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ABSTRACT
Many astrophysical and terrestrial scenarios involving magnetic fields can be approached
in axial geometry. Although the smoothed particle hydrodynamics (SPH) technique has been
successfully extended tomagneto-hydrodynamics (MHD), awell-verified, axisymmetricMHD
scheme based on such technique does not exist yet. In this work we fill that gap in the scientific
literature and propose and check a novel axisymmetric MHD hydrodynamic code, that can
be applied to physical problems which display the adequate geometry. We show that the
hydrodynamic code built following these axisymmetric hypothesis is able to produce similar
results than standard 3D-SPMHD codes with equivalent resolution but with much lesser
computational load.

Key words: hydrodynamics-methods: numerical-magnetohydrodynamics.

1 INTRODUCTION

In spite of the large success achieved byCartesian SPHcodes there is
a scarcity of SPH calculations taking advantage of the axisymmetric
approach in computational fluid dynamics (CFD). To cite a few
of them: Herant and Benz (1992), Petschek and Libersky (1993),
Brookshaw (2003), García-Senz et al. (2009), Joshi et al. (2019),
Sun et al. (2021). Much more dramatic is, however, the case of
axisymmetric MHD simulations with SPH (SPMHD) because, as
far as we know, there is a manifest void of published material on
that topic.

Nevertheless, implementing a consistent, well-verified, ax-
isymmetric SPMHD code may broaden the range of applications
of such technique. In astrophysics, the magnetic field around stellar
objects can often be described with dipole or toroidal geometries,
both consistent with axial geometry. Good examples are the study
of magnetized accretion disks around neutron stars and the gravita-
tional collapse of an initially spherical cloud of a magnetized gas,
this last closely related to the formation of proto-planetary disks.
Another potential scenario is the core collapse supernova, where
magnetic fields and rotation play an important role in the develop-
ment of the explosion (Matsumoto et al. 2020). Resolution issues
add an extra degree of difficulty when these studies are conducted
in three dimensions. In some cases, the axisymmetric approach is
the only plausible option to study these scenarios (see, for example,
Zanni and Ferreira (2009) concerning simulations of accretion onto
a dipolar magnetosphere with an Eulerian axisymmetric hydrody-
namic code). Furthermore, MHD experiments in terrestrial labo-
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ratories can benefit from the joint virtues of the well-established
SPMHD technique (Price 2008; Rosswog 2009; Price et al. 2018;
Wissing and Shen 2020) plus the inherent better resolution of the
axisymmetric approach. A paradigmatic example are the Z-pinch
devices which aim to focus magnetically driven strong implosions
towards the symmetry axis (Haines et al. 2000). Additionally, re-
searchers can take advantage of hydrodynamic codes with axial
geometry to carry out convergence studies of resolution of their
own three-dimensional hydrodynamic codes, or perform computa-
tionally affordable parameter explorations.

In this work we develop and test a novel axisymmetric
magneto-hydrodynamic scheme, called Axis-SPHYNX, consistent
with the SPH formulation. Our work extends the axisymmetric code
developed by García-Senz et al. (2009) to theMHD realm by adding
the magnetic-stress tensor to the axisymmetric SPH equations. Fur-
thermore, the induction and dissipative equations are consistently
written in such geometry. We focus on the basic mathematical for-
mulation of ideal MHD, so that explicit current terms do not appear
in the governing equations. The involved physics is kept as simple
as possible: ideal equation of state (EOS), heat transport not in-
cluded, and no chemical or nuclear reactions. We show that, given
an axial symmetry, our MHD code is able to produce results similar
to those obtained in 3D with SPMHD codes, but with much lesser
computational effort. The numerical scheme has been verified with
a number of standard tests in ideal MHD, encompassing explo-
sions/implosions, hydrodynamical instabilities, and more complex
problems involving self-gravity.

This paper is organized as follows: section 2 introduces the
reader to the axisymmetric formulation of the SPH equations. Such
formulation is used to develop a suitable numerical scheme of ideal
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MHD in Sect. 3. Section 4 is devoted to describe and analyze the
results of five numerical tests encompassing a variety of physical
scenarios. Finally, a discussion on the results, the conclusions of
our work, and future prospects are presented in Sect. 5.

2 AXISYMMETRIC FORMULATION OF THE SPH
EQUATIONS

2.1 Gradient calculation with ISPH

Gradients and derivatives are calculated with the Integral Approach
(IA) proposed by García-Senz et al. (2012) and adapted to the par-
ticularities of axisymmetric geometry. The IA leads to an Integral
SPH scheme (ISPH) which was shown to improve the accuracy in
estimating gradients (Cabezón et al. 2012; Rosswog 2015; Cabezón
et al. 2017). Such method is especially suited to handle axisymmet-
ric hydrodynamics, where a good estimation of gradients in points
close to the Z-axis is critical. Additionally, the ISPH formalism nat-
urally incorporates corrective terms which are helpful in removing
the magnetic tensile-instability. In the IA formalism, the gradient of
any scalar function 𝑓 , associated to particle 𝑎 in the axisymmetric
plane, and defined by coordinates s(𝑟, 𝑧), with 𝑟 =

√︁
𝑥2 + 𝑦2 is,

[
𝜕 𝑓 /𝜕𝑥1

𝜕 𝑓 /𝜕𝑥2

]
𝑎

=

[
𝜏11 𝜏12

𝜏21 𝜏22

]−1

𝑎

[
𝐼1

𝐼2

]
𝑎

. (1)

From now on we use the notation 𝑥1 ≡ 𝑟; 𝑥2 ≡ 𝑧; 𝑥3 ≡ 𝜑

(with 𝜑 being the azimuth angle) indistinctly1. Coefficients 𝜏𝑖 𝑗
(𝑖, 𝑗 = 1, 2), and 𝐼𝑖 in Eq. (1) are,

𝜏
𝑖 𝑗
𝑎 =

𝑛𝑏∑︁
𝑏

𝑚𝑏

[𝑏
(𝑥𝑖

𝑏
− 𝑥𝑖𝑎) (𝑥

𝑗

𝑏
− 𝑥

𝑗
𝑎)𝑊𝑎𝑏 ( |s𝑏 − s𝑎 |, ℎ𝑎) , (2)

𝐼 (r𝑎) =
𝑛𝑏∑︁
𝑏

𝑚𝑏

[𝑏
𝑓 (r𝑏) (s𝑏 − s𝑎) 𝑊𝑎𝑏 ( |s𝑏 − s𝑎 |, ℎ𝑎)

− 𝑓 (r𝑎)
𝑛𝑏∑︁
𝑏

𝑚𝑏

[𝑏
(s𝑏 − s𝑎)𝑊𝑎𝑏 ( |s𝑏 − s𝑎 |, ℎ𝑎) ,

(3)

where 𝑛𝑏 is the number of neighbors of the particle, 𝑊𝑎𝑏 is the
kernel function, ℎ𝑎 , 𝑚𝑏 are the smoothing length and the mass of
the particle respectively, and [𝑏 is the surface density. The anti-
symmetric properties of the gradient of the kernel ensure that the
second term in the RHS of Eq. (3) is close to zero. Thus, it is
neglected. That assumption gives rise to the conventional ISPH
scheme (García-Senz et al. 2012; Rosswog 2015). An exception
to that procedure, which is connected with the magnetic tensile-
instability problem, is discussed in Sect. 3.4.

From now on,𝑊𝑎𝑏 (ℎ𝑎) ≡ 𝑊 ( |s𝑏 − s𝑎 |, ℎ𝑎), with |s𝑏 − s𝑎 | =√︁
(𝑟𝑏 − 𝑟𝑎)2 + (𝑧𝑏 − 𝑧𝑎)2, for the sake of clarity.

1 Note that our index notation slightly differs from that in García-Senz
et al. (2012). Coordinate indexes {𝑖, 𝑗 , 𝑘 } (as well as {𝑟 , 𝑧, 𝜑 }) are no-
tated superscript to make them compatible to the standard notation of the
magnetic-stress tensor. Also note the change in the order at which cylindrical
coordinates appear: {𝑟 , 𝜑, 𝑧 } in the standard notation, and {𝑟 , 𝑧, 𝜑 } in this
work, which emphasizes that the axisymmetric plane is mainly defined by
the pair {𝑟 , 𝑧 }.

2.2 The Euler hydrodynamic equations in axisymmetric
geometry

Because the axisymmetric formulation of SPH is probably not too
familiar to many readers, we first describe the Euler hydrodynamic
equations and discuss the MHD formalism later. The basic Euler
ISPH equations in axisymmetric geometry can be directly written
from the well known 3D-Cartesian SPH schemes, but changing the
interpolating kernel to𝑊2𝐷 (s) and with the following relationship
between the volumetric, 𝜌, and surface, [, densities,

𝜌 =
[

2𝜋𝑟
, (4)

which evidences that particles are not point-like entities but rings.
As a result, the mass of the particles is, in general, not constant
in axisymmetric schemes. The basic axisymmetric Euler equations
used in this work (Brookshaw 1985; García-Senz et al. 2009; Relaño
2012) are shown in Appendix A. These equations are adapted to the
IA formalism given by Eqs. (1, 2). The derivatives of the kernel are
then calculated with (Cabezón et al. 2012),

𝜕𝑊𝑎𝑏 (ℎ𝑎)
𝜕𝑥𝑖𝑎

⇐⇒ A𝑖
𝑎𝑏

(ℎ𝑎) ; 𝑖 = 1, 2 , (5)

with,

A𝑖
𝑎𝑏

(ℎ𝑎,𝑏) =
2∑︁
𝑗=1

𝑐
𝑖 𝑗
𝑎 (ℎ𝑎) (𝑥 𝑗𝑏 − 𝑥

𝑗
𝑎)𝑊𝑎𝑏 (ℎ𝑎,𝑏) , (6)

being 𝑐𝑖 𝑗𝑎 the coefficients of the inverse matrix in the IA given by
Eq. (1).

We stress that although the main Axis-SPH equations are
henceforth written within the ISPH formalism, translating them
to the standard SPH scheme with expression 5 is straightforward
( a calculation with traditional derivatives is shown in Sect. 4.2).
According to Appendix A, the Axis-SPH equations are as follows:

• Mass equation,

[𝑎 =

𝑛𝑏∑︁
𝑏=1

Y𝑏 𝑚𝑏𝑊𝑎𝑏 (ℎ𝑎) . (7)

• Momentum equations,

𝑎𝑟𝑎 = 2𝜋
𝑃𝑎

[𝑎
−

2𝜋
𝑛𝑏∑︁
𝑏=1

𝑚𝑏

(
Y𝑏,1𝑃𝑎 |𝑟𝑎 |
[2−𝜎
𝑎 [𝜎

𝑏

A𝑟
𝑎𝑏

(ℎ𝑎) +
Y𝑏,2𝑃𝑏 |𝑟𝑏 |
[2−𝜎
𝑏

[𝜎𝑎
A𝑟

𝑎𝑏
(ℎ𝑏)

)
,

(8)

𝑎𝑧𝑎 = −2𝜋
𝑛𝑏∑︁
𝑏=1

𝑚𝑏

(
Y𝑏,1𝑃𝑎 |𝑟𝑎 |
[2−𝜎
𝑎 [𝜎

𝑏

A𝑧
𝑎𝑏

(ℎ𝑎) +
Y𝑏,2𝑃𝑏 |𝑟𝑏 |
[2−𝜎
𝑏

[𝜎𝑎
A𝑧

𝑎𝑏
(ℎ𝑏)

)
.

(9)

• Energy equation,

𝑑𝑢𝑎

𝑑𝑡
= −2𝜋

𝑃𝑎

[𝑎
𝑣𝑟𝑎+

2𝜋
𝑃𝑎 |𝑟𝑎 |
[2−𝜎
𝑎

𝑛𝑏∑︁
𝑏=1

Y𝑏,1
[𝜎
𝑏

𝑚𝑏

(
𝑣𝑖
𝑎𝑏

A𝑖
𝑎𝑏

(ℎ𝑎)
)
,

(10)
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where 𝑃𝑎,𝑏 , 𝑢𝑎 are the pressure and specific internal energy, and
𝑣𝑖
𝑎𝑏

= 𝑣𝑖𝑎 − 𝑣𝑖
𝑏
. The binary parameter 𝜎[0, 1] allows to choose

between the two most widely used SPH schemes (see Appendix A),

𝜎 =

{
0 Euler − Lagrange schemes
1 geometric − density averaged schemes, . (11)

and the meanings of Y𝑏 , Y𝑏,1 and Y𝑏,2 are commented below. Ax-
isymmetric SPH schemes arising from the Euler-Lagrange equa-
tions (𝜎 = 0 in Eq. 11) were discussed in Brookshaw (1985);
García-Senz et al. (2009) and Joshi et al. (2019). On another note,
Cartesian SPH schemes built with 𝜎 = 1 are more effective in sup-
pressing the tensile instability than schemes with 𝜎 = 0 (Read et al.
2010; Wadsley et al. 2017). It is also feasible to make use of an
adaptive sigma, so that the scheme is Lagrangian compatible in a
large fraction of the system (García-Senz et al. 2022a). In this work
we focus on the crossed-density scheme 𝜎 = 1, because not only
removes the tensile instability, but allows a direct comparison with
the results by Wissing and Shen (2020) in the verification tests in
Sect. 4.
The parameter Y𝑏 in Eq. (7) (see also Table 1) is,

Y𝑏 =

{
+1 Real particles ,
−1 Axis − ghost particles, (12)

which assigns a signature to the neighbor particle. According to
the discussion below, the introduction of the sign Y𝑏 in the scheme
ensures that [𝑎 is correctly calculated with Eq. (7) in the proximity
of the singular axis.
The set of SPH equations above differs from those arising from a

2D-Cartesian description in several ways. Firstly, there are the first
terms on the RHS of Eqs. (8) and (10), which are called hoop-stress
terms. These are specific of the axisymmetric formulation. Another
particularity are the multiplicative |𝑟𝑎 |, |𝑟𝑏 | elements appearing in-
side the summations. As shown in Appendix A, these come after
inverting the volumetric density in the Euler equations. Finally,
there is a difference in the treatment of the particles moving around
the singular axis 𝑍 . Close to the Z-axis, the cylindrical symmetry
enforces 𝜌𝑟→0 = 𝜌0 and therefore [ = 2𝜋 |𝑟 |𝜌0 → 0 a feature which
is not guaranteed when simple reflective ghost particles are used.
Such unwanted behavior can be cured by multiplying [ and ∇[ by
a corrective factor, so that the limit above is enforced (García-Senz
et al. 2009). Another solution, sketched in Fig. 1, is to compute the
contribution to surface density of ghost particles as having nega-
tive density (inverted-reflected particles). According to Fig. 1, this
recipe restores the linearity of [(𝑟), leading to exact interpolations
close to the symmetry axis when Eqs. (7) and (12) are used to com-
pute the surface density. A basic feature of ISPH is that the gradient
of the surface density of a particle is determined comparing the
values of [ within the cluster of neighboring particles. Thus, a good
depiction of [(𝑟 → 0) guarantees that ∇[(𝑟 → 0) is well evaluated
when the integral approach, Eq. (1) is used to compute the gradient.
On another note, including sign-axis corrections in the momen-

tum and energy equations is also necessary, and it improved the
results in the studied test cases. The occurrence of Y𝑏 in these equa-
tions is due to the fact that inverted-reflected ghost particles have
{𝑚𝑏 < 0; 𝑟𝑏 < 0; [𝑏 < 0}. Because equations (8), (9), and (10)
work with positive masses (𝑚𝑏), radial distances (|𝑟𝑎 |, |𝑟𝑏 |), and
surface densities ([𝑎 , [𝑏), we need to include the signature Y𝑏 to
account for the axis-ghost particles via the parameters Y𝑏,1 and
Y𝑏,2, as shown in these equations. The value of Y𝑏,1; Y𝑏,2 in the
Axis-SPH equations, as a function of the chosen SPH scheme, 𝜎,
is shown in Table 1.

Table 1. Sign of axis-ghost particles in Eqs. (7, 8, 9, 10) as a function of the
chosen SPH scheme, determined by 𝜎. Real particles have Y𝑏 = Y𝑏,1 =

Y𝑏,2 = 1.

Scheme Y𝑏 Y𝑏,1 Y𝑏,2

𝜎 = 0 −1 −1 +1
𝜎 = 1 −1 +1 −1

Figure 1. The use of inverted-reflected ghost particles along with the IA
method trivially avoids the singularity problemswhen calculating the density
[𝑎 near the symmetry axis. We show here surface density in the Y-axis,
hence inverted-reflected ghost particles have negative [.

3 FORMULATION OF IDEAL MHD IN AXIAL
GEOMETRY

Adapting the axisymmetric ISPH equations toMHD is not too com-
plicated. The mass-equation, Eq. (7), does not change. In the mo-
mentum equations, Eqs. (8) and (9), the pressure terms are replaced
by the magnetic stress tensor (Price 2012),

𝑆
𝑖 𝑗
𝑎 = −

(
𝑃𝑎 + 1

2`0
𝐵2
𝑎

)
𝛿𝑖 𝑗 + 1

`0

(
𝐵𝑖𝑎𝐵

𝑗
𝑎

)
, (13)

where letters subscripts, {𝑎, 𝑏}, refer to particles, and {𝑖 = 1, 3; 𝑗 =

1, 3} are tensor components. Even though the scheme is basically
two-dimensional, with coordinates s(𝑟, 𝑧), a third coordinate, as-
sociated to the azimuth angle 𝜑, could be eventually necessary to
describe the toroidal component of the magnetic field and velocity.
These momentum equations must also include the magnetic contri-
bution to the hoop-stress term. The derivation of the axisymmetric
SPMHD equations, using the least action principle (Price 2012),
is shown in Appendix B. The axisymmetric equation of energy,
Eq. (18), remains unchanged.

We write the axisymmetric SPMHD scheme only in its
density averaged, “crossed”, form (i.e. 𝜎 = 1), because these are
the equations used in this work.
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• Mass conservation

[𝑎 =

𝑛𝑏∑︁
𝑏=1

Y𝑏 𝑚𝑏𝑊𝑎𝑏 (ℎ𝑎) (14)

• Momentum equations

𝑎𝑟𝑎 = 2𝜋

(
𝑃𝑎 + 𝐵2

𝑎

2`0
− (𝐵𝜑𝑎 )2

`0

)
[𝑎

+

2𝜋
𝑛𝑏∑︁
𝑏=1

𝑚𝑏

(
𝑆𝑟𝑖𝑎 |𝑟𝑎 |
[𝑎[𝑏

A𝑖
𝑎𝑏

(ℎ𝑎) + Y𝑏
𝑆𝑟𝑖
𝑏
|𝑟𝑏 |

[𝑎[𝑏
A𝑖

𝑎𝑏
(ℎ𝑏)

)
,

(15)

𝑎𝑧𝑎 = 2𝜋
𝑛𝑏∑︁
𝑏=1

𝑚𝑏

(
𝑆𝑧𝑖𝑎 |𝑟𝑎 |
[𝑎[𝑏

A𝑖
𝑎𝑏

(ℎ𝑎) + Y𝑏
𝑆𝑧𝑖
𝑏
|𝑟𝑏 |

[𝑎[𝑏
A𝑖

𝑎𝑏
(ℎ𝑏)

)
, (16)

𝑎
𝜑
𝑎 = 2𝜋

(
𝐵𝑟𝑎𝐵

𝜑
𝑎

`0[𝑎

)
+

2𝜋
𝑛𝑏∑︁
𝑏=1

𝑚𝑏

(
𝑆
𝜑𝑖
𝑎 |𝑟𝑎 |
[𝑎[𝑏

A𝑖
𝑎𝑏

(ℎ𝑎) + Y𝑏
𝑆
𝜑𝑖

𝑏
|𝑟𝑏 |

[𝑎[𝑏
A𝑖

𝑎𝑏
(ℎ𝑏)

)
,

(17)

where, repeated indexes in {𝑖 = 𝑟, 𝑧} are summed. Equation (17) is
only relevant in those applications involving {𝑣𝜑 , 𝐵𝜑 ≠ 0}, as it
is the case of scenarios combining rotation and toroidal magnetic
fields. Its impact in the simulations is discussed in Sect. 4.5.

• Energy equation

𝑑𝑢𝑎

𝑑𝑡
= −2𝜋

𝑃𝑎

[𝑎
𝑣𝑟𝑎+2𝜋

𝑃𝑎 |𝑟𝑎 |
[𝑎

𝑛𝑏∑︁
𝑏=1

𝑚𝑏

[𝑏

(
𝑣𝑖
𝑎𝑏

A𝑖
𝑎𝑏

(ℎ𝑎)
)
. (18)

3.1 The induction equation

First, we write the induction equation in a similar manner as in Price
(2012),

𝑑B
𝑑𝑡

= −B(∇ · v) + (B · ∇)v , (19)

where the non-ideal term associated with the current density J has
been removed from the expression. Secondly, we write B(∇ · v) and
the material derivative (B ·∇)v in cylindrical coordinates, assuming
𝜕
𝜕𝜑

= 0. Finally, we have,

𝑑

𝑑𝑡


𝐵𝑟

𝐵𝑧

𝐵𝜑

 =


−

(
𝜕𝑣𝑧

𝜕𝑧
+ 𝑣𝑟

𝑟

)
𝜕𝑣𝑟

𝜕𝑧
− 𝑣𝜑

𝑟

𝜕𝑣𝑧

𝜕𝑟
−

(
𝜕𝑣𝑟

𝜕𝑟
+ 𝑣𝑟

𝑟

)
0

𝜕𝑣𝜑

𝜕𝑟
𝜕𝑣𝜑

𝜕𝑧
−

(
𝜕𝑣𝑟

𝜕𝑟
+ 𝜕𝑣𝑧

𝜕𝑧

)



𝐵𝑟

𝐵𝑧

𝐵𝜑

 .

(20)

Thus, the induction equation is expressed as a linear equation,

𝑑𝐵𝑖𝑎

𝑑𝑡
=

3∑︁
𝑗=1

𝑟𝑖 𝑗𝐵
𝑗
𝑎 (21)

where 𝐵𝑖𝑎 is the 𝑖−component of themagnetic field acting on particle
𝑎, and coefficients 𝑟𝑖 𝑗 only depend on the velocity field around the
particle2.

3.2 Dissipation

As in Cartesian SPH, the axisymmetric approach demands some
amount of dissipation to handle shock waves. As it is usual in SPH,
this is done with the artificial viscosity (AV) concept. There are two
main sources of dissipation in MHD: those from the AV and those
arising from the induced currents in plasma sheets during collisions.
The former is purely hydrodynamical and is that implemented in
Axis-SPHYNX and described in Cabezón et al. (2017) with the
third spatial component removed. For the latter, we use the scheme
described in Tricco and Price (2013); Price et al. (2018); Wissing
and Shen (2020). We show here both for completeness. The viscous
acceleration is written as,

𝑎
𝑖,𝐴𝑉
𝑎 = − 1

2𝑚𝑎

∑︁
𝑏

{
𝑉𝑎 𝑚𝑏 Π′

𝑎𝑏
𝑓𝑎 𝐴𝑖

𝑎𝑏
(ℎ𝑎)

+ 𝑉𝑏 𝑚𝑎 Π′
𝑎𝑏

𝑓𝑏 𝐴𝑖
𝑎𝑏

(ℎ𝑏)
}
,

(22)

with,

Π′
𝑎𝑏

=

{
− 𝛼

2 𝑣
𝑠𝑖𝑔

𝑎𝑏
𝑤𝑎𝑏 for r𝑎𝑏 · v𝑎𝑏 < 0

0 otherwise ,
(23)

where 𝑉𝑎 = 𝑚𝑎/[𝑎 is the 2D volume element and 𝑓𝑎 , 𝑓𝑏 are the
Balsara limiters (Balsara 1995):

𝑓𝑎 =
|∇ · v|

|∇ · v| + |∇ × v| + 10−4 𝑐𝑎/ℎ𝑎
. (24)

The signal velocity includes a quadratic term, which is ade-
quate to handle strong shocks (Price et al. 2018),

𝑣
𝑠𝑖𝑔

𝑎𝑏
= 𝛼𝑐𝑎𝑏,𝑠 − 𝛽𝑤𝑎𝑏 (25)

where 𝑤𝑎𝑏 = v𝑎𝑏 · r̂𝑎𝑏 and 𝑐𝑎𝑏,𝑠 is the average of the sound speed
between particles 𝑎, 𝑏. The parameters 𝛼 and 𝛽 are kept constant
with default values 𝛼 = 1 and 𝛽 = 2. Future developments of Axis-
SPHYNX will incorporate AV switches (Cullen and Dehnen 2010;
Read et al. 2010) to better control the dissipation.

Regarding the magnetic dissipation, some amount is necessary
to smooth the transverse component of the magnetic field in shocks.
The adopted scheme was that described in Tricco and Price (2013);
Wissing and Shen (2020),

(
𝑑B
𝑑𝑡

)𝑑𝑖𝑠𝑠
= b𝐵∇2B , (26)

2 The induction equation, Eq. (21), has been integrated explicitly in this
work. Nonetheless, it can also be approached implicitly by inverting the
matrix in Eq. (20). An implicit solver could be appropriate in those cases
where, for whatever reason, the system of differential equations governing
the induction equation become stiff.
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with b𝐵 = 𝛼𝐵 𝑣𝑠𝑖𝑔,𝐵 ℎ, mimicking a magnetic resistivity coeffi-
cient. 𝑣𝑠𝑖𝑔,𝐵 is the characteristic signal velocity and 𝛼𝐵 ≃ 1. The
numerical analog of Eq. (26) is rather complicated, hence we show
it in Appendix C. It contains a Cartesian part (but with coordinates
𝑟 and 𝑧),(
𝑑B
𝑑𝑡

)𝑑𝑖𝑠𝑠,𝐶
𝑎

=

𝑛𝑏∑︁
𝑏=1

𝑚𝑏

[𝑏

b𝐵,𝑎 + b𝐵,𝑏

|𝑠𝑎𝑏 |
B𝑎𝑏

(
𝑠𝑖
𝑎𝑏

�̃�𝑖
𝑎𝑏

)
, (27)

where B𝑎𝑏 = B𝑎 − B𝑏 , 𝑠𝑎𝑏 is the unit vector joining the particles
𝑎, 𝑏 in the axisymmetric plane, and

𝐴𝑖
𝑎𝑏

=
1
2

[
A𝑖

𝑎𝑏
(ℎ𝑎) + A𝑖

𝑎𝑏
(ℎ𝑏)

]
. (28)

In cylindrical geometry, however, there are other contributions
(see Appendix C) to be added to the Cartesian part of Eq. (26). The
complete expression giving the evolution of each component of the
magnetic field is,

(
𝑑𝐵𝑖

𝑑𝑡

)𝑑𝑖𝑠𝑠
𝑎

=

(
𝑑𝐵𝑖

𝑑𝑡

)𝑑𝑖𝑠𝑠,𝐶
𝑎

+
(
b𝐵

𝑟

𝜕𝐵𝑖

𝜕𝑟

)
𝑎

− (1 − 𝛿𝑖𝑧)
(
b𝐵

𝑟2 𝐵𝑖
)
𝑎

,

(29)

where 𝛿𝑖𝑧 is the Kronecker-delta function.
The magnetic dissipation contributes to the rate of change of

the internal energy. The simplest way to estimate such contribution
is to neglect the non-Cartesian part of the dissipation, because it
is usually very subdominant. In that case, it is enough to use the
expression by Price et al. (2018) and Wissing and Shen (2020),
but restricted to the axisymmetric plane {𝑟, 𝑧} (García-Senz et al.
2022b). A more general procedure to build an energy equation,
which takes into account to all terms in Eqs. (26) and (29) is to
consider,

𝜌

(
𝑑𝑢

𝑑𝑡

)𝑑𝑖𝑠𝑠
𝑎

= b𝐵 J · J , (30)

where J = (∇ × B)/`0 is the electric current density vector. Equa-
tion (30) is simply governing the rate of heat (Joule-like) losses per
unit mass, and it is a positive definite magnitude. In axial geometry,
the components of J are,

J =
1
`0

{
− 𝜕𝐵𝜑

𝜕𝑧
𝑟 +

(
𝜕𝐵𝜑

𝜕𝑟
+ 𝐵𝜑

𝑟

)
𝑧 +

(
𝜕𝐵𝑟

𝜕𝑧
− 𝜕𝐵𝑧

𝜕𝑟

)
�̂�

}
, (31)

where the derivatives are calculated with the standard SPH pro-
cedure. In practice, it is preferable to evaluate the combination
Jb = b

1
2 J = (∇ × b

1
2 𝐵)/`0, rather than J, in the SPH summations,

because the resistivity is usually defined on pairwise basis, b𝐵 (𝑎𝑏).
The dissipation rate of magnetic energy is therefore (Jb · Jb )/𝜌.

In the tests below, the adopted value of b𝐵 is,

b𝐵 =
1
2
𝛼𝐵 𝑣𝑠𝑖𝑔,𝐵 |𝑠𝑎𝑏 | . (32)

For the signal velocity, 𝑣𝑠𝑖𝑔, we used the expression by Price
et al. (2018) in most of the tests below,

𝑣𝑠𝑖𝑔,𝐵 = |v𝑎𝑏 × ŝ𝑎𝑏 | , (33)

This showed to produce lesser dissipation than the Alfven
velocity, 𝑣𝑠𝑖𝑔,𝐵 = 𝑣A𝑙 𝑓 𝑣𝑒𝑛 =

√︁
𝐵2/(`0𝜌) far from shocks (Price

et al. 2018).

3.3 Cleaning the div B

A big challenge of numerical MHD is to permanently fulfill the
Maxwell equation ∇ · B = 0. In most of existing the SPH codes
this is achieved with divergence cleaning techniques. Here we use
the hyperbolic/parabolic cleaning scheme by Tricco et al. (2016)
which has proven to be very satisfactory keeping div B at accept-
able levels (Price et al. 2018). Additionally, the method is robust
and easy to implement. Adapting such parabolic cleaning scheme
to the axisymmetric geometry is straightforward. Basically, a term
(𝑑B/𝑑𝑡)𝜓 is added to the induction equation, Eq. (19), so that the
magnetic field diffuses and non-zero divergence values are rapidly
smeared through the whole system. The 𝑖−component of that con-
tribution is.

(
𝑑𝐵𝑖

𝑑𝑡

)
𝜓,𝑎

= −
∑︁
𝑏

𝑚𝑏

[𝑏
(𝜓𝑎 + 𝜓𝑏) Ã𝑖

𝑎𝑏
(𝑖 = 1, 2) , (34)

where the coefficients 𝜓 evolve following the differential equation
(Tricco and Price 2012),

𝑑

𝑑𝑡

(
𝜓

𝑐ℎ

)
= −𝑐ℎ∇ · B − 1

𝜏ℎ

𝜓

𝑐ℎ
− 1

2
𝜓

𝑐ℎ
∇ · v , (35)

and 𝑐ℎ = 𝑓clean 𝑣mhd, with 𝑣mhd =
√︃
𝑐2
𝑠 + 𝑣2

𝐴𝑙 𝑓 𝑣𝑒𝑛
and 𝜏𝑎 =

ℎ𝑎/(𝑐ℎ,𝑎𝜎𝑐) is a relaxation time. Following Wissing and Shen
(2020), the free parameters in the expressions above were set to
𝑓clean = 1 and 𝜎𝑐 = 1.

3.4 Magnetic tensile instability

Calculations where magnetic pressure largely exceeds the kinetic
gas pressure are prone to undergo the tensile instability (Phillips and
Monaghan 1985). Such instability concerns the harmful effect of the
magnetic-stress tensor elements 𝐵𝑖𝐵 𝑗/`0, when they become large
enough. The tensile instability induces strong particle clustering
which leads to numerical troubles, especially when |div B| is large.
One of the firsts solutions to the tensile-instability problem was
suggested byMorris (1996), who subtracted the last term in the RHS
in Eq. (13) from the acceleration equation, Eqs (15,16). Commonly
used forms of such corrective term to the momentum equation can
be found in Børve et al. (2001) and Price (2012).

It is worth to note that the ISPH scheme provides naturally
a similar corrective term to that by Morris (1996). According to
García-Senz et al. (2012) such term, 𝑓 𝑖

𝑑𝑖𝑣𝐵,𝑎
is,

𝑓 𝑖
𝑑𝑖𝑣𝐵,𝑎

= − 2
`0

∑︁
𝑏

𝑚𝑏
(𝐵𝑖𝐵 𝑗 )𝑎
𝜌𝑎𝜌𝑏

∇ 𝑗
𝑎𝑊𝑎𝑏 (ℎ𝑎) , (36)

The corrective term is applied wherever the magnetic pressure
exceeds the gas pressure ( 𝐵

2

2`0
> 𝑃). To smooth the transition be-

tween the weak and strong field regimes we use the interpolating
function by Wissing and Shen (2020),

H𝑎 =


2 𝛽𝑎 < 1

2(2 − 𝛽𝑎) 1 ≤ 𝛽𝑎 ≤ 2
0 Otherwise,

(37)

with 𝛽𝑎 =
2`0𝑃𝑎
𝐵2
𝑎

. Equation (36), is easily adapted to the axial-ISPH
formalism,
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𝑓 𝑖
𝑑𝑖𝑣𝐵,𝑎

= −2𝜋H𝑎

`0

∑︁
𝑏

𝑚𝑏
(𝐵𝑖𝐵 𝑗 )𝑎 |𝑟𝑎 |

[𝑎[𝑏
A 𝑗

𝑎𝑏
(ℎ𝑎) . (38)

The magnitude 𝑓 𝑖
𝑑𝑖𝑣𝐵,𝑎

in Eq. (38) is added to Eqs. (15) and
(16) to obtain the acceleration of the SPH-particles.

3.5 Boundaries

Arranging boundary conditions in axisymmetric geometry is deli-
cate. On one hand, the ∝ 1

𝑟 dependence of divergence-like expres-
sions which often appear in cylindrical geometry, makes the Z-axis
singular. On the other hand, considering ghost particles across the
Z-axis is necessary to adequately reproduce the surface density in
the axis neighborhood. Adding reflective ghost particles (𝑟 → −𝑟 ,
𝑧 → 𝑧, 𝑣𝑟 → 𝑣𝑟 , etc) is probably the best option but it has two
shortcomings. The first is that the surface density, [, is not correctly
reproduced when 𝑟 → 0 (see Sect. 2.2). The second is that particle
penetration through the axis line is not completely avoided.

Interpolating kernel functions with cylindric geometry can be
used (Omang et al. 2005) to overcome the first problem above.
Another option is to apply a suitable correction function to [(𝑟 →
0), as inGarcía-Senz et al. (2009). Particle excursions to the negative
region, 𝑟 < 0, of the plane can be blocked with the addition of ad-
hoc repulsive damping forces in the axis neighborhood (Li et al.
2020).

In this work, we used common reflective ghosts particles, with
the exception of the surface density, for which we have introduced
the notion of inverted-reflected ghost particles to exactly reproduce
[ when 𝑟 → 0 (see Fig. 1). The introduction of inverted-reflected
particles makes the profile of [(𝑟 → 0) linear, so that interpolations
are exact owing to the second-order accuracy of the SPH technique.
Furthermore, the chances of a SPH particle crossing the singularity
axis are greatly reduced when considering the arithmetic average of
the radial velocity of a particle, 𝑣𝑟𝑎 , moving close to the Z-axis,

𝑣𝑟𝑎

(
𝑟𝑎

ℎ𝑎
< 2

)
−→

〈
𝑣𝑟𝑎

〉
=

1
𝑛𝑏

∑︁
𝑏

𝑣𝑟
𝑏
. (39)

Replacing 𝑣𝑟 by its average, if 𝑟/ℎ < 2, enforces the correct
limit of radial velocity, < 𝑣𝑟𝑎 (𝑟 ≃ 0) >→ 0, and largely overcomes
particle penetration through the Z-axis. A similar recipe can be used
to smooth other magnitudes, as for example the r-component of the
magnetic field 𝐵𝑟 .

Periodic boundary conditions are used on the top and bottom
sides of the cylinder, while reflective ghost have been used on the lat-
eral surface. Small variations of these default boundary conditions
are explicitly stated in some of the tests below.

3.6 Conservation properties

The formulation of the SPMHD technique is essentially conser-
vative. Conservation of momentum and energy is, however, not
complete in the strong field regime due to the collateral effect of the
𝑓𝑑𝑖𝑣𝐵 correction (Price et al. 2018), which is needed to elude the
onset of tensile instability.

The conservation properties of axisymmetric SPH codes are
not as good as those shown by Cartesian formulations of SPH. The
conservation of linear, angular momentum, and energy in the real
semi-plane, (𝑟 ≥ 0), is not perfect. First, there is an exchange of mo-
mentumand energy across the Z-axiswith themirror ghost particles.

Second, and more important, the hoop-stress term in the momen-
tum equation (first term in the RHS of Eq. 15), does not preserve
the linear momentum in the 𝑟−direction. Nevertheless, when the
whole plane [−𝑟, +𝑟] is taken into account, the contributions of the
hoop-stress force on both sides balance out and linear and angular
momentum are in fact conserved. In the tests presented below, the
total energy is preserved to better than 𝜖𝐸 =

〈
Δ𝐸
𝐸0

〉
≤ 0.3% in the

axisymmetric models. The magnitude 𝜖𝑑𝑖𝑣𝐵 =

〈
ℎ div B
|B |

〉
, bound to

the divergence constraint div B = 0, remained 𝜖𝑑𝑖𝑣𝐵 ≤ 2% in all
studied cases.

3.7 Equivalent resolution and computational effort

The difference between axisymmetric and full 3D calculations in
amount of particles needed to resolve a specific resolution can be
highlighted with the concept of equivalent resolution. The parti-
cle density resulting from homogeneously distributing 𝑁 particles
in a volume 𝑉 is 𝑛 = 𝑁/𝑉 . The inverse of 𝑛, 𝑣 = 1/𝑛, repre-
sents the volume of the cell occupied by a single particle. The
inter-particle distance is 𝑏 = 𝑣1/𝐷 , with 𝐷 being the dimension
of the space. Taking 𝑏 as the minimum achievable resolution, and
assuming that axis-2D and full 3D calculations have equivalent
resolutions, i.e. 𝑏2𝐷 = 𝑏3𝐷 , we write:

𝑁3𝐷 =
𝑉3𝐷

(𝑉2𝐷)
3
2
𝑁

3
2
2𝐷 (40)

In cylindrical geometry, it is common to consider 𝑉2𝐷 = 𝑅𝑍

and 𝑉3𝐷 = 𝜋𝑅2𝑍 , where 𝑅 is the radius of the cylinder and 𝑍 its
altitude. Thus,

𝑁3𝐷 = 𝜋

(
𝑅

𝑍

) 1
2
𝑁

3
2
2𝐷 (41)

Many of the calculations reported in this work have 𝑍 = 2𝑅 so
that 𝑁3𝐷 ≃ 2𝑁3/2

2𝐷 . For a similar spatial resolution, the equivalent
number of particles is, in general, much higher in a 3D calculation
and, so it is the required computational effort. It is worth to note,
however, that some 3D scenarios can be simulated in boxes where
one of the sides of the box can be taken smaller than the other
two. In these cases, and according to Eq. (40), any reduction in
𝑉3𝐷 would significantly reduce the equivalent number of particles
𝑁3𝐷 . A further advantage of axial calculations is that theymanage to
work with fewer neighbor particles, 𝑛𝑏 , within the kernel range. The
default setting is 𝑛𝑏 = 60 and, occasionally 𝑛𝑏 = 100 (the advection
loop and cloud collapse tests), which is a factor ≃ 2 − 3 lesser than
𝑛𝑏 ≃ 200 − 300 typically used with Wendland interpolators in 3D.

Additionally, when self-gravity is included in the calculation,
the algorithm used to compute the gravitational force also has an
impact in the performance of the codes. The ring-like nature of par-
ticles in axial symmetric calculations makes it difficult to compute
gravity with standard hierarchical methods, such as the Barnes-Hut
scheme (Barnes and Hut 1986; Hernquist and Katz 1989). As com-
mented in Sect. 4.5 gravity can be calculated by computing the direct
ring-to-ring interaction (García-Senz et al. 2009) which, properly
parallelized, is enough to carry out many applications with good
performance.

In practical terms, we performed a comparison of the average
wall-clock time per iteration between our 2D and 3D calculations for
two scenarios thatwill be discussed below: theZ-pinch and the cloud
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collapse (see Table 3). The former is a pure hydrodynamical sim-
ulation, while the latter includes self-gravity. All four simulations
were compiled with the same compiler, similar compiler options,
and carried out in the same 128-cores AMD Epyc 7742 comput-
ing node. As a result the 2D calculations were in average about
×33 faster than the 3D calculation in the Z-pinch case, and about
×58 faster in the collapse case. Such comparisons should, never-
theless, be taken as purely indicative, as we are not only comparing
the geometry of the calculation, number particles, and number of
neighbors, but also parallelization paradigms, coding infrastructure,
memory management, programming languages, and other elements
that can speed up or slow down a code considerably. In any case,
unless an efficient and scalable algorithm to calculate gravity in
2D-Axial is developed, the advantage of the 2D code will dilute
as the number of particles increases when self-gravity is included
because of its current scaling order O(𝑁2). Note, however, that in
some astrophysical scenarios gravity can be handled as arising from
a point-like mass, as for example in accretion disks related studies.

4 TESTS

The performance of the axisymmetric formulation is analyzed in
light of the comparison between the hydrodynamic code Axis-
SPHYNX3 and the well-verified 3D SPMHD code described in
Wissing and Shen (2020) which we call GDSPH afterwards, for
a suite of test cases. GDSPH is the result of implementing ideal
MHD into the code Gasoline2 following the geometric density av-
erage scheme. To this end, we have run several MHD standard tests
but with fully axisymmetric initial conditions, and compared the re-
sults obtained with both codes for the same initial conditions. As we
will see, the match between Axis-SPHYNX and GDSPH is satisfac-
tory, with minor differences in the results attributable to the initial
particle setting, resolution issues, and implementation details.

The tests that we chose are representative of different physical
regimes:

• Advection and divergence-cleaning: in the advection loop test
we aim to explore the robustness of the code to simulating the evo-
lution of magnetized structures on time-scales larger than the char-
acteristic sound-crossing time. It is also a good test to analyze the
performance of the divergence-cleaning algorithm (subsect. 4.1).

• Explosions: we simulate the evolution of a point-like explosion
in a magnetized medium (the magnetic Sedov test). This test is well
suited to check the ability of the axisymmetric MHD code to deal
with strong shocks (subsect. 4.2).

• Implosions: we present the implosion induced by a toroidal
magnetic field acting on a plasma sheet moving in an orthogonal
direction to it. This test aims to analyze the performance of the
code when strong shocks are launched towards the symmetry axis
because of the Lorentz-force induced by an azimuthalmagnetic field
(subsect. 4.3).

• Instabilities: we simulated the growth of the Kelvin-Helmholtz
instability in a magnetized gas (subsect. 4.4).

• The collapse of a magnetized and rotating cloud of plasma:
this is a rather complete and demanding test which involves many

3 The Axis-SPHYNX code takes advantage of many features of the Carte-
sian 3D code SPHYNX Cabezón et al. (2017); García-Senz et al. (2022a),
although it does not yet include some sophisticated issues, such as general-
ized volume elements, grad h terms, or AV switches.

Table 2. Default value of relevant parameters controlling the simulation
with Axis-SPHYNX. Columns are: number of neighbors 𝑛𝑏 , index 𝑛 of the
sinc kernel 𝑊𝑠

𝑛 , artificial viscosity coefficients, heat diffusion coefficient
(𝛼𝑢) in AV, magnetic dissipation coefficient (𝛼𝐵), and cleaning parameters
controlling the 𝑑𝑖𝑣B = 0 constraint.

𝑛𝑏 𝑛 (𝑊𝑠
𝑛 ) (𝛼𝐴𝑉 , 𝛽𝐴𝑉 ) 𝛼𝑢 𝛼𝐵 𝑓𝑐𝑙𝑒𝑎𝑛 𝜎𝑐𝑙𝑒𝑎𝑛

60 (100) 5 (6) (1, 2) 0.05 0.5 1 1

Table 3. Number of SPH particles (𝑁 ), and minimum value of ℎ0 in the
different tests in this work.

Test SPH scheme 𝑁 ℎ0

Advection Loop Axis-SPHYNX 3622 8.0 · 10−3

Advection Loop GDSPH 1283 2.7 · 10−2

Sedov Axis-SPHYNX 3622 8.0 · 10−3

Sedov GDSPH 2563 1.3 · 10−2

Z-Pinch Axis-SPHYNX 3622 8.0 · 10−3

Z-Pinch GDSPH 5122 × 24 6.7 · 10−3

KH Axis-SPHYNX 3622 8.0 · 10−3

KH GDSPH 2563 1.3 · 10−2

Cloud-Collapse [1] Axis-SPHYNX 1782 1.1 · 1015 cm
Cloud-Collapse [1] GDSPH 763 1.0 · 1016 cm
Cloud-Collapse [2] Axis-SPHYNX 3562 6.0 · 1014 cm
Cloud-Collapse [2] GDSPH 5123 6.1 · 1014 cm

pieces of physics. Besides a barotropic EOS, gravitational and in-
ertial forces have to be incorporated to the numerical scheme (sub-
sect. 4.5).

Unless explicitly stated, the default values of the different pa-
rameters steering Axis-SPHYNX are those shown in Tables 2 and
3. The equation of state (EOS) was that of an ideal gas with 𝛾 = 5/3
in all tests, except in the collapse of a magnetized cloud in Sect. 4.5,
where a barotropic EOS was considered. Because axial calculations
are proner to suffer from numerical noise and pairing instability,
the use of high-order kernels is recommended. By default, Axis-
SPHYNX uses the 𝑊𝑠

𝑛 sinc family of kernels by Cabezón et al.
(2008, 2017) to carry out interpolations. In particular, we use the
𝑊𝑠

5 ,𝑊
𝑠
6 kernels in calculationswith 𝑛𝑏 ≃ 60, 100 neighbors, respec-

tively. The former performing similarly to the quintic, 𝑀5 spline.
We used the Wendland kernel 𝐶4 combined with 𝑛𝑏 ≃ 200 in the
GDSPH calculations.

4.1 Advection and diffusion of a magnetic loop

In this test, a weak magnetic loop is advected by a fluid stream
moving at constant velocity (Gardiner and Stone 2005; Hopkins
and Raives 2016). Grid-based codes have difficulties to describe
the evolution of the magnetic loop on many box-crossing periods,
owing to the intrinsic dissipation during advection. Nevertheless,
the Lagrangian nature of SPH codes makes them ideally suited
to this kind of problems and good results for this test have been
reported in recent literature (Price et al. 2018; Wissing and Shen
2020).

We consider a cylinder with radius 𝑅 = 1 and height 𝐻 =

2. The cylinder is filled with an homogeneous, 𝜌 = 1, flow of
plasma moving upwards with uniform velocity 𝑣𝑧 = 2 and constant
pressure 𝑃 = 1. A spherical magnetic bubble with 𝑅0 = 0.3 and
uniform magnetic field B = 𝐵𝜑 �̂�, with 𝐵𝜑 = 10−3, is settled
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Table 4. Relevant magnitudes used in the advection-loop test. Columns
are: computed model, initial magnetic vector, adopted value of the cleaning
parameter, relative change of themagnetic energy of the loop and normalized
value of div B at 𝑡 = 5 𝑇 .

Model B0 𝑓𝑐𝑙𝑒𝑎𝑛
|Δ𝑈𝐵 |
𝑈𝐵0

〈
ℎ |div B|
𝐵

〉
𝐿𝐴 10−3 �̂� 1.0 10−2 0.0
𝐿𝐵 10−3/

√
2 ( �̂� + �̂�) 0.2 0.11 9.0 10−3

𝐿𝐶 10−3/
√

2 ( �̂� + �̂�) 1.0 0.16 1.4 10−3

at the center of the cylinder (model 𝐿𝐴 in Table 4). Outside of
the bubble the magnetic field vanishes, 𝐵𝜑 (𝑟 > 𝑅0) = 0. The
spherical magnetic loop is simply advected with the plasma current
and nothing is expected to happen. Thus, the loop should keep its
initial morphology unchanged during many sound-crossing times.

Periodic boundary conditions were set on top and bottom of
the cylinder, whereas reflective conditions were implemented on its
lateral surface and across the symmetry axis. The 𝑣𝑟 component of
the velocity of particles with 𝑟 ≃ 0 (those with 𝑟 ≤ ℎ) was kept zero
during the calculation. With that setting and the initial conditions
above, the magnetized bubble periodically returns to the center of
the cylinder at times 𝑡 = 𝑛 𝑇 (𝑛 = 1, 2, 3...), with 𝑇 = 1.

Figure 2 shows the color map of |B| at times 𝑡 = 𝑇, 4𝑇, 5𝑇 of
model 𝐿𝐴 in Table 4. As we can see the magnetic loop preserves
its identity until 𝑡 ≃ 5𝑇 . At larger times the numerical noise alters
the strength of the magnetic field, especially close to the symmetry
axis (rightmost panel of Fig. 2). That result is not as good as that
in the three-dimensional calculation by Wissing and Shen (2020),
who managed to keep the bubble identity until 𝑡 ≃ 20𝑇 , but only
a little worse than in Price et al. (2018) where the bubble evolved
neatly well until 𝑡 ≃ 5𝑇 . The results with Axis-SPHYNX would
improve if a different, more stable, initial distribution of particles
is arranged, as for example a Voronoi-like particle setting, which is
left for future developments of the code. As commented in Sect. 3.5,
particles were spread in a simple square lattice to better handle with
the boundary conditions. The smoothing length, ℎ𝑏 , is updated at
each iteration, so that the number of neighbors per particle it is kept
approximately constant around 𝑛𝑏 = 100 in this test.

The first row in Table 4 gives more information regarding
model 𝐿𝐴. The loss of magnetic energy of the magnetic bubble
after five cycles, 𝑡 = 5𝑇 , is rather low, ≃ 1%, with the error in div B
being completely negligible. The second and third rows provide
the same information as in model 𝐿𝐴 but for models 𝐿𝐵 and 𝐿𝐶 ,
which are not divergence free from the outset. Specifically, inmodels
𝐿𝐵, 𝐿𝐶 the 𝑧 component of themagnetic field has 𝜕𝐵𝑧/𝜕𝑧 ≠ 0 close
to the edge of the magnetic bubble. Figure 3 shows the diffusion
of the magnetic field during the process of the div B cleaning at
𝑡 = 1𝑇, 5𝑇 and for two values of the cleaning parameter 𝑓𝑐𝑙𝑒𝑎𝑛. The
colormaps of 𝐵(𝑟, 𝑧) obtainedwithAxis-SPHYNXandGDSPH are
qualitatively similar, with the three dimensional calculation showing
a bit more diffusion. The geometry of the magnetic field around the
bubble, shown by the vector arrows in Fig. 3, is neatly dipolar and
remarkably similar in both calculations.

Figure 4 depicts the temporal evolution of the magnetic en-
ergy in the loop, 𝑈𝐵 (in 10−6 units, left panel), and the magnitude〈
ℎ |div B |

B

〉
. As shown in the figure, the evolution of these magni-

tudes in model 𝐿𝐴 is practically flat while the evolution of models
𝐿𝐵, 𝐿𝐶 strongly depends on the adopted value of the cleaning
parameter 𝑓𝑐𝑙𝑒𝑎𝑛. The default choice, 𝑓𝑐𝑙𝑒𝑎𝑛 = 1, gives more diffu-
sion but is much more efficient than 𝑓𝑐𝑙𝑒𝑎𝑛 = 0.2 to keep div B ≃ 0,

Figure 2.Magnetic field strength (normalized to the initial value B0) of the
magnetic loop with B = 𝐵𝜑 �̂� (model 𝐿𝐴 in Table 1), after 𝑡 = 𝑇 , 4𝑇 , 5𝑇
complete periods (𝑇 = 1).

as expected. The magnetic energy content of the loop in model 𝐿𝐶
evolves similarly in the GDSPH calculation, although it stabilizes
slightly earlier. The absolute value of < ℎ div B/B > is almost
ten times larger in the 3D calculation but both, axial and Cartesian,
decay fast with similar characteristic times.

4.2 The magnetic Sedov test

The axisymmetric version of the MHD Sedov test is easily set by
considering an initially spherically symmetric explosion subjected
to an external magnetic field B(𝑠, 𝑧) = 𝐵𝑧𝑧. We compare the evolu-
tion computed with Axis-SPHYNX to that obtained with GDSPH
for the same initial conditions. To seed the explosion we assume a
Gaussian initial profile of internal energy:

𝑢(𝑠) = 𝑢0 exp[−(𝑠/𝛿)2] + 𝑢𝑏 , (42)

with,

𝑢0 =
𝐸𝑡𝑜𝑡

(𝜋3/2 𝜌 𝛿3)
, (43)

where 𝐸𝑡𝑜𝑡 = 5 is the total initial energy of the explosion, 𝛿 = 0.1,
and B = 10 ẑ. The medium is homogeneous with 𝜌0 = 1 and the
plasma is an ideal gas with 𝛾 = 5/3 and background internal energy
𝑢𝑏 = 1.

An unexpected problem in this test was the large amount of
numerical noise present at late times in the central volume of the box,
clearly seen in Fig. 5 (panel c). Such particle disorder is not present
in the GDSPH calculation. The noise originates from the feedback
between the initial setting of mass points in a lattice and the strong
magnetic field. In axial geometry, the initial grid is not as stable as
in Cartesian calculations because of the uneven distribution of mass
within the kernel range. Even more, any tiny amount of noise in the
unshocked region is magnified by the magnetic field. Unfortunately,
raising the number of neighbors without increasing the total number
of particles did not solve this issue.

To face this problem we introduce a magnetic noise-trigger,
NT𝐵, which keeps the artificial viscosity sufficiently high to
counter-balance the residual magnetic force in the unshocked re-
gion. In our case, it is sufficient to steer the Balsara limiters, with
Z = 𝐵2

2`0 𝑃
, where Z is the the inverse of the 𝛽-plasma parameter:

MNRAS 000, 1–19 (2015)



Axisymmetric SPMHD 9

Figure 3. Same as Fig. 2 but adding a vertical component to the magnetic field, B = 𝐵𝜑 �̂� +𝐵𝑧 ẑ, which makes 𝑑𝑖𝑣B ≠ 0 at the bubble edge (models 𝐿𝐵, 𝐿𝐶 in
Table 1). Upper panels depict the diffusion of the magnetic field during the divergence cleaning process, as calculated with Axis-SPHYNX with f𝑐𝑙𝑒𝑎𝑛 = 0.2
and f𝑐𝑙𝑒𝑎𝑛 = 1, respectively. The same is shown in the lower panels but with GDSPH.

NT𝐵 : 𝑓𝑎 =


1 if Z ≥ 0.5 ,
𝑚𝑎𝑥 [ 𝑓 0

𝑎 ,
2
3 (5Z − 1)] if 0.2 < Z < 0.5 ,

𝑓 0
𝑎 if Z ≤ 0.2 ,

(44)

where 𝑓 0
𝑎 is the limiter given by Eq. (24) and 𝑓𝑎 is the final adopted

value. The impact of including or not NT𝐵 in the simulations is
shown in Fig. 5, which depicts the color map of velocity at 𝑡 = 0.048
in four cases. These have been calculated with NT𝐵 switched on
(panel a), off (panel c) and without Balsara corrections (panel b),
whereas panel d was obtained with traditional derivatives andNT𝐵
switched on. The results convincingly show that the inclusion of
a magnetic noise trigger significantly reduces the particle disorder.
For this problem, calculating the derivatives with the IA or with the

traditional scheme leads to similar results, but the latter is slightly
noisier.

Figure 6 summarizes the results of the calculations and Ta-
ble 3 shows additional information regarding the total number of
particles used in this test and on the resolution. Simulations with
Axis-SPHYNXmake use of the magnetic noise-trigger, Eq. (44), to
keep the system more ordered before the arrival of the shock wave.
The color maps depicting the density, pressure, modulus of velocity,
and magnetic field at 𝑡 = 0.048, do not show significant differences
between the simulations carried out with Axis-SPHYNX (leftmost
sub-figures) andGDSPH (rightmost sub-figures). They qualitatively
agree with the results published by Rosswog and Price (2007), who
simulated a similar explosion but inside a weaker magnetic field.
The shock front is slightly ahead in the axisymmetric case, which is
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Figure 4. Advection loop test. The left panel depicts the evolution of div B
error for models in Table 4 until 𝑡 = 5𝑇 . The right panel shows the magnetic
energy content,𝑈𝐵 (in 10−6 units), of the bubble for the same models.

Figure 5. Velocity color-maps at 𝑡 = 0.048 with/without a magnetic noise
trigger. The upper-left panel (a) is for the adaptive noise trigger described in
the text. The upper-right panel (b) only considers the maximum value of the
trigger (i.e. no Balsara corrections). Panel (c) was obtained switching-off
the trigger. The lower-right panel (d) is the same as panel (a) but calculated
with traditional derivatives instead the IA.

due to the higher resolution in that calculation. The color maps of
the velocity modulus (third panels) show extended regions with low
velocity at 𝑟 ≤ 0.5, well captured in both cases. The relative error
of total energy is low, 𝜖𝐸 ≃ 10−2 %, at all times. The estimator
𝜖𝑑𝑖𝑣B measuring the averaged deviation of the constraint div B was
always 𝜖𝑑𝑖𝑣B ≤ 0.2%.

4.3 Z-pinch like implosion

The so-called Z-pinch devices were among the first to explore the
feasibility of having controlled nuclear fusion on Earth (Haines et al.
2000; Shumlak 2020, for a review). They have also been applied
to conduct many laboratory astrophysics experiments (Ciardi et al.
2004; Bocchi et al. 2013). In the Z-pinch machines a strong toroidal
magnetic field, 𝐵𝜑 is created by a mega-ampère electric current
pulse (≃ 1`𝑠) moving in the axial direction. The Lorentz force ex-
erted by 𝐵𝜑 on the plasma, which initially moves in the Z-direction,
impels it towards the Z-axis. The compression of the plasma at the
symmetry axis can be strong, provided that the initial conditions
have a good degree of axial symmetry.

To sketch the basic physics of a magnetic Z-pinch process in a
simple numerical experiment, we consider an initially homogeneous
plasma with 𝜌 = 1, 𝑃 = 1 in a cylinder with radius 𝑅 = 1 and height
𝑍 = 2. The plasma is initially moving with 𝑣𝑧 = −1. A toroidal
magnetic field, 𝐵𝜑 , with maximum strength 𝐵0 = 3 and with a
gaussian profile,

𝐵𝜑 = 𝐵0 exp
[
−(𝑟 − 𝑟0)2/𝛿

]
, (45)

which is set at around coordinate 𝑟0 = 0.5 with characteristic width
𝛿 = 0.01. The boundary conditions are periodic on top and bottomof
the cylinder and reflective on the lateral surface. As in the point like
explosion test, we aim to compare the results with Axis-SPHYNX to
those obtained with GDSPH and identical initial conditions. Table 3
shows the number of SPH particles and initial resolution, ℎ0.

We present the main results of this numerical experiment in
Fig. 7. That figure depicts the profiles of the r-averaged magnitudes
of 𝜌, 𝐵𝜑 , 𝑣𝑟 , at different elapsed times. The first and second rows
correspond to the axisymmetric calculation, whereas the other two
resulted from the full three-dimensional calculation with GDSPH.
As we can see, the match between the results obtained with both
codes is excellent. The main difference is that the density peak
around the point of maximum compression at 𝑡 = 0.18 is a slightly
larger in the axisymmetric calculation. The toroidal component of
the magnetic field evolves very similarly in both simulations. The
profile of the radial velocity is particularly sensitive to the magnetic
part in the hoop-stress term in Eq. (15). Nevertheless, the 𝑣𝑟 profile
at the supersonic shock front is sharp and well captured by both
codes. The evolution after the rebound, 𝑡 ≥ 0.18, is also very similar.
The profiles of 𝑣𝑟 obtained with Axis-SPHYNX are not as smooth
as those calculated with GDSPH, owing to the lesser number of
neighbors used to carry out the interpolations (𝑛𝑏 ≃ 60 in the
former and 𝑛𝑏 ≃ 200 in the latter). In this test, the total energy
was preserved up to Δ𝐸

𝐸0
≤ 0.4% and the constraint div B = 0 was

fulfilled to machine precision.

4.4 Magnetic Kelvin-Helmholtz instability

The growth of the Kelvin-Helmholtz instability across the contact
layer between fluids with different densities is a challenging test
for hydrodynamic codes. Resolution issues limit the growth rate of
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Figure 6. Point-like explosion in a magnetized medium calculated with AxisSPHYNX (leftmost sub-figures in each panel) and GDSPH (rightmost sub-figures
in each panel.

the instability during the initial linear stage to, later on, hinder the
development of small wave-lengths in the non-linear phase (Mc-
Nally et al. 2012). Modern SPH codes are able to cope with the
KH instability, even when a relatively low number of particles is
used (Rosswog 2020), but provided the density contrast is not very
large. Adding a magnetic field to the plasma turns this test into an
interesting, albeit more complex, MHD problem where we expect
some alignment of the billows with the dominant direction of the
magnetic field.

Three-dimensional SPH simulations of the growth of the KH
instability in a weakly magnetized medium have been reported by
Hopkins and Raives (2016); Wissing and Shen (2020). The main
effect of the magnetic field is to uncoil and stretch the vortexes dur-
ing the non-linear stage, so that the instability looks rather different
from that of non-magnetized systems. The axisymmetric realization
of these 3D-MHD experiments is similar to that described in the
papers above. It consists on two interacting fluids moving along two
concentric cylindrical pipes, but in opposite directions. An uniform
magnetic field, 𝐵𝑧 , pointing along the axis of the pipe, is added so
that it interacts with the radial component of the velocity, 𝑣𝑟 , of the
unstable layer via the Lorentz-force.

We consider a cylinder with radius 𝑅 = 1 and longitude 𝐿 = 2.
A fluid with density 𝜌𝑖𝑛 = 2 moving with 𝑣𝑧 = +0.5 fills the inner
half, 𝑟 ≤ 𝑅/2, of the cylinder. The outer part of the cylinder is filled
with a lighter fluid, 𝜌𝑜𝑢𝑡 = 1, moving with 𝑣𝑧 = −0.5. Both fluids
share the same pressure, 𝑃 = 2.5, and are immersed in a magnetic
field 𝐵𝑧 = 0.1. The inner and outer fluids are simulated with two
square lattices with sizes according to the density contrast. The fluid
interface was not smoothed, and it was altered by adding a small
radial perturbation to 𝑣𝑟 ,

𝑣𝑟 = Δ𝑣𝑟 exp
(
− |𝑟 − 0.5|

0.1

)
sin (4𝜋𝑧) (46)

with Δ𝑣𝑟 = 0.05. Table 3 shows the total number of particles and
initial maximum resolution.

Figure 8 depicts the color-map of the density at two times,
𝑡 = 1.5 and 𝑡 = 2.8 which are representative of the early and
evolved non-linear phase respectively4. The density maps at 𝑡 =

4 The characteristic growth-time in the plane-parallel approximation can be
taken as a rough reference, 𝜏𝐾𝐻 ≃ 1.08
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Figure 7. Implosion in a magnetized medium (Z-pinch test) calculated with Axis-SPHYNX (first and second rows) and with GDSPH (third and fourth rows).
The figure shows the shell-averaged values of density (𝜌), azimuthal component of the magnetic field (𝐵𝜑), and radial velocity (𝑣𝑟 ).

1.5 are rather similar, with the axisymmetric calculation showing
more structure owing to the higher resolution and more sensitive
estimation of gradients. During the advanced non-linear stage, 𝑡 =
2.8 in Fig. 8, the cumulative effect of themagnetic force stretches the
vortex along the symmetry axis of the cylinder and the morphology
of the billows differ. The axial calculation shows more distorted
billows than the Cartesian simulation and with less rounded tips.
This is due to the different sensitivity of the numerical schemes used
to compute the gradients. The integral approach is more sensitive
to the initial setting of particles in two square grids of different

size around the interface. Smaller initial asymmetries grow more
efficiently during the non-linear stage in the axial calculation. A
way exert control on such sensitivity was to raise the floor value
of the Balsara limiters from its default setting, 𝑓 𝑓 𝑙𝑜𝑜𝑟𝑎 = 0.05 to
𝑓
𝑓 𝑙𝑜𝑜𝑟
𝑎 = 0.3 to better retain the identity of the billows 5.
A zoom of the particle distribution around the two central

5 A plot depicting the evolution during the non-linear phase with 𝑓
𝑓 𝑙𝑜𝑜𝑟
𝑎 =

0.05, showing more asymmetrical billows at 𝑡 = 2.8 can be found in García-
Senz et al. (2022b)
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Figure 8. Particles distribution in the KH experiment at two elapsed times, 𝑡 = 1.5 and 𝑡 = 2.8, for models calculated with AxisSPHYNX (first two panels)
and calculated with GDSPH (XZ slices in the two rightmost panels).

Figure 9. Zoom showing the distribution of particles at t=2 as calculated
with Axis-SPHYNX. The fluid inter-phase is smooth and free of gaps, with
no indications of the tensile instability.

billows at 𝑡 = 2 is shown in Fig. 9. The contact surface between the
dense and light fluids is clean and continuous, showing no gaps or
any trace of the tensile instability.

The suitability of using a Lagrangian method to describe in-
stabilities in presence of magnetic fields is further highlighted in
Fig. 10, which depicts the geometry of 𝐵𝑟 (upper panels) and 𝐵𝑧

(lower panels) at 𝑡 = 2. The magnetic field is well threaded along
the distorted plasma stream-lines and vortexes, with the radial and
axial components drawing lines in phase opposition. There is a good
agreement between the axial and the three-dimensional calculation.

4.5 Collapse of a rotating-magnetized cloud

The collapse of a rotating and magnetized dense cloud of gas em-
bedded in a more dilute medium has become a standard test to
verify MHD hydrodynamic codes (Hennebelle and Fromang 2008;
Hopkins and Raives 2016). Outflows from gravitationally collaps-
ing magnetized dense gas clouds were obtained for first time with
SPH by Price et al. (2012). This test involves many physical ingredi-
ents of astrophysical interest such as gravity, rotation, and magnetic
fields. Because the collapse of the cloud basically proceeds with ax-
ial geometry (except in those cases where there is fragmentation),
this scenario can be approached with axisymmetric MHD codes.

The initial setting is the same as in Wissing and Shen (2020).
A cloud with mass𝑀 = 1 𝑀⊙ and density 𝜌𝐶 = 4.8 ·10−18 g·cm−3,
rotates around the Z-axis with 𝜔0 = 4.24 · 10−13 s−1. The cloud is
surrounded by background interstellar medium (ISM), with a radius
ten times larger and density 𝜌𝐼𝑆𝑀 = 𝜌𝐶/300. The whole system
is inside a magnetic field B = 610

` 𝑧 `𝐺 aligned with the rotation
axis of the cloud, where ` is a parameter steering the intensity of

the magnetic field. Three-dimensional simulations of the collapse,
with a barotropic EOS,

𝑃 = 𝑐2
𝑠,0

√√
1 +

(
𝜌

𝜌0

) 4
3
, (47)

with 𝜌0 = 10−14 g·cm−3and 𝑐𝑠,0 = 0.2 km·𝑠−1, have shown that
the implosion of the cloud would produce a narrow jet only if the
parameter ` is neither too large, nor too small: 2 ≤ ` ≤ 75 (Hopkins
and Raives 2016; Wissing and Shen 2020).

This test is challenging for an axisymmetric SPH code because
the collapse is strong and impels the particles towards the singularity
axis. The central density increases five orders of magnitude and the
Courant criterion enforces the time-step to be extremely small. In
this test, we want to check if Axis-SPHYNX is able to reproduce
the main features of the collapse of the cloud, as for example the
maximum achieved density, the equatorial flattening of the cloud,
and the jet emergence at around the free-fall time of the cloud,
𝑡 𝑓 𝑓 =

√︃
3

2𝜋𝐺𝜌𝐶
≃ 1.2 · 1012 s. We carried out three simulations

of this scenario with ` = ∞, ` = 20, ` = 10, from the initially
spherically symmetric conditions until the formation of the disk,
and the beginning of the jet launch at 𝑡 ≃ 1.1 · 1012 s.

The gravitational force, g, is calculated using the scheme de-
scribed in García-Senz et al. (2009) and is added to the acceleration.
Basically, self-gravity is calculated with direct ring-to-ring interac-
tions, first computing the gravitational potential, 𝑉𝑔, to later make
the SPH estimation of its gradient g = −∇𝑉𝑔. Obviously, this results
in a larger computational effort than in the previous, gravity-free
tests but it is still lower than that invested by GDSPH for the same
scenario, owing to the large differences in the number of particles
in both codes (Table 3) and average number of neighbors (× 2 in
GDSPH).

For this problem, it is better to calculate the specific angular
momentum ℓ𝑧 = 𝑟𝑣𝜑 , rather than 𝑣𝜑 , so that in absence of azimuthal
forces the angular momentum is conserved. The momentum equa-
tions, Eqs. (15), (16), and (17), become,

𝑑𝑣𝑟𝑎

𝑑𝑡
= 𝑎𝑟𝑎 + 𝑔𝑟𝑎 + (ℓ𝑧)2

𝑟3 . (48)

𝑑𝑣𝑧𝑎

𝑑𝑡
= 𝑎𝑧𝑎 + 𝑔𝑧𝑎 . (49)

1
𝑟

𝑑ℓ𝑧

𝑑𝑡
= 𝑎𝜑 . (50)
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Figure 10. Color-map depicting the distribution of the radial (upper panels) and axial (lower panels) components of the magnetic field at 𝑡 = 2 in the KH
simulation.

Figure 11.Density color-maps of the core of the collapsing cloud at common
elapsed time 𝑡 = 1.1 · 1012 s for the low resolution calculations (Cloud
Collapse [1] in Table 3). The upper panels show the results with Axis-
SPHYNX for three values of the magnetic field, 𝐵𝑧 = 610/`. The same is
shown in the lower panels, but calculated with the code GDSPH.

Figure 11 shows the density color map of the innermost region
of the cloud at 𝑡 = 1.1 · 1012 s, when the jets, if any, are born. That
time is close to the free-fall time 𝑡 𝑓 𝑓 ≃ 1.2 · 1012 s. The upper row
of panels depict the calculation with Axis-SPHYNX and the lower
row is for the GDSPH calculation, both evolved from the initial
models with lower resolution in Table 3. The color map from the
GDSPH calculation was built taking a slice in cylindrical coordi-
nates with width Δ𝜑 = 0.05 rads. Both panels look similar, with
the axisymmetric calculation being a bit less evolved than its 3D
counterpart. At 𝑡 = 1.1 · 1012 s the cloud has already collapsed into
a disk with similar central densities, ≃ 10−12 g·cm−3, in both cases.

Figure 12. Emergence of collimated jets at the core of the collapsing cloud
at elapsed time 𝑡 = 1.1 · 1012 s and ` = 10, ` = 5, obtained with enhanced
resolution (Cloud Collapse [2] in Table 3). The last panel shows the results
with GDSPH at the same elapsed time and ` = 10, and depicting a slice cut
in plane XZ.

The two codes indicate the same qualitative trend with decreasing
values of the ` parameter. A high value, ` → ∞ (i.e. 𝐵𝑧 ≃ 0) there
is no jet at all, whereas suitable conditions for jet formation are seen
for ` < 20, which is encouraging. Nevertheless, no collimated jets
attached to the rotation axis were observed in these low-resolution
calculations with Axis-SPHYNX. Simulations with enhanced res-
olution follow a similar trend, but this time clear collimated jets
develop, especially with ` < 10. This is shown in Fig. 12 which
emphasizes the color intensity around the axis region so that the jets
are better highlighted. As it can be seen, the calculation with ` = 10
gives birth to a jet, albeit lesser developed than its 3D counterpart
(last snapshot in Fig. 12). On another note choosing ` = 5 produces
a more robust and well-developed jet. Although these results sug-
gest that for this kind of problems some improvement of the axial
calculation is still necessary, the outcome is roughly consistent with
the calculations by Hopkins and Raives (2016) who did not find
collimated jets in their low-resolution SPH calculations, needing
from low `-values (` < 10) to observe well-developed jets with
higher resolution.

Several causes can contribute to the difficulties in building the
jet in the Axis-SPHYNX calculation and to the observed dissimili-
tudes at 𝑡 ≃ 𝑡 𝑓 𝑓 . The first could be attributable to the slightly differ-
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Figure 13.Maximum magnetic field 𝐵𝑚𝑎𝑥 versus maximum 𝜌𝑚𝑎𝑥 for the
case ` = 10 calculated with Axis-SPHYNX (magenta line) and GDSPH
(blue line).

ent representation of the azimuthal velocity field at the very center
of the collapsed cloud between the axial and the 3D simulations. In
three-dimensional calculations the velocity 𝑣𝜑 is smoothed by the
AV close to the center of the disk which approaches rigid rotation. In
axial geometry, however, the AV only works in the {𝑟, 𝑧} plane and
𝑣𝜑 is not smoothed. A plausible remedy to that behavior is to add
some amount of shear viscosity to 𝑎𝜑 , with the scheme developed
by Sijacki and Springel (2006) for example, which is left to future
extensions of the code. It could also be possible that the mixing
of particles with different masses during the anisotropic collapse
leads to a build up of the numerical errors in the central region.
In this respect, a possibility worth to explore is to consider SPH
formulations which are less dependent on the mass of the particles
(Ott and Schnetter 2003).

The follow-up of the maximum strength of the magnetic field,
𝐵𝑚𝑎𝑥 versus the maximum density, 𝜌𝑚𝑎𝑥 is a good indicator of the
collapse process (Wurster et al. 2018). Figure 13 shows the profile
of 𝐵𝑚𝑎𝑥 as a function of the maximum density at common elapsed
times for ` = 10. The match between the 2D-axial and the 3D
calculation is pretty good until 𝜌𝑚𝑎𝑥 ≃ 3 · 10−14 g·cm−3, when
non-linear effects take over. The agreement is qualitative hereafter.
But both calculations follow the same trend, showing a similar large
increase of the slope of the profile at 𝜌𝑚𝑎𝑥 > 3 ·10−14 g·cm−3. Near
𝜌𝑚𝑎𝑥 ≃ 10−12 g·cm−3there is a factor 3-5 difference between both
calculations, which is not a surprise given the sensitivity of 𝐵𝑚𝑎𝑥

on implementation details, as for example the amount of magnetic
dissipation. Such strong dependence of the 𝐵𝑚𝑎𝑥 (𝜌𝑚𝑎𝑥) trajectory
on implementation details (Ohmic and ambipolar diffusion, Hall
effect), was also reported by Tsukamoto et al. (2015) and Wurster
et al. (2018) although with different initial conditions, EOS and in
simulations spanning a wider density range.

5 CONCLUSIONS

In this work, we propose a novel SPH formulation of ideal magneto-
hydrodynamics with axial geometry and provide the basic pieces to
build an axisymmetric SPMHD simulation code. The main goal is
to tackle problems with higher resolution and lower computational
effort than standard SPMHD codes. Such computational tool can
be of interest not only to astrophysicists but to plasma researchers
in general. The proposed scheme and its associated hydrodynamic
code, called Axis-SPHYNX, have been verified by direct compar-
ison with the results of the three-dimensional SPMHD code by
Wissing and Shen (2020).

On the whole, there is a good match between both hydrody-
namic codes in the performed tests, with the axial approach showing
a bit more numerical noise, especially close to the symmetry axis.
Axisymmetric SPH calculations are intrinsically noisier than Carte-
sian, owing to the uneven distribution of mass within the kernel
range, even in homogeneous systems. Furthermore, they are more
prone to undergo pairing instability and the use of high-order inter-
polators is recommended. In calculations involving low plasma-𝛽
values (i.e. in the strong field regime) the use of a magnetic noise-
trigger, such as that in Eq. (44), helps to prevent the growth of
the numerical noise. Looking for both, more stable initial models
and procedures to control particle disorder deserve future work.
The agreement with GDSPH is excellent in the case of simulat-
ing explosions and implosions in magnetized systems, which could
be of interest to understanding the physics of plasma compression
in terrestrial laboratories. The axisymmetric code is also able to
simulate the growth of instabilities in magnetized plasmas, such as
the Kelvin-Helmholtz instability, which involves longer time-scales
than explosions. Even though the axial formulation of SPMHD does
not guarantee complete conservation properties, we found that en-
ergy and momentum in the Z-direction (not affected by hoop-stress
forces) are preserved ≤ 0.1%. The averaged divergence constraint
⟨ℎ div B/B⟩ remained below 2% in all the tests.

Axis-SPHYNX can handle more complex scenarios such as
those involving gravity and rotation, of indisputable interest to as-
trophysics. As shown in Sect. 4.5, with the collapse of a magnetized
cloud, the proposed scheme is able to successfully cope with that
scenario. There is a quantitative agreement between the two codes
during the nearly free-fall phase of the collapse and further forma-
tion of the high-density, rotating disk at the equator. Nevertheless, in
more advanced stages the agreement between both codes is basically
qualitative and work has to be done to enhance the calculations. For
example, one should consider the role of the shear viscosity in the
evolution of the azimuthal component of the velocity, 𝑣𝜑 . Imme-
diate prospects are to incorporate grad-ℎ effects, AV switches, as
well as to improve the initial model generation, and to refine the
treatment of particles that move close to the singularity axis.
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APPENDIX A: DERIVATION OF THE AXISYMMETRIC
SPH EQUATIONS

A simple procedure to obtain different flavors of the SPH equations
of momentum and energy is to consider the following identity (Read
et al. 2010),
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The axisymmetric analog of the momentum equation is ob-
tained from,
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Expressing the nabla operator in cylindrical coordinates
{𝑟, 𝑧} and differentiating the expression (A2), putting the result
into Eq. (A1) and approaching the derivatives with summations in
the usual SPH way leads to,
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Choosing 𝜙 = 1 above leads to the standard axisymmetric
SPH momentum equations, which are the same as those obtained
with the minimum action principle (Brookshaw 1985). Picking 𝜙 =

[ leads to the geometric density averaged schemes, which are better
suited to suppress the tensile instability (Read et al. 2010). As
shown in Sect.(2.2), both families of equations can be reduced to
a single expression steered by a binary parameter 𝜎[0, 1]. The
ensuing momentum equations are those given by Eqs. (8) and (9).
Note that the radial component of the acceleration, Eq. (A3), has a
termwhich does not depend of the gradient of the kernel. Such term,
called the hoop-stress, is an outstanding feature of the axisymmetric
geometry.

A suitable expression for the energy equation is,
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where D = 𝜕
𝜕𝑟

r̂ + 𝜕
𝜕𝑧

ẑ is the 2D-axisymmetric form of the ∇ oper-
ator. Making use of the parameter 𝜎[0, 1], Equation (A5) is written
as Eq.(10) in Sect. (2.2)

APPENDIX B: DERIVATION OF THE AXISYMMETRIC
SPHMHD EQUATIONS

A rather common, and perhaps the most natural procedure to for-
mulate the SPHMHD equations, is to make use of the variational
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principle 𝛿𝑆 =
∫
𝛿𝐿𝑑𝑡 = 0 (Price 2004, 2012), where the physi-

cal action, 𝑆, is minimized. In the following we closely follow the
demonstration in Price (2012), but adapting it to the peculiarities of
axial symmetry, and we refer the reader to that paper for the details.
The variation of the Lagrangian of the system, 𝛿𝐿, including the
magnetic energy is,

𝛿𝐿 =𝑚𝑎𝑣𝑎 · 𝛿𝑣𝑎−∑︁
𝑏

𝑚𝑏

[(
𝜕𝑢𝑏

𝜕𝜌𝑏
𝛿𝜌𝑏

)
+ 1

2`0

(
𝐵𝑏

𝜌𝑏

)2
𝛿𝜌𝑏 + 1

`0
B𝑏 · 𝛿

(
B𝑏

𝜌𝑏

)]
,

(B1)

Using Eq. (4), the density variation in axial geometry is,

𝛿𝜌𝑏 = − [𝑏

2𝜋𝑟2
𝑏

𝛿s𝑏 + 1
2𝜋𝑟𝑏

𝛿[𝑏 =

− [𝑏

2𝜋𝑟2
𝑏

𝛿s𝑏 + 1
2𝜋𝑟𝑏

∑︁
𝑐

𝑚𝑐 (𝛿s𝑏 − 𝛿s𝑐) · D𝑏𝑊𝑏𝑐 (ℎ𝑏)

(B2)

Direct substitution of 𝛿𝜌𝑏 above, besides
𝜕𝑢𝑏
𝜕𝜌𝑏

=
𝑃𝑏
𝜌2
𝑏

and 𝜌𝑏 =

[𝑏
2𝜋𝑟𝑏 in Eq. (B1) leads to identical contributions to the acceleration
as in Price (2012), except those arising from the hoop-stress force:

(
𝑎𝑟
ℎ𝑜𝑜𝑝

)
𝑏
= 2𝜋

𝑃𝑏 + 𝐵2
𝑏

2`0

[𝑏
(B3)

We now evaluate the contribution of the last term on the RHS
in Eq. (B1) separately. The magnitude 𝛿( B𝑏

𝜌𝑏
) is obtained from the

magnetic induction equation,

𝑑

𝑑𝑡

(
B
𝜌

)
=

(
B
𝜌
· ∇

)
v , (B4)

which, once expressed in cylindrical coordinates, and with 𝜕/𝜕𝜑 =

0, becomes,

𝑑

𝑑𝑡

(
B
𝜌

)
=

(
𝐵𝑟

𝜌

𝜕𝑣𝑟

𝜕𝑟
+ 𝐵𝑧

𝜌

𝜕𝑣𝑟

𝜕𝑧
−

𝐵𝜑𝑣𝜑

𝜌𝑟

)
𝑟+(

𝐵𝑟

𝜌

𝜕𝑣𝑧

𝜕𝑟
+ 𝐵𝑧

𝜌

𝜕𝑣𝑧

𝜕𝑧

)
𝑧+(

𝐵𝑟

𝜌

𝜕𝑣𝜑

𝜕𝑟
+ 𝐵𝑧

𝜌

𝜕𝑣𝜑

𝜕𝑧
+
𝐵𝜑𝑣𝑟

𝜌𝑟

)
�̂� .

(B5)

The expression above has contributions from the velocity of
the particle and from the derivatives of the velocity (noted next with
superscript 𝐷𝑣𝑒𝑙). With SPH summations, the latter are,

𝑑

𝑑𝑡

(
B
𝜌

)𝐷𝑣𝑒𝑙

𝑏

= −
∑︁
𝑐

𝑚𝑐 (v𝑐 − v𝑏)
{

B𝑏

𝜌2
𝑏

· D𝑏𝑊𝑏𝑐 (ℎ𝑏)
}
, (B6)

and,

𝛿

(
B
𝜌

)𝐷𝑣𝑒𝑙

𝑏

= −
∑︁
𝑐

𝑚𝑐 (𝛿R𝑐 − 𝛿R𝑏)
{

B𝑏

𝜌2
𝑏

· D𝑏𝑊𝑏𝑐 (ℎ𝑏)
}
, (B7)

where 𝛿R ≡ (𝛿𝑟, 𝛿𝑧, 𝛿𝜑) stands for a three-dimensional virtual dis-
placement (but note that D ≡ ( 𝜕

𝜕𝑟
, 𝜕
𝜕𝑧

, 0) is the nabla-operator
restricted to the axisymmetric plane). The scalar product,

B
`𝑜

· 𝛿
(
B
𝜌

)𝐷𝑣𝑒𝑙

, (B8)

is formally the same as that in Price (2012), with one coordinate
changed to 𝜑, thus leading to a similar contribution to the accel-
eration via the variational principle. It is worth noting that if the
azimuthal velocity 𝑣𝜑 is not zero, or has non-zero derivatives, it
induces an acceleration 𝑎𝜑 orthogonal to the axisymmetric plane.

Finally, the terms − 𝐵𝜑𝑣𝜑
𝜌𝑟 and 𝐵𝜑𝑣𝑟

𝜌𝑟 in Eq. (B5) lead to addi-
tional hoop-stress contributions to the accelerations 𝑎𝜑 and 𝑎𝑟 re-
spectively,

𝑎𝑟
ℎ𝑜𝑜𝑝

= −
𝐵2
𝜑

`0𝜌𝑟
= −2𝜋

𝐵2
𝜑

`0[
, (B9)

which comes from a virtual displacement along the 𝑟−direction and
has to be added to Eq. (B3) to compute the total hoop-stress force.
Similarly, a virtual displacement in the 𝜑-direction leads to,

𝑎
𝜑

ℎ𝑜𝑜𝑝
=

𝐵𝑟𝐵𝜑

`0𝜌𝑟
= 2𝜋

𝐵𝑟𝐵𝜑

`0[
, (B10)

which in some particular scenarios will make its way to contribute
to the tangential acceleration 𝑎𝜑 of the particle.

To summarize, the different components of the momentum
equation, written in ISPH notation, read:

(
𝑑𝑣𝑟

𝑑𝑡

)
𝑎

= 2𝜋

(
𝑃𝑎 + 𝐵2

𝑎

2`0
− (𝐵𝜑𝑎 )2

`0

)
[𝑎

−

2𝜋
𝑛𝑏∑︁
𝑏=1

𝑚𝑏

(
𝑆𝑟𝑖𝑎 |𝑟𝑎 |
[2
𝑎

A𝑖
𝑎𝑏

(ℎ𝑎) +
𝑆𝑟𝑖
𝑏
|𝑟𝑏 |
[2
𝑏

A𝑖
𝑎𝑏

(ℎ𝑏)
)
,

(B11)

(
𝑑𝑣𝑧

𝑑𝑡

)
𝑎

= 2𝜋
𝑛𝑏∑︁
𝑏=1

𝑚𝑏

(
𝑆𝑧𝑖𝑎 |𝑟𝑎 |
[2
𝑎

A𝑖
𝑎𝑏

(ℎ𝑎) +
𝑆𝑧𝑖
𝑏
|𝑟𝑏 |
[2
𝑏

A𝑖
𝑎𝑏

(ℎ𝑏)
)
.

(B12)

The momentum equation in the �̂� direction arises from the last
term on the RHS in Eq. (B1),

(
𝑑𝑣𝜑

𝑑𝑡

)
𝑎

= 2𝜋
(
𝐵𝑟𝑎𝐵

𝜑
𝑎

`0[𝑎

)
+

2𝜋
𝑛𝑏∑︁
𝑏=1

𝑚𝑏

(
𝑆
𝜑𝑖
𝑎 |𝑟𝑎 |
[2
𝑎

A𝑖
𝑎𝑏

(ℎ𝑎) +
𝑆
𝜑𝑖

𝑏
|𝑟𝑏 |

[2
𝑏

A𝑖
𝑎𝑏

(ℎ𝑏)
)
,

(B13)

with 𝑖 = 𝑟, 𝑧 in all equations, and repeated indexes are summed up.
After minor modifications, to account for axis corrections and to
reduce the magnetic tensile instability, equations (B11) and (B12)
turn into Eqs. (15) and (16) described in Sect. 3. These take over
the evolution in the tests described in Sects. 4.1 to 4.4. The equation
(B13) is useful to simulate magnetized systems with non-zero initial
angular momentum, such as the rotating cloud test described in
Sect. 4.5.
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APPENDIX C: AXISYMMETRIC FORM OF THE
MAGNETIC DISSIPATION

Some amount of magnetic dissipation is necessary to handle shock
waves. We make use of the expression by Price et al. (2018),

(
𝑑B
𝑑𝑡

)𝑑𝑖𝑠𝑠
= b𝐵 ∇2B (C1)

where b𝐵 is a resistivity parameter. Equation (C1) is adapted to
the axisymmetric geometry by writing the vector Laplacian on the
RHS in Eq. (C1) in cylindrical coordinates 6, with the constraints
𝜕/𝜕𝜑 = 0, 𝜕2/𝜕𝜑2 = 0,

∇2B =

[(
𝜕2𝐵𝑟

𝜕𝑟2 + 𝜕2𝐵𝑟

𝜕𝑧2

)
+ 1
𝑟

𝜕𝐵𝑟

𝜕𝑟
− 𝐵𝑟

𝑟2

]
r̂ +[(

𝜕2𝐵𝑧

𝜕𝑟2 + 𝜕2𝐵𝑧

𝜕𝑧2

)
+ 1
𝑟

𝜕𝐵𝑧

𝜕𝑟

]
ẑ +[(

𝜕2𝐵𝜑

𝜕𝑟2 + 𝜕2𝐵𝜑

𝜕𝑧2

)
+ 1
𝑟

𝜕𝐵𝜑

𝜕𝑟
− 𝐵𝜑

𝑟2

]
�̂� .

(C2)

The second derivatives in parenthesis in the RHS of Eq.(C2)
are the Cartesian 2D-Laplacian of each component of the magnetic
field, D2𝐵𝑖 , which are computed in the standard SPH way ,

(
b𝐵 D2𝐵𝑖

)
𝑎
=

𝑛𝑏∑︁
𝑏=1

𝑉𝑏
b𝐵,𝑎 + b𝐵,𝑏

|𝑠𝑎𝑏 |
𝐵𝑖
𝑎𝑏

(
𝑠
𝑗

𝑎𝑏
Ã 𝑗

𝑎𝑏

)
. (C3)

The first derivatives at the RHS of Eq.(C3) are estimated with,

(
b𝐵

𝜕𝐵𝑖

𝜕𝑟

)
𝑎

= b𝐵,𝑎

𝑛𝑏∑︁
𝑏=1

𝑉𝑏

(
𝐵𝑖𝑎 − 𝐵𝑖

𝑏

)
A 𝑗

𝑎𝑏
(ℎ𝑎) . (C4)

The expression giving the magnetic dissipation in axial geom-
etry is therefore written,

(
𝑑𝐵𝑖

𝑑𝑡

)𝑑𝑖𝑠𝑠
𝑎

=

(
b𝐵 D2𝐵𝑖

)
𝑎
+

(
b𝐵

1
𝑟

𝜕𝐵𝑖

𝜕𝑟

)
𝑎

− (1 − 𝛿𝑖2)
(
b𝐵

𝐵𝑖

𝑟2

)
𝑎

,

(C5)

where 𝑖 = {1, 2, 3} correspond to components {𝑟, 𝑧, 𝜑} and 𝛿𝑖2 is
the Kronecker-delta.

This paper has been typeset from a TEX/LATEX file prepared by the author.

6 https://mathworld.wolfram.com/VectorLaplacian.html
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