

Node-Based Particle System

Degree in Video Games Design and Development

Author: Aitor Luque Bodet

Director: Jesús Díaz García

Year: 2021-22

University: CITM

Aitor Luque Bodet
Node-Based Particle System

2

Index

Abstract -- 4

Keywords -- 4

Links -- 5

Index of Tables --- 6

Index of Figures --- 7

Glossary -- 9

1. Introduction --- 11

1.1 Motivation --- 11

1.2 Problem presentation --- 12

1.3 General Objectives -- 13

1.4 Specific Objectives --- 14

1.5 Project Scope -- 15

2. State of the art --- 16

2.1 Houdini --- 16

2.2 Unity VFX Graph --- 17

2.3 Blender --- 19

2.4 Unreal Engine --- 20

2.5 Conclusion --- 22

3. Project Management --- 23

3.1. GANTT --- 23

3.2. GANTT Update --- 26

Aitor Luque Bodet
Node-Based Particle System

3

3.3. SWOT -- 27

3.4. Risks and Contingency Plan -- 28

3.5. Cost Analysis --- 31

4. Methodology -- 33

4.1 Pre-Production -- 33

4.2 Production --- 34

4.3 Post-Production -- 36

5. Project Development --- 37

5.1 ASE - Another Small Engine --- 37

5.2 Adapting the engine -- 42

5.3 Particle System --- 44

5.4 Rendering and Instancing -- 51

5.5 Node Editor -- 54

5.6 Node Editor Window -- 65

6. Conclusions -- 73

7. Next Steps --- 76

8. Bibliography --- 78

8.1 Libraries -- 80

Aitor Luque Bodet
Node-Based Particle System

4

Abstract
Particle systems attempt to recreate complex natural phenomena through graphical

rendering techniques. Nowadays Particle Systems are used in numerous digital

applications such as video games, animations, films and all kind of digital art creations.

This project aims to develop an open-source engine application to serve as a fast and

understandable editor tool for creating complex Particle Systems simulations, working

towards a process speed up of the big time investment this task usually takes. The tool

will be completely managed by a nodal interface, with all the necessary nodes and

components required to create such simulations.

The engine uses C++ as the main programming language, OpenGL for 3D graphics

rendering and ImGui to build the user interface and the nodal system. That system will

be able to create and edit a wide amount of nodes storing parameters and particle

systems components along their interactions, intended to be designed for users

without any previous technical experience.

The structure of the tool is built as a resemblance of already existing engines with

node-based procedural generation tools such as Unreal and Houdini.

Keywords

● VFX

● C++

● OpenGl

● ImGui

● Particle System

● Emitter

● Node Editor

● Houdini

Aitor Luque Bodet
Node-Based Particle System

5

Links

Showcase Video:

https://drive.google.com/file/d/1X0vKVlSsJH3Y7mxXUOwSbhdcx0f8Jjfs/view?usp=shar

ing

GitHub Repository:

https://github.com/Aitorlb7/Node_Based_Particle_System/

Latest Release:

https://github.com/Aitorlb7/Node_Based_Particle_System/releases/tag/v1.0/

https://drive.google.com/file/d/1X0vKVlSsJH3Y7mxXUOwSbhdcx0f8Jjfs/view?usp=sharing
https://drive.google.com/file/d/1X0vKVlSsJH3Y7mxXUOwSbhdcx0f8Jjfs/view?usp=sharing
https://github.com/Aitorlb7/Node_Based_Particle_System/
https://github.com/Aitorlb7/Node_Based_Particle_System/releases/tag/v1.0/

Aitor Luque Bodet
Node-Based Particle System

6

Index of Tables

Table 1: SWOT--Pag. 27

Table 2: Average Salary and Invested hours estimation ---------------------------------Pag. 31

Table 3: Overall Expenses--Pag. 32

Aitor Luque Bodet
Node-Based Particle System

7

Index of Figures
Figure 1 - Example of Unity VFX Graph use of particles. --------------------------------------- 12

Figure 2 - Example of Houdini use of particles. -- 13

Figure 3- Geometry vanishing effect using particles inside Houdini. ----------------------- 17

Figure 4 - Example of a Particle System inside the Unity VFX Graph along some simple

nodes. -- 18

Figure 5- Example of a blender Particle System and in the bottom-right a material

editor. -- 19

Figure 6 - Unreal Engine Cascade editor with multiple Emitters. ---------------------------- 20

Figure 7- Niagara Particle Modules Workflow -- 21

Figure 8 - Gantt Chart -- 23

Figure 9 - Pre-Production Gantt Chart -- 24

Figure 10 - Production Gantt Chart --- 24

Figure 11 - Post-Production Gantt Chart --- 25

Figure 12 - July - September Gantt Chart update -- 26

Figure 13 - GitHub branching feature -- 28

Figure 14 - Agile sprint based workflow pictogram --- 34

Figure 15 - Project Hacknplan -- 35

Figure 16 - Core Modular Structure Diagram --- 39

Figure 17 - Full ASE Graphical User Interface --- 42

Figure 18 - UML of the Particle System and the Node editor implementation. ---------- 44

Figure 19 - Example of the Screen Aligned and Camera Aligned Billboard. --------------- 47

Figure 20 - Example of the Axis Aligned Billboarding from Unity Engine. ----------------- 47

Figure 21 - Particle Mesh vertices buffer -- 51

Figure 22 - Particle Mesh UVs buffer --- 51

Figure 23 - UpdateParticlesBuffer function used to fill the buffers with the new dat. - 52

Figure 24 - Use of the OpenGL function glVertexDivisor. ------------------------------------- 52

Figure 25 - Use of the OpenGL function glVertexDivisor. -------------------------------------- 53

Figure 26 - Performance without Instancing -- 53

Figure 27 - Performance with Instancing -- 53

Aitor Luque Bodet
Node-Based Particle System

8

Figure 28 - Example of a complete Node Based Particle System window. ---------------- 54

Figure 29 - Core Modular Structure Diagram. -- 55

Figure 30 – Emitter node with all the necessary Input Pins ----------------------------------- 57

Figure 31 - Velocity and Color Nodes with two float4 as inputs. ---------------------------- 58

Figure 32 - Color and Color Overtime Nodes with two float4 as inputs. ------------------- 59

Figure 33 - Alignment Node with all the possible alignments. ------------------------------- 59

Figure 34 - Positioning of the Assets Explorer Window and the Node Editor Window

next to each other. -- 60

Figure 35 - Texture Node. --- 60

Figure 36 - Spawn From Model Node. -- 61

Figure 37 - Boolean Node. --- 62

Figure 38 - Float Node. --- 62

Figure 39 - Vector3 Node -- 63

Figure 40 - Gravity Node. -- 64

Figure 41 - Gravitational Field Node -- 64

Figure 42 - Group selection inside the Grid panel. --- 65

Figure 43 - Example of the resulting Line rendered when two Pins are Linked. --------- 66

Figure 44 - UML of the Draw function of the Window Node Editor. ------------------------ 67

Figure 45 - Left Panel --- 69

Figure 46 - Direction of the Flow between nodes. -- 70

Figure 47 - Style Editor of the Window Node Editor. --- 70

Figure 48 - Node creation Node (Right Click inside the Grid) --------------------------------- 72

Figure 49 - Results achieved using the final version of the Node-Based Particle System.

 --- 73

Figure 50 - WickedEngine GPU Particles simulation -- 76

Figure 51 - Unreal Engine: Niagara editor window -- 77

Aitor Luque Bodet
Node-Based Particle System

9

Glossary

OpenGL: Stands for Open Graphic Library and works as an API (application

programming interface) that allows direct communication with the graphics hardware.

Dear ImGui: C++ library focused on giving the user a large amount of methods and

tools to build and customize your own Graphical User Interface.

Node: Graphical self contained piece of functionality and information storage of some

parameter or module of a Particle System, bound inside a canvas and connected to

other nodes.

VFX: (Visual Effects) Manipulate live-action shooting or created images via computer-

generated imagery to enhance the result of a film, animations or cutscene.

Particle: Single element displayed by the emitter inside a Particle System, containing

an image, velocity, color among other properties.

Emitter: Entrusted to spawn the necessary particles with the assigned values to

recreate the desired effect, (there can be multiple inside a single Particle System).

Particle System: Collection of a large number of particles with the same behaviour as a

whole although with particular random characteristics.

Billboarding: Automatically orient or align the rendered particles to the camera or any

other point of reference defined.

Z-Buffer: Graphics programming technique used to determine whether an object is

visible in the scene and the drawing order of each of those objects.

Soft Particles: Particles rendered by performing a depth test creating smooth

intersections with other geometry.

Houdini: Procedural system tool created to allow developers and artists to create

multiple iterations and work freely.

Aitor Luque Bodet
Node-Based Particle System

10

Buffer: OpenGL Objects capable of storing an array of unformatted memory allocated

by the CPU.

Pure Virtual Function: It is a function which doesn’t have an implementation in the

declaration class, although is meant to be overridden by its children classes.

Pointer: It is a variable in charge of storing the memory address of another object. It is

commonly used for allocating new objects and iterate over elements in arrays or data

structures.

Aitor Luque Bodet
Node-Based Particle System

11

1. Introduction
Creating the proper tools is a must in videogame development in order to achieve the

desired scope within the design of the game.

This research project seeks to solve one of the many VFX needs of a game while

making it accessible and easy to use to all the non-technical developers.

This section will define the scope of the project and the motivations that took the

initial idea to the actual development, while aiming to solve an actual problematic in

the videogame industry.

1.1 Motivation

The first idea that would become the first draft of this research was born with the use

of Houdini, its procedural nature and how every VFX project could become an

independent tool by itself captivated me.

Houdini is built from the ground up to be a procedural tool, so every attribute from the

first node is remitted down to all the other nodes which rely consecutively on the

previous one, allowing for a fast iteration of possible outcomes

From all the possible aspects of graphical programming that could benefit from a

node-based procedural editor I narrowed the scope to exclusively particles as they are

an uncharted territory in my technical background yet a very appealing topic to learn

and master.

Aitor Luque Bodet
Node-Based Particle System

12

1.2 Problem presentation

Nowadays particles are being rendered in real-time in our screens constantly to

recreate distinct environment or special effects. AAA games usually require several

VFX developers and artists to meet the desired result.

Within Unreal Engine, Unity and even Houdini lies vast and deep particle systems with

numerous of modifiable properties or modules allowing the creation of those

sophisticated and flashy effects like the ones in Figure 1. Although the initial learning

curve in most of them may overwhelm the user with a huge amount of information to

learn and retain in order to build those effects.

The technical accessibility for all developers along with the possibility of creation a tool

for each effect allowing fast iterations to find the best fit are the main issues this

research intends to solve.

The procedural nature of Houdini and the Unity VFX Graph already tackle that

problematic each in their own way making possible complex simulations as shown in

Figure 2, borrowing well executed ideas from both I intend to develop my own open

source solution in a simpler way.

Figure 1 - Example of Unity VFX Graph use of particles.

Aitor Luque Bodet
Node-Based Particle System

13

Figure 2 - Example of Houdini use of particles.

1.3 General Objectives

The overall objective of the project is to solve the issues stated in the section above

while making a friendly and intuitive node graph editor within the user interface.

The end goal of the project is to achieve a nodal system capable of creating a wide

range of particle simulations possibilities. With the intention of setting a realistic scope

for the project while achieving all the specific objectives and an appealing result, the

development will be focused into making a display-only tool inside the ASE engine. It

won’t allow exporting the result into other software nor it will be built as a library to

import.

The tool structure will be centered around two panels inside the engine viewport, one

for the node-based editor and the other for the real-time renderer of the effect. In

order to build the node editor panel, the nodal interface will be handled with the

ImGui library (https://github.com/thedmd/imgui-node-editor), the serialization of each

node or modules will be handled by the own ASE (Another Small Engine) serialization

methods, and the rendering with OpenGL.

https://github.com/thedmd/imgui-node-editor
https://paufiol.github.io/AnotherSmallEngine/

Aitor Luque Bodet
Node-Based Particle System

14

Furthermore, it is intended to document all the process, going through each step from

the first implementation of the base Particle System to adapting it to the nodal

structure and all the necessary interactions.

1.4 Specific Objectives

Building a procedural tool, it’s a complex task thus the project will be split into several

small systems or tasks, attainable and compact to solve one at a time, making certain

about the fulfillment of the objectives mentioned in the previous points.

● Develop a solid base engine to build the tool with.

● Adapt the node library and expand it with the necessary features to support the

particles interactions.

● Build the Node-Editor panel.

● Create the particle nodes with the necessary attributes.

● Implement a basic Particle System.

● Expand the Particle System and adapt it to the node graph workflow.

● Implement the serialization of the Particle System variables or attributes stored

inside the nodes.

● Allow multiple particles spawner and a high number of particles in scene.

● Implement the integration and use of external geometry inside the particles

simulations.

● Optimize the performance to ensure stable FPS.

Aitor Luque Bodet
Node-Based Particle System

15

1.5 Project Scope

This research project is meant to become a prototype tool only to be used inside the

engine itself, there is no purpose to allow the exporting of the VFX created to other

engines thus focusing on expanding the usability and simulation possibilities.

Furthermore, the scope is limited to the time and resources restriction since it could

be as extensive as the previously mentioned engines VFX tools, and even those are in

constant development aiming to recreate as close as possible real effects and natural

events.

The limitations of the project will vary over time, initially it is expected to have

implemented the basic components needed to build most of the special effects an

indie game could estimate, this will be regulated with various versions once achieved

the preestablished minimum (v1.0) each finished feature will be added as a new

version.

As mentioned previously the tool will be open source giving full access to any

developer to use or even expand it in any desired way. The main beneficiaries will

diverge from artist attempting to develop in a more accessible tool how to use Graph

Nodes or create simple VFX down to programmers or even students taking the tool

and the documentation to learn about any aspect from node visual programming or

building a Particle System from scratch.

Aitor Luque Bodet
Node-Based Particle System

16

2. State of the art
This section will revolve around contextualizing how the videogame industry attempts

to manage a viable solution to the topics and issues stated analyzing the most

important aspects.

Nowadays there is a huge number of resources and tools thought to help solo

developers and big companies although only a few solve the problematic this research

attempt to tackle, these are the engines or tools focusing on real time rendering

through a node-based interface.

2.1 Houdini

Houdini is a powerful software developed by SideFx initially designed for artists inside

the film industry, either for animation or film VFX, which eventually would also

englobe video games and virtual reality in a single tool.

Houdini supports plug-ins with 3D apps such as Maya and 3D Max from Autodesk or

into game engines such as Unity and Unreal Engine, bringing in a fast and intuitive way

to share the finished assets and effects ready to use.

Unlike other common 3D modeling or animation software such as the recently

mentioned Houdini uses a unique procedural node-based workflow granting the

possibility of fast iterations back and forth at any time, those other editors store the

changes in a user history making it harder to revert or modify any previous version of

your work.

Although Houdini features great modeling, animation, rigging and many other toolset

systems that have nothing to envy other software, this project will focus on its

advanced dynamic simulation and particle effects.

All geometry and more important Particles inside Houdini have attributes, important

information storage passed down each node that will use it to handle interaction with

other systems or attributes. For example, one of the end goals of this project is to emit

Aitor Luque Bodet
Node-Based Particle System

17

particles from the vertex or points defined by some geometry therefore in Houdini the

particles emitted from geometry inherit the attributes of the point from which they

are emitted allowing the creation of vanishing effects by transferring attributes

between nodes as seen in Figure 3.

Figure 3- Geometry vanishing effect using particles inside Houdini.

However, it seems that the nodal approach only brings benefits, it’s a false

appreciation, as it requires previous extensive documentation reading, usually

overwhelming the user with the amount of nodes available.

2.2 Unity VFX Graph

The Unity VFX Graph enables the developers to recreate multiple complex simulation

effects using Node-based visual logic, previewing changes immediately and with a

step-by-step simulation.

This new addition doesn’t aim to replace the current Unity particle system as it doesn’t

support interaction with the current scene or even the in-game physics system yet

expands the possibilities given to the developer as it has other advantages.

Aitor Luque Bodet
Node-Based Particle System

18

The VFX Graph swaps from the CPU usage for the particle calculations to the GPU

allowing the simulation and rendering of millions of particles on screen, it works at a

much lower level enhancing the process calculations agility in real-time as well as

making it easier for the developer to iterate over an effect.

Unlike Houdini the VFX Graph doesn’t use the simple looking nodes with all the

information and attributes stored inside, it will come with four main nodes; the

spawner which will mainly handle the number of particles spawned per second, the

particle initializer with all the modifiable properties of the particles, the update to

modify the behavior on runtime and finally the output in charge of how the particle is

being rendered. Each of those nodes allow the implementation of blocks inside small

modifiers to either state of the particle.

Internally this top-down approach with the module and attributes management is

closest to the expected behavior of the tool.

Figure 4 - Example of a Particle System inside the Unity VFX Graph along some simple nodes.

Aitor Luque Bodet
Node-Based Particle System

19

2.3 Blender

Blender is an open-source 3D software aiming to contain the entirety of the 3D

pipeline this being modeling, animation, simulation, rendering, compositing, motion

tracking and even video editing and game creation.

Since it is open-source users can freely develop their own tools within the software

suiting solo developers and small indie studios who benefit from its unified 3D pipeline

and responsive development process.

The Blender community is currently developing and adapting particle nodes into the

node-based material editor, it is possible to recreate simple particle effects with a

small degree of complexity with the available nodes yet is far from being a complete

tool on its own.

Figure 5- Example of a blender Particle System and in the bottom-right a material editor.

Aitor Luque Bodet
Node-Based Particle System

20

2.4 Unreal Engine

Unreal Engine like Unity is primarily a game engine although it posses a complete suite

of development tools aimed towards working with anything requiring real-time

rendering and execution.

Even tough Unreal doesn’t have a node-based interface to edit particle systems, it is a

necessary mention due to its great modular structure and how it handles the

information similarly to the previous engines, they call it Cascade.

Cascade is Unreal Particle System editor; it offers real-time feedback and modular

effects editing while seeking fast and easy creation of those effects. It allows several

emitters (as shown in Figure 6) each with their own parameter configuration and

consequently their particles which they will be in charge to spawn and even modify

their behavior throughout the entire effect.

Figure 6 - Unreal Engine Cascade editor with multiple Emitters.

Aitor Luque Bodet
Node-Based Particle System

21

As we’ve seen before with Unity, Cascade is not the only way to create VFX in Unreal

Engine with the release of the version 4 of the engine came Niagara.

Niagara is Unreal Engine's next-generation VFX System focused on giving technical

artist the ability to create additional functionality on their own, without the assistance

of a programmer.

Simulations in Niagara operate as a stack, executing modules in order from top of the

stack all the way to the bottom.

Niagara splits in a top-down hierarchy of four core components:

● Systems: Containers for multiple emitters, all combined into one effect, with

the possibility of modifying or overwriting anything in the emitters or modules

inside.

● Emitters: Re-usable and single purpose containers for modules, allow multiple

modules stacking and render the simulation in several ways within the same

emitter.

● Modules: Programable code blocks equivalent of Cascade’s behaviors (Logic

inside each emitter visible in Figure 6), they encapsulate behaviors, stack with

each other and operate with new functions.

Figure 7- Niagara Particle Modules Workflow

Aitor Luque Bodet
Node-Based Particle System

22

As we can appreciate in Figure 7 modules are accumulated into a temporary

namespace, afterwards they can be stacked with more modules altogether, as

long as they contribute to the same attribute, the modules will stack and

accumulate properly.

● Parameters: Custom abstraction of data assigned to a specific type such as

primitives, enumerators, structs and data interfaces. They define modules and

particles characteristics.

2.5 Conclusion

To sum up the overview of the State of the Art we can appreciate there are plenty of

VFX simulation tools and engines aiming to fill the same gap as this research, some are

still in development while others already reached a gold (market product ready) state.

The market target matches with this project although the objectives previously stated

remain the same, this tool aims to recreate some of the technical features we`ve just

seen while keeping the user interface clean as a priority.

Competing to grab a portion of this market is not a realistic objective thus it is

expected to expand the tool as much as possible trying to resemble the combination of

the best features of these VFX tools and focus on the learning and documentation

process.

Aitor Luque Bodet
Node-Based Particle System

23

3. Project Management
In this section we will go over the planification and management of the project, from

the scheduling tools to organize and set milestones with Gantt and HacknPlan, to

validation tools analyzing positive and negatives aspects of the project scope and

objectives.

3.1. GANTT

The Gantt chart allow us to translate the objectives set up in previous sections into

visual representation of the time span they take up. Splitting them into manageable

sprints clarifies the chart and improves the task completion efficiency. The visual

representation of time schedule allow the author to have a global consideration about

the priority of each task or even the time assigned.

Before diving further into details, here, you can find the Gantt chart at full size and

definition. For this project the available time was split into 3 major blocks:

Figure 8 - Gantt Chart

Aitor Luque Bodet
Node-Based Particle System

24

3.1.1 Pre-Production

The pre-production block, is scheduled for building the core engine, adapting it to the

features to come, and implementing the core library around which the nodal base of

the project will be assembled. As we can appreciate in Figure 9 the memory

development was also included once the engine

3.1.2 Production

The production planning phase was challenging to fit into the time span available,

some expected features due to develop were given less time than expected. However,

as Figure 10 shows the project is ready to go into Production.

Figure 9 - Pre-Production Gantt Chart

Figure 10 - Production Gantt Chart

Aitor Luque Bodet
Node-Based Particle System

25

In this stage the actual tool development takes places. First we will set up the ground

work, creating the windows needed adapting a new viewport and the basic structure

for the particle system and node editor communication.

After we have the essentials up and working, its time to implement all the custom

nodes planned out, including improvement in the performance. Everything aiming to

fulfill the objectives and obtain a well developed and usable tool.

3.1.2 Post- Production

By reaching the post-production block, the tool is expected to be fully implemented

and documented in the memory. Now it is time to test the tool, finding its limitations

while developing those VFX simulation. After testing it, if required polish any

performance issue if may present or as a matter of fact any issue that may come up,

that wasn’t solved in production or was overlooked, should be fixed during this period.

Last focusing the scope on the presentation, the preparation of the video sample is

included in this post-production period.

Figure 11 - Post-Production Gantt Chart

Aitor Luque Bodet
Node-Based Particle System

26

3.2. GANTT Update

Due to unexpected personal time schedule issues, mostly related to sustaining work

and university studies simultaneously, we couldn’t keep up with the initial planning,

thus the project deadline was delayed until 16th of September.

Once the deadline was pushed the Gantt chart needed to be updated as well, all the

unresolved tasks were adapted to the new time span available, and the new ones such

as issues to be solved were prioritized to make the remaining development smoother.

The instancing was completely relegated to this extension of the production, as well as

the ColorOvertime, the Gravity and the GravitationalField nodes.

Figure 12 - July - September Gantt Chart update

Aitor Luque Bodet
Node-Based Particle System

27

3.3. SWOT

This section focuses on analyzing several aspects of the project, in order to identify

possible positive and negative points and act in consequence while planning.

Structured in a table for better visualization of each aspect analyzed.

Positive

Negative

Internal

Strengths

● Built in its own engine with full

control over all systems.

● Previous knowledge about Particle
Systems.

● Previous knowledge about
graphics and rendering.

● Investment of resources into
optimization.

Weaknesses

● Time limitation.

● Engine built from scratch requires
a big amount of side work.

● Hard to set realistic goals (project
can be really extensive in many
ways)

● No previous knowledge about
node based interaction handling.

External

Opportunities

● Multiple development paths and

choices.

● Accessibility of the outcome tool,
compared to other high-priced
softwares

● Learn and master a new game
development field.

Threats

● Multiple existing engines

softwares addressing the same
objective with outstanding results.

● Big workload for a single person
research project.

● No documentation for this specific
case.

Table 1 -SWOT project analysis

Aitor Luque Bodet
Node-Based Particle System

28

3.4. Risks and Contingency Plan

When addressing a project of this dimension as seen in the previous section,

estimating the possible risks throughout the development and setting a contingency

plan to mitigate or deflect them completely is necessary. In this section we will tackle

those possible risks and the solutions applied in this project.

● Time Constraint

In the development of projects of this size it’s common to underestimate the difficulty

or time requirement the implementation of a single feature can take causing a delay

upon completing that milestone as expected. When that happens the planning needs

to be rearranged to fit the time limitation preestablished.

In order to prevent those setbacks the github branching is used. Split every important

or time relevant feature into an independent branch, thus allowing for safe

interactions over the implemented feature without compromising the overall project.

Acts as a firewall and isolation of every task planned, furthermore it allows to swap

instantly from the development of a feature to another if needed .

Figure 13 - GitHub branching feature

Aitor Luque Bodet
Node-Based Particle System

29

Another prevention method slightly less used in this project is booking empty space or

extra space in the schedule for the harder or more time consuming tasks, thus avoiding

the urge of rescheduling in case of any unexpected setback.

When planning and setting up each milestone in the Hacknplan as seen in 4.1

Production, assigning each feature to a single task or even splitting the bigger ones

into several tasks works as a better time tracking technique.

● Customization and adaptation of ImGui

Using an external library to build up the Node Editor window, one of the core pillars of

the project caps the level of design and development freedom, even leading to

unexpected bugs regarding the integration and usage of those libraries.

ImGui and ImGui Node Editor offer a wide variety of functionalities, although this

project requires an extensive customization level both in terms of user interface design

and implementation.

Upon encountering such issues it may be necessary to deviate the direction of the

feature or even cutback some aspects that could be way harder or more time

consuming to develop.

● Lack of knowledge and documentation to achieve the expected result

The technical limitations of the development team (solo developer) is something to

take into account while researching and planning. The lack of documentation and

limited knowledge can directly influence the end result ensuing to not meet the

expectations and goal set.

This risk requires to be tackled before planning by doing a previous research of the

libraries expected to use, and comparing the usage capabilities of those with the

outcome the project needs, splitting each feature and studying their viability.

https://github.com/ocornut/imgui
https://github.com/thedmd/imgui-node-editor

Aitor Luque Bodet
Node-Based Particle System

30

● Slow performance

Particle Systems generally attempt to render a great number of particles in real time,

even having several particle systems in a scene at the same time. Thus affecting the

performance of the engine and the tool.

The project aims to have a stable 60 fps even though it remains as a secondary goal,

focusing on delivering the expected end goal and afterwards optimizing it as much as

possible.

To prevent a drop in performance there are several options, the one that has been

already included in the planning of the project is the particles instancing, as mentioned

in the article: (http://www.opengl-tutorial.org/intermediate-tutorials/billboards-

particles/particles-instancing/) The idea behind this concept is to reduce the number

of render calls, with some buffers in charge of defining a base mesh and others the

small differences with the other particles instantiated.

http://www.opengl-tutorial.org/intermediate-tutorials/billboards-particles/particles-instancing/
http://www.opengl-tutorial.org/intermediate-tutorials/billboards-particles/particles-instancing/

Aitor Luque Bodet
Node-Based Particle System

31

3.5. Cost Analysis
In order to calculate and perform a proper cost analysis we will specify the starting

date of the project in February 2022 and the end date in June 2022, also we need to

specify an average salary of a game engine developer which will be extracted from

further research (glassdoor, payscale and gamasutra).

Table 2 - Average Salary and Invested hours estimation

To make a proper estimation of the working hours it was taken into account the

planned tasks and their expected duration (along with an empty space as a

contingency plan as seen in 3.4 Risks and Contingency Plan) and the hours available in

the developer schedule, coming up with an estimated total amount of 300 hours and

4.687,50€ in salary expenses.

Aitor Luque Bodet
Node-Based Particle System

32

Table 3 – Overall Expenses

Once we had the salary expenses it was left to calculate all the remaining costs that

could take place during the development, such as the monthly expenses of electricity

and internet along with single time payments for the equipment needed.

Software licenses used were mostly free libraries and cloud services such as Google

Drive and Github while the only expense was Photoshop used to create the particle

sprites.

Table 2 is the final expected expenses of the whole development reaching an

approximate total of 7.5K euros.

Aitor Luque Bodet
Node-Based Particle System

33

4. Methodology
This Project contains an extensive practical side with the release of a complete yet

simple tool as an end goal and a documentation process of the whole development

from the definition of the objectives, going through the State of the Art and the tool

progression.

To reinforce and optimize the correct execution, the project will be structured in pre-

production, production and post-production.

This methodology proposition will be complemented using Hackplan and the

segregation of each milestone into sprints.

4.1 Pre-Production

The first need of the project is the correct planification and time management, clarify

the objectives with all previous information and research needed to decide those with

a solid understanding background on the topic.

By the end of pre-production, we will need a stable engine to work with and structure

the tool around it, in order to achieve such thing the base engine needs some

groundwork:

● Structure the ImGui user interface into several panels.

● Optimize the current rendering in OpenGL

● Implement the node base library

● Create the base particle system.

● Develop an UML (Unified Modeling Language) of the adaptation of the particle

system into the node-based editor.

Aitor Luque Bodet
Node-Based Particle System

34

4.2 Production

At this point the project enters its main development stage, this section covers the

organization of the biggest part of the project and how to schedule it efficiently.

Here comes Hacknplan, a project management tool specifically designed for game

development bringing an improved workflow between managers, programmers, artists

and designers. It follows agile methodologies by tracking the progress of each task

structured in a Kanban board.

We will focus only on the technological side, splitting the tasks scheduled in the Project

Management section into more manageable assignments, always following the

deadlines established in the Gantt chart.

Figure 14 - Agile sprint based workflow pictogram

The Production of this project will follow a series of Sprints (It is expected to have

around three or four) each with their corresponding releases in GitHub at the end thus

being an iterative process they will split into the following:

● Plan: Estimate the overall time the task will take, the objectives and the

procedure to follow. In this sprint it is expected to design the UMLs for the

Particle System, the Node-Editor, and how will they communicate.

● Design & Build: The actual development and implementation process,

following everything stated in the planning phase. This is the largest sprint, it

Aitor Luque Bodet
Node-Based Particle System

35

needs to manage from the basic Particle System implementation, going

through Node-Based editor window, up to optimizing the completed tool.

● Test: Go over the result of the build phase looking for any mistakes and

undesired behaviors that might impair the development of future sprints.

● Review: Evaluate if the resulting product is ready to be implemented into the

tool and is ready to launch and release. This stage usually belong to the last

section of the Production, although, due to time constraints it is scheduled to

be handled in the Post-Production.

Each Sprint will have an independent board inside Hacknplan dividing the main

objectives of the milestone into smaller tasks, each with their description and time

limitation, the Figure 15 shows the Pre-Production board. The tool offers a wide

variety of task personalization and the information attached to it however only a few

will provide what we need like tags to quickly identify the work group each task

belongs, timestamps to keep close control over the hours expected for each task and

the ones actually invested to finish it and a small description for each.

To keep the Hacknplan boards up to date at a relatively fast pace, the tasks added will

have a Title self-explaining the assignment, a tag to differentiate the objective of the

task (Design or Coding) and the time invested along the deadline.

Figure 15 - Project Hacknplan

Aitor Luque Bodet
Node-Based Particle System

36

4.3 Post-Production

In this stage the project is expected to be finished however this stage is precisely to

make certain that is in fact ready to release, it dwells mainly on testing and iterating

over the tool.

If any issue or bug comes up during this process, it will be assumed and used to create

a new task or small sprint if needed, resuming the workflow used in the production

phase only this time with short periods and reduced scope.

In the case that the project is considered to be finished, the post-production will be

aimed to expand the tool with extra nodes and functionality expanding the simulation

possibilities and optimizing the interaction between nodes and the management of the

particles.

Aitor Luque Bodet
Node-Based Particle System

37

5. Project Development

In this section we will dig right into the actual development of the project, how the

tool is built and all the implemented features. It is intended to reflect and explain all

the steps taken up to the finished project in an understandable and coherent way.

On the first place we will take a glance into the base engine upon which the tool is

built.

5.1 ASE - Another Small Engine

ASE stands for Another Small Engine, an already developed engine from a previous

subject in the degree, Videogame Engines in which we learned in pairs to read, handle

and adapt models into a 3D viewer expanding with further features and core

functionality it as the course went on, following the previously stablished course guide.

To better understand the base structure upon the tool will be developed, we will dive

into the libraries used, the features of the engine and its core structure:

5.1.1 Libraries Used

● Glew: Graphic API that provides a high performance functionality for the

interaction and usage of OpenGL rendering through the CPU or GPU.

● SDL: Library designed to provide low level access to all kinds of input and

output (audio, keyboard, mouse, joystick, and graphics hardware via OpenGL).

● Dear ImGui: Library which allows to handle and render a customizable User

Interface.

● ImGuizmo: Works within ImGui providing a visual representation of a geometry

modifier (Translate, rotate and scale).

● ImGuiColorTextEdit: Works within ImGui providing a real time text editor, to

modify and save any file.

Aitor Luque Bodet
Node-Based Particle System

38

● ImGuiNodeEditor: The main library used for this project, it works within ImGui

and provides a nodal interface, the creation of simple nodes and all their

connections.

● MathGeoLib: C++ library with a wide range of mathematical functionalities for

linear algebra and geometry manipulation.

● Assimp: C and C++ library capable of importing and exporting 3D models,

supporting numerous formats.

● Parson: C written library allowing an easy use and implementation of json, used

for serializing.

● Devil: Developer Image Library is a simple syntax library to load, save,

manipulate and display images.

5.1.2 Engine Core

The engine core section will cover everything contained from the main loop and

application, its modular structure through each functionality up to a brief introduction

of the Particle System and its Nodal implementation.

● Application and Main Loop

The main loop takes care of the creation, initialization, update and clean up of the

application, through those states (Init, Update and CleanUp) it executes all the

necessary tasks and modules to render the application window, maintaining all those

processes with a proper performance and clean the memory used upon closing it.

The window and everything rendered within will be further handled and explained in

deep in the next section, all the modules and their playing part in the bigger loop to

bring together a functional engine.

Aitor Luque Bodet
Node-Based Particle System

39

● Modular Structure

The application functionality is divided into several modules each one in charge of a

specific aspect of the engine, containing all the logic related to the matter inside that

same module, thus allowing for a cleaner and better structured code base.

The communication between modules goes through the application object containing

a vector of all the modules and a pointer to each of them as seen in figure 10, allowing

full access to each (if the accessed method or variable is public for external access from

the class or module itself).

As shown in the Figure 16 diagram of the modular structure, the Application object will

hold a vector with all the modules objects instanced, being in charge to call all the

methods defining each state, from Init to CleanUp declared in the base class and

inherited in all the modules derived.

Figure 16 - Core Modular Structure Diagram

Aitor Luque Bodet
Node-Based Particle System

40

● GameObject and Components

The main idea behind this system is to mimic Unity's GameObject structure and

Hierarchy. By having an object with the capability of holding several components it

allows the user to add, subtract or easily modify any desired functionality.

Those components can vary from a must have Transform component containing the

position, rotation, and scale of a GameObject inside the 3D space, up to the Particle

System component an extra feature which will be explained in depth in further

sections.

➔ Component Transform

➔ Component Mesh

➔ Component Material

➔ Component Camera

➔ Component Particle System

With a similar practice as the module system, the Module Scene will hold a vector

containing all the created Objects to gain full control over their visibility, deletion and

all modification over a single or several GameObjects can have.

● Resource Management

The Engine possesses a resource management system, which oversees the handling of

all the assets inside the engine dependencies.

More specifically each asset must have a resource type class for process and

organization purposes, on starting the engine, the manager will go through all the

assets and serialize them properly into the Library carpet allowing for a fast importing

and saving of any modification done in runtime, thanks to the full control of the

serialization with json.

To facilitate the access to the files in library and register all the related information to

each serialized asset we use meta files as Unity does, they contain the name of the

asset serialized, the path in library and the UID (Unique Identifier) among others.

Aitor Luque Bodet
Node-Based Particle System

41

● Shader Pipeline

The rendering is supported and implemented through a shader pipeline. It gives the

application the capability to send all the render calls containing all the models

information inside the scene to the GPU, thus improving the performance of the

engine along other advantages.

The GPU unlike the CPU is optimized for tasks such as graphical rendering with its

parallel processing, meaning they are able to process several tasks simultaneously.

The shader pipeline system was implemented along an in-engine shader editor and a

modifiable uniform system allowing a simple and accessible way of modifying any

shader from the user interface.

5.1.3 Main Modules

➔ Module Window

➔ Module Renderer

➔ Module Scene

➔ Module Input

➔ Module Camera

➔ Module Editor

Aitor Luque Bodet
Node-Based Particle System

42

5.2 Adapting the engine

In order to start the actual tool development, the engine needed a few adjustments to

fit the implementation of the expected new features. From the window management

in the editor file, improvements in the shader pipeline to the initial implementation of

the particle system.

Figure 17 - Full ASE Graphical User Interface

Aitor Luque Bodet
Node-Based Particle System

43

5.2.1 Split Editor file

The class Module Editor contained all the window logic packed inside a single file, so it

was divided into several classes and files, one for each window available. The Module

Editor still had the hold of all the windows this being the main axis upon which the GUI

logic was managed.

Having a better organized and cleaner code base allowed a smoother implementation

of additional windows or any GUI logic along the development, such as the Viewport

Window which was added shortly after the division was fully functional.

5.2.2 Viewport Window

Initially the scene was rendered directly into the window created using SDL, and the

user interface on top of it not leaving much space to reposition the scene or even the

user interface structure around it.

To allow the implementation of a node canvas window, the initial window structure of

the user interface needed to be adapted, thus the viewport now has its own window.

The viewport is in charge of rendering the output into a texture which can be resized

and docked into the user desired position, furthermore all the mouse interactions to

select objects in the scene also Guizmos logic was adjusted to fit any desired size

without losing the proportions.

5.2.3 Shader Pipeline optimization

The shader pipeline implementation had a few remarkable flaws that could impact the

engine performance. For instance each object rendered in screen needed a shader

assigned, to which all the vertex and transforms information will be send to render.

This assignation was being called repeatedly, once assigned any further call was

absolutely unnecessary thus it lead to repeated importing of the same asset or shader.

By assigning upfront the shader to the object material the number of calls was reduced

to one per object, saving resources and improving the performance.

Aitor Luque Bodet
Node-Based Particle System

44

5.3 Particle System

Figure 18 - UML of the Particle System and the Node editor implementation.

Aitor Luque Bodet
Node-Based Particle System

45

Before diving deeper into the development and structure of the implemented tool, we

will take a general overview of the Particle System implementation. Figure 18 we get at

fast glance at how the Particle System implementation was designed and thought to

interact with the Node Editor.

The core skeleton of the particle system is extracted from the Game Engines subject in

the degree. As one of the possible High-level systems taught to the students and

demanded to implement into their engines, we were taught how to structure and

organize a Particle System. In favor of an easier comprehension following this

somehow complex structure we will begin with the smallest element yet equally

important the Particle.

5.3.1 The Particle

The particle is an element which we intend to instantiate hundreds or even thousands

of times to render into the viewport on runtime, thus they need to hold the smallest

amount of information possible, so they don’t take all the space in memory and

maintain a stable framerate.

Each particle has a position in world coordinates which will be updated every frame, a

velocity to update that position, a rotation defining the alignment of the particle, a

color applied over the texture (The texture is not stored inside the particle itself,

instead it belongs to the entity managing them). The particles also have a lifetime

regulating how long the particle is being rendered into the screen, once it surpasses

that threshold the aforementioned particle is deactivated and repositioned to the

spawn point, this is part of the pooling process which we will review later in this

section. Lastly we have the distance to camera, each particle before the draw call

calculates their distance to the current camera so they can sorted and rendered in the

proper order.

To better understand how the Emitter Reference behaves we need to review other

components of the Particle system.

Aitor Luque Bodet
Node-Based Particle System

46

5.3.2 Particle Modules

A Particle Module is a base struct with three pure virtual functions, meant to be

overridden by the children structs, however with common logic in all of them. The

methods are, Spawn, method to set the default values to the particle, the Update

modifues the particles through their lifetime, and finally the UpdateWithNode will do

the same as the Update however this time at the request of the EmitterNode. The base

struct will also contain a variable of Type, defining the type of module each of the

derived structs is, mostly used in the constructor.

Each derived Particle Module struct is in charge of one key aspect of the particles in

screen, some will act influencing all particles equally and others will modify each

particle individually. Here are all those included in this project.

• EmitterBase: The EmitterBase module modifies and adjusts the particle in

several ways. First of all in the Spawn function sets as the origin position for

every particle at the EmitterInstance position (The one managing all the active

partcles). In the Update takes care of the billboarding or alignment of each

particle in screen. The Billboard determines where the elements in it faces, it

has many uses in videogames, in our case we are using it to define the particles

orientation. We can split the types of Billboarding available in this project in

three. Screen Aligned, the particles always face towards the screen,

maintaining the proportions of the original texture or mesh as we can

appreciate in the view plane aligned in the Figure 19. The Camera or World

aligned rotates and transform the geometry to face towards a specific point,

even deforming the geometry as it gets closer to the viewport bounds, in the

viewport oriented of Figure 19 we can appreciate the phenomenon.

Aitor Luque Bodet
Node-Based Particle System

47

Figure 19 - Example of the Screen Aligned and Camera Aligned Billboard.

Finally we have the Axis Aligned which based on the axis given the billboard will make

the proper transformations to face the particles towards it, as shown in Figure 20.

The EmitterBase also calculates the distance of each particle to the current camera and

assign it to the own particle variable, distance to camera.

And last through the UpdateWithNode method with the provided information from

the nodes, it checks if the EmitterReference is active or not, sets the texture to the

material stored in the emitter reference, and it determines the kind of alignment.

Figure 20 - Example of the Axis Aligned Billboarding from Unity Engine.

Aitor Luque Bodet
Node-Based Particle System

48

• EmitterSpawn:

The Emitter Spawn only uses the Update functions, using a timer based on the

application delta time, each time it reaches the amount specified by the spawn

ratio it spawns a new Particle. The spawn ratio variable is modified through the

UpdateWithNode method.

• ParticlePosition:

This module only modifies the spawn position of the particles, so it won’t need to

use the update functions at all.

It has two possibilities to modify the spawn position; with an straight given position

from a node or receiving as input a game object.

When receiving a game object, the module looks for a random vertex from the

model mesh and gives it as a position to the next particle to spawn, thus spawning

particles from each vertex of the mesh at random intervals.

• ParticleSize:

Similar to the EmitterSpawn module, the ParticleSize only influences the particles

right before spawning by adjusting the size.

This module applies the given size from a node, it uses the UpdateWIthNode

function to check at runtime if the user modifies the size.

• ParticleColor:

The behaviour of this module resembles to the ParticlePostion, it can either receive

a direct color for the next particle to spawn or a color meant to be modified

overtime.

At the current stage of the project the color overtime can only go from one color to

another, to apply that logic the module interpolates between the two colors

(including the alpha transparency) with the normalized lifetime of each particle.

Aitor Luque Bodet
Node-Based Particle System

49

• ParticleLifetime:

The ParticleLifetime Spawn function assigns to each particle the lifetime value

stablished by the user, and the Update increases a counter, also stored in the

particle, each frame. Taking both variables into consideration the emitter can check

when a particle reaches their lifetime limit and reset them, ready to spawn again.

• ParticleVelocity:

This module uses all of the base functions to give the particles the proper direction

and speed logic.

To do that upon spawning the particle it assigns a given velocity from a node, more

specifically it receives a float4 in which the first three components indicate the

direction and the fourth component the speed.

This module also takes into consideration a force vector stored in the Emitter

Reference, which will be modified by a few nodes. This force vector carries both

direction and intensity of the pulling force, once again interpolating with the

particle lifetime the module does the proper calculations to lerp from the particle

velocity to the resulting force.

5.3.3 Emitter & Emitter Instance

The main components of the particle system are the Particle Emitter and Emitter

Instance. The Particle Emitter will work as a placeholder of all the necessary data and

modules to produce as many particles as needed with the desired configuration, and

the Emitter Instance as its name suggests, instantiate a copy of the Particle Emitter and

executes the actual logic of spawning, updating and killing the particles.

The Particle Emitter holds a vector filled with all the aforementioned modules, the

actuals in charge of modifying the particle properties and give them the expected

Aitor Luque Bodet
Node-Based Particle System

50

behaviour by the user. It also has a Resource Material a specific resource of the ASE

engine containing a texture, shared by all the particles spawned using this Particle

Emitter as reference, a color specific for each particle managed by the ColorModule

and a shader, a simple one in charge of rendering a texture into screen, also shared by

all the particles. This material along with the modules stored in the Particle Emitter will

be shared by all the particles spawned by the same Emitter Instance.

We just specified that the emitter instance is the one managing the production and

removal of the particles, to do so it uses a pooling system. It consists of filling a vector

with default particles up to a preestablished maximum, for performance purposes in

this project the maximum amount of particles allowed in screen are 5000. Upon

spawning a new particle, we retrieve the first empty particle in the vector using an

index defined by the number of particles already spawned or alive, right afterwards we

pass that particle as a parameter to the Spawn function of every module in the emitter

filling the empty particle with proper values. On the other hand, to delete or destroy a

particle that surpassed their lifetime limitation, we send it to the back of the vector

swap it with the last one alive and subtract one to the active particles index, thus that

particle won’t be rendered anymore into the screen, and the next time the spawn

function reaches out to spawn that same particle, it will override the data in it.

5.3.4 Resource Particle System

The resource is intended to work with the whole Resource Management system,

saving the resource with all the data from the Particle System into a custom library file,

so it can be loaded at any time with the previous modifications, and saving resources

inside the engine dependencies. Although for this project, due to time limitations this

feature was relegated out of the objectives scope, so the functionality of the Resource

Particle System varies from the others in the engine. It also holds a vector (from the

standard template library) of emitters and will be responsible of initializing those

added to the vector with the necessary Particle Modules.

Aitor Luque Bodet
Node-Based Particle System

51

5.4 Rendering and Instancing

Once reviewed how the particle systems manages all the particles before sending

them do the renderer, this section will cover how they are being rendered and the

optimizations made to improve the engine performance and support more particles on

screen.

In the first versions of the engine tool the rendering of the particles was done

individually, meaning each particle with its own mesh and material had a draw call to

render it into the screen. That method proved handy for the first versions; however it

offered a poor performance, it could be substantially improved and optimized.

While exploring possible optimizations, this rendering technique came up. Instancing is

based on the idea of having one object or in our case one mesh stored in a buffer, and

use the data of that mesh to render as many instances of it as needed in a single draw

call, thus taking the most profit out of our CPU and GPU. Also, in addition other buffers

are required to describe the particularities of each instance of that mesh.

To Instantiate particles first of all we needed a base mesh, a square to render the

appropriate texture, shaped with two triangles. To build this base mesh we stored

inside a buffer the vertex positions defining both triangles as shown in Figure 21, and

inside another buffer the UVs coordinates necessary to render the texture in it as

shown in Figure 22. This buffer initialization is done once, at the start of the

application, they won’t be updated, thus to OpenGL they are declared static being

reused as much times as necessary without modifying them.

Figure 21 - Particle Mesh vertices buffer Figure 22 - Particle Mesh UVs buffer

Aitor Luque Bodet
Node-Based Particle System

52

To differentiate the particles and add the proper exclusive properties to each, we

make use of a couple more buffers although this time they need to be updated

dynamically as they will be filled each draw call with new data.

The Figure 23 displays the necessary OpenGL functions calls to update the dynamic

buffers with the new data. The particleTransformBuffer and particleColorBuffer are

filled with the data stored in the vectors particleTransformData and particleColorData.

These vectors are also updated at the beginning of the draw call with the information

of all the particles to draw, they serve to fill the buffers with the collected data and at

the end cleared allowing to write on it again on the next draw call.

Once the buffers contain the particle data, comes the assigning of each buffer so the

particle shader receives the data organized to render. To do so there are couple of

modifications or steps yet, first of all we need to tell OpenGL which buffer is for the

base mesh and which will be modified dynamically, in Figure 24 we can identify how

after enabling the proper vertex attribute array and pointer we need to call an extra

function. The glVertexDivisor, the first parameter is the index of the vertex attribute, it

also points at the location of the layout in the shader. The second one is the divisor, it

will tell OpenGL the rate at which Vertex Attributes advance, meaning that if it is 0 the

index will advance once per vertex (used for the base mesh buffers) on the other hand

if it is non-zero it will advance once per divisor instances of all the vertices being

rendered (used for the specific characteristics buffers).

Figure 23 - UpdateParticlesBuffer function used to fill the buffers with the new dat.

Figure 24 - Use of the OpenGL function glVertexDivisor.

Aitor Luque Bodet
Node-Based Particle System

53

Finally comes the last step to have the instancing ready, here instead of using the

common glDrawArrays we swap, as shown in Figure 25, to glDrawArraysInstanced

with the amount of particles to render as the new last parameter. This function is

equivalent to looping through all the particles and calling glDrawArrays altough much

fasted and efficiently.

5.4.1 Instancing implementation results

As we can observe in the previous Figure 26 and Figure 27, the leap in performance

once the instancing was working, was considerable.

While rendering the same amount of particles in screen (See the red square in Figure

26 and Figure 27), the performance in framerate grew by a 200% and the milliseconds

it took to perform an update was reduced by 50%, allowing the engine to produce a

wider amount of particles at the same time while keeping an stable framerate.

Figure 25 - Use of the OpenGL function glVertexDivisor.

Figure 26 - Performance without Instancing

Figure 27 - Performance with Instancing

Aitor Luque Bodet
Node-Based Particle System

54

5.5 Node Editor

In this section of the documentation, we will go through all the features implemented

in the Node Editor. From the implementation of the library into the engine and how it

was modified to fit the project objectives, through the structure the Node Editor

follows and the interactions with the Particle System.

Figure 28 - Example of a complete Node Based Particle System window.

5.5.1 Pin (Base Class)

A pin it’s the structure used to connect two nodes, it must be between an Output pin

from one node and an Input pin from another one, creating a link between them

represented as a curved line from the pins position. As we can see in Figure 29 both

pins represent by an spheric shape and circled in red are connected by an straight

white line, thus being the link between them, framed in green.

In this project the Pins will be responsible for transmitting all the necessary

information, variables or functionality from one node to another.

Aitor Luque Bodet
Node-Based Particle System

55

The Pin parent class will be defined by an ID (Identifier Number) a Name, a pointer to

the parent Node and two defining categories:

• PinKind: It splits all pins into Inputs and Outputs. Inputs for all of those

positioned at the beginning of the node receiving information when linked to

an Output Pin of another node. The Outputs will carry the desired variables to

pass along, they will be modified and updated at the parent Node request, and

if linked to anther pin input both pins values will be updated.

• PinType: It defines the type of information or variables the pin will hold for

modification or to transmit to another pins. In order to connect two Pins they

also need to share the same PinType.

Figure 29 - Core Modular Structure Diagram.

Aitor Luque Bodet
Node-Based Particle System

56

5.5.2 Node (Base Class)

The Node object is a visual representation of the modifiable variables used to fill the

necessary modules for an Emitter to work.

It acts as the parent class for all the custom nodes necessary to build a Particle System

with the necessary modules. Each node has a vector containing the input and output

Pins, a name, an identifier number and a type definition for each derived node.

It also contains a pure virtual function, Draw(), meant to be inherited and overrided. It

has all ImGui necessary functions to create the Nodal structure mixing functions from

the Node library and some of our own modifications to build the necessary custom

nodes, all the node functionality is thought to be compatible and operate with the

original library functions.

Each node can hold multiple pins, as we’ve seen in the previous section, objects with

similar structure but totally different functionality between each other.

The link between nodes or more specifically its pins, are simple structures in charge of

holding the connection between them. Two linked pins can share the information

stored, however if there is no link stablished, they can’t hold any relation whatsoever.

Aitor Luque Bodet
Node-Based Particle System

57

5.5.3 Emitter Node

The emitter Node is the one assigned to each Emitter Instance, in every particle system

variant the emitter node will always be at the center, it’s a unique node used in every

case. Duplicating the emitter node will add another emitter to the current Particle

System Component, thus generating two sources for particles to spawn from. It

functions as an intermediary between all the information received by the connected

nodes to its inputs Pins and the system modules.

In Figure 30 we can appreciate several input pins, each referring to a key aspect to

create and shape a Particle Emitter, and a single output Pin Flow which will hold a

pointer to the Emitter Instance referred by the parent node. By connecting the PinFlow

to another node input PinFlow it grants that node, access to the Emitter Instance

without having any direct relation with it. This feature is used by nodes such as Gravity

Node and Gravitational Field Node. In further sections we will dive in depth into all

those pins logic.

Figure 30 – Emitter node with all the necessary Input Pins

Aitor Luque Bodet
Node-Based Particle System

58

5.5.4 Velocity Node

The velocity node takes as input two float4, each of those will use the XYZ component

to define the direction of the velocity and the W component for the speed, trick

inspired in Unreal, used to save space and unnecessary calculations.

The Velocity node uses as an output a PinFloat4Array; which holds an array of 2 float4,

which once linked to the Emitter node will be passed to the Velocity module for

further calculations.

Using a custom Randomize function, each float composing the vectors (X,Y,Z,W) will be

used as a minimum and maximum range to calculate that random value in between,

having as a result an almost unique direction and speed for each particle spawned.

5.5.5 Color Node / Color Overtime Node

The Color and Color Overtime Node follows the same structure as the Velocity Node.

However each component will be assigned to a RGBA value, thus limiting the value

range between 0 and 255, covering the whole color scheme.

Both nodes are meant to be linked to the Color input pin at the Emitter node, each

requiring different logic and results. The Color Node will provide each newly spawned

particle with a randomized color between the two inputs. On the other hand the Color

Overtime Node will interpolate between the two input colors throughout the particle

lifetime, hence beginning with the first color and dying with the second color

Figure 31 - Velocity and Color Nodes with two float4 as inputs.

Aitor Luque Bodet
Node-Based Particle System

59

5.5.6 Alignment Node

This Node works as a simple selectable from an array of strings, each one determines a

different alignment of the particles. The alignment calculations will be held by the

particle module, the node only specifies the one selected.

It uses a Float Pin to pass along the selected number of the enumerator, the module is

the one in charge of interpreting it and apply the transform with the correct rotation

to each particle in screen.

Figure 32 - Color and Color Overtime Nodes with two float4 as inputs.

Figure 33 - Alignment Node with all the possible alignments.

Aitor Luque Bodet
Node-Based Particle System

60

5.5.7 Texture Node

The texture Node holds a pointer to a Texture resource which is being used by the

ImGui::Image() function to display the currently assigned texture. By using the ImGui

drag and drop functions we can change the particles texture just dragging a texture

from the Assets Explorer Window to the image inside the node. (As we can appreciate

in Figure 34 the Assets Explorer Window and the Node Editor Window are positioned

by default one next to the other to facilitate the usage of this feature).

The Texture Node in order to transmit the information, uses a PinTexture, once linked

to the corresponding input pin in the Emitter Node, it assigns updates the assigned

texture to the material stored at the Emitter Reference with the new one. The material

is shared by all particles, even though color is an individual modification for each

particle.

Figure 35 - Texture Node.

Figure 34 - Positioning of the Assets Explorer Window and the Node Editor Window next to each other.

Aitor Luque Bodet
Node-Based Particle System

61

5.5.8 Spawn From Model Node

The main idea behind this Node is to fulfill one of the specific goals of this research

project, integrate and use external geometry as spawn origin for the particles.

Inspirated by many games using particles to vanish models or perform effects with

very specific shapes, here it is an attempt to recreate some of those effects.

For example (Renard, 2021) in this GDC talk Rupert Renard exposes how Santa Monica

Studio used several VFX and rendering techniques to achieve such result (The

technique referenced is shown in the first 3 min).

The SpawnFromModel Node shares some structural logic with the Texture Node, using

similar functions to display the currently used model and the drag and drop from

ImGui to modify it. I also features a Boolean on top of the image display, in charge of

activating or deactivating the visibility of the imported model in the scene.

The Spawn From Model Node imports any model assigned from the Assets Explorer

Widow as a new Game Object into the scene, giving the user full control over it to

relocate and edit it at compliance.

To communicate with the Emitter Node it uses a GameObject Pin, passing a pointer to

the object created in the scene and holding the model information in the Mesh

Component. The Module Position will be the one assigned to retrieve all the vertex

information used to render the mesh in the scene, interpret it and use it as unique

spawn points for new particles.

 Figure 36 - Spawn From Model Node.

Aitor Luque Bodet
Node-Based Particle System

62

5.5.9 Boolean Node

The Boolean node is thought to be a generic and reusable node in multiple situations.

Using an ImGui checkbox the user can modify the Boolean value transmitted through

the Bool Pin.

With the current state of the development the main purpose of this node is to

alternate the active state of the emitter.

Figure 37 - Boolean Node.

5.5.10 Float Node

The Float Node it’s a multipurpose node used for several necessary variables to build

the particle system, such as the particle Spawn Rate, Lifetime or Size.

Uses a slider to modify the float and pass it through the Float Pin.

Figure 38 - Float Node.

Aitor Luque Bodet
Node-Based Particle System

63

5.5.11 Vector3 Node

This node called Vector3 was the original velocity node meant to work on multiple

situations. However as the project continued its development and the already

reviewed Velocity Node was implemented, the Vector3 became useless in the current

environment, it does not have any purpose currently.

In the Figure 39 right below we can see how through three sliders it modifies each

component of a float3, if any modification takes place in runtime the PinFloat3 will

transfer the modified variable to the linked node.

Figure 39 - Vector3 Node

5.5.12 Gravity Node

The Gravity Node along the Gravitational Field Node are the only two nodes relying on

PinFlows to remain active. These nodes logic is mostly inspired by how Unreal Engine

makes use the nodes flow in their Blueprints. Based on the nodes connected by the

current flow they determine which nodes are being executed.

For this project the implementation of the flow was adapted to the needs of it, the

PinFlow carries a pointer to the EmitterReference stored in the EmitterNode, being the

first node with only an output PinFlow therefore marking the beginning of the flow.

Their structure and behaviour differ from all the other nodes described, even though

their logic will indeed influence all the particles in the scene they don’t relate directly

to any Particle Module.

Aitor Luque Bodet
Node-Based Particle System

64

By modifying the float slider in the Gravity Node, we alter the Y component of the

Force vector stored in the EmitterReference, this vector is always taken into

consideration while performing the proper velocity calculations of the particles. So, the

value altered in the node will directly influence how the particles behave, thus

dragging them downwards if the floating number is negative or upwards if it is

positive.

Figure 40 - Gravity Node.

5.5.13 Gravitational Field Node

The Gravitational Field Node shares most of the structure and logic with the Gravity

Node, it needs to be linked to an output FlowPin holding the current flow in order to

be active and influence the current particles.

Nonetheless the Gravitational Field only impact the particles inside a defined range, in

order to do so, upon creation inside the node constructor, it creates an empty

GameObject and saves a pointer to it. Having an empty GameObject allow the user to

reposition it at will, creating any desired effect bound by the two modifiable floats:

The range works around the object position, whenever a particle finds itself within that

range and the object it becomes affected by the intensity of the gravitational field. Like

with the Gravity Node the Intensity float value will determine if the particle is repelled

or attracted towards the object position.

Figure 41 - Gravitational Field Node

Aitor Luque Bodet
Node-Based Particle System

65

5.6 Node Editor Window

In this section we will revisit more in depth the window in charge of rendering all the

nodal structure we just reviewed, it creates, draws and cleans up all the nodes, pins

and links among other necessary features. We will focus on the implementation made

specifically for this project however we will briefly cover the functionality provided by

the library.

The main objective of this window is to give the user full control over the Particle

System without having to leave the window bounds, all the modifications and input

variables from the nodes are already implemented to function and update upon

modification.

5.6.1 Library Usage

The grid and node interaction are mainly handled via functions provided by the library.

It allows the navigation through the grid, the reposition of any node, the connection

from pin to pin with links, the group selection and the deletion of either nodes or links.

For example the group selection as shown in Figure 42, the library making use of ImGui

functions and other custom logic gathers every node within the boundaries of the

selection area traced by the user, thus by moving either node all of them will

reposition following the same motion.

Figure 42 - Group selection inside the Grid panel.

Aitor Luque Bodet
Node-Based Particle System

66

Another example of the usage of the library in this project is the linkage between pins,

by using the pins position inside the grid and inside the window itself, the custom

function, ImRect_ClosestLine traces the most efficient path connection between the

two pins while keeping a smooth delineate using Bezier curves. We can appreciate the

result in Figure 43.

Figure 43 - Example of the resulting Line rendered when two Pins are Linked.

Aitor Luque Bodet
Node-Based Particle System

67

5.6.2 Draw Call

The class Window has a pure virtual function called Draw meant to be overridden by

every child window, it focus on managing all the render processes.

As we can observe in Figure 44 the Window Node Editor Draw call definition can be

split into 5 logic groups. First of all we render the left panel which shows a list of all the

nodes in screen, in the next section we will dive further into that topic.

Right after comes the building and drawing of each node. To properly explain this block

we need to review the Node Builder. The Node Builder is a custom class expected to

function as a constructor or renderer of any raw node, meaning that given a few

parameters with a single Draw function definition could render any given node, it

ended up being discarded due to the complexity and differences between each custom

node. Now each node holds their own creation and drawing logic. Thus, the Node

Builder is currently used to draw the nodes headers, backgrounds and outlines,

summing up, only the common elements.

Figure 44 - UML of the Draw function of the Window Node Editor.

Aitor Luque Bodet
Node-Based Particle System

68

Returning to the main topic, the functions Begin, and End from the Node Builder will

handle the basic structure of each node, and in between the explicit Draw call of each

node renders the custom structure to either modify the information or receive it.

The next block is contained within the first one even though it is necessary to mention

it as a whole. The Pin drawing itself is done through the function DrawPinIcon from the

Node Editor Window, it classifies each pin based on the preestablished PinKind and

assign an specific shape to each, right afterwards the DrawIcon performs the actual

render using library functions. This draw call needs to be surrounded by two functions

indicating the begging of the pin drawing and the ending, telling the ImGui current

context what needs to be drawn right afterwards, and where.

The link drawing is rather straightforward, for every successfully link between two

pins, following the shortest path it draws a line delineating a smooth curve. This block

is mostly taken care of by the library.

In the last place we’ve got the input handling, in this section with only the mouse

position inside the window and the user input as parameter we can take care of; the

movement through the grid, the group selection, the popup creation menu and the

deleting of any link or node.

Aitor Luque Bodet
Node-Based Particle System

69

5.6.3 Window Usage – Left Panel

In this section we will focus on all the functionality and usage this window has to

offer.The window splits in two panels, the right one is the grid where all the nodes are

rendered and the user can navigate freely and the left one is a list of all the nodes

added to that grid along some buttons for further personalization and action shortcuts

for the user.

In the Figure 45 we can observe a screenshot of the left panel. With this visual support

in mind we will review each feature.

On the upper section, somewhat resembling of a header, we find three buttons:

• Zoom to Content: Given the current size of the grid, this button gathers all the

nodes added to the grid and adjust the zoom of the viewport to fit all of them,

allowing the user to visualize the whole nodal structure with a single glance.

• Show Flow: It provides visual aid to the user in order to visualize the current

flow of the linked nodes as shown in Figure 46, the core logic is handled by the

library.

Figure 45 - Left Panel

Aitor Luque Bodet
Node-Based Particle System

70

• Edit Style: This button opens up an auxiliary window dedicated exclusively to

style modifications, as we can discern in the Figure 47 the window contains a

series of sliders to simplify the modifications and adjustment of these

indicators. The implementation is quite direct, each slider modify a variable

used by le library to shape and structure the grid and all nodes inside.

Figure 46 - Direction of the Flow between nodes.

Figure 47 - Style Editor of the Window Node Editor.

Aitor Luque Bodet
Node-Based Particle System

71

After reviewing the buttons in the upper area, following the Figure 45 in a downwards

direction we stumble upon a list of all the nodes added to the grid, with those selected

being highlighted with the characteristic ASE blue tone, used in most of the GUI. With

a glimpse the user can identify the present nodes, select them, focusing on a single

one or even a group selection by holding Ctrl in the keyboard and clicking on the nodes

requested to join the selection.

Finally the last region of the left panel shows the nodes IDs of the selected nodes,

serving as merely information for the curious users, it doesn’t have any use outside the

internal management of the nodes.

5.3.3 Window Usage – Right Panel

Over the last few sections, we have been mentioning and referencing the grid for

multiple purposes in several occasions, even though we can also refer to it as the right

panel of the Node Editor Window, which essentially is a very large extension where the

user can organize and space their nodes at will.

The grid has a few possible inputs in order to navigate through the available space and

interact with anything in it:

• Mouse Wheel: Zoom in or out based on the direction spinning the wheel.

• Mouse Left Click: Open up the creation menu, see Figure 48.

• Hold Mouse Left Click and move: Navigate through the grid, at the mouse

motion speed.

• Hold Mouse Right Click and move: Delineate a blue square with the origin at

the first click extending all the way through the mouse motion until releasing

the right mouse button, selecting everything contained in the defined bounds.

Aitor Luque Bodet
Node-Based Particle System

72

Figure 48 shows the Node creation menu which splits into the particle nodes, the basic

nodes, and the focus. The focus works exactly as the button Zoom to content from the

left panel.

Figure 48 - Node creation Node (Right Click inside the Grid)

Aitor Luque Bodet
Node-Based Particle System

73

6. Conclusions
This project attempted to build from scratch an accessible user-friendly tool, capable

of recreating complex particle simulations imitating certain features present in

professional VFX software.

The objectives set in the initial planning phase, were expected to be fulfilled given the

initial time schedule and tasks distribution. Once reached the closing day of the last

milestone we can assert that most of the objectives were satisfied, even though some

of the expected features were left out, the final version brought a functional node-

based editor capable of creating multiple particle simulation effects.

The main objective that was left out due to time restrictions and personal priorities,

was the serialization of the Particle System and the Node placement in the grid. The

idea was to save both in a json file so whenever the user builds a simulation effect of

their liking the can save and recover it at any further session.

Figure 49 - Results achieved using the final version of the Node-Based Particle System.

Aitor Luque Bodet
Node-Based Particle System

74

Develop a solid base engine to build the tool with.

Adapt the node library and expand it with the necessary features to support the

particles interactions.

Build the Node-Editor panel.

Create the particle nodes with the necessary attributes.

Implement a basic Particle System.

Expand the Particle System and adapt it to the node graph workflow.

Implement the serialization of the Particle System variables or attributes stored

inside the nodes.

Allow multiple particles spawner and a high number of particles in scene.

Implement the integration and use of external geometry inside the particles

simulations.

Optimize the performance to ensure stable FPS.

Even though we added instancing to improve performance there are other methods

much more effective, such as GPU particle rendering, as we have explained before

GPUs are an extremely powerful tool when it comes to perform multiple processes

simultaneously. although this time, we attempted to adapt the planification to

implement this feature in the engine, it presented several obstacles made us discard

the feature completely.

Despite the objectives left out, the tool is capable of producing simulation such as the

ones in Figure 49 proving most of the objectives fulfilled and even couple additional

from the first ones stated.

We made wide research about Particle Systems, across multiple software’s, their

potential and implementation, the possible optimizations and how to make all of this

manageable from a Node-based graph editor, we reached that goal. The tool was set

to be an only display set up where to portray all the knowledge gathered along the

Aitor Luque Bodet
Node-Based Particle System

75

development given the starting point was almost null experience in the area, outcome

provides a visual aid of the current understanding of the author about the topic.

Even though the objectives were almost accomplished, the bar and expectations

weren’t set high due to personal time schedule issues. With more time investment, the

resulting tool could have been much superior with a lot of features left out and new

ones that came along the development (as ideas, never actually researched and

evaluated). The following section is dedicated to those features that could be

implemented with further work on the tool.

Aitor Luque Bodet
Node-Based Particle System

76

7. Next Steps
As recently mentioned in this last chapter of the research we will introduce discarded

features that were expected to be in the tool, and others that came as merely and

idea. All set aside for future development.

The current system spawns particles on the surface on a mesh with a starting velocity

and stores a copy of each particle on CPU, update them sequentially, and lastly upload

them to GPU for rendering each frame. The GPU system, with the help of compute

shaders to perform calculations that previously were done through CPU, reduce the

amount of data moving between the system and the GPU (render calls). As we already

talked about the capability of the GPU to perform multiple processes at once, it would

allow for a huge number of particles on screen and improve the performance of the

engine obtaining a more stable framerate.

Figure 50 - WickedEngine GPU Particles simulation

Aitor Luque Bodet
Node-Based Particle System

77

Another future feature, is the Particle System Window, meaning the editor of the

particle system would open a full window which only purpose is to contain, the Node

Editor, the Viewport Window, the particle system information and the engine

performance. Giving the user more space and mobility to edit and visualize the

simulation. The Figure 51 makes reference to the Unreal VFX editor: Niagara, with

approximately the windows previously mentioned.

Figure 51 - Unreal Engine: Niagara editor window

As addition to the possible features to develop in the upcoming future, there are some

nodes with extra functionality:

• Particle Destination node: Such node would help creatin flux simulations, from

the spawn point travelling all the way up to the destination position while

taking into consideration the initial speed and added forces.

• Size Overtime or Random between two sizes: It wouldn’t be hard to implement

such nodes given that most of the functionality is already included. It would

give another degree of freedom and personalization while creating the

simulations.

• Collision Handler/Obstacle: Node in charge of defining an area, within that area

particle collision are taken into consideration when colliding into other meshes

or empty colliders defined by the node.

Aitor Luque Bodet
Node-Based Particle System

78

8. Bibliography

Academy, K. (2022, April 5). Intro to particle systems. Retrieved from

https://www.khanacademy.org/computing/computer-

programming/programming-natural-simulations/programming-particle-

systems/a/intro-to-particle-systems

Blender. (2022, March 5). The Freedom to Create. Retrieved from

https://www.blender.org/about/

Burg, J. v. (2022, April 6). Building an Advanced Particle System. Retrieved from

https://www.gamedeveloper.com/programming/building-an-advanced-

particle-system

DigitalRune. (2022, April 04). Billboards and Particles. Retrieved from

https://digitalrune.github.io/DigitalRune-Documentation/html/4518dd2c-21ea-

4cf8-8dec-8b3a32584743.htm

Epic Games. (2022, March 07). Cascade Particle Systems. Retrieved from

https://docs.unrealengine.com/4.27/en-

US/RenderingAndGraphics/ParticleSystems/

Epic Games. (2022, March 7). Niagara Overview. Retrieved from

https://docs.unrealengine.com/4.27/en-

US/RenderingAndGraphics/Niagara/Overview/

Flipcode. (2022, April 04). Types of Billboards. Retrieved from

https://www.flipcode.com/archives/Billboarding-Excerpt_From_iReal-

Time_Renderingi_2E.shtml

Gantt. (2022, February 05). Gantt Chart tool. Retrieved from

https://app.teamgantt.com/

Glassdoor. (2022, March 5). Retrieved from https://www.glassdoor.es/Salaries/spain-

game-developer-salary-SRCH_IL.0,5_IN219_KO6,20.htm

Aitor Luque Bodet
Node-Based Particle System

79

Gross, A. (2022, February 26). ChilliSource Game Engine Particle System Study.

Retrieved from

https://scholarworks.umt.edu/cgi/viewcontent.cgi?article=11859&context=etd

Hacknplan. (2022, February 15). What is HacknPlan? Retrieved from

https://hacknplan.com/knowledge-base/what-is-hacknplan/

Ignac, M. (2022, March 04). Nodes. Retrieved from https://nodes.io/story/

Instancing. (2022, May 15). Rendering particles with Instancing. Retrieved from

http://www.opengl-tutorial.org/intermediate-tutorials/billboards-

particles/particles-instancing/

Lucid. (2022, March 20). UML tool. Retrieved from https://lucid.app/

Luten, E. (2022, February 26). OpenGLBook. Retrieved from

https://openglbook.com/chapter-0-preface-what-is-opengl.html

NatrureOfCode. (2022, April 09). Retrieved from

https://natureofcode.com/book/chapter-4-particle-systems/

PayScale. (2022, March 05). Retrieved from

https://www.payscale.com/research/ES/Job=Video_Game_Designer/Salary

PayScale. (2024, November). Retrieved from

https://www.payscale.com/research/ES/Job=Video_Game_Designer/Salary

Petty, J. (2022, March 03). What is Houdini & What Does It Do? Retrieved from

https://conceptartempire.com/what-is-houdini-software/

Quilez, I. (2022, March 10). Retrieved from https://iquilezles.org/articles/

Renard, R. (2022, February 09). Youtube. Retrieved from GDC Santa Monica Studio

Talk: https://www.youtube.com/watch?v=ajNSrTprWsg&t=170s

SideFx. (2022, February 27). Houdini. Retrieved from

https://www.sidefx.com/products/houdini/

Aitor Luque Bodet
Node-Based Particle System

80

Studiobinder. (2022, March 13). What is VFX? Retrieved from

https://www.studiobinder.com/blog/what-is-vfx/

Subject, C. -E. (2022, April 02). Particle Systems.

Turanszkij. (2022, June 01). WickedEngine. Retrieved from

https://github.com/turanszkij/WickedEngine

Unity. (2022, March 04). Visual Effect Graph. Retrieved from

https://www.youtube.com/watch?v=SUZzJcBIK80

Valve. (2022, March 05). Particle System Overview. Retrieved from

https://developer.valvesoftware.com/wiki/Particle_System_Overview

WIckedEngine. (2022, June 01). GPU particle simulation. Retrieved from

https://wickedengine.net/2017/11/07/gpu-based-particle-simulation/

8.1 Libraries

SDL:. https://www.libsdl.org/

Glew (OpenGL): http://glew.sourceforge.net/

ImGui: https://github.com/ocornut/imgui

ImGui Node Editor: https://github.com/thedmd/imgui-node-editor

MathGeoLib: https://github.com/juj/MathGeoLib

Assimp: https://github.com/assimp/assimp

Devil: https://github.com/DentonW/DevIL

https://www.libsdl.org/
http://glew.sourceforge.net/
https://github.com/ocornut/imgui
https://github.com/thedmd/imgui-node-editor
https://github.com/juj/MathGeoLib
https://github.com/assimp/assimp
https://github.com/DentonW/DevIL

	Abstract
	Keywords
	Links
	Index of Tables
	Index of Figures
	Glossary
	1. Introduction
	1.1 Motivation
	1.2 Problem presentation
	1.3 General Objectives
	1.4 Specific Objectives
	1.5 Project Scope

	2. State of the art
	2.1 Houdini
	2.2 Unity VFX Graph
	2.3 Blender
	2.4 Unreal Engine
	2.5 Conclusion

	3. Project Management
	3.1. GANTT
	3.2. GANTT Update
	3.3. SWOT
	3.4. Risks and Contingency Plan
	3.5. Cost Analysis

	4. Methodology
	4.1 Pre-Production
	4.2 Production
	4.3 Post-Production

	5. Project Development
	5.1 ASE - Another Small Engine
	5.2 Adapting the engine
	5.3 Particle System
	5.4 Rendering and Instancing
	5.5 Node Editor
	5.6 Node Editor Window

	6. Conclusions
	7. Next Steps
	8. Bibliography
	8.1 Libraries

