
Title: Two problems in Computational Geometry

Author: Nicolau Oliver Burwitz

Advisors: Clemens Huemer and Carlos Seara

Department: Departament de Matemàtiques

Academic year: 2022-2023

Master of Science in
 Advanced Mathematics and
Mathematical Engineering

Universitat Politècnica de Catalunya

Facultat de Matemàtiques i Estad́ıstica

Master in Advanced Mathematics and Mathematical Engineering

Master’s thesis

Two problems in
Computational Geometry

Nicolau Oliver Burwitz

Supervised by Clemens Huemer and Carlos Seara

June, 2023

Thanks to my parents, for their patience and love. To my grandparents, for their strength.

Abstract

Two different problems belonging to computational geometry are studied in this thesis. The first problem
studies: given a set S of n points in the plane in general position, how close are four points of S to
being cocircular. We define three measures to study this question, the Thales, Voronoi and Determinant
measures.

We present bounds on the Thales almost-cocircularity measure over a point set. Algorithms for comput-
ing these measures of cocircularity are presented as well. We give a reduction from computing cocircularity
using the Determinant measure to the 4SUM problem.

The second problem studies: given two sets R and B of red and blue points respectively, how to
compute the bichromatic discrepancy using boxes and circles. The bichromatic discrepancy is defined as
the difference between the number of red points and blue points inside the shape. We present a comparison
of algorithms in the existing literature for the two shapes. Bichromatic discrepancy in axis-parallel boxes
.vs non-axis-parallel boxes is also compared.

Furthermore, we also present a new algorithm for disk discrepancy in higher dimensions, based on
existing literature. We also relate existing problems in separability with existing output sensitive algorithms
for bichromatic discrepancy using boxes.

Keywords

General position, cocircularity, algorithms, Erdős–Szekeres theorem
Discrepancy, coarseness, boxes, disks, 3SUM-hard

MSC 2020

Primary 52-08, 52C10. Secondary 52-02, 52-06, 51N20.

1

2

Contents

1 Introduction 5

2 Measuring cocircularity 7

2.1 Basics on Measures for Cocircularity . 9

2.2 The Thales measure . 10

2.2.1 Bounds on the Thales measure . 12

2.3 The Determinant measure . 15

2.3.1 Reduction from 4SUM . 16

2.4 The Voronoi measure . 17

2.5 Algorithms . 19

2.5.1 Inversions . 19

2.5.2 Higher order Voronoi diagrams . 20

2.5.3 Approximations using Hashing . 20

2.6 Conclusions . 23

3 Comparing bichromatic discrepancy for boxes and spheres 24

3.1 Applications . 24

3.2 Discrepancy for axis-parallel boxes . 25

3.2.1 1d : Intervals . 25

3.2.2 2d : Boxes . 27

3.3 Discrepancy for disks . 28

3.3.1 Algorithm for disk discrepancy . 31

3.4 Discrepancy for non-axis-parallel boxes . 32

3.4.1 Some observations for non-axis-parallel boxes . 33

3.5 Conclusions . 34

4 Bibliography 35

3

Cocircularity & Discrepancy

4

1. Introduction

Both problems presented in this thesis belong to the field of Computational Geometry, that studies the
inherent complexity of geometric problems under various models of computation. It lies at the intersection
of Theoretical Computer Science, Geometry (usually Euclidean) and Combinatorics. Analyzing the com-
putational complexity of a problem usually entails a study of its combinatorial complexity, followed by the
design of algorithms using geometric tools and properties to achieve efficiency and elegance.

The problem studied in Section 2 focuses on points in the plane in general position. We study how close
are four points from a set S of n points of being cocircular. We investigate the combinatorial complexity of
this problem and show algorithms to detect cocircularities. This problem is very related to analogous results
on finding collinearities in a point set, that has been widely studied. In Section 2.1 we define three measures
for cocircularity, the Thales cocircularity, the Voronoi cocircularity, and the Determinant cocircularity. We
present properties, similarities and differences among them. In Section 2.5 we present some algorithms to
compute various of the measures of cocircularity.

Section 3 is a comparative analysis of existing literature about a family of problems on chromatic
discrepancy. Given a bichromatic set of red and blue points, the discrepancy of a shape is the absolute
value of the difference of red and blue points that lie inside the shape. The families of problems we are
concerned with, are finding which specific shape among a family of them has maximal discrepancy.

The main goal is to understand similarities and differences among existing techniques to compute
the maximal discrepancy. Several approaches exist for each problem in various dimensions, and properly
comparing them compiles the state of the art. We start by presenting existing results on axis-parallel
boxes discrepancy in Section 3.2. In Section 3.3 we present existing and new results on disk discrepancy.
In Section 3.4 we briefly explore the non-axis-parallel boxes discrepancy. And finally, in Section 3.5 we
compile all the cited and new results in a final comparison and conclusion.

Even if there are some casual similarities between both problems studied in this thesis, each should be
treated as independent of the other, as that has been the working methodology. But certain specific links
and similarities have fortuitously appeared, mostly concerning the reduction of some problems to 4SUM
and the use of techniques involving capable arcs.

Both problems result from collaborating with the UPC Research Group on Discrete, Combinatorial
and Computational Geometry (DCCG), and are accepted publications to the XX Spanish Meeting on
Computational Geometry (EGC’23) [1, 24] 1.

The first problem on cocircularity was initiated at the TOPPING workshop in Barcelona, July 2022.
The authors of the submitted paper are Andrea de las Heras, Guillermo Esteban, Delia Garijo, Clemens
Huemer, Antoni Lozano, Nicolau Oliver and David Orden. I also thank Mercè Claverol, Dolores Lara,
Alejandra Mart́ınez, and Pablo Perez for their valuable discussions and contributions.

The second problem on bichromatic discrepancy is the continuation of my collaboration with Carlos
Seara, who also supervised my bachelor’s thesis on bichromatic separability. This previous work with him is
also an accepted publication on EGC’23. The topics of bichromatic discrepancy and separability have a lot
of overlap, and some of the surveyed results on discrepancy are related to results in Oliver and Seara [25].

1https://egc23.web.uah.es/

5

Cocircularity & Discrepancy

6

2. Measuring cocircularity

Most algorithms in Computational Geometry have as input geometric objects such as segments, polygons,
triangulations... In these cases, each of increasing complexity, the underlying building block are points and
relations over these. Most algorithms in Computational Geometry require the input points to be in general
position.

Definition 2.1. A set S = {(x1, y1), ... , (xn, yn)} of points in the Euclidean plane R2 is in general position
if:

• No three points exist in S belonging to the same line.

• No four points exist in S belonging to the same circle.

(a) Points that are nearly
cocircular.

(b) Points that are less
cocircular.

Figure 1: Two examples of sets S of five points in general position.

This requirement simplifies the design of algorithms as most degenerate situations arise from collinearity,
but also from cocircularity. In some cases, the problems solved by the algorithms aren’t even well defined if
the points aren’t in general position. Some famous examples taught in undergraduate courses include the
Bentley–Ottmann algorithm for finding all crossings of a set of segments, and the problem of computing
the Delaunay triangulation. For the first example there exists an algorithm easy to implement if one omits
degeneracies, and the second problem is ill-defined for points not in general position.

But it is rarely guaranteed, especially in real life data-sets, that the input set of points is in general
position. This prompts the study of bounds that relate both collinearity and cocircularity, with the number
of input points. The central question being: how close/far is any set S of n points of containing four that
are almost collinear/cocircular.

As the goal is to study these properties over arbitrary sets S of points in the plane, we will first
mention some very well known results from Ramsey Theory and their applications in geometry. This
branch of combinatorics focuses on proving the existence of certain substructures in sufficiently large sets.
A canonical example in graph theory is the existence of a large monochromatic clique in any coloring of
the complete graph of sufficiently large size. In layman terms, it seeks to find order among chaos.

7

Cocircularity & Discrepancy

A very important result by Erdős and Sekeres [17] states that for every set S points in the plane, with
bounded size |S | = 2n+o(n) by Suk [2], there exists a convex polygon of n sides with vertices in S . This is
the famous “happy ending” theorem. From this, a known bound on how close points form S are to being
collinear can be deduced as follows:

Lemma 2.2. The largest angle defined by any triplet of S is bounded from below by π · (1− 2/n).

Proof. Let the collinearity of a set of points be measured by the largest angle formed by any three points
of the set. Consider that the n inner angles of the convex n-gon implied by the result of Erdős and Sekeres
must sum π(n − 2). Then at least one of these n angles is at least π(n − 2)/n. And the largest angle
defined by any triplet of S is bounded from below by π · (1− 2/n).

The entire proof of Erdős and Sekeres [17] improves this bound to π · (1− 1/n), and holds for sets S
of 2n points . Notice the two relevant statements made in the proof. First, the definition of a measure
of collinearity. Second, a bound on that measure. This is relevant to clarify, as other intuitive notions of
collinearity might exist. Namely, we could opt to measure collinearity using the thinnest strip that contains
3 points of S . This notion is not equivalent to the one presented above, and illustrates the variety of
interpretations that will also appear when studying cocircularity.

Following closely this latter interpretation of collinearity, we could choose to measure cocircularity using
the smallest width annulus that contains 4 points of S . This overlaps with a very well studied algorithmic
problem, the problem of computing the annulus of smallest width that contains S . In Garćıa-López et
al. [19] they define the roundness of a point x ∈ R as RS(x) = d(x ,CN(x))− d(x ,FN(x)), where CN(x)
is the closest point (neighbor) in S from x , and FN(x) the furthest. Both CN(x) and FN(x) are clearly
related to Voronoi diagrams of S , yet another overlap of tools and techniques with our results. Garćıa-López
et al. [19] find minimums for the roundness function.

CN(x)

FN(x)

x

S

Figure 2: Example of annulus containing S centered at x , indicating the closest neighbor and furthest
neighbor of x .

8

2.1 Basics on Measures for Cocircularity

In order to study how close are four points from S to being cocircular, we define several measures of
cocircularity. For this, we recall the formal definition of measures, simplified to measures over points only:

Definition 2.3. Let S be any set of points on the Euclidean plane, a function C : S −→ R∪ {−∞,∞} is a
measure if the following conditions hold:

1. Non negativity: ∀S C(S) ≥ 0

2. C(∅) = 0

3. Countable additivity: ∀S ,∀S ′ ⊆ S C(S ′) ≤ C(S)

The measures we present yield 0 if the set of points contains a quadruplet of cocircular points. To
meet the previous conditions, we should formally define our measures using their reciprocal (1/C(S)). For
ease of presentation, this is omitted. In other words, we could understand our measures as defining non-
cocircularity. Despite this detail, we will refer to them as measures of cocircularity for simplicity. To further
clarify, let us introduce the most basic and intuitive measure of cocircularity:

Definition 2.4. Let the Binary cocircularity of a set of points S be:

B(S) =

{
0 ∃A,B,C ,D ∈ S s.t. they are cocircular

1 otherwise

This measure captures the basic behavior we are interested in, but it tell us nothing on how “close”
non-cocircular points are from being cocircular. Still, it is useful as a baseline to build upon. In order to
study how close are four points from S to being cocircular we need functions with a continuous image,
unlike the discrete image of the Binary measure. It is necessary to define a measure that contains an
interval [0, x] with x ∈ R+∪∞ as image space. This can be quite counter-intuitive, and leads to questions
like:

1. What are the most non-cocircular sets of four points?

2. Perturb four cocircular points slightly so that they do not lie on a common circle any more. Does
the radius of the circle impact the measure of cocircularity?

3. Are collinear points also cocircular? If so, how does this interact with the previous question.

4. Should the points be considered in any particular order? What if the points are in a non-convex
position?

Different intuitions on cocircularity yield different answers on these questions, and consequently result
in different measures of cocircularity. We present the following three measures of cocircularity (in order of
appearance in this thesis): Thales measure, Determinant measure, and the Voronoi measure.

The measures will differ widely, but some properties are desirable among them all. The first property
all measures of cocircularity ought to have, is compatibility with the Binary cocircularity. If there is a
quadruplet of cocircular points in the set S , any measure of cocircularity over S should be 0.

9

Cocircularity & Discrepancy

∀C, ∀S B(S) = 0 =⇒ C(S) = 0

Binary cocircularity is the agreed upon, sensible and coherent baseline. Different measures may improve
on it, but must always retain this compatibility.

The second one is that the measure is local, meaning that it is defined in terms of the quadruplets of
points, and not in terms of more points in S . In formal terms, let C(S) be any measure of cocircularity on
a set S of points, then:

C is local ⇐⇒ ∀S ,∃{A,B,C ,D} ⊆ S C(S) = C({A,B,C ,D})

There must be at least one quadruplet in the set S that determines the value of the measure of
cocircularity on S , and the remaining points do not strictly affect the measures.

All the measures we present are local measures of cocircularity, and are compatible with the Binary
measure.

Definition 2.5. The Thales/Determinant/Voronoi measure of a set S of points is the minimum of the
Thales/Determinant/Voronoi measure among all 4-tuples of points of S .

2.2 The Thales measure

The first measure we present is inspired on the measure of collinearity presented by Erdős and Sekeres. If
collinearity is to be measured by the largest angle defined by a triplet of points, cocircularity should be
measured in terms of the angles defined by a quadruplet of points. Let {A,B,C ,D} be such quadruplet.

In order to study the relation among the angles defined by the quadruplet of points, we make use of
the inscribed angle theorem, also known as the Thales’ theorem:

Theorem 2.6. Inscribed angle theorem:

A circle with center O that crosses the endpoints of the segment AB, and has inscribed angle ∠ApB = θ,
must have as central angle ∠AOB = 2θ. The circle is the locus of all points p with ∠ApB = θ, or
∠ApB = π− θ if and only if p and the center O lie on the opposite side of the segment AB. See Figure 3.

2θ
θ

θ

π − θ

O

A B

p

p′

Figure 3: Capable arc supported on AB and of inscribed angle θ

Because it is a very useful tool, we name this locus of points by its misnomer in Spanish “capable arc”.

10

Definition 2.7. The capable arc of
−→
AB and angle θ is the locus of all points p with ∠ApB = θ if p is to

the left of
−→
AB, otherwise ∠ApB = π − θ.

Given a quadruplet {A,B,C ,D} consider w.l.o.g the segment AB. Using Thales’ theorem we can
understand the angles among {A,B,C ,D} as defining capable arcs. To compare how cocircular are the
points C and D, with respect to AB, it is intuitive to compare ∠ACB with ∠ADB.

Corollary 2.8. Applying the inscribed angle theorem to our quadruplet, if C and D lie on the same side of
the segment AB, they are cocircular if and only if ∠ACB = ∠ADB. Otherwise they are cocircular if and
only if ∠ACB = π − ∠ADB

The cocircularity of {A,B,C ,D} is achieved if equality is reached. But if not, we must compare the
two angles ∠ACB and ∠ADB. This comparison can be accomplished through diverse functions, but the
one we found most intuitive is the absolute value of the difference.

Definition 2.9. Let {A,B,C ,D} be a quadruplet of points. We define the Thales cocircularity as:

T (A,B,C ,D) = min
P
{min{|α− β|, |α− (π − β)|}}.

Where α = ∠ACB and β = ∠ADB, and the minimum minP is taken over all permutations P of the
four points {A,B,C ,D}. See Figure 4.

A

B

C

D

α

β

π − β

|α− β| |α− (π − β)|

Figure 4: Angles used in Thales cocircularity.

The minimum over all permutations P ensures that all pair of points are considered as the segment
subtending the two angles α and β. Notice that symmetries on the measure result in lots of permutations
yielding the same result.

Also notice that the minimum of the difference with and without the supplementary angle (π − β)
ensures that angles are compared appropriately. As remarked before, the capable arc of an angle on one
side of the segment would correspond to the capable arc of the supplementary angle on the other side.
Given a point set and its Thales measure, one can also visualize it through the use of lunes.

11

Cocircularity & Discrepancy

Definition 2.10. Let D1 and D2 be two distinct not-tangent disks in the Euclidean plane that have non-
empty intersection D1 ∩D2 ̸= ∅. Let A and B be the two points in the intersection of the circles bounding
the disks. We define the lune L supported on AB corresponding to D1 and D2 as:

L = (D1 \ D1 ∩ D2) ∪ (D2 \ D1 ∩ D2).

Let {A,B,C ,D}min be the quadruplet of the point set S with smallest angle difference according to
Definition 2.9. Then a pair of capable arcs, w.l.o.g passing through A and B, defines a lune between them
that must be empty of points in S . So we can alternatively define the Thales measure of cocircularity as
the empty lune of smallest angle difference supported on points of S .

As for the extremal values of the measure, it follows from the definition that

∀S : 0 ≤ T (S) ≤ π

as two angles can’t differ more than π, otherwise the supplementary of one of them yields a difference
smaller than π. But this analysis of the extremal values of the Thales measure can be refined. All the inner
angles of the quadrilateral formed by a quadruplet (A,B,C ,D) must sum up to 2π. So by the pigeonhole
principle, there must be a pair of angles α,β that sum at most π/2. This immediately yields the better
range of possible values of T (S):

∀S : 0 ≤ T (S) ≤ π

2
.

The extremal configuration {A,B,C ,D}max in Figure 5 has Thales measure T (A,B,C ,D) → π
2 as

ϵ→ 0, so it is asymptotically tight.

ε

B

D

C A

Figure 5: Quadruplet with extremal Thales measure.

2.2.1 Bounds on the Thales measure

We present two upper bounds on the Thales measure of cocircularity. For the simpler first bound, we will
fix a pair of points ℓ, r ∈ S as a segment, and consider the measure of the remaining points with respect
to this segment.

Proposition 2.11. For any set S of n points and any two points ℓ, r ∈ S there exist other a, b ∈ S such
that T (ℓ, r , a, b) ≤ π/(n − 3).

Proof. Fix two points ℓ, r . The n − 2 remaining points are candidates for a, b. When measuring, consider
only the permutation (ℓ, r , a, b) so the angles measured are ∠ℓar and ∠ℓbr .

The n − 2 angles subtended by the segment ℓr lie in the interval [0,π], by definition. Consider the
angles of the remaining points of S with respect to ℓr . Take the supplementary angle of the points that
lie to the left of ℓ⃗r , in order to make them comparable to the remaining points of S .

12

Subdivide [0,π] into n − 3 sub-intervals of equal length. By the pigeonhole principle, there must be
two points a, b whose angles ∠ℓar and ∠ℓbr fall in the same interval.

Thus ∃a, b ∈ S \ {ℓ, r} such that |∠ℓar − ∠ℓbr | ≤ π/(n − 3).

The bound can be thought of through the visualization of lunes again. The bound is on the size of the
lune with smallest angular difference, supported on ℓr , that contains two points in S \ {ℓ, r}.

We can show a better bound for sets of points S is in convex position:

Theorem 2.12. For any set S of n points in convex position, there exist A,B,C ,D ∈ S such that
T (A,B,C ,D) ∈ O(1

n2
).

Proof. Let the points of S be p1, ... , pn in the clockwise order they are encountered along the boundary of
the convex hull of S . Let S1 = {p1, ... pn/2−1} be the first half and S2 = {pn/2, ... , pn} be the second half.

For each pi from S1 build a triangulation Ti of S2 ∪ {pi} where we connect pi to all vertices of S2 in a
fan. Then pi is incident to

n
2 triangles in Ti whose angles at pi sum less than π. At least half of these n

2
angles are less than 4π

n , we label them “small” angles.

Summing over all i = 1 ... , n2 − 1, we obtain at least
(
n
2 − 1

)
· n4 small angles incident to a point from

S1 in
⋃ n

2
−1

i=1 Ti . Each small angle lies in a triangle formed by a point of pi and two consecutive points of
S2. By the pigeon-hole principle, at least one edge formed by two consecutive points of S2 subtends at

least
(n
2
−1)· n4
n
2

= n
4 − 2 angles that are less than 4π

n . Let this edge be ab.

Similar to the proof of Proposition 2.11, we subdivide the interval [0, 4πn] into n
4 − 3 disjoint intervals

of equal length. Again by the pigeon-hole principle, at least two of the n
4 − 2 small angles, that must be

less than 4π
n , fall into the same interval. Consequently, there exist two angles subtended by the edge ab

whose difference is at most:

4π
n

n
4 − 3

=
16π

n(n − 12)
∈ O

(
1

n2

)
.

Some constants of this proof can be improved easily if instead of using triangulations from S1 and S2,
we triangulate the entire S . But the presented proof using these two sets hits at possible future lines of
research, as we try and generalize the bound to general point sets.

It can be shown that if given a non-convex S , one finds a start polygon defined by the points in S1,
such that S2 lay inside its kernel, one can replicate the previous proof, obtaining the same bound for a
non-convex S . Unfortunately it remains an open question to generalize this bound to non-convex S .

The question of finding lower bounds remains a work in progress. The strategy we attempted was
finding a family of points that was asymptotically far from cocircular. This involved a lot of trial and
error. As analytically studying all these families was unfeasible due to time and knowledge constraints,
we screened empirically the candidates. We computed the Thales cocircularity for the families of points,
plotting the results against the number of points.

The long list of the families studied include points equispaced on: polynomials of low degree (parabola,
quadratics) including polynomials with degree d = 1± ϵ and Bézier curves, the logarithm function, conics
(ellipses and hyperbolas), cycloids, various spirals (logarithmic, hyperbolic, littus spiral, Fermat spiral),
points in the integer grid with special interest in permutations of the x = y diagonal points.

13

Cocircularity & Discrepancy

After all this blind search, with lots of interesting empirical results2 some of the more promising families
had some counter-intuitive properties.

Our initial bias was that families with lots of variations, like the latter points in the grid, would exhibit
very good results, but would be difficult to analyze analytically. We can only confirm the latter. Much
simpler families resulted in quite good results. We present only two, the family F1 the near circular ellipse,
and F2 the near linear polynomial. See Figure 6.

(a) Coordinates of equispaced points on one quadrant
of a near-circular ellipse (x , y) = (acos(t), bsin(t))
0 ≤ t ≤ π/2 a = 1, b = 0.9.

(b) Equispaced points on a near-linear polynomial
y = x1.1.

Figure 6: Two of the studied families for lower bounds.

As the results for both families are similar, we present the ones yielded by the near-circular ellipse. We
study how cocircular these points sets are with respect to the number of points n, trying to visualize if they
have promising asymptotic behavior. See Figure 7. These families that are very close to cocircular/collinear,
still yield interesting results. We highlighting the important property that they always fail to be exactly
cocircular in a predictable fashion. Recall that in the case of the near-linear polynomial, collinearity is
treated as cocircularity by the Thales measure.

Figure 7: Thales cocircularity of the near-circular ellipse T (F1) against the number of points n.

To conduct a very rough analysis of the results, we multiply them by n until we find a positive tendency.
As we can see on the rightmost plot, the tail of the function seems to be of the order Ω(1

n3
). But this

could be easily misleading, as we have very few points.

2That we don’t present for the sake of brevity.

14

Another bad sign is that there is a change in monotonicity for the two middle plots, suggesting that
eventually the plotted tendency starts decreasing. These are very rough results, but already suggest that
it might be interesting potential to continue working on this family.

The next logical step would be to identify the quadruplet of points that is most cocircular in the two
families. This is where we have found very promising results. See Figure 8. This immediately yielded very
clear and noticeable patterns for both families, indicating that it was always the same recognizable tuple
that was minimizing the Thales measure. This is very good news as, if proved analytically, would simplify
a lot the analysis of the measure for these families.

(a) Thales cocircularity of all quadruplets T (A,B,C ,D)
A,B,C ,D ∈ F1 for n = 8 against the sum of the
parameter t of each point in the quadruplet
tA + tB + tC + tD .

(b) Thales cocircularity of all quadruplets T (A,B,C ,D)
A,B,C ,D ∈ F2 for n = 9 against the sum of the
x-coordinates of each point in the quadruplet
xA + xB + xC + xD .

Figure 8: Analysis to identify the most cocircular quadruplet of F1 and F2.

All these results are very preliminar, and shouldn’t be taken as rigorous conjectures. But they had to
be mentioned as they represent the most time consuming experiments designed for this thesis.

2.3 The Determinant measure

The Determinant cocircularity uses a very common tool to check if four points are cocircular. It is well
known that four points A,B,C ,D in the plane lie on a common circle if and only if their lifted projections
to the paraboloid (x , y) 7→ (x , y , x2 + y2) are coplanar. Testing coplanarity of four points p, q, r , s ∈ R3 is
canonically done using the following determinant:

det


xp yp zp 1
xq yq zq 1
xr yr zr 1
xs ys zs 1


This basic operand is ubiquitous and is the basic primitive for lots of more complex algorithms and

data-structures in computational geometry, as shown in Guibas and Stolfi [20].

Definition 2.13. The Determinant cocircularity of four points D(A,B,C ,D) with coordinates A =
(xA, yA), B = (xB , yB), C = (xC , yC), D = (xD , yD) is the absolute value of the determinant:

15

Cocircularity & Discrepancy

D(A,B,C ,D) =

∣∣∣∣∣∣∣∣det

xA yA x2A + y2A 1
xB yB x2B + y2B 1
xC yC x2C + y2C 1
xD yD x2D + y2D 1


∣∣∣∣∣∣∣∣ .

This measure is invariant under translation, but under a scaling by a factor c , the determinant varies in
a factor of c4. This among other properties make this measure somewhat unwieldy to study analytically,
but very practical for the decision problem of deciding if for points are exactly cocircular. In the following
section, we consider the Determinant cocircularity to show a relation to the 4SUM problem.

2.3.1 Reduction from 4SUM

The k-SUM problem is stated as follows: given a set S ⊂ Z of different n integers, decide if there exists a
k-tuple of distinct elements (s1, ... , sk) ∈ S whose sum is zero,

∑k
i=1 si = 0. This is a prominent problem

for k = 3, referred as the 3SUM problem, and that can be restated as finding a triplet (a, b, c) ∈ S of
distinct integers that satisfy the equation a + b = c . A famous conjecture is that the time complexity of
3SUM is Ω(n2−o(1)), even in expectation [21].

Introduced in Gajentaan and Overmars [18], a complexity class of problems in computational geometry
has been build upon 3SUM. Since, many geometric problems have been reduced to 3SUM, they call such
problems 3SUM-hard. Of specific interest to us, they show that the problem of detecting collinear points
in a set is 3SUM hard.

There exist easy quadratic-time algorithms to solve both 3SUM and 4SUM in the integer RAM model.
The generic quadratic-time algorithm for 4SUM uses hashing. Under the real RAM model there exists a sim-
ilar algorithm without hashing of complexity O(n2 log n). We prove that cocircularity for the Determinant
measure is 4SUM-hard.

Proposition 2.14. Given n integers [x1, x2, ... , xn] from the 4SUM problem. Let S be the set of n points
xi 7→ (xi , x

2
i) on the parabola y = x2. Then S contains four cocircular points if and only if the x-coordinates

of these four points sum 0.

Proof. Let A,B,C ,D be four different points on the parabola y = x2 with coordinates:

A = (p, p2),B = (q, q2),C = (r , r2),D = (s, s2).

The Determinant cocircularity measure then simplifies the absolute value of:∣∣∣∣∣∣∣∣det

p p2 p2 + p4 1
q q2 q2 + q4 1
r r2 r2 + r4 1
s s2 s2 + s4 1


∣∣∣∣∣∣∣∣ =

−(r − s) · (q − s) · (q − r) · (p − s) · (p − r) · (p − q) · (p + r + s + q).

Then the determinant is zero if and only if p + r + s + q = 0.

This measure could be extended to higher dimensions, as all the tools used are straightforward to
generalize. For any dimension d , there is a determinant test to decide if d + 1 points in Rd are in general
position.

16

2.4 The Voronoi measure

Definition 2.15. Let Vk(S) be the order-k Voronoi diagram of a point set S in the Euclidean plane. It is
defined as a partition of the plane into (convex) cells whose points have the same k closest points of S .

See Figure 9 for an example of Voronoi diagrams of different orders.

V1(S)A

B

C

D

(a) Order-1 Voronoi diagram of
four almost cocircular points.

V2(S)

AB

AD

CD
CB

A

B

C

D

(b) Order-2 Voronoi diagram,
where the unbounded cells indicate
the closest pair of points and the
bounded cell has AC as the closest
pair of points.

V3(S)

ABD

ABC

ACD

CBD

A

B

C

D

(c) Order-3 Voronoi diagram,
where the unbounded cells indicate
the closest triplet of points.

Figure 9: Voronoi diagrams of order 1,2 and 3. Centers of circles are depicted as red or blue squares.

It is well known that the order-1 Voronoi diagram of four cocircular points is composed of one vertex of
degree four and four rays from it, the vertex being the center of the circle [7]. A slight perturbation making
the cocircularity disappear leads to the Voronoi diagram being composed by a short segment joining two
vertices of degree three and two rays from each of those vertices, where each vertex is the center of a circle
through three of the four points considered, with none of them in the interior. See Figure 9a.

Note that, in addition to those two circles with centers at vertices of the Voronoi diagram, there are
two more circles through three of the four points, containing the remaining fourth point in the interior.
The centers of such circles are vertices of the order-2 and the order-3 Voronoi diagrams of the four points.
See Figures 9b and 9c. Since in a general point set S it can happen that, out of the four circles defined
by three points in a 4-tuple, none of them is empty of other points of S , we will also consider the order-k
Voronoi diagrams for k > 1. It is well known that the endpoints of an edge of Vk(S) are the centers of
two circles with either k − 1 or k − 2 points of S inside the circle.

Definition 2.16. The Voronoi cocircularity V(A,B,C ,D) is the length of the shortest edge among the
Voronoi diagrams all orders of points A,B,C ,D. If any vertex among the Voronoi diagrams has degree
strictly greater than three, then V(A,B,C ,D) is defined to be 0.

This measure is invariant under translation and rotation. But under scaling by a factor c , the length
of the shortest Voronoi edge scales linearly with c . This means that the Voronoi and Thales cocircularity
measures of a point set may be different. We show in Figure 10 an example where the set S under both
measures doesn’t yield the same four-tuple of points minimizing the cocircularity. It is no coincidence that
the quadruplets minimizing the measures have circles of very different radius. As shown above with scaling,
the Voronoi measure has a preference for small radius circles, the Thales measure is agnostic.

17

Cocircularity & Discrepancy

Figure 10: Green (resp., red) circles pass through the four most cocircular points of a set S of n = 10
points according to Voronoi (resp., Thales) measure.

The endpoints of an edge of Vk(S) are the centers of two circles that each go through three points
in S . Virtue of being an edge for some Vk(S), it is also known that two of each three points are common
to both circles. This two points that lie on both circles are very analogous to the supporting segment of
the capable arcs in the Thales measure. Following the comparison, these other two remaining points that
are not common to the two circles, are very analogous to the ones defining the capable arcs in the Thales
measure.

We give a formula for the distance between the centers of two circles with two common points, in terms
of the length of the supporting segment and the angles of the capable arcs. Hence, the following result
also allows us to relate the length of an edge of with angles among the points.

Proposition 2.17. Let A,B,C ,D be four points in the plane. Let α and β be the angles ∠CAD and
∠CBD, respectively. Let CA,CB be the centers of the circles through C ,A,D and C ,B,D, respectively.
Then, if CA and CB are on the same side of the line CD:

|CACB | =
|CD|
2

(
∣∣|cotβ| − |cotα|∣∣).

Otherwise, |CACB | =
|CD|
2

(|cotβ|+ |cotα|).

D

C

A

B

CA CB

α

β

O

RA

RB

Figure 11: Illustration of Proposition 2.17.

18

Proof. Suppose, without loss of generality, that CA and CB are on the positive x-axis. Let d1 and d2
be, respectively, the distance from CA and CB to the origin O, see Figure 11. Then, by the Pythagorean
Theorem, we know that

|CACB | = d2 − d1 =

√
R2
B −

(
|CD|
2

)2
−
√
R2
A −

(
|CD|
2

)2
, (1)

where RA and RB are the radii of the circles through C ,A,D and C ,B,D respectively.

It is well known that RA = |CD|
2 sinα and RB = |CD|

2 sinβ . Thus, Equation (1) equals√(
|CD|
2 sinβ

)2

−
(
|CD|
2

)2

−

√(
|CD|
2 sinα

)2

−
(
|CD|
2

)2

=
|CD|
2

(√
1

sin2 β
− 1−

√
1

sin2 α
− 1

)

=
|CD|
2

(√
csc2 β − 1−

√
csc2 α− 1

)
=
|CD|
2

(| cotβ| − | cotα|).

However, if CA and CB are on different sides of the x-axis, |CACB | = d2+d1. Hence |CACB | = |CD|
2 (| cotβ|+

| cotα|).

2.5 Algorithms

Another line of research is to detect these cocircularities. This intersects with a lot of applications in
computer vision on detecting circles, from quality control in production lines all the way to biomedical
image diagnostics, like classification of brain aneurysm type. Without going into detail, the circle Hough
Transform (CHT) is a technique based on voting to find circles of known radius in images. For each point
in the image (usually the edges as detected by a threshold Gaussian filter), it “votes” the pixels at the fixed
radius distance as candidates for centers. If there is a circle with the fixed radius centered at one pixel, it
will receive a lot of votes. This general technique of voting using an accumulator matrix3 is very common
in Hough Transforms. This inspires our approach on computing approximations of cocircularity.

The decision problem is: Are there 4 cocircular points? The optimization problem is: Find the 4-tuple
of points that minimizes the measure.

2.5.1 Inversions

Proposition 2.18. There is an O(n3) time algorithm that decides whether there exist four cocircular points
in a set of n points, using inversions.

An inversion transformation is determined by two parameters: The center of inversion O and the radius
of inversion R. Two points P and P ′ are said to be inverses of each other if P and P ′ lie in the same
half-line with origin in O and the Euclidean distances |OP| and |OP ′| satisfy |OP| · |OP ′| = R2.

3An accumulator matrix is just a matrix of the size of the image that aggregates all the votes cast by each pixel.

19

Cocircularity & Discrepancy

We need the following property of inversions:

Property 2.19. Given a center O and radius R of inversion, any circle containing O is inverted into a line.

So, if we perform inversion at a point A that is cocircular with B,C ,D, then inverting B,C ,D results
in the three points being collinear. Property 2.19 allows us to propose Algorithm 1:

Algorithm 1 Detecting cocircularities with inversions

Input: set S of n points.
for every point pi ∈ S do
• Invert all points of S\{pi} with respect to the center pi and radius r = 1.
• Execute as subroutine a sweep-line algorithm to detect collinearities.

end for

The computational cost of detecting collinearities is O(n2), see Edelsbrunner and Guibas [14], and it is
executed in a loop with O(n) iterations. The total computational cost is O(n3) time and O(n) space. We
remark that inversions do not preserve a relationship between the measures of cocircularity and collinearity.
Thus we are only able to solve the decision problem of detecting cocircularities using inversions.

2.5.2 Higher order Voronoi diagrams

Proposition 2.20. The Voronoi cocircularity of a set S of n points in general position can be calculated
in O(n3) time.

The definition of the Voronoi cocircularity of S is the size of the shortest edge among Vk(S), for
k = 1, ... , n − 1. It is known that the Vk(S), for all k , can be calculated in time O(n3), see [16, 23]. It
then just remains to check the length of each edge in each Voronoi diagram. Since the number of edges
in a Voronoi diagram of order k is at most O(k(n − k)), traversing all of them takes O(n3) time. In case
S is not in general position, then the Vk(S) for some k will have a vertex of degree strictly greater than
three4. This can be detected once all higher order Voronoi diagrams of S have been obtained.

So the decision problem for detecting four cocircular points can be solved in O(n3) time using Voronoi
diagrams. If the points are in general position, traversing all edges to find the shortest one solves the
optimization problem for the Voronoi measure.

2.5.3 Approximations using Hashing

We present two more algorithms. We show that whether there exist four cocircular points in a set of n
points can be decided in O(n3 log n) time in the worst case or, using hashing, in average O(n3) time.

Both algorithms can find a solution, thus solving the optimization problem. The algorithms work by
storing the radius and center of the circle defined by each triplet of points, and then detecting collisions.
In the first case, by sorting the circles, which contributes with the additional factor of log n.

The particularity is that these algorithms are not based on the measures we presented. But some
relationship seems to exist between the measures of cocircularity presented and the difference in radius and
center of two circles. As mentioned at the start of this Section 2.5, more practical methods like the circle
Hough Transform approximate cocircularity through a discretization of the space of all possible centers and
radii of the circles. This encourages our study of ϵ-approximations to cocircularity.

4We can informally consider vertices of degree strictly greater than three as edges of length 0.

20

Definition 2.21. Four points p1, p2, p3, and p4 are ϵ-cocircular if there are two circles C1 = (c1, r1),
C2 = (c2, r2) (where ci , ri are the center and radius of Ci , resp., 1 ≤ i ≤ 2) defined by two different
selections of three points from {p1, p2, p3, p4} such that |c1 − c2| ≤ ϵ, |r1 − r2| ≤ ϵ.

Proposition 2.22. There is an algorithm working in O(n3) time on average that decides whether there
exist four cocircular points in a set S of n points.

Proof. Our algorithm uses hashing with separate chaining. In particular, H represents a hash table of point
sets indexed by triples of points. Let f be the function that, given a set T of three points, returns the
triple (x , y , r) s.t. (x , y) and r are the center and radius, resp., of the circle defined by the points in T .
Consider the operations:

• Insertion: H.insert(T) adds information T with key f (T) to H.

• Search: H.search(T) returns ∅ if H does not contain information for key f (T) or a set R s.t.
f (T) = f (R), otherwise.

The method is shown in Algorithm 2. Since insertion and search have constant average cost, the for
loop and the initialization of H give an O(n3) cost on average for the whole algorithm.

Algorithm 2 Exact cocircularity with hashing

Input: set S of n points.
let H be a hash table as above of size n3

initialize H with all entries containing ∅
for every distinct T ∈

(S
3

)
do

if H[T] = ∅ then
H[T]← T

else
return H[T] ∪ T

end if
end for
return “no cocircular points”

Proposition 2.23. There is an O(n3 log n) algorithm that decides whether there exist four cocircular points
in a set of n points.

Proof. In Algorithm 3, the hash table of Algorithm 2 has been substituted by a vector V of size n containing
4-tuples (x , y , r ,T), where n is the number of points; here T represents a set of three points, and (x , y)
and r are the center and radius resp. of the circle defined by the points in T . We use a stable sorting
algorithm (like mergesort) and apply it to V with respect to the first, second, and finally third component
of the vector. Since the sorting algorithm is stable, after the three iterations the entries corresponding to
the same circle are contiguous in V and can be detected in linear time. The cost of the first and third for
loops is O(n3), while the second for loop has a cost O(n3 log n3) = O(n3 log n), which means that sorting
is the determining cost factor of Algorithm 3 in the worst case.

21

Cocircularity & Discrepancy

Algorithm 3 Exact cocircularity without hashing

Input: set S of n points.
Let V be a size n3 vector of tuples (x , y , r ,T) for reals x , y , r and a three point set T
i ← 1
for every distinct T ∈

(S
3

)
do

Let (x , y) and r be the center and radius resp. of the circle defined by the points in T
V [i]← (x , y , r ,T)
i ← i + 1

end for
Sort(V)
for i = 1 to n3 − 1 do

if V [i].x = V [i + 1].x and V [i].y = V [i + 1].y and V [i].r = V [i + 1].r then
return V [i].T ∪ V [i + 1].T

end if
end for
return “no cocircular points”

Proposition 2.24. There is an algorithm working in O(n3) time on average that, given n points in general
position and ϵ > 0, decides whether there exist four ϵ-cocircular points.

This follows from slight modifications to the previous Algorithms 2 and 3. For all operations, considering
discretizing the values of (x , y) and r to the closest value of the form k ∈ Z to k · 2ϵ. Also consider the
discretization to the closes value k ∈ Z to k · 2ϵ + ϵ

2 . This corresponds to discretizing to the closest
multiple of 2ϵ, and discretizing to the closes multiple plus an offset. If two values of (x , y) or r differ by at
most ϵ, then have the same value after either discretizations. This results in some false positives, but we
can easily discard them by checking the real difference of the values. See a visual representation of these
discretizations in Figure 12.

2ε

2ε

First discretization

Second discretization

Continuous values

r1 r2 r3 r4

Figure 12: Two values that differ by at most ϵ are equal under at least one discretization.

So, executing the algorithms twice, once per discretization, comparing if a tuple is returned by either
execution, and discarding false positives, is enough to detect ϵ-cocircularities.

22

2.6 Conclusions

We initiated the study of almost cocircularity in point sets. As an extension of analogous results in
collinearity, we first discuss different measures for cocircularity that we considered to be very natural,
though other measures could be studied as well. For each measure we present a different kind of result,
this is because each measure is related to very different concepts.

For the Thales measure, we mainly showed an asymptotic upper bound of O(1/n2), and some prelim-
inary work on a lower bound. Also some minor results on extremal configurations. For the Determinant
measure we showed a reduction to 4SUM. This is specially relevant as it will also appear at the end of
Subsection 3.3.1. For the Voronoi measure we showed an equation relating the an edge in a Voronoi
diagram of with angles among the determining points.

After analytically studying the measures, we present several algorithms to compute the measures of
cocircularity. We also present algorithms to decide if the points are in general position. And also present
algorithms to decide if the points are in general position within a certain tolerance ϵ. This latter algorithms,
some of witch use hashing, are specially suited to tackle the practical problems of detecting cocircularities
in the setting of computer vision.

Several questions remain open, and we plan to continue this line of research. Some major ones already
commented are:

Open problem 2.25. Is there a sub-cubic algorithm for the decision problem of detecting cocircularities?

Open problem 2.26. Can the bound for the Thales measure for convex point sets be extended to arbitrary
point sets in general position?

Open problem 2.27. Find families of point sets that are “far away” from having four cocircular points.

23

Cocircularity & Discrepancy

3. Comparing bichromatic discrepancy for boxes and
spheres

Let S be a bichromatic set of n points in d dimensions. Let R and B be a the set of red and blue
points from S , respectively, so S = R ∪ B. The coloring of the points in S is expressed in the mapping
χ : S −→ {−1, 1}, where blue points are negative and red points are positive. Let us define the bichromatic
discrepancy of a geometric shape SH as:

∆(SH) =
∑

x∈(SH∩S)

χ(x).

That is, the discrepancy of the shape is the number of red points minus the number of blue points of S
contained in the shape, including the boundary. Let F be a family of shapes. The maximum bichromatic
discrepancy of a family of shapes F , where SH ∈ F , is defined as:

Max∆(S ,χ,F) = max
SH∈F

|∆(SH)|.

The main goal of this section is to compare existing algorithms and approaches to solve the problem of
computing the maximum bichromatic discrepancy of a given set S using various families of shapes. The
shapes considered here are boxes and disks, in various dimensions d . In the case of disks/spheres, we
provide the natural extension to higher dimensions of known results by Bereg et al. [5].

3.1 Applications

The problem of computing discrepancy is present in several areas of computer science. Three major
applications mentioned in the introduction of the paper by Dobkin et al. [13] are the Agnostic PAC-
Learning, ϵ-Approximations, and Sampling Patterns in Graphics. In order to understand why is it worthwhile
to consider and compare discrepancy over boxes and disks, we briefly summarize some of these applications.

PAC-Learning

In the case of Probably Approximately Correct - Learning, the geometric shape used in the computation
of the discrepancy corresponds to the hypothesis that the model is trying to fit. Models in PAC-Learning
try to choose a generalization function (or some parameters) from a family of functions provided to them.
These functions are called hypothesis, as they should in broad terms predict the color (label) of the points.

Computing the discrepancy can be roughly understood as finding the parameters of the shape such that
the data points are partitioned into highly monochromatic regions. We can measure this in a quantitative
way by measuring the true error (or discrepancies) resulting from the hypothesis. For a more detailed
definition of true error, and in general PAC-Learning, we refer to the already mentioned introduction of the
paper by Dobkin et al. [13].

The insight is that simple hypothesis (axis-parallel rectangles) yield very good hypothesis (prediction-
rules), so exploring discrepancy for basic shapes is of practical interest. This alone we find a sufficiently
important application to explore non-axis-parallel rectangles, but maybe not disks, as they are hypothesis
of substantially greater complexity.

24

Sampling Patterns and human vision

To justify our interest in studying the discrepancy using disks we turn to the last mentioned application,
Sampling Patterns in Graphics. In the context of computer generated images, a very common technique is
ray-tracing. This consists on approximating the image of a certain scenery by computing a discrete number
of light-paths. Computing the true image would involve computing all the light paths present in the scene.
And it would not be all that useful, as in the end the each pixel from the image is an interpolation of all
light-paths crossing the pixel.

The main idea is that for each pixel we have a finite sample of light-paths from which we compute the
color values of the pixel, but picking these samples in uniform patters yields visible biasing artifacts. The
aim of studying discrepancy is that it has been shown to yield results in the design of these patters.

Related to images and vision, computing the maximal discrepancy corresponds to finding “blobs” or
regions that have a high concentration of one color, that are chromatically unbalanced. The intuition is
that these regions would strike the eye as monochromatic. This inspired our extension from squares to
circles.

The square shape of pixels in digital sensors is closely related with the original results in axis-parallel
boxes discrepancy. If we instead suppose more circular shaped receptors, as the human eye’s photo-receptors
roughly are, and furthermore take into account other optical effects natural to human eyesight (blurring
due to the cornea and lens) it suggests studying discrepancy on circles instead of rectangles. This visual
metaphor of finding “blobs” also links to the study of measures of well-blended points.

There is a lot literature about discrepancy, and the books by Matousek [22] and Chazelle [8] cover in
depth the topic. Related articles that also relate to the ideas we cover are Bereg et al. [6] and D́ıaz-Báñez
et al. [9, 10].

3.2 Discrepancy for axis-parallel boxes

We first introduce the approach presented by Dobkin et al. [13], and Gunopulos [11], to compute the
maximal boxes bichromatic discrepancy in 1d and 2d . They develop two algorithms, the first for 1d solves
the problem in optimal time if the input is sorted, and the second uses the first as a subroutine. This is
relevant, as it turns out that indeed we can use the 1d algorithm to solve discrepancy is several related
shapes. Formal proofs of the cited lemmas in this section are provided in the citations, for the sake of
brevity we do not include them5.

3.2.1 1d: Intervals

As boxes and disks both define intervals in the 1-dimensional (1d) case, the results from Dobkin et al. [13]
apply to both shapes. We specially want to highlight some lemmas for the 1d case, as they provide the
properties that are fundamental for the algorithms in further sub-sections.

Observation 3.1. [13] Given a set of points S in 1d , any interval [ℓ, r] where ℓ, r /∈ S can be shrunk until
ℓ, r ∈ S without changing its discrepancy.

This first observation allows us to consider only intervals with endpoints in S , this discretizes and
simplifies our search.

5The proofs are relatively trivial or intuitive and don’t involve any idea or technique that is not mentioned in this section.

25

Cocircularity & Discrepancy

Lemma 3.2. [13] Given an interval [ℓ, r] on our 1d setting, the discrepancy∆([ℓ, r]) = ∆([ℓ,m])+∆((m, r])
where m ∈ [ℓ, r] and m /∈ S. See Figure 13.

` rm

Figure 13: Example points in 1d with discrepancy 4.

This trivial observation is crucial for all the proposed algorithms. It can be rephrased verbosely as:
“Computing the discrepancy of an interval can be divided (and conquered) by partitioning the interval into
sub-intervals and computing their discrepancy”. The recursive structure of computing the discrepancy is
further elaborated later in Sub-section 3.2.2.

Lemma 3.3. [13] Given an interval [ℓ, r] on our 1d setting, let the maximum discrepancy interval be
[a, b] ∈ [ℓ, r]. Then, for any m ∈ [a, b], the interval [a,m] maximizes the discrepancy among all intervals
in [ℓ,m] that have m as the right endpoint. Analogously for the discrepancy among all intervals in [m, r]
with m as the left endpoint.

Similarly to Lemma 3.2, this one states that “Computing the maximal discrepancy of an interval can
also be divided into sub-interval computations”. Lemma 3.3 introduces the connection between computing
the maximum discrepancy in intervals with some fixed endpoints and computing the maximum discrepancy
among all intervals. It specifically implies:

Observation 3.4. [13] Given the maximum discrepancy of two consecutive intervals [ℓ,m] and [m, r] and
their maximum discrepancy with the fixed endpoint m, we can compute the maximum discrepancy for their
union interval [ℓ, r] in constant time.

We can understand this observation as a way of computing the maximum discrepancy interval [a, b] in
Lemma 3.3. If we compute the maximum discrepancy of any interval with fixed right or left endpoint, it
will allow us to merge it with adjoined intervals that have a common endpoint.

From Observation 3.4 we can intuitively see how we can build a tree of the points to represent all possible
intervals. Because the basic object we are storing in the tree are intervals, the obvious implementation of
a tree data-structure to use is a segment tree, or it’s cousin the interval tree. For an overview of both data
structures and more, see the staple book by Berg et al. [7]. Specifics on what tree implementation we use
are not that relevant, as we just want to capture the hierarchical structure of the intervals. Regardless of
the implementation of tree we choose, we will augment the data structure with the maximal discrepancy
for each node of the tree. But it will also store the left/right fixed endpoint maximal discrepancy, finally
realizing Observation 3.4.

Building this tree takes O(n log n) time and O(n) space, allows insertions and deletions of points in
O(log n) time, and queries of the discrepancy of an interval in O(log n) time. So the tree allows us to solve
the static 1d maximum discrepancy, but this tree also allows for a online algorithm. Updates need only
to traverse a O(log n)-length path from the new leaf point (or deleted leaf) to the root of the tree. This
allows us to solve the online 1d maximum discrepancy.

Theorem 3.5. [13] Given a set S of n red and blue points, the maximum discrepancy for intervals in 1d
can be computed in O(n log n) time (linear if input is sorted) and O(n) space. Computing updates after
insertion/deletion of a point can be done in O(log n) time and O(n) space.

26

3.2.2 2d: Boxes

The key strategy to tackle the 2d setting, is to find projections back to 1d . The axis-parallel boxes is a
perfect example of this technique. We could repeat most of the lemmas and observations from the previous
Sub-section 3.2.1 adapted to 2d boxes, but instead go straight to stating the algorithm.

Fix the y -coordinates of the axis-parallel box. We have Θ(n2) pairs to choose from, and each of them
defines a horizontal strip. Because we fixed them, the y -coordinates of the points inside the strip become
irrelevant. See Figure 14.

Lemma 3.6. [13] Computing the maximum discrepancy box in a fixed horizontal strip is equivalent to
finding the maximum discrepancy interval of the points inside the strip projected onto the x-axis.

ytop

ybottom

Figure 14: Discrepancy with boxes in 2d .

This projection allow us to use the previous results to design algorithms. The only missing concept
not used for this algorithm is to traverse the Θ(n2) strips in order. In this case it would suffice to use the
lexicographical order of the pairs of points. This would allow for the computation of the next strip as an
update to the previous strip. This detail is important later in this section. Regardless of it, the following
is an outline of the algorithm step by step:

Algorithm 4 Axis-parallel boxes discrepancy by Dobkin et al. [13]

Input: set S of n bichromatic points
Sort S by y -coordinate obtaining the order p1, ... , pn.
for each pi do

Initialize the segment tree with only pi , this represents the strip that only contains pi .
for each pj such that i < j do

Update the segment tree by inserting pj .
If the new maximum discrepancy is larger than the seen so far, record the box.

end for
end for

Sorting has cost O(n log n) time6. Updating has cost O(log n) time. Both loops have O(n) iterations,
so the total complexity is O(n2 log n) time and O(n) space.

6The for loops iterate in this order.

27

Cocircularity & Discrepancy

As a summary of the key ideas, we found a suitable projection from our 2d shape back to the 1d intervals,
allowing us to use the static 1d algorithm. Furthermore, we found an ordering so that we could traverse
efficiently the strips, such that from one strip to the next we needed only to perform insertion/deletion
updates on the tree. This would allow us to also exploit the dynamic 1d algorithm, and it will become the
main theme in the comparison between this previous results and the following ones.

This algorithm is straightforward to extend to higher dimensions, for each new dimension the “strip”
is determined by an extra pair of points. In 2d the pair of points determines the interval of y -coordinates
of the strip. In 3d an extra pair of points would determine the interval of z-coordinates of the strip. For
each extra dimension above 1d we need to traverse all pairs of points, so the complexity is O(n2(d−1) log n)
time and O(n) space.

Recall the relevant detail of traversing the strips in order. This results from the fact that the divide-
and-conquer strategy we used on the x-axis can be fully replicated in the y -axis. This suggests dropping
the quadratic for loop from Algorithm 4, and instead opting for a fully recursive algorithm. Still, the
recursive algorithm would need to sort the input set of points by all its coordinates. This and more
improvements where shown by Barbay et al. [4] to result in an O(n2)-time algorithm, or even faster under
some parametrizations of the input. They also extend this approach to higher dimensions, resulting in an
O(nd) algorithm. This running time is tight up to sub-polynomial factors, as proven by Backurs et al. [3].

One important parametrization studied in Barbay et al. [4] relates with existing results on separability.
They let δ be the number of (without loss of generality) horizontal strips that are monochromatic and
pairwise disjoint.

Theorem 3.7. [4] The Maximum-Weight Box problem admits a solution in SORT (n) +O(δn) time and
O(n) space on instances of n points composed of δ strips.

Here the weights refer to the values of the χ mapping we mention in the start of Section 3. The inclusion
of different weights generalizes the bichromatic discrepancy problem, it allows for different weights per each
point, so color is no longer relevant. And SORT (n) refers to the time complexity of sorting the points,
that differs under different models of computation; for the sake of simplicity we assume it to be O(n log n)
time as in the comparison model.

As mentioned in Oliver and Seara [25] computing the number of parallel monochromatic strips that are
pairwise disjoint is equivalent to computing the number of parallel lines needed to separate the point set
S . This relationship of the parametrization by Barbay et al. [4] becomes even more relevant in the latter
Section 3.4.

3.3 Discrepancy for disks

Disks and boxes are equivalent to intervals in 1d , but disks in 2d do not satisfy the analogous of Lemma 3.2.
There is no easy way to decompose a disk into smaller disks. Analogously, Lemma 3.3 doesn’t hold. We
can’t divide-and-conquer, there is not a recursive structure we can exploit. Nevertheless, we can still apply
the key strategy presented in Subsection 3.2.2, finding projections back to 1d . The projection we present
is equivalent to the one used by Bereg et al. [5].

For pi , pj ∈ S consider all disks that pass through them. All their centers lie on the bisector of the
segment pipj . See Figure 15. In fact, because the centers are vertices of some Voronoi diagram Vk(S),
the bisector is divided into edges of some Vk(S). Two consecutive segments in the bisector belong to
consecutive Vk(S) and Vk±1(S). Regardless, we propose the following concept of oriented angle to sort
all points with respect to to pipj .

28

Definition 3.8. The oriented angle αij
k ∈ [−π,π] of a point pk ∈ S with respect to pi , pj ∈ S is the

supplementary angle of ∠pipkpj . It is positive if pk is to the right of the directed line −−→pipj , negative
otherwise.

Recall the Inscribed Angle Theorem 2.6 and the capable arc Definition 2.7 from Subsection 2.2. The
oriented angle corresponds to taking the supplementary angle of the capable arc through pk supported on
pipj , but with sign, to distinguish points from either side of the segment.

O

pj

pi

pk

pq

Figure 15: Discrepancy with disks in 2d . Oriented angle αij
k is negative, and oriented angle αij

q is positive.

If we order the points in S by the oriented angle, the furthest left point in Figure 15 has the smallest
oriented angle. The furthest right point has the largest oriented angle. Notice also that given two points pk
and pq on the left half-plane defined by the line passing through pi and pj , we say that pk ⪯ pq if the radius
of the circle passing through pi , pj , pk is smaller that the radius of the circle passing through pi , pj , pq, see
Figure 16. This allows us to talk about the furthest left point. In a similar way, we can consider the order
of the points on the right half-plane and talk about the furthest right point. It can be the case that several
points on the left half-plane (or analogously on the right half-plane) are cocircular with respect to pi and
pj , but this is not a problem because in one dimension there can be coincident points.

pj

pi

pk

pq

Figure 16: Sorting the points with respect to pi and pj : pk ⪯ pq.

29

Cocircularity & Discrepancy

Points close to segment pipj have oriented angle close to 0. Traversing all the points pk ∈ S by their

oriented angle αij
k = ±(π − ∠pipkpj), from smallest to greatest, can be visualized as sliding the center O

of a disk over the bisector of pipj , from left to right.

For the fixed points pi , pj ∈ S , let

Λij = [αij
1 , ... ,α

ij
k , ... ,α

ij
n−2]

be the list (in fact, a multi-set) of oriented angles of the points pk with respect to pi , pj . Each αij
k retains

the color of the point it represents. If the oriented angle wasn’t define to take the supplementary angle of
∠pipkpj , then the order of the list Λij wouldn’t correspond to the order induced by sliding the center O
over the bisector.

Let [ℓ, r]Λij = [∀αij
k ∈ Λij : ℓ ≤ αij

k ≤ r] ⊆ Λij , where ℓ, r ∈ [−π,π] and [ℓ, r]Λij is the sub-list of oriented
angles that lie inside the [ℓ, r] interval.

Definition 3.9. The inverse of an angle αij
k is:

inv(αij
k) =

{
if αij

k < 0 : swap color(π − |αij
k |).

else αij
k .

Analogously, the inverse of a list

inv(Λij) = [∀k : inv(αij
k)]

is just the list of the inverse of its elements.

It follows from the Inscribed Angle Theorem 2.6 that the intervals of angles corresponding to disks must
be of the form [β− π,β]Λij where β ∈ [0,π]. This interval represents the disk through pi , pj with inscribed
angle β, and also oriented angle β, where β is positive so it lies to the right of −−→pipj . Let [0,β]inv(Λij) be

the same interval/disk over the inverse angles of Λij .

Lemma 3.10. The disk discrepancy of Λij is equal to a constant with respect to β, plus the interval
discrepancy of the inverse angles with fixed endpoint 0.

∆([β − π,β]Λij) = ∆([−π, 0]Λij) + ∆([0,β]inv(Λij)).

Proof. The proof is straightforward from Lemma 3.2, and the constant results easily from the inversion
process.

Definition 3.11. The projection of a list of angles is:

P(Λij) = [∀k : {αij
k ∪ inv(αij

k)}].

In few words, the projection is duplicating the negative angles with its inverses. So a negative red angle
is duplicated by inserting its positive value in blue. As a consequence of Lemma 3.10 we have the following
result.

Theorem 3.12. The disk discrepancy of a list of angles is equal to the interval discrepancy of its projection,
with the restriction of containing the interval [−π, 0],

∆([β − π,β]Λij) = ∆([−π,β]P(Λij)), β ∈ [0,π].

30

Proof. Notice that as we point out above, the inversion is defined to change only the points with negative
oriented angle. So the projection P will only affect those points. The projection has joined the two terms
of the sum in Lemma 3.10

Theorem 3.12 now provides a tool to solve the maximum discrepancy of disks in 2d by solving maximum
discrepancy of intervals in 1d . Similar tools allow to solve the discrepancy of lunes, but this will not be
elaborated for the sake of brevity. Further work in progress is being done on applying analogous techniques
to solve the ellipse/conic discrepancy.

3.3.1 Algorithm for disk discrepancy

The algorithm for circular discrepancy starts by fixing two points. We have O(n2) pairs to choose from,
and each of them defines a bisector. The remaining points can be sorted by their oriented angle with
respect to the fixed pair. These angles are then projected via P. Using this projection, the algorithm is
straightforward:

Algorithm 5 Disk discrepancy

Input: set S of n bichromatic points.
for each pair (pi , pj) ∈ S×S such that i ̸= j do

Compute the list of oriented angles Λij of all points with respect to pi , pj .
Compute the projection P(Λij).
Sort Λij

Compute the maximum discrepancy interval with the restriction: ∆(P(Λij)) = [−π,β], β ∈ [0,π].
end for

To compute the maximum discrepancy interval with the fixed left endpoint, it would be enough to
modify slightly the algorithm for interval discrepancy. Recall that we already stored this information in the
tree. But fixing the left endpoint simplifies the 1d case dramatically, and a simple traversal of all right
endpoints it is enough.

Thus, computing the list of oriented angles and their projection costs O(n) time. Sorting the oriented
angles costs O(n log n) time, and computing the maximum discrepancy interval costs O(n) time. The loop
has O(n2) iterations so the total complexity is O(n3 log n) time and O(n) space. This is equivalent to the
complexity of the algorithm presented by Bereg et al. [5].

In comparison to this approach, a faster and more general algorithm exists by Dobkin and Eppstein [12].
Their approach extends to shapes bounded by algebraic curves, such as circles and ellipses in 2d . Lifting
the points to the paraboloid, in order to compute the discrepancy inside the disks they compute the lifted
points below the corresponding plane, using the topological sweep algorithm by Edelsbrunner et al. [15].
Their resulting complexity is O(n3) time for disks, and O(n5) time for ellipses, and both with O(n) space.
The drawback is that in practice implementing a topological sweep can be non-trivial. Even if the algorithm
we presented is a O(log n) factor slower, it may be easier to implement in practice for dimension d = 2,
and also for any dimension d ≥ 3.

It is straightforward to generalize Algorithm 5 and the one by Dobkin and Eppstein [12] to higher dimen-
sions d ≥ 3. See Figure 17 for a visual example in d = 3. The respective complexities are O(nd+1 log n)
and O(nd+1) time and O(n) space.

31

Cocircularity & Discrepancy

pi

pj

pk

αi

pl

Ci
j,k,l

Figure 17: Generalization of oriented angle in 3d.

We think that finding the maximum discrepancy disk in 2d could be 4SUM hard. The reduction can
be done using Proposition 2.14 from the Subsection 2.3.1 of this thesis, and Theorems 6, 7 and Lemma
12 in Bereg et al. [6]. We are almost done with the proof of this result, but we leave it as further work for
a journal version of this research.

3.4 Discrepancy for non-axis-parallel boxes

In contrast to disks in 2d , boxes with arbitrary orientations in 2d can be decomposed into smaller boxes
of that same orientation. Again this impacts positively the complexity of the algorithm.

Lemma 3.13. Computing the maximum discrepancy box in a fixed strip with a given direction v⃗ is
equivalent to finding the maximum discrepancy interval of the points inside the strip projected onto a
directed line with direction v⃗ .

This is just a generalization of Lemma 3.6, and allows us to reuse the results for axis-parallel boxes.

Lemma 3.14. A set S of n points in 2d has O(n2) non-equivalent linear projections onto 1d.

Notice that the number of non-equivalent projections is at most the half of the number of lines defined
by two bichromatic points. See Figure Figure 18.

Furthermore, the projections of the set S can be sorted by their angle. Two consecutive projections
differ by the swap of two points. This can be processed in two insertion/deletion updates using the dynamic
algorithm for intervals in 1d . The trivial algorithm reusing the boxes discrepancy algorithm is O(n4) time.
We are currently studying other approaches to improve this trivial complexity. We present a brute force
trivial algorithm:

The last instruction is computed by executing the algorithm presented in Barbay et al. [4], in O(n2)
time and O(n) space. The loop has O(n2) iterations so the total complexity is O(n4) time and O(n) space.

32

Figure 18: Two projections on a line.

Algorithm 6 Non-axis-parallel boxes discrepancy

Input: set S of n bichromatic points.
for each pair (pi , pj) ∈ S×S such that i ̸= j do

Compute the clockwise “closest” direction to v⃗ = −−→pipj such that pi x ̸= pj x .
Rotate the axes till the x-axis is parallel to v⃗ .
Compute the maximum discrepancy axis-parallel box.

end for

3.4.1 Some observations for non-axis-parallel boxes

As mentioned in Oliver and Seara [25], computing the minimum number of parallel and pairwise disjoint
monochromatic strips for a given bichromatic set S is equivalent to computing the minimum number of
parallel lines needed to separate the point set S into monochromatic subsets. This relationship with the
parametrization by Barbay et al. [4] becomes even more relevant by the following discussion.

The relationship is that computing the parameter δ in Barbay et al. [4] is a well known problem in
separability. As mentioned in Oliver and Seara [25], there is an algorithm that computes for all directions
v⃗ , the number of lines parallel to v⃗ that are needed to separate the points into monochromatic strips, i.e.,
a generalized parameter δ. This algorithm sweeps the point-line dual, keeping monochromatic-levels to
count the monochromatic strips. Independently of these details, its time complexity is O(n2 log n), so it is
not worth it to precompute the parameter δ.

The relevant connection is that, if there is a faster algorithm running in O(δn log n) time, then it would
be possible to precompute δ with no overhead7.

Notice that on non-axis-parallel boxes computing the parameter δ can not be done in linear time per
dimension with a trivial traversal of the points.

7Recall we are assuming that the cost of sorting SORT(n) in Barbay et al. [4] is O(n log n)

33

Cocircularity & Discrepancy

3.5 Conclusions

In Subsection 3.2.2 we followed the key strategy by Dobkin et al. [13]. We found that there are two relevant
parameters that condition the time complexity:

• The first parameter is the number of non-equivalent 1d projections we extract from the input. This
constitutes our search space.

• The second parameter whether there is an order in this search space. If this order allows for a constant
number of updates from one 1d projection to the next, then we can use the dynamic algorithm for 1d
intervals. This incurs a O(log n) factor. Otherwise we must recompute from scratch the discrepancy
of each 1d projection using the static algorithm. This incurs an extra O(n) factor with respect to
the dynamic algorithm.

We can evaluate these parameters for the shapes studied to show how the complexities are related.

Shape Search space Order Time complexity Space complexity

Boxes O(n2) Yes O(n2 · log n) O(n)
Disks O(n2) No O(n2 · n log n) O(n)
Non-axis-parallel Boxes O(n4) Yes O(n4 · log n) O(n)

But, as cited above, better algorithms exist in the literature. The following table illustrates the time
complexities of the best known algorithms for computing the discrepancies for the shapes studied.

Boxes Disks Non-axis-parallel Boxes

d = 1 O(n log n)

d = 2 O(n2) O(n3) O(n4)

d ≥ 3 O(nd) O(nd+1) ?

Possible further work is finding a better method, maybe exploiting advanced data structures in the 2d
setting. Specifically in the case of non-axis-parallel boxes, we attempted fruitlessly to use quad-trees to
extend the algorithm for discrepancy on intervals in 1d . The hope was that quad-trees of the points can
be rotated with only O(n2) updates.

In a unexpected coincidence, lots of concepts already seen in Section 2 reappeared. Mostly because of
the use of concepts like the capable arc, but also in the case of the 4SUM-hardness, or the topological sweep
and paraboloid projection. This highlights how the same conceptual tools are reused from one problem to
the other.

Lots of open questions remain open, but some of the ones mentioned above are:

Open problem 3.15. Is there a faster non-trivial algorithm for non-axis-parallel boxes in d ≥ 2?

Open problem 3.16. Formally prove that the maximum bichromatic disk discrepancy problem in 2d is
4SUM-hard.

Open problem 3.17. Relate the discrepancy of a set of points with the monochromatic fraction of edges in
the Delaunay triangulation of the set of points. Is this a suitable measure of “well-blended points”?

34

4. Bibliography

[1] A. de las Heras, G. Esteban, D. Garijo, C. Huemer, A. Lozano, N. Oliver and D. Orden. Measuring
cocircularity in a point set. XX Spanish Meeting on Computational Geometry, EGC’23, Santiago de
Compostela, Spain, 3-5 July, (2023).

[2] A. Suk. On the Erdős-Szekeres convex polygon problem. Journal of the American Mathematical So-
ciety, Voll. 30(4), (2016), pp. 1047–1053. https://doi.org/10.1090/jams/869

[3] A. Backurs, N. Dikkala and C. Tzamos. Tight hardness results for maximum weight rectangles. ArXiv
abs/1602.05837, (2016).

[4] J. Barbay, T. M. Chan, G. Navarro and P. Pérez-Lantero. Maximum-weight planar boxes in O(n2)
time (and better). Information Processing Letters, Vol. 114(8), (2014), pp. 437–445.

[5] S. Bereg, O. Daescu, M. Zivanic and T. Rozario. Smallest maximum-weight circle for weighted points
in the plane. 15th International Conference on Computational Science and Applications, (ICCSA 2015),
Banff, Alberta, Canada, (2015), pp. 244–253.

[6] S. Bereg, J. M. D́ıaz-Báñez, D. Lara, P. Pérez-Lantero, C. Seara, and J. Urrutia. On the coarseness of
bicolored point sets. Computational Geometry: Theory and Applications, 46(1), (2013), pp. 65–77.

[7] M. de Berg, O. Cheong , M. van Kreveld, and M. Overmars. Computational Geometry. Springer Berlin
Heidelberg, (2008). https://doi.org/10.1007/978-3-540-77974-2.

[8] B. Chazelle. The discrepancy method in computational geometry. Handbook of Discrete and Compu-
tational Geometry, CRC Press 44, (2004), pp. 983–996.

[9] J. M. D́ıaz-Báñez, R. Fabila, P. Pérez-Lantero, and I. Ventura. New results on the coarseness of
bicolored point sets. Information Processing Letters, 123, (2017), pp. 1–7.

[10] J. M. D́ıaz-Báñez, M. A. López, C. Ochoa, and P. Pérez-Lantero. Computing the coarseness with
strips or boxes. Discrete Applied Mathematics, 224(19), (2017), pp. 80–99.

[11] D. Gunopulos. Computing the discrepancy. PhD Thesis in Princeton University, Princeton, N.J. (1995).

[12] D. P. Dobkin and D. Eppstein. Computing the discrepancy. 9th Annual Symposium on Computational
Geometry, (1993).

[13] D. P. Dobkin, D. Gunopulos, and W. Maass. Computing the maximum bichromatic discrepancy, with
applications to computer graphics and machine learning. Journal of Computer and Systems Sciences,
52(3), (1996), pp. 453–470.

[14] H. Edelsbrunner and L. J. Guibas. Topologically sweeping an arrangement. Proceedings of the 18th
Annual ACM Symposium on Theory of Computing, 1986, pp. 389–403.

[15] H. Edelsbrunner and L. J. Guibas. Topologically sweeping an arrangement. Journal of Computer and
System Sciences, Vol. 38(1), (1989), pp. 165–194.

[16] H. Edelsbrunner, J. O’Rourke, and R. Seidel. Constructing arrangements of lines and hyperplanes with
applications. SIAM Journal on Computing, 15(2), (1986), pp. 341–363.

35

Cocircularity & Discrepancy

[17] P. Erdős and G. Szekeres. On some extremum problems in elementary geometry. Ann. Univ. Sci.
Budapest, 3-4, (1960/1961), pp. 53–62.

[18] A. Gajentaan and M. H. Overmars. On a class of O(n2) problems in computational geometry. Computa-
tional Geometry: Theory and Applications, 5(3), (1995), pp. 165–185. https://doi.org/10.1016/0925-
7721(95)00022-2.

[19] J. Garćıa-López, P. A. Ramos, and J. Snoeyink. Fitting a set of points by a circle. Discrete and
Computational Geometry, 20, (1998), pp. 389–402.

[20] L. Guibas and J. Stolfi. Primitives for the manipulation of general subdivisions and the computation
of Voronoi diagrams, ACM Trans. Graph. , 4(2), (1985), pp. 74–123

[21] T. Kopelowitz, S. Pettie, and E. Porat. Higher lower bounds from the 3SUM conjecture. In Proceedings
of the twenty-seventh annual ACM-SIAM symposium on Discrete algorithms (SODA ’16), pp. 1272–
1287.

[22] J. Matoušek. Geometric Discrepancy: An Illustrated Guide. Springer-Verlag, (1999).

[23] K. Mulmuley. On levels in arrangements and Voronoi diagrams. Discrete and Computational Geometry,
6, (1991), pp. 307–338.

[24] N. Oliver and C. Seara. Comparing square and circular bi-chromatic discrepancy. XX Spanish Meeting
on Computational Geometry, EGC’23, Santiago de Compostela, Spain, 3-5 July, (2023).

[25] N. Oliver and C. Seara. On strip separability. XX Spanish Meeting on Computational Geometry,
EGC’23, Santiago de Compostela, Spain, 3-5 July, (2023).

36

	Introduction
	Measuring cocircularity
	Basics on Measures for Cocircularity
	The Thales measure
	Bounds on the Thales measure

	The Determinant measure
	Reduction from 4SUM

	The Voronoi measure
	Algorithms
	Inversions
	Higher order Voronoi diagrams
	Approximations using Hashing

	Conclusions

	Comparing bichromatic discrepancy for boxes and spheres
	Applications
	Discrepancy for axis-parallel boxes
	1d: Intervals
	2d: Boxes

	Discrepancy for disks
	Algorithm for disk discrepancy

	Discrepancy for non-axis-parallel boxes
	Some observations for non-axis-parallel boxes

	Conclusions

	Bibliography

