all 
combinations. However, in this case the number of iterations that have been carried out 
has been less, since many of the combinations have been previously filtered due to 
exceeding the capacity of the shared link. 
 
The configurations that exceeded the capacity of the link (marked in purple) are mainly 
due to the presence of type 2 and 3 flows, since they are the flows with the highest bitrate. 
The rest of the non-feasible combinations are close to this large group. 

 
 

Fig 2.10 3D scatter plot of scenario 2 
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2.5.3. Scenario 3 
 
As the number of frames included in the scheduling process increases, the computation 
time required by the ILP implementation also escalates significantly. Consequently, there 
are cases where the resulting dataset may not include all the desired results due to a 
preconfigured timeout.  
 
As an example of an incomplete scenario, the scenario 3 has been implemented reducing 
the “timeout” parameter. The resulting dataset then has missing results that we later 
discuss in chapter 5, where we try to predict those missing combinations. 
 
Furthermore, this scenario combines the results obtained from computing the same 
scenario with different total transmitted flows: 10 and 12, resulting in the generation of 
distinct planes of data points. Despite the variations in the total number of flows, both 
cases share the same traffic characteristics.  
 
This third scenario allows us to examine and compare the machine learning models 
behaviour over datasets with missing results and including different planes of data points. 
 

• Total flows: 10 and 12 
• Link bandwidth: 1.5Mbps 
• Frame transmission time: 8ms 

 
In this scenario, streams are transmitted over a 1.5Mbps capacity link. Table 2.3 
describes the characteristics of each flow class. Streams of class T1 transmit 3 frames of 
1500 bytes every 600ms. Streams of class T2 transmit 3 frames of 1500 bytes every 
300ms. Finally, streams of class T3 transmit 4 frames of 1500 bytes every 200ms. Given 
the link speed, the transmission time of each frame of 1500 bytes is 8ms. 
 
 
Table 2.3 Traffic characteristics table of scenario 3 
 

Flow Class Packet Size (Bytes) Period (ms) Deadline (ms) 

T1 4500 600 24 

T2 4500 300 24 

T3 6000 200 32 
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As shown in Fig. 2.11, the graph presents a gap that separates feasible and non-feasible 
combinations. This gap refers to the portion of the problem space where the instances 
require the longest computation time when executing the ILP algorithm. By utilizing 
machine learning techniques, we can make predictions and gain insights into the areas 
of the space where the computation time is longer. 
 
 

 
 

Fig 2.11 3D scatter plot of scenario 3 
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CHAPTER 3. Feasibility Prediction Algorithms 
 
 
Once we know and understand the generated data, we can consider using it as training 
for supervised machine learning models, with which to determine the feasibility of a 
certain flow configuration. In the following subchapters, we introduce a brief explanation 
of the predictors used in this project. 
 
 
3.1. Binary Classification Algorithms 
 
Classifications models can be classified as generative and discriminative [35]. 
 
Generative models are those that focus on the distribution of the dataset modelling the 
data to find the joint probability in which the two events occur simultaneously according 
to the results obtained. These are typically used to estimate probabilities and likelihoods 
by modelling data points and discriminating between classes or groups based on these 
probabilities. Because the model learns a probability distribution, it is possible to use that 
probability distribution to generate new data instances.  
 
Instead, discriminative models aim to learn about the boundary between classes within a 
dataset in order to identify the decision boundary between classes to label the data and 
perform a classification. 
 
For this project we have considered the use of two discriminative algorithms: Support K-
Nearest Neighbor (K-NN) and Vector Machine (SVM). 
 
 
3.2. K-Nearest Neighbours (K-NN) 
 
The authors in [2], where a similar problem appears, propose to use a K-NN algorithm. 
Below is an introduction to the fundamentals of K-NN to understand the obtained results. 
 
K-NN [36] is a non-parametric supervised algorithm that uses proximity to make 
classifications or predictions about the grouping of an individual data point. This is an 
instance-based lazy algorithm, meaning that instead of undergoing a training stage, it 
heavily relies on memory to store all its training data which is used to perform all the 
necessary computation to make a classification. 
 
For a new instance, a classification is made by finding the K closest instances in the 
dataset. For this algorithm the Euclidean distance [26] has been used. To choose the K 
value, we must take into account that there are no predefined statistical methods to find 
the best K value.  
 
About K value, it is important to consider that: 
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1. Using small values of K means that noise will have higher influence on the results. 

2. Employing large K values will be more computationally expensive and will result in 
a less generic model. 

In this project, we conducted multiple iterations to evaluate the appropriate K value to 
implement in a K-NN model. 

 
3.3. Support Vector Machine (SVM) 
 
A Support Vector Machine (SVM) [32] classifies observations by constructing a 
hyperplane also called decision boundary, that separates observations belonging to two 
groups (classes) of data. The goal of SVM is to find an optimal hyperplane that separates 
different classes of data points.  

To generate the hyperplane, before a mathematical function know as kernel is performed. 
This function transforms the input data into a higher-dimensional feature space, where 
the classes can be separated by a hyperplane. This process is known as the kernel trick. 
 
Later, the support vectors are selected. We call support vectors to those observations 
that lie on the margin surrounding the data-separating hyperplane, which are the only 
points that have a real impact on the model. We can even discard the rest without 
affecting the results.  
 
There are two key concepts related to the hyperplane margin: hard margin and soft 
margin. 
 
Hard margin aims to find a hyperplane that perfectly separates the classes without 
allowing misclassifications. This means that the hyperplane can even be a two-
dimensional straight line or a flat plane. Therefore, hard margin models are suitable for 
situations where the data is perfectly separable. However, hard margin SVMs have some 
limitations. They are sensitive to outliers and noise since a single misclassified point can 
significantly affect the placement of the decision boundary. Soft margin SVM’s address 
the limitations by allowing a certain degree of misclassification in the training data. 
 
This trade-off is controlled by the C parameter, which adds a directly proportional penalty 
to the distance from the decision boundary, for each misclassified data point. For a small 
C the penalty is low while for a large C the reverse occurs. 
 
When the data is not linearly separable, using a Radial Basis Function (RBF) as a kernel 
function is commonly used.  
 
The Radial Basis Function (RBF) measures the similarity between data points based on 
their distance in the feature space, allowing SVM’s to model nonlinear decision 
boundaries. To tune the RBF kernel the gamma parameter is used. The gamma value 
determines the reach of the kernel function, with higher values leading to a narrower 
decision boundary. 
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CHAPTER 4. Model Testing 

 
In this section, the supervised algorithms explained in the previous section are trained 
using the complete datasets from the scenarios of this project to compare which algorithm 
is able to perform a classification of feasible and unfeasible schedulings. 
 
In the first two scenarios, where we have access to all the available data, we conducted 
a comparison of the resulting models to determine their effectiveness and identify the 
best-performing supervised model. However, it is important to note that in some cases, 
the scenario results may be incomplete due to a configured timeout (Scenario 3). 
 
Before training any algorithm, a standard scaler is applied to the dataset to ensure that 
all features have the same impact in algorithm training and speed up training process. 
These algorithms use Euclidean distances to train its decision boundaries, so these are 
very sensitive and are more likely to yield poor results if standardization or normalization 
is not applied.  
 
Although scaling from a given complete dataset with the same the scaling would be 
unnecessary, it is a good practice to implement it since exists cases in which the dataset 
would not be complete. Therefore, we decided to apply a standard scaler because we 
already know that all features are limited to the same range, and it is less sensitive to 
outliers than a “Minmax” normalization. 
 
To train both algorithms, a method called “GridSearch” of the Sklearn Library [19] together 
with Leave One Out cross-validation (LOOCV) [38] is applied in order to build the most 
robust models with the actual available data.  
 
This “GridSearch” method helps to automate the process of finding an optimal set of 
hyperparameters. This is done by providing a range parameter to train every combination 
and then evaluate them using an evaluation metric, which in our case is accuracy. This 
performance metric represents the proportion of correctly classified predictions out of the 
total number of instances. 
 
In our case, these evaluation metrics result from the application of the LOOCV. This 
technique divides the provided dataset into subset, where each subset consists of all but 
one data point. The model is then trained on the remaining data points and tested on the 
single data point that was left out.  
 
This process is repeated for each data point in the dataset and its performance is 
evaluated also using the accuracy metric. This evaluation allows us to identify the model 
with the best performance, which can be selected for further analysis. 
 
Although cross-validation methods can be computationally expensive, we took advantage 
of having a small dataset to obtain the most representative models, less biased by the 
provided training data.  
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This chapter presents and reviews results obtained from training and applying the K-NN 
and SVM algorithms. Its subsections include a scatter plot resulting from applying the 
model, a table displaying instances that were incorrectly classified, and an analysis of the 
results. 
 
 
4.1. Testing K-NN 
 
The K-NN algorithm is an attractive option due to its simplicity and ease of 
implementation. It is important to note that, as a lazy learner, it does not require a training 
phase, as it only stores the training data.  
 
However, it can be computationally expensive when working with large datasets or high-
dimensional data. In this case, since the dataset is small, computational cost is not an 
issue, but it is important to keep it in mind that as the dataset grows, this may become a 
concern. 
 
Here is an analysis of the results obtained from applying the machine learning algorithm 
to the dataset in the first two scenarios described in 2.5. As mentioned above, LOOCV 
has been applied to the K-NN algorithm in each scenario considering a Euclidean 
distance as a metric. 
 
 
4.1.1. Scenario 1 
 
An important factor to consider when applying K-NN is the maximum value of K. In this 
specific case, since the dataset contains 16 samples of unfeasible configurations, which 
is 24.24% of all the data, it would be wise to avoid models with a value of K greater than 
16, as this could lead to the unfeasible instances being outvoted by feasible instances. 
 
The best predictor obtained from the application of the LOOCV is when K=7 resulting in 
an 87.88% of accuarcy. Since the dataset is made up of 75.76% of instances in which the 
combination of flows is feasible, the application of this predictor gives us an extra 12.24%. 
 
In the resulting scatter plot, which is Fig. 4.2, the predictor has not correctly predicted 
instances 1, 2 and 3 from Table 4.1, located on the right margin of the figure since they 
are outliers.  
 
It is worth noting that using 7 neighbors in this scenario may be considered excessive, as 
it represents almost 50% of the unfeasible instances concentrated in the lower right 
margin. This supposes a greater difficulty for the classifier when classifying instances 4, 
5, 6 and 7 from Table 4.1.  
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Fig 4.1. 3D scatter plot of scenario 1 with wrong classified instances (K-NN) 
 

 
Table 4.1 Wrong classified instances of K-NN in Scenario 1 
 

Instance Id T1 T2 T3 Feasibility 

1 0 1 9 False 
2 0 6 4 True 
3 0 10 0 True 
4 1 3 6 False 
5 2 5 3 False 
6 2 6 2 True 
7 3 6 1 False 
8 2 8 0 True 
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4.1.2. Scenario 2 
 
For this scenario, a maximum value of K equal to 21 has been used in the training of the 
K-NN algorithm models since the maximum of feasible instances is 21.  
 
Within this dataset, there are 38 combinations that exceed the maximum capacity of the 
shared link. This represents a significant portion of the unfeasible combinations, 
considering that there are a total of 45 unfeasible instances.  
 
Consequently, the challenge in this scenario lies in accurately predicting the infeasible 
instances among those combinations where the unfeasibility is not obvious. These cases 
require careful consideration. 
 
The best predictor obtained from applying the LOOCV method is achieved when K=12, 
resulting in an accuracy of 94%. However, it is important to note that this accuracy is 
biased by the presence of unreliable instances within the dataset.  
 
When considering the instances located on the diagonals where misclassifications occur 
in Fig. 4.2, 4 out of a total of 13 instances have been incorrectly classified, resulting in an 
error rate of approximately 30%, which is a poor performance. See incorrectly classified 
instances in Table 4.2. 
 
 

 
 

Fig 4.2 3D scatter plot of scenario 2 with wrong classified instances (K-NN) 
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Table 4.2 Wrong classified instances of K-NN with LOOCV in Scenario 2 
 

Instance Id T1 T2 T3 Feasibility 

1 5 0 5 True 

2 4 4 2 True 

3 5 4 1 False 

4 4 6 0 True 

 
 
4.1.3. Scenario 3 
 
In this scenario the dataset contains a larger number of instances compared to previous 
scenarios and there are no unfeasible combinations that do not exceed the bandwidth of 
the shared link. As a result, there is a clear separation between feasibility areas indicating 
that the classifier should be able to achieve 100% accuracy. 
 
However, the K-NN model with K=5 achieves an accuracy of 99%, meaning that it 
incorrectly predicts a single combination (Table 4.3), as shown in Fig 4.3. 
 
 

 
 

Fig 4.3 3D scatter plot of scenario 3 with a wrong classified instance (K-NN) 
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Table 4.3 Wrong classified instances of K-NN with LOOCV in Scenario 3 

Instance Id T1 T2 T3 Feasibility 

1 1 11 1 False 

 
 

4.2. Testing SVM 
 
The inner workings of the Support Vector Machine (SVM) algorithm can be intricate, but 
its main concept is relatively straightforward to understand. Particularly in scenarios 
where combinations can be represented as points in a three-dimensional graph, there is 
often a distinct separation between feasible and unfeasible instances. 
 
To build the SVM models, the focus was on adjusting the regularization “C” and “gamma” 
parameters so that the model creates an adequate hyperplane. Given that these 
parameters can differ depending on the provided training dataset, the resulting 
hyperparameters cannot be compared. 
 
The considered “GridSearch” parameters are C values from 0.1 to 50 with a step size 
value of 1, and a range of values from 1.e-09 to 1.e+03 in 13 steps for the “gamma” value. 
The results obtained from the application of the SVM training with LOOCV using the RBF 
kernel, are presented in the next subsections. 
 
 
4.2.1. Scenario 1 
 
In this first scenario, the SVM model with hyperparameters C=5.1 and gamma=0.1 serves 
as the optimal predictor, achieving an accuracy of 89.4%. This accuracy is slightly 
superior to that of the K-NN model. It is worth emphasizing that instances 1, 2, and 3 from 
Table 4.3, situated on the right margin of the Fig. 4.3, are considered outliers, and should 
not be expected to be correctly classified by a non-overfitted model.  
 
These instances are introducing an error of approximately 4.45% into the model, so 
consequently, the maximum attainable accuracy for this dataset is 95.45%. 
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Fig 4.4 3D scatter plot of scenario 1 with wrong classified instances (SVM) 

 
 
Table 4.4 Wrong classified instances of SVM in Scenario 1 
 

Instance Id T1 T2 T3 Feasibility 

1 0 1 9 False 

2 0 6 4 True 

3 0 10 0 True 

4 1 3 6 False 

5 2 6 2 True 

6 3 6 1 False 

7 2 8 0 True 
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4.2.2. Scenario 2 
 
In this scenario, the application of the LOOCV identified SVM (C=4.1, gamma=0.01) as 
the best estimator. The results achieved by this algorithm were the same as the K-NN 
model, see Fig. 4.4 where prediction results are shown. 
 
 

 
Fig 4.5 3D scatter plot of scenario 2 with wrong classified instances (SVM) 

 
 
4.2.3. Scenario 3 
 
In this scenario with data points belonging to different planes, the most optimal classifier 
is an SVM with a hyperparameter configuration of C=10.1 and gamma=0.1. This model 
with a 99% of accuracy, exhibits the same performance as the K-NN, what is expected 
since feasible and non-feasible zones are separated. 
 
There is only one misclassified point which is located in the lower right margin of the 
dataset, see Fig 4.6. This misprediction suggests that the classifier may encounter issues 
when correctly classifying instances within that specific area. 
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Fig 4.6 3D scatter plot of scenario 3 with wrong classified instances (SVM) 
  

 
4.3. Conclusion 
 
In the first scenario, we found that SVM performed slightly better than K-NN when trained 
and applied to the implemented scenarios. However, it is important to highlight that these 
results are based on limited dataset therefore, we cannot obtain a conclusion determining 
the superiority of one model over the other. 
 
The results of the models in scenario 3 showed a 99% accuracy, which is not a 
representative result for comparing the models due to the existence of a clear separation 
between feasible and non-feasible because of missing values in the dataset. 
 
The current datasets used in this project have limitations in capturing variations present 
in real-world scenarios. Further exploration is needed to obtain reliable conclusions about 
a preferable model. This involves conducting experiments with a wider range of scenarios 
collecting more data to provide a comprehensive understanding of the models 
performance. 
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CHAPTER 5. Hybrid Verification 
 
 
Once a machine learning algorithm has been trained, it can produce immediate results 
for any given instance unlike other solutions such as the ILP implementation used in this 
project, which may not produce results in certain cases due to the configured timeout. 
 
Missing results are precisely where a machine learning algorithm can be used so we can 
prevent the execution of time-consuming solutions. Given that we still need to lean on 
these time-consuming algorithms, a hybrid verification strategy approach is proposed, 
combining the use of machine learning algorithms and the ILP implementation.  
 
In this section, we also intend to demonstrate the capability of accurately predicting 
unknown combinations of data in different planes, using a machine learning algorithm. 
For that purpose, we applied the mentioned strategy over the scenario 3 and then 
analysed the results. Given that the scenario 3 is a controlled scenario in which we tunned 
the “timeout” parameter, we can afford computing the complete scenario 3 to serve as a 
base truth, with which comparing the results obtained from the application of this hybrid 
verification method. 
 
In the following sections, the strategy is explained, and the results obtained from its 
application on scenario 3 are analysed. 
 
 
5.1. Strategy Application 
 
This hybrid verification strategy consists of minimizing the use of the ILP implementation, 
by only executing it to obtain results from those combinations that may be more significant 
to improve the accuracy of a model predictor.  
 
The challenge for the ML algorithm is to accurately predict missing data points or 
predicting those located in a zone where feasible and non-feasible combinations are not 
well distinguished. The data points within this zone are the most informative combinations 
in the whole dataset and may be the ones that optimizes the performance of the classifier. 
 
Therefore, this strategy proposes to avoid the application of the ILP algorithm on data 
points where the feasibility is already evident to the predictor. Identifying the most 
informative data points enable us to optimize the scheduling verification process 
drastically reducing the total computation time required. 
 
A first iteration of the strategy consists of: 
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1. Obtain results with the ILP implementation on distributions require less time to 
compute.  

2. Train the models with existing data. 
3. Analyse results. 
4. Select possible crucial combinations to compute the ILP implementation. 

 
 
5.2. Results 
 
In this section, the results obtained from the application of the aforementioned strategy 
over a SVM are presented.  
 
The initial training data considered to apply this strategy appertains to the dataset of 
scenario 3. This dataset has a total of 131 instances, from which 55 are feasible 
combinations and the remaining are unfeasible.  
 
After training an SVM model with this dataset (4.2.3), we obtained a SVM model with a 
99% accuracy, indicating that the predictor has no difficulty in classifying the provided 
data, see Fig. 5.1. As mentioned before, this high accuracy was expected due to the clear 
separation between the classes in the dataset. 
 
If we compare these results with the complete dataset, we observe that the model 
achieves an error rate of approximately 9.55% (Fig. 5.2), which means that it incorrectly 
predicts 15 out of the 157 instances in the complete dataset. 
 

 
 

Fig 5.1 3D scatter plot of scenario 3 with support vectors and a wrong classified 
combination 
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Fig 5.2 3D scatter plot of missing combinations including wrong classified and the 
additional combinations selected to retrain the model. 

 
 
Table 5.1 Additional combinations 
 

Instance Id T1 T2 T3 Feasibility 
1 3 5 2 False 
2 4 3 3 False 
3 3 8 1 False 
4 1 8 1 False 
5 6 3 3 False 

 
After this initial result, the next step is to retrain the model incorporating additional 
combinations to the initial training dataset, see additional combinations in Table 5.1.  
 
In Fig 5.1 it is possible to observe that support vectors are located near the feasibility 
boundary. These support vectors were selected by “GridSearch” so that the margin 
between the class labels is maximized while minimizing the classification errors, which 
results in the most optimal decision boundary. Therefore, when incorporating new 
combinations to the dataset, it is crucial to prioritize those that are near to that decision 
boundary. Such combinations have a greater potential to improve the classifier 
performance.  
 
After retraining the classifier and comparing it with the complete dataset, we observed 
that it incorrectly predicted 4 combinations, see Table 5.2. This results in an error rate of 
2.55%, what is significantly lower than the previous model.  
 
Analyzing the incorrectly predicted combinations in Fig. 5.3, we observe that they are 
located in the left margin of the figure. Therefore, in a third iteration of this strategy, 
probably selecting combinations located within that zone suggests that the classifier 
would adjust its decision boundary improving its accuracy. 
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Therefore, through the addition of new combinations to the training dataset and observing 
the resulting increase in accuracy, we can affirm that the predictive capabilities of an SVM 
model can be greatly improved.  
 

Table 5.2 Wrong predicted combinations after retraining 
 

Instance Id T1 T2 T3 Feasibility 
1 4 7 1 False 
2 7 1 4 False 
3 7 2 3 False 
4 6 4 2 False 

 
 

 
Fig 5.3  3D scatter plot of missing and wrong classified combinations  
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CHAPTER 6. Conclusions and Next Steps 
 
 

6.1. Conclusions 
 
The present work has been a first contribution to provide trained Machine Learning 
models as an alternative to determine whether, a certain resource allocation within a Time 
Sensitive Network meets a set of timing constraints following [2].  
 
Despite the complexity related to scheduling verification, it has been possible to generate 
multiple datasets from the Integer Linear Programming implementation of [27] which has 
been crucial to the proper development of this project. To obtain the dataset we applied 
the pertinent code modifications to adapt the results to the needs of this project.  
 
For every dataset scenario, we have implemented the K-NN and SVM models and we 
have tested them, analysing, and graphically exposing their predictive performance when 
adjusting its hyperparameters.  
 
To obtain a comparison that is not biased by the training data provided to both algorithms, 
we have applied the Leave One Out Cross Validation method so that, multiple models of 
each of the algorithms have been generated, ending up with the two best models for each 
machine learning algorithm.  
 
With all this, it is shown that no algorithm stands out over the other, since the obtained 
results are based on limited dataset with clear separated instances in the last 2 scenarios. 
Therefore, we cannot obtain a conclusion determining which one is the most performant. 
 
Taking advantage of the fast response of machine learning algorithms to quickly obtain 
results, we propose a hybrid verification strategy, in which the models predict every flow 
combination and the ILP implementation is only used to verify those whose prediction is 
more likely to fail. 
 
The results demonstrate that the model positively responds to the inclusion of more 
relevant data during the training process, highlighting the importance of training a 
machine learning model with a representative dataset.  
 
Therefore, we can conclude that, although the number of scenarios generated to test 
machine learning models are limited and the datasets are small, the preliminary findings 
suggest that machine learning models can be a promising tool to optimize the scheduling 
verification process. 
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6.2. Next Steps 
 
Although, the applied models performed as planned, we would have preferred to carry 
out this project on with more realistic scenarios with a greater amount of data. For this, it 
is necessary, to improve the efficiency of the ILP implementation or to go deeper in other 
types of algorithms such as Satisfiability Modulo Theories (SMT) [20]. 
 
Regarding the application of prediction models, it would be interesting to also implement 
algorithms such as LDA or Naive Bayes, to compare the performance between generative 
and discriminative classification algorithms.  
 
Finally, assuming that it is possible to obtain a greater amount of data, a fascinating next 
step would be to propose a new line of research around reinforcement learning using 
neuronal networks for scheduling verification.  
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Annex 

 
Development Environment  
 
Here is the link to access the entire development environment, as well as all analysis 
files and files related to Machine Learning work: 
https://drive.google.com/drive/folders/1nL5dp_RYehDlpERml5RST19Ld_NgDU5w?usp
=sharing 
 

 

 

 


