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Abstract
Early alarm systems can activate vital precautions for saving lives and the economy threatened by natural hazards and human 
activities. Interferometric synthetic aperture radar (InSAR) products generate valuable ground motion data with high spatial 
and temporal resolutions. Integrating the InSAR products and forecasting models make possible to set up early alarm systems 
to monitor vulnerable areas. This study proposes a technical support to early warning detection tools of ground instabilities 
using machine learning and InSAR time series that is capable of forecasting regions affected by potential collapses. A long 
short-term memory (LSTM) model is tailored to predict ground movements in three forecast ranges (i.e., SAR observations): 
3, 4, and 5 multistep. A contribution of the proposed strategy is utilizing adjacent time series to decrease the possibility of 
falsely detecting safe regions as significant movements. The proposed tool offers ground motion-based outcomes that can 
be interpreted and utilized by experts to activate early alarms to reduce the consequences of possible failures in vulnerable 
infrastructures, such as mining areas. Three case studies in Spain, Brazil, and Australia, where fatal incidents happened, are 
analyzed by the proposed early alert detector to illustrate the impact of chosen temporal and spatial ranges. Since most early 
alarm systems are site dependent, we propose a general tool to be interpreted by experts for activating reliable alarms. The 
results show that the proposed tool can identify potential regions before collapse in all case studies. In addition, the tool can 
suggest an optimum selection of InSAR temporal (i.e., number of images) and spatial (i.e., adjacent measurement points) 
combinations based on the available SAR images and the characteristics of the study area.
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Introduction

Natural and man-made (anthropogenic) hazards threaten lives 
and the economy through various factors influencing a region’s 
exposure and vulnerability. Natural hazards (e.g., geophysical, 
hydrological, climatological, meteorological, and biological) 
caused 10,492 fatalities in 2021, according to the Emergency 

Event Database (EM-DAT) (CRED 2022), and man-made haz-
ards (i.e., caused by humans or close to human settlements) 
caused 7.93 billion US dollars global insured losses in 2020, 
reported by Statista (Statista Research Department 2022). The 
International Federation of Red Cross and Red Crescent Soci-
eties stated that “disasters happen when a community is not 
appropriately resourced or organized to withstand the impact” 
and “disasters, therefore, can and should be prevented.” To 
do so, early warning detection (EWD) and monitoring tools 
can support the experts’ decisions to enhance preparedness, 
response, and resilience (Holmes et al. 2012).

Disaster risk reduction plans are able to save lives and 
reduce economic damages by preparing early warning 
systems (Intrieri et al. 2021). According to the checklist 
launched by the Sendai Framework for Disaster Risk Reduc-
tion 2015–2030, four elements are involved in the frame-
work to reduce disaster risk (Nations 2015): (i) disaster risk 
knowledge; (ii) detection, monitoring, analysis, and fore-
casting of hazards and possible consequences; (iii) warning 
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dissemination and communication; and (iv) preparedness 
and response capabilities. In this work, we focus on the sec-
ond element (i.e., strengthening disaster risk governance to 
manage disaster risk) to provide an EWD tool using remote 
sensing (RS) data to detect and monitor potential hazards by 
machine learning (ML)-based forecasting models.

RS offers a rich geodatabase of satellite images to moni-
tor the state of stable and moving regions. Multiple inter-
ferometry SAR (InSAR) techniques have been proposed to 
monitor and detect ground deformations on a millimeter 
scale. These techniques have been employed for monitor-
ing and post-event analysis of natural and anthropogenic 
hazards, such as subsidence (Herrera et al. 2009), seismic 
(Fentahun et al. 2021), landslide (Calò et al. 2014), flood 
(Chaabani et al. 2020), mining (Palamà et al. 2022), road 
infrastructure (Orellana et al. 2020), and other activities 
(Cigna and Tapete 2021).

As one of the most important economic and industrial 
infrastructures, mining areas are prone to ground insta-
bilities. Despite the methodologies used to monitor mining 
areas, various remotely sensed data have been employed to 
monitor the movements in mining areas infrastructures, such 
as optical (Sengupta et al. 2018), SAR (Palamà et al. 2022), 
UAV (Rauhala et al. 2017), LiDAR (Caudal et al. 2017), 
and hyperspectral (He and Barton 2021) data. Regarding the 
performance of InSAR techniques, a wide range of studies 
has been performed over mining infrastructures to monitor 
small- to large-scale spatial movements (Perski et al. 2009; 
Plattner et al. 2010; Carlà et al. 2018; Kim et al. 2021). For 
instance, Silva Rotta et al. (2020) comprehensively inves-
tigated possible causes of the Brumadinho dam collapse 
using optical and InSAR data from Sentinel-1. In addition 
to the impact of changes in soil moisture and land use/cover, 
InSAR data was provided to evaluate the deformation over 
the tailing dam. Carlà et al. (2018) also utilized InSAR data 
integrated with ground-based radar data to identify the cause 
of a slope failure in an open-pit mine. A slope-accelerating 
creep was observed due to the short revisit time of Sentinel-1 
satellites, which matched the source area of the failure. It 
should be noted that the period of monitoring and temporal 
sampling of time series using InSAR techniques varies based 
on the availability of the SAR dataset.

ML and deep learning (DL) approaches have been 
increasingly proposed to improve monitoring capability and 
reduce disaster risk by forecasting near future (e.g., 6 days to 
monthly intervals) instabilities (i.e., movements and defor-
mations) using InSAR time series products. The idea of time 
series forecasting is based on training a model using univari-
ate or multivariate time series (i.e., previously observed val-
ues of single or multiple parameters) to forecast future val-
ues (Hill et al. 2021). These methods mainly were focused 
on the time series products of InSAR techniques over differ-
ent deformation case studies (e.g., landslide, subsidence, and 

slope failure) to warn of abnormal movements. For instance, 
Ma et al. (2020) proposed a deep convolutional neural net-
work (DCNN) to detect deformations on reclaimed lands 
at the Hong Kong International Airport priorly. In addition 
to the accurately predicted results, the DCNN model could 
predict linear trends of the settlements on reclaimed lands 
and the buildings’ seasonal pattern. A neural network model 
has also been presented to detect anomalies using a large 
InSAR dataset over the entire of Italy (Milillo et al. 2022). 
More than 170 million InSAR time series were used; the 
proposed approach could improve the anomalous point iden-
tification speed compared to an analytical model proposed 
by Raspini et al. (2018). Considering the performance of 
recurrent neural networks for time series prediction, the fol-
lowing works focused on long short-term memory (LSTM) 
to detect anomalies in InSAR time series. Hill et al. (2021) 
compared multiple structures of LSTM and conventional 
methods in forecasting InSAR ground motion data of the 
West Yorkshire coal mine subsidence. Several limitations of 
the models and the effect of signals nature on the forecasting 
performance were also highlighted. Kathirvel et al. (2021) 
compared the model proposed by Hill et al. (2021) to a mul-
tiscale attention mechanism LSTM architecture, which could 
outperform for predicting seasonal and non-seasonal defor-
mation signals over the volcanic activity of Fogo Island, 
Cape Verde. In the case of multivariate LSTM forecasting, 
Radman et al. (2021) used environmental parameters (e.g., 
rainfall, groundwater, and area variations) along with InSAR 
ground deformations to predict the future behavior of land 
subsidence over an area by the Lake Urmia, Iran. Recently, 
LSTM has been utilized to detect and classify sinkhole-
related anomalies in a supervised bidirectional architecture 
(Kulshrestha et al. 2022). The detected anomalies were clas-
sified based on a sudden step and sudden velocity changes in 
deformation time series. Bidirectional LSTM has also been 
used by Lattari et al. (2022) to obtain change points affected 
by volcanic activities over the Fernandina volcano area. 
Raspini et al. (2018) was again considered as the baseline, 
and a time-gated LSTM was designed to use sampling inter-
vals as additional information during learning. The proposed 
architecture identified three classes of trend changes, includ-
ing step, velocity, and step and velocity (Lattari et al. 2022).

Based on our best knowledge of the current state of the 
art, there is a gap in providing a general tool to exploit the 
capability of InSAR time series in detecting spatio-temporal 
anomalies. In addition, no research has considered the adja-
cent time series of InSAR measurement points. This study 
presents a framework of InSAR time series forecasting 
using the LSTM model and considering the neighbor time 
series. The outcome of the proposed framework prepares 
spatio-temporal- and ground instability-based input for early 
warning systems to be integrated by other parameters for 
activating alarms over high-risk regions with the minimum 
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false alarm rate. The method is tested over three failure cases 
in mining areas in Spain, Brazil, and Australia. Eventually, 
the goals of this work are (i) presenting an approach to sup-
port early warning detection (EWD) tools using InSAR 
time series products to provide an interpretable platform for 
experts in natural and human-initiated risk assessment; (ii) 
preparing an LSTM architecture employed by tuned param-
eters to forecast short timesteps (e.g., 3, 4, and 5); (iii) pro-
posing an early alert detector to detect four types of behav-
iors, including normal, outlier, noise, and early warning; and 
(iv) investigating on impact of InSAR temporal (i.e., mini-
mum number of images) and spatial (i.e., adjacent InSAR 
measurement points) characteristics in detecting regions for 
potential collapse in near future.

The reminder of this paper is structured as follows: “Case 
studies and InSAR data” section provides information on 
three collapse cases and InSAR datasets utilized in this study. 
Afterwards, the methodology is explained in “Methodology” 
section, including LSTM model characteristics and the algo-
rithm of EWD tool. The performance of proposed tool and 
LSTM are presented in “Results” section. In “Discussion” 

section, the contribution and limitations of this work are dis-
cussed, along with the several suggestions for future studies. 
Finally, the conclusion is in “Conclusion” section.

Case studies and InSAR data

Three cases of collapses over mining sites are considered in 
this study to evaluate the capability of the EWD tool. These 
cases are in Spain, Brazil, and Australia: Cobre Las Cruces, 
Córrego do Feijão Mine (Brumadinho), and Cadia Valley 
Operations (Cadia). In the following sections, the case stud-
ies and characteristics of the hazards are explained, along 
with the InSAR datasets.

Cobre Las Cruces, Spain

Cobre Las Cruces is the largest open-case copper mine in 
Europe, located in the municipalities of Gerena, Salteras, 
and Guillena in the Seville province of Spain (Fig. 1). It is 
an open pit mine using a hydrometallurgy process to obtain 

Fig. 1  Cobre Las Cruces case study in Spain. a The pre-event image 
of the site and the red circle shows where the collapse happened. A 
closer view of the aftermath landslide is shown in b on January 25, 

2019. c The aerial photo of the mine site after the collapse, demon-
strating the mass of mud and tailings (Jesús Florencio; Petley 2019)
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metals with a private investment of almost 1100 million Euros 
(Cobre las Cruces, a twenty-first century mine; Torres et al. 
2022). On January 22, 2019 (Petley 2019) (or during the 
early hours of the morning of January 23 based on (Jesús 
Florencio)), a massive mining-induced landslide occurred 
(Fig. 1a), covering 675,000  m2, including the slopes of the 
open-pit mine, where the wave of toxic waste traveled 1300 m  
from the mine’s waste management plant to the bottom of 
the mine (50% of the mine’s waste management plant was 
collapsed, Fig. 1c), along with the northern slope of the mine 
(Rodríguez 2019). It was also reported that this collapse 
contained an estimated 15 million  m3 (Rodríguez 2019). 
Fortunately, the collapse occurred during the shift change 
in the mining work, and there was no personal misfortune, 
although it took several months to remove material deposited 
at the bottom of the open pit mine, rebuild the slopes, 
and resume the extraction and treatment of copper (Jesús 
Florencio). Based on local geologists’ point of view (Jesús 
Florencio; José 2019), the movements on the Niebla-Posadas 
aquifer, where the piezometric level was forcibly reduced, 

caused a new geotechnical instability creating a gigantic 
discontinuity surface that was not considered at all in the 
technical calculations carried out for the project.

Brumadinho, Brazil

The Córrego do Feijão Mine is one of the complexes of an 
iron ore mining company, located in Brumadinho, Minas 
Gerais State, Brazil (Fig. 2). The inactive Dam I of Córrego 
do Feijão Mine collapsed on January 25, 2019, known as the 
Brumadinho dam disaster (Fig. 2a). The dam’s height was 
86 m and had a crest length of 720 m, a waste disposal area 
of 249,500  m2, and a volume disposed of 11.7 million  m3 
(Porsani et al. 2019). In addition to the dams, the complex 
included dams, an administrative center, a dining hall, a main-
tenance office, a cargo terminal, and a miniature railway net-
work for the transport of iron ore (Fig. 2a). The failure caused  
270 people to die after the dam released a mudflow through 
the complex infrastructures. The dam was classified as hav-
ing a low risk of severe potential damage and went through 

Fig. 2  The Córrego do Feijão Mine in Brazil. The overview of the 
mine site in a is as follows: (1) the mine, (2) the overburden dump, 
(3) water dam VI, (4) Dam I, (5) the stockpile area, (6) canteen, and 
(7) Vale’s administrative center (Porsani et al. 2019; Robertson et al. 

2019). The first observed deformation was recorded by a video cam-
era after 18 s (b) and 6 min and 25 s (c) (Robertson et al. 2019). The 
mud wave affected the area after the collapse (Silva Rotta et al. 2020) 
(d)
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multiple field monitoring, including two local stability declara-
tions, biweekly field inspections, piezometers and water-level 
indicators, ground-based radar, video monitoring system, siren 
alert system, and downstream population registration (clarifi-
cations regarding Dam I of the Córrego do Feijão Mine 2019). 
However, about 12 million  m3 of a tailing-mud mixture was 
released after the collapse, destroying 8.5 km up to the Par-
aopeba River, extending for more than 300 km along the bed 
of the Paraopeba River toward the São Francisco River with 
waves up to 30 m high (Fig. 2d) (Porsani et al. 2019). It was 
reported by an expert panel that “a slope failure within the dam 
starting from the crest and extending to an area just above the 
First Raising (the Starter Dam). The dam crest dropped, and 
the area above the toe region bulged outwards before the dam’s 
surface broke apart,” based on recorded videos (Robertson 
et al. 2019). It was also investigated that vertical subsidence, 
up to 30 cm, was moving within the past 12 months before the 
dam collapse. The subsidence occurred due to seepage erosion, 
saturating the tailings dam, and sediments removal from the 
fill (Silva Rotta et al. 2020).

Cadia mine, Australia

Cadia Valley Operations (Cadia), located in central western 
New South Wales, Australia (Fig. 3), owns Australia’s largest 
underground gold mine and one of the world’s largest gold 
and copper deposits. A section of the northern dam wall, 
which links two tailing storage areas, collapsed into the 
southern tailings dam on March 9, 2018 (Fig. 3a) (Petley 
2018). Two 2.7 magnitude earthquakes in shallow depth 
of 10 km happened a day before the failure (Geoscience 
Australia 2021). Although there is no evidence that seismic 
events caused the collapse (Thomas et al. 2019), seismic  
activities can still be considered as the reason related to the 
collapse due to the shallow depth of earthquakes and active 
fault observed in the seismic catalogue (Geoscience Australia 
2021). Additionally, construction activities took place before 
the day of failure due to satellite imageries, along with several 
cracks observed a few hours before the collapse (Thomas 
et al. 2019). According to Thomas et al. (2019), a mixture 
of transient and progressive displacement was observed at 

Fig. 3  The map of the Cadia mine site in (a): (1) Cadia Hill open 
pit; (2) Cadia East underground mine; (3) South Waste Rock Dump; 
(4) Northern tailing storage facility; and (5) Southern tailing storage 
facility (Thomas et al. 2019). The collapse area has been highlighted 

by a red circle in (a). Initial and secondary failures have been indi-
cated by the red and yellow polygons (Thomas et al. 2019). d Aerial 
photo of failure and estimated dimensions (Thomas et al. 2019)
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various locations across the dam, caused by low-magnitude 
subsidence during the year preceding the collapse.

InSAR datasets

In this study, InSAR time series were generated using SAR 
Sentinel-1 A/B interferometric wide swath (IW) single look 
complex (SLC) images at full resolution. Table 1 provides 
the number of images and the time span of Sentinel-1 images 
for each case study. According to the revisit plan of the satel-
lite, the minimum temporal sampling was 6 days for Cobre 
Las Cruces and 12 days for Brumadinho and Cadia. Due to 
technical issues, the observation intervals were not equal in 
the time series.

The InSAR processing was performed using the Persis-
tent Scatterer Interferometry chain of the Geomatics (PSIG) 
Research Unit of the Centre Tecnològic de Telecomunica-
cions de Catalunya (CTTC), described in Devanthéry et al. 
(2014). The main steps of the PSIG processing implemented 
in this study are (1) generation of consecutive interfero-
grams; (2) selection of points based on the dispersion of 
amplitude; (3) estimation of the residual topographic error 
and subsequent removal from original single-look interfero-
grams; (4) phase unwrapping of the consecutive interfero-
grams, generating a set of N unwrapped phase images, which 
are temporally ordered in correspondence with the dates of 
the SAR images processed, referred as time series of defor-
mation (TSD); and (5) geocoding of the results.

The output of the InSAR processing is a deformation 
map composed of a set of selected points, called persistent 
scatterers (PS), with information on the estimated line-
of-sight (LOS) deformation velocity and the accumulated 
deformation at each Sentinel-1 image acquisition time. 
Thus, in addition to the dispersion of amplitude criterion, 
parameters such as the temporal consistency among points 
and coherence values of interferograms were considered to 
ensure that the analysis involves only well-processed points. 
Besides, distance between selected points and the number 
of edges connected to a fixed point were made to satisfy a 
given threshold.

Methodology

A supportive EWD tool provides spatio-temporal analyses to 
detect potential future movements. This study proposes a sup-
porting mechanism for EWD systems to supply spatial and tem-
poral states of unstable regions as an input to early alarm systems 
to reduce the false alarm rate of high-risk alarm activation in 
vulnerable areas. Thus, the proposed tool attempts to introduce 
regions characterized by various ranges of anomalies inside their 
InSAR time series, where potential failures can occur. The tool’s 
outcomes can be employed as informative inputs to EWD sys-
tems to be integrated by other technical and decision-making 
factors to activate alarms on high-risk targets finally.

Our tool is ensembled based on two main elements: the fore-
casting model and the early alert (EA) detector. We selected the 
LSTM model regarding its ability and reliability in forecasting 
the InSAR time series (Hill et al. 2021; Lattari et al. 2022). The 
idea of employing a forecasting model is to find possible anoma-
lies in the last time steps (e.g., 3, 4, and 5 observations) of the 
InSAR time series, which could indicate potential future move-
ments. Thus, all sets of time series are divided into three parts, 
including training and test splits of the model and the anomaly 
period. Afterward, all InSAR time series plus corresponding 
predicted values and adjacent time series are the input of the 
EA detector. Each time series is evaluated based on multiple 
criteria considering the predicted values and adjacent time series 
to calculate an indicator, presenting the potentiality of a point for 
a significant collapse. The following sections comprehensively 
explain the forecasting model and EA detector.

LSTM model and magnitude of anomaly

The common configuration of a classic artificial neural 
network (ANN) is composed by input layer, hidden layers, 
and output layer. The input layer enters the system with the 
initial data and feeds the following layers (hidden layer). 
Artificial neurons in the hidden layer, which lies between the 
input and output layers, receive a set of weighted inputs and 
generate an output using an activation function. The final 
layer of neurons that generates results from ANN modeling 
is known as the output layer.

Table 1  Characteristics of 
InSAR datasets

* This column indicates the point density over the surface of dams for Brumadinho and Cadia and open pit 
of Cobre las cruces

Case study No. of images Pass Time span No. of PS ∼ Point 
 density* 
(point/km2)

Cobre las Cruces 122 Descending 09/01/2017–17/01/2019 33,473 8782
Brumadinho 68 Descending 29/09/2016–17/01/2019 832 2414
Cadia 86 Descending 30/04/2015–20/05/2018 23,708 3158
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The input-implicit-output layer is completely connected 
to conventional neural networks. The steps in the sequences 
are unrelated to one another. Therefore, time series predic-
tion cannot be done with a conventional neural network 
(Chen and Chou 2012). The recurrent neural network 
(RNN), which permits network feedback (Sak et al. 2014), 
stores the previous information and uses it to inform the 
calculation of the current output. The problem of “gradient 
explosion” may be effectively solved using a special type 
of RNN, called LSTM (Hochreiter and Computation 1997). 
Long-term memory and data discovery are guaranteed by the 
LSTM’s forgetting gate, input gate, and output gate. For the 
input and removal of data transmission, the three gate func-
tions provide a dependable nonlinear control mechanism.

The LSTM model forecasts three forward time steps, 
including 3, 4, and 5, which are input values for the EA 
detector. Figure 4 shows how a time series is subdivided 
into train, test, and anomaly parts. The last part refers to the 
last values of a time series, where a potential ground motion 
can be triggered. The LSTM is separately trained for each 
case study and forecasting range, and time series are paral-
lelly entered to the models to get the best combination of 
parameters for each multistep prediction (i.e., 3, 4, and 5) 
for each study area.

Hyperparameters of the LSTM models are tuned for every 
multistep forecasting and case study. Table 2 contains the 
parameters and values used for the hyperparameter tunning. 
Root mean square error (RMSE) and mean absolute error 
(MAE) are computed to assess the performance of the model.

After finding the best parameters, the predicted values are 
computed to be compared with InSAR values to calculate 
the magnitude of difference among the predicted values and 
real values, indicating the beginning of anomalies for the fol-
lowing time steps. The difference of predicted steps and cor-
responding observations is summed as the anomaly amount 
for each time series, called D. Indeed, D demonstrates what 
amount of instability was detected inside the most recent 
InSAR displacements, compared to previous observations.

Early alert detection

As mentioned above, we select three multistep anomaly peri-
ods to detect potential significant movements, including 5, 
4, and 3 SAR observations in every time series. Consider-
ing the next step observations in each time series and cor-
responding predicted values and adjacent time series, each 
InSAR observation can be classified as one of the follow-
ing four types of alerts: normal, outlier, noise, and potential 

Fig. 4  A time series sample 
divided to train, test, and anom-
aly period. The anomaly period 
is compared with predicted by 
the LSTM model. The proposed 
EWD procedure is implemented 
on anomaly period

Table 2  Hyperparameters and values used to tune the LSTM models

Parameter Nodes Learning rates Batch size Look back

Values {16, 32, 64, 96, 128, 256} {10e − 3, 5e − 3, 10e − 4, 5e − 4, 10e − 5, 5e − 5} {9, 18, 36, 74, 144} {6, 12, 18, 24}
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anomaly. Figure 5 contains the visual example of the four 
types of InSAR time series behavior within the anomaly 
period. Figure 5a shows a normal point, in which the pre-
dicted value meets an interval of the real observation (the 
threshold is explained in this section). A normal point dem-
onstrates that the observation follows the dominant trend 
of the time series, referring to non-anomaly behavior. An 
outlier alert is shown in Fig. 5b, indicating that the predicted 
value locates out of the interval of the real observation, how-
ever, inside the next observation interval. This time series 
may be characterized by an anomaly in the following steps, 
but Fig. 5b observation is out of this probable trend. Fig-
ure 5c also shows another example of observation, which 
does not display our demanded deformations, called noise. 
This alert identifies a point which is not in the interval of 
corresponding observation neither the mean of next obser-
vation of adjacent time series interval. Additionally, a noise 
locates in opposite side of the two observations. Finally, 
type 4 alert warns an early alarm for the possible signifi-
cant movement. In this alert, similar to the noise alert, the 
predicted value is not inside of both observations’ intervals; 
however, it is between two observations, which are along the 
same direction of the deformation/dynamic trend.

It should be noted that each predicted value is evaluated 
by the corresponding observations of its and adjacent time 
series. The adjacent time series are chosen from neighbor-
hood time series in radiuses of 20, 30, and 45 m, where the 
impact of this parameter is also discussed in the “Results” 

section. To classify the observations, four conditions are 
employed based on a threshold (Eq. 1), computed by the 
residual standard deviation (rstd) of the time series out of the 
anomaly period. An order 3 polynomial function is fitted to 
calculate the residual values in each time series.

where x and x
est

 are the observation value and the estimated 
value.

Algorithm 1 elaborates the proposed procedure to detect 
potential time series warning an unstable movement. The 
entire set of time series is imported one by one through the 
first loop with the length of number of time series. X vector 
contains a full-length time series excluded the anomaly 
period, Ap , where the rest of observations is in the Xp vector. 
So, the length of the X is “n steps,” where n is the length of 
a time series with the entire observations. The forecasting 
model (LSTM) predicts corresponding values of Ap using X. 
This model has been so far tuned as explained in the previ-
ous section. Thus, P vector contains predicted values con-
sidering the chosen anomaly period (i.e., forward multisteps 
3, 4, and 5). Then, observations of adjacent time series, Xn , 
are found based on the given neighborhood distance: 20, 30, 
and 45 m. The rstd is also computed using Eq. 1. The second 
loop begins after the above steps, containing the detection 
of alert types for every observation in the Ap . The first 

(1)
rstd =

�
∑

(x − x
est
)
2

n − 2

Fig. 5  Visual examples of four 
types of alerts, proposed in 
this study: a normal, b outlier, 
c noise, and d early warning 
observations
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condition (line 5) detects normal observations. If an observa-
tion cannot satisfy the first conditional statement, it is evalu-
ated through outlier alert. The outlier detector has a false 
annotation of the previous condition, while the predicted 
value locates in the interval of the mean of next observation 
of adjacent time series, ||

|
Pj − Xn

j

|
|
|
≤ thr . Additionally, a noise 

is not inside the interval of corresponding observation nei-
ther the mean of next observation of adjacent time series. 
Finally, an observation characterized by an early warning 
alert satisfies the noise detector condition; however, the 
observations follow a positive or negative slope. Moreover, 
each observation is labeled based on its step and alert type 
assigned, in such a way that 0: normal, − 1: outlier and noise, 
and 2: early warning. Then after, the labels multiply by the 
numerator of each step to emphasize the impact of recent 
anomalies or possible noises. Through all these steps, the 
difference of real observation and predicted values is com-
puted. At the final stage, the summation of alerts, EA, and 
differences, D, of each time series are calculated as the indi-
cators of EWD.

It is worth noting that the minimum and maximum ranges 
of EA values vary for the selected forecast ranges. Indeed, 
the lowest values of EA are calculated − 6, − 10, and − 15 for 
3, 4, and 5 forecast ranges, respectively, where the highest 
values are 12, 20, and 30. In this study, we consider 6 (i.e., 
two consecutives of early alerts in the first and second time 
step) as the indicator of potential anomaly. This value can 
be changed to higher ones based on the decision of experts 
for finding more significant or recent anomalies. Therefore, 
histograms of the EA and D are generated to designate the 
population of time series in different intervals of EA and D. 
Since the scope of this study is to detect time series with 

significant anomalies, we mostly focus on time series groups 
with high EA values.

Results

Before analyzing the EWD results, the performance of the 
LSTM model is reported for the case studies. Then, histo-
grams of magnitudes of differences between predictions and 
real observations and anomaly estimations are provided to 
enhance the interpretation of the EWD results, as well as maps 
of these results to demonstrate how the tool could accurately 
detect regions for potential collapse. Additionally, the evalua-
tion of selected time steps and radiuses on the effectiveness of 
the proposed methodology is provided. It should be noted that 
several results are supplied in the Appendix to better convey 
the article’s scope in the main body.

Model selection

Table 3 contains the RMSE and MAE results of the three 
datasets’ best-tuned parameters of the LSTM model. It also 
includes the performance of the model in three forecasting 
ranges. The RMSE and MAE values of training and test of 
each forecasting range and dataset are reported in Table 3. 
The most accurate results were obtained for the Cadia data-
set in all forecasting ranges. Additionally, the best param-
eters were selected through a hyperparameter tunning pro-
cess using values in Table 2. Moreover, Fig. 6 shows a time 
series sample with the prediction values and neighbor time 
series in 20 m. In this time series, an anomaly was triggered, 
causing a significant difference between the predicted values 
(red time series) and the real observations (blue time series). 
Additionally, five neighbor time series were found in a 20-m 
radius, which has been demonstrated in this figure. Since 
an abrupt change characterized the real-time series before 
the anomaly period, the proposed method estimated an EA 
amount of 20- and 150-mm magnitude of differences, D.

Analysis of anomalies for Cobre las Cruces

Histograms of estimated EA and magnitude of differences 
were provided to indicate the distribution of the estimated 
values in various intervals, including noise or outliers, nor-
mal, and significant anomalies. The provided histograms 
help to find the number of points with high values of D 
and EA, indicating potential time series characterized by 
significant anomalies. Figure 7 includes the results of EA 
estimation histograms for all anomaly periods and radiuses 
of the Cobre las Cruces dataset, containing nine different 
combinations (see Appendix for several examples of histo-
grams). The bin widths of EA histograms were selected 3, 
4, and 7 to properly categorize EA values for detecting safe 
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and unsafe (i.e., potential) time series. The x-axis refers to 
the bin widths’ intervals, and the y-axis shows the percent of 
time series detected in each interval. As shown in the sub-
figures of Fig. 7, the range of three anomaly periods is not 
equal because a more extended forecast range analyzes more 

observations to detect early warnings. Figure 7 also shows 
that a high percentage of time series was clustered as safe 
targets (i.e., EA < 6 ), which was expected.

A more considerable EA value refers to continuous and 
recent anomalies regarding the potential time series. To 

Table 3  The best configuration of LSTM parameters achieved by hyperparameter tunning and evaluation accuracies for three forecasting ranges 
in the case studies

Best parameters RMSE

MAE

Nodes Learning rates Batch size Look 
back

3 4 5

3 4 5 3 4 5 3 4 5 3 4 5 Train Test Train Test Train Test

Case Study Cobre Las Cruces 96 64 64 0.001 0.0005 0.001 18 18 36 3 3 6 2.98 5.57 3.95 8.28 8.82 9.48
2.04 3.76 2.79 5.86 6.07 6.56

Brumadinho 8 128 16 0.005 0.001 0.001 9 9 18 1 1 1 5.88 8.20 1.12 8.18 6.38 9.50
4.24 5.78 0.78 5.78 4.46 6.66

Cadia 96 64 32 0.001 0.005 0.0005 36 9 9 1 6 6 1.44 2.05 1.00 2.36 0.99 2.54
1.07 1.47 0.76 1.60 0.75 1.70

Fig. 6  Example of a Cadia time series and adjacent time series, along with the prediction values of the forecast range of 5 and 20-m radius. The 
zoom-in figure broadens the real and adjacent time series and predicted period
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this end, this tool can trigger an alarm for those areas with 
high EA values for further analysis considering the fact 
that a recent and notable failure can happen. The following 
results of differences’ magnitude and maps are presented 
to address the level of anomalies and spatial position of 
potential time series.

Figure 8 shows the estimated D, the sum of the dif-
ferences among real observations and predicted values, 
using the LSTM model. These results are the outputs of 
histograms for each forecast range in the Cobre las Cru-
ces dataset (see examples in Appendix). The bin width 
was selected as 50 mm to properly categorize time series 
characterized by considerable differences. Overflow and 
underflow bins were also chosen to maintain a consistent 
number of bins among the radiuses results. It was also 
concluded from Fig. 8 that all plots approximately meet 
a normal distribution shape. The maximum number of 
time series had safe amounts of D (i.e., bars in the mid-
dle of graphs). Time series with maximum and minimum 
D can provide valuable information about the degree of 
anomalies. For instance, the last bins at the left and right 
of the bar charts indicate the most significant difference 
among the InSAR measurements and predictions. Since 
the dataset was a descending pass, two or three last bins 

on the right of the graph are anomalies that move far from 
the satellite.

The results, as mentioned earlier, are also shown in Fig. 9, 
a map of Cobre las Cruces to demonstrate the spatial distri-
bution of outcomes and how the tool was precise in detecting 
potential regions where failures happened. Figure 9 includes 
EA and D estimations of the Cobre las Cruces dataset for a 
radius of 20 m and a forecast range of 5. In “Impact of fore-
cast range and radius in EWD” section, further explanation 
of the results of the proposed tool is provided considering 
the chosen radiuses and forecasting ranges in performance 
of the tool in EWD.

Figure 9 illustrates the proposed tool’s capability to fore-
cast the potential deformations over the Cobre las Cruces. A 
red polygon in Fig. 9 has highlighted the collapsed region. 
It is evident in Fig. 9a that a high concentration of potential 
targets was located inside the drawn area. Other potential 
points are also in other places far from the collapsed zone. 
Additionally, Fig. 9b shows the magnitude of D over the case 
study. Multiple potential targets (i.e., more than − 50 mm) 
were detected over the collapsed zone, illustrated as reddish 
colors. There is also a concentration of high values of D in 
the west of the pit, which may provide valuable information 
regarding the possible causes of the collapse.

Fig. 7  The percentage of EA estimations for all combinations of 
forecasting ranges (i.e., the number of observations 3, 4, and 5) and 
radiuses of the Cobre las Cruces dataset (20, 30, and 45 m). The bin 
widths of forecasting ranges were selected 3, 4, and 7, respectively. 

A bin in a histogram shows the bars or towers of a histogram, and 
the width of each bin is calculated by the difference of maximum and 
minimum values of data divided by the total number of bins
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Analysis of anomalies for Brumadinho

Figure 10 provides the result of EA values’ histograms of the 
Brumadinho dataset, with similar characteristics to Fig. 8. 
Since the point density of this case study was not as large as 
Cobre’s, the graphs’ shape is different. An equal number of 
time series were detected as safe and unsafe points in most 
combinations, possibly due to the lack of PS detected in this 
area. As stated before, the time series with large EA values 
are crucial regions for further analysis. Over the Brumadinho 
region, a greater percentage of time series were characterized 
by high EA values. Additionally, the three selected radiuses’ 
forecast range results indicate similar behavior.

Regarding the D results, we followed an identical method-
ology, as explained in “Analysis of Anomalies for Cobre las 
Cruces” section, with different overflow and underflow bins. 

Figure 11 also meets a normal distribution shape with a bin 
width of 50 mm. Although a limited number of time series had 
the highest and lowest differences values, these are crucial out-
comes that need more interpretation. In Fig. 12, their location 
is highlighted as red. In all three forecast ranges, the minimum 
and maximum D values are almost equal for Brumadinho and 
Cobre las Cruces areas. Since these values vary between 150 
and 200 mm, significant displacements were triggered earlier 
than collapses over these areas.

Fig. 8  The percentage of D esti-
mations for all combinations of 
forecasting ranges (i.e., 3, 4, and 
5 time steps) and radiuses of the 
Cobre las Cruces dataset. The 
bin widths of forecasting ranges 
were selected at 50 mm

Fig. 9  The spatial distribution of estimated EA (a) and D (b) values 
for the Cobre las Cruces dataset with the forecast range of 5 and 20-m 
radius. The red polygon shows the collapsed area. The concentration 
of red and yellow points surrounding the failure point indicates move-
ments detected by the supporting tool to EWD utilizing InSAR time 
series data of Sentinel-1

◂
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Figure 12 illustrates that a significant concentration of the 
potential points is located inside the yellow polygon, where 
the collapse happened. This figure is based on a 45-m radius 
and a forecast range of 4. Another group of potential points 
can be found in the southwest of the study area, which could 
be due to the construction activities close to the tailings dam.

Analysis of anomalies for Cadia mine

Like Cobre las Cruces and Brumadinho datasets, the his-
tograms of 9 combinations of forecast ranges and radiuses 
were generated for the Cadia dataset to facilitate the inter-
pretation of the estimated EA and D values. As shown in 
Fig. 13, the percentages of potential time series detected 
with forecast ranges of 4 and 5 are notably higher than 3. 
In detail, around 20% of points were characterized by sig-
nificant anomalies (i.e., EA ≥ 6 ) in all spatial distances of 3 
forecast ranges; however, more than 45% of time series were 
categorized in other forecast ranges.

On the other hand, the graphs of D values for the 
Cadia dataset follow a normal distribution shape, where 
−50 ≤ D ≤ 50 locates among the center bars in Fig. 14. 
Moreover, the minimum and maximum D values of the 
Cadia dataset are smaller than Cobre las Cruces and Bru-
madinho, indicating that a lower level of instant deforma-
tion occurred over the region. It can also be concluded from 

Fig. 15 that the propagation of potential points is less than 
Cobre las Cruces dataset. In the eastern parts of Fig. 15b 
and west of the purple ellipse (i.e., where the dam col-
lapsed), several potential targets were detected, which were 
addressed as possible triggers in a previous study (Thomas 
et al. 2019). For instance, in the east of the dam, construction 
activities were reported 2 days before the failure, increasing 
the dam’s height. The visual evidence presented the presence 
of a bulldozer, and continuous construction activities started 
several days before the hazard (Thomas et al. 2019).

Impact of forecast range and radius in EWD

Table  4 contains the percentage of time series with the 
possibility of failure, i.e., (EA ≥ 6 and D > 50mm) and 
(EA ≥ 6 and D < −50mm) , inside the surfaces of dams in 
Brumadinho and Cadia and open pit of Cobre las Cruces, 
where the collapses happened over the case studies for all 
combinations of 3 forecast ranges and 3 radiuses. In all case 
studies, the number of detected time series as potential targets 
increased by the forecasting range. Additionally, this increase 
has been seen in the length of the radius. For instance, around 
3–5% of potential time series were detected by increasing the 
forecast range and the radius. In addition, Table 4 incorporates 
the percentage of possible failures within the areas surrounding 
the critical regions of the case studies. Upon reviewing the 

Fig. 10  The percentage of EA estimations for all combinations of forecasting ranges (i.e., 3, 4, and 5 time steps) and radiuses of the Brumadinho 
dataset. The bin widths of forecasting ranges were selected as 3, 4, and 7, respectively
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table, it becomes apparent that the values decrease in the 
Cadia case about 8–12% and 3–6% in Brumadinho, whereas 
the differences observed in the Cobre las Cruces results are 
relatively minor (less than 1%). This disparity is primarily 
attributed to the fact that the selected critical area in the Cobre 
las Cruces case study is approximately 4–5 times wider than 
that of Cadia and Brumadinho. As for the smaller differences 
observed in Brumadinho when compared to Cadia, it can be 
attributed to the limited number of scatterers in the land cover 
of the Brumadinho region, resulting in a density that is not 
substantially larger than that of the dam’s surface.

The inclusion of this table enhances the interpretation by 
providing insights into the percentage of time series with 
potential failure possibilities across the entire set of PS points, 
rather than solely focusing on the area of failure. Further-
more, it enables the generation of a comparable standardized 

indicator, allowing for meaningful comparisons between dif-
ferent case studies, depending on the type of critical areas (e.g., 
dam or open pit). Moreover, it offers a perception of the extent 
to which the provided EA and D values are representative.

The forecast range and radius can be selected due to various 
factors, including the point density, the average temporal interval 
of SAR observations, and the amount of noise and outliers. For 
instance, the number of time series affected by noise and outlier 
observations in Cadia mine is less than in other datasets. The 
noise and outlier observations decreased the level of EA values 
in a forecast range. Additionally, the propagation of PS points 
in the Cadia dataset was not circular due to the dam and vegeta-
tion influencing the number of neighbor points. Moreover, the 
6-day InSAR data was only feasible over the Cobre las Cruces 
dataset, supplying shorter time intervals. It provides a shorter 
day among the forecasting ranges to perform a more reliable 

Fig. 11  The percentage of D 
estimations for all combinations 
of forecasting ranges (i.e., 3, 4, 
and 5 time steps) and radiuses 
of the Brumadinho dataset. The 
bin widths of forecasting ranges 
were selected at 50 mm
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prediction. Indeed, the minimum days of forecasting range 5 
are 1 month, which can be 2 months or more for the Cadia and 
Brumadinho case studies. Also, the point density of the Cobre 
las Cruces is almost five times larger than other datasets, pre-
paring more information for the ML forecasting model, which 
positively impacts training the model. Apart from the fact that 
it may generate more undesirable observations (e.g., outlier and 
noise), a more reliable spatial analysis can be achieved due to 
the high density of PS points. More adjacent time series can 
provide ancillary information to reduce the false alarm rate for 
detecting early alert observations. Therefore, it can be proposed 
that the forecast range and radius should be selected considering 
the characteristics of the InSAR dataset and the case study, such 
as point density, the average temporal interval of SAR observa-
tions, and the amount of noise and outliers.

Discussion

We provided an initial-level tool to support a technical proce-
dure for EWD and early alarm systems. This tool can employ 
assumptions over specific areas to show how the integration of 

ML and InSAR is powerful over mining areas using temporal 
(i.e., forecast range) and spatial (i.e., adjacent time series) for 
detecting regions with the possibility of a near-future collapse. 
Experts can develop the proposed tool (e.g., geologists and risk 
assessors) to implement in their specific areas, considering the 
type of infrastructure and vulnerability.

In this study, we presented the impact of chosen distances 
for spatial investigation of the EWD. At first glance, all radi-
uses in the three forecast ranges have almost equal percent-
ages of detected time series. It may indicate that the pro-
posed tool is robust to detect potential anomalies, although 
it may refer to the poor impact of selected spatial analysis. 
However, the chosen radiuses can demonstrate at what dis-
tance a possible failure may happen.

A deeper analysis of the impact of selected radiuses can 
be investigated in future studies because this work provides 
technical support for presenting a tool to emphasize the 
capability of InSAR and ML for proposing potential regions 
for probable future failures. Indeed, the outcomes of this tool 
must be further analyzed by geologists, on-site engineers 
(miners in our case studies), and sustainability experts to 
finally label an area as a dangerous target.

Besides, we have proposed these forecast ranges due 
to the short revisit time of Sentinel-1. However, a fore-
cast range of 5 SAR observations for non-European areas 
reaches almost 2 months, which could be categorized as a 

Fig. 12  The spatial distribution of estimated EA (a) and D (b) val-
ues for the Brumadinho dataset with the forecast range of 4 and 45 m 
radius. The yellow polygon shows the collapsed area

◂

Fig. 13  The percentage of EA estimations for all combinations of forecasting ranges (i.e., 3, 4, and 5 time steps) and radiuses of the Cadia data-
set. The bin widths of forecasting ranges were selected as 3, 4, and 7, respectively
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long period for an early warning. Additionally, this study’s 
spatial analysis (i.e., selection of radiuses) was performed 
based on the Sentinel-1 proper 14 × 4m pixel size, providing 
spatio-temporal information from the adjacent areas.

Regarding the outcomes of the proposed EWD tool, the 
assumptions (i.e., potential time series) can be more conserv-
ative regarding the false alarm level of the infrastructure. It 
means a mine site must be closed regarding the false alarm 
level. For instance, a high range of EA and D values from con-
servative parameters—forecast range of 3 and 20-m radius—
may trigger an alarm for a probable failure over the case study 
in case of reliable and available short-term SAR images.

Despite the contribution proposed by the EWD tool, several 
limitations were causing unreliable information and increasing 
the false alarm rate. First, it is important to note that the 

availability of SAR images in both ascending and descending 
modes plays a significant role in fully harnessing the potential 
of InSAR outcomes. In our study, we focused solely on the 
descending mode of Sentinel-1 due to data availability. However, 
future investigations should explore the capabilities of both 
ascending and descending pass datasets in enhancing the Earth’s 
surface displacement analysis. Incorporating the ascending pass 
data could provide additional displacement information beyond 
LOS measurements. Therefore, future studies should consider the 

Fig. 14  The percentage of D 
estimations for all combinations 
of forecasting ranges and radi-
uses of the Cadia dataset. The 
bin widths of forecasting ranges 
were selected at 50 mm

Fig. 15  The spatial distribution of estimated EA (a) and D (b) values for 
the Cadia dataset with the forecast range of 3- and 30-m radius. The pur-
ple polygon shows the collapsed area. The high concentration of reddish 
points surrounding the failure point in a indicates movements detected by 
the tool utilizing InSAR time series data of Sentinel-1

◂



Bulletin of Engineering Geology and the Environment          (2023) 82:374  

1 3

Page 19 of 23   374 



 Bulletin of Engineering Geology and the Environment          (2023) 82:374 

1 3

  374  Page 20 of 23

integration of both passes to further improve the effectiveness of 
the Earth surface displacement monitoring tool. Second, there 
were limitations in obtaining enough measurement points over 
areas covered by vegetation and specular targets (e.g., water), 
where no PS point was detected. Over the Brumadinho mining 
site, the PSIG processing chain was not able to get an adequate 
number of PS points; however, using distributed scatterer (DS) 
technique could improve the analysis of Brumadinho case study 
since there were limited numbers of PSs in this area regarding 
the land cover. Given the inherent susceptibility of mining 
sites to substantial movements, the installation of permanent 
corner reflectors can greatly enhance the quality of consistent 
monitoring. By strategically placing corner reflectors or other 
persistent reflectors of SAR signals during the construction 
of dam embankments (e.g., dikes), a systematic monitoring 
approach can be established to track displacements and detect 
sudden movements within critical infrastructures. Third, accurate 
time series forecasting by ML models mainly needs long time 
series characterized by a few rates of noise. Since Sentinel-1 
serves from 2015 and the InSAR time series cannot be generated 
by constant 6- or 12-day observations, the forecasting input 
dataset encounters irregularity in the time series. Additionally, 
as stated in various studies of InSAR time series, filtering 
observations known as noise or outliers is not recommended. 
In addition to the complexity of defining and detecting them, 
they may include information regarding abrupt deformations. 
Furthermore, the coverage of measurement points detected by 
InSAR techniques affects the quality of the spatial analysis. For 
instance, in a distance of 20 m for a PS point in the middle of 
InSAR products from Sentinel-1, 12 adjacent PS points must 
exist with a pixel size of 14 × 4m . However, the low density of 
measurement points, caused by the technical issues and lack of 
PS, decreased the number of adjacent time series. Additionally, 
the spatial analysis of the proposed tool is based on the availability 
of adjacent PS, which may affect the evaluation of single points. 
In fact, there would be single points (or isolated points) over the 
area of interest that indicate a hazardous condition, but they are 
not spatially analyzed in our proposed tool. On the other hand, 
it is worth noting that the temporal evaluation is performing 
on all PS with or without adjacent PS in the chosen radiuses. 
Finally, temporal sampling of SAR observations, Sentinel-1 in 
this study, can only offer the minimum of 6 or 12 days (note that 

before this study, the minimum temporal sampling of Sentinel-1 
was 6 days and will be shorter in the future), which may not be 
adequate input for EWD systems for daily monitoring and risk 
assessment. Also, shorter temporal sampling can improve the 
quality of InSAR time series over areas like the Brumadinho site 
since shorter temporal baselines usually enhance the coherency 
of InSAR datasets.

It is worth noting that considerable contributions have 
been investigated in this study, which is not the primary 
goal for proposing an EWD tool. Therefore, these findings 
can be discussed in the subsequent studies of this work. For 
instance, noise and outlier detection can be further addressed 
due to their high impact on EWD. Outlier values are also 
recommended to be refined to normal alerts by performing 
an extra threshold based on the minimum standard deviation 
in a time series. Additionally, time series characterized by 
vertical jumps—phase unwrapping errors—were observed 
in the extremely high range of D values, which were greater 
and smaller than the overflow and underflow bins.

Conclusion

In this study, we have proposed a technical supporting tool 
to EWD systems on ground motion data using InSAR time 
series and ML model, LSTM, over three collapsed mining 
sites. It was concluded that this tool can provide technical 
support for experts to interpret and activate early alarms 
over vulnerable regions since the tool is adjustable con-
sidering the available data and characteristics of the case 
study. The proposed tool included a forecasting model and 
a novel methodology, EA detector, to find potential time 
series for a possible significant movement in close future. 
The LSTM model was trained and tested to accurately 
forecast the anomaly period, including 3, 4, and 5 time 
steps. Additionally, we presented a new contribution to 
InSAR time series forecasting, spatial forecasting. Indeed, 
adjacent time series in 20-, 30-, and 45-m distances was 
added to the tool to improve the reliability of analysis by 
decreasing the impact of noise and outlier in InSAR meas-
urements. This spatio-temporal tool could indicate regions 
with the possibility of collapse before the event in three 

Table 4  The percentage of 
detected potential time series 
with the possibility of failure 
over the surface of dams and 
critical areas (the upper cells in 
each row of case studies) and 
over the entire datasets of case 
studies (the bottom cells in each 
row of case studies shaded in 
gray)

Radius 20 30 45

Forecast range 3 4 5 3 4 5 3 4 5

Case Study Cobre las Cruces 1.94 4.48 7.76 2.05 6.02 9.60 2.04 6.39 7.09
1.99 4.80 8.92 2.03 6.46 10.99 2.06 6.91 7.79

Brumadinho 17.16 22.49 26.33 15.38 21.30 22.49 12.13 18.93 20.41
12.14 16.59 23.20 10.58 15.75 19.23 9.13 15.38 16.59

Cadia 14.91 20.50 21.42 12.78 17.10 19.34 11.28 16.29 18.19
4.93 7.17 8.06 4.05 5.89 7.43 3.43 5.58 6.93
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case studies, where significant collapses happened. The 
results indicated that the various combinations of forecast 
ranges and radiuses showed similar results over the Cadia 
mine site, although there were other conclusions over the 
Cobre las Cruces and Brumadinho. This suggests that 
the forecasting range and distance for adjacent must be 
selected by experts considering the limitations in available 
SAR images (i.e., temporal point of view) and the number 

of detected PS points (i.e., spatial point of view) over the 
study area. Also, the forecasting model could be under-
gone of further developments to improve the accuracy of 
InSAR time series prediction over those areas with short 
time series and forecast ranges.

Appendix

Fig. 16  Examples of EA and D histograms for three datasets with various radiuses and anomaly periods (APs)
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