THE CANONICAL TUTTE POLYNOMIAL FOR SIGNED GRAPHS

A. GOODALL, B. LITJENS, G. REGTS and L. VENA

Abstract

We construct a new polynomial invariant for signed graphs, the trivariate Tutte polynomial, which contains among its evaluations the number of proper colorings and the number of nowhere-zero flows. In this, it parallels the Tutte polynomial of a graph, which contains the chromatic polynomial and flow polynomial as specializations. While the Tutte polynomial of a graph is equivalently defined as the dichromatic polynomial or Whitney rank polynomial, the dichromatic polynomial of a signed graph (defined more widely for biased graphs by Zaslavsky) does not, by contrast, give the number of nowhere-zero flows as an evaluation in general. The trivariate Tutte polynomial contains Zaslavsky's dichromatic polynomial as a specialization. Furthermore, the trivariate Tutte polynomial gives as an evaluation the number of proper colorings of a signed graph under a more general sense of signed graph coloring in which colors are elements of an arbitrary finite set equipped with an involution.

1. Introduction

The trivariate Tutte polynomial of a signed graph is a moderately-sized special case of the "huge polynomial Tutte invariant" of weighted gain graphs [4] and, in the sense of $[\mathbf{7}]$, is the "canonical Tutte polynomial" for switching equivalence classes of signed graphs [11, §3]: it has a subset expansion, satisfies a deletion-contraction recurrence and is universal for deletion-contraction invariants, and satisfies duality and convolution formulas. Here we show that the trivariate Tutte polynomial also contains the number of nowhere-zero flows and the number of proper colorings of a signed graph as specializations, in this way resembling the Tutte polynomial of a graph in its guise as the dichromate [9]. The trivariate Tutte polynomial contains Zaslavsky's dichromatic polynomial [12] as a specialization; in contrast to the Tutte polynomial of a graph, the dichromatic polynomial of a signed graph does not in general give the number of nowhere-zero flows of a signed graph as an

[^0]evaluation. A more expansive treatment of the trivariate Tutte polynomial is given in our preprint [6], including its generalization to pairs of matroids on a common ground set and the enumeration of the analogue of graph tensions defined for signed graphs by Chen [2]; while all (nowhere-zero) tensions for graphs arise from (proper) vertex colourings, only some (nowhere-zero) tensions for signed graphs arise from (proper) signed graph vertex colourings.

1.1. The Tutte polynomial of a graph

Let $\Gamma=(V, E)$ be a finite graph, $k(\Gamma)$ the number of connected components of Γ, and Γ_{A} the restriction of Γ to $A \subseteq E$. The Tutte polynomial of Γ has subset expansion

$$
\begin{equation*}
T_{\Gamma}(X, Y)=\sum_{A \subseteq E}(X-1)^{k\left(\Gamma_{A}\right)-k(\Gamma)}(Y-1)^{|A|-|V|+k\left(\Gamma_{A}\right)} \tag{1}
\end{equation*}
$$

Alternatively, letting $\Gamma \backslash e$ and Γ / e denote the deletion and contraction of Γ by an edge e, the Tutte polynomial is defined by the recurrence

$$
T_{\Gamma}(X, Y)= \begin{cases}T_{\Gamma / e}(X, Y)+T_{\Gamma \backslash e}(X, Y) & \text { if } e \text { is an ordinary edge of } \Gamma \tag{2}\\ X T_{\Gamma / e}(X, Y) & \text { if } e \text { is a bridge of } \Gamma \\ Y T_{\Gamma \backslash e}(X, Y) & \text { if } e \text { is loop of } \Gamma \\ 1 & \text { if } \Gamma \text { has no edges }\end{cases}
$$

where a loop is an edge whose endpoints coincide, and a bridge is an edge whose deletion increases the number of connected components. For a finite additive abelian group G, the number of nowhere-zero G-flows of Γ is

$$
\begin{equation*}
(-1)^{|E|-|V|+k(\Gamma)} T_{\Gamma}(0,1-|G|) \tag{3}
\end{equation*}
$$

and for a finite set X the number of proper vertex colorings of Γ using colors from X is equal to

$$
\begin{equation*}
(-1)^{|V|-k(\Gamma)}|X|^{k(\Gamma)} T_{\Gamma}(1-|X|, 0) \tag{4}
\end{equation*}
$$

Theorems 3.4 and 3.5 give counterparts to formulas (3) and (4) for signed graphs. If U is a graph invariant multiplicative over disjoint unions and satisfying

$$
U_{\Gamma}= \begin{cases}\alpha U_{\Gamma / e}+\beta U_{\Gamma \backslash e} & \text { if } e \text { is an ordinary edge of } \Gamma \\ x U_{\Gamma / e} & \text { if } e \text { is a bridge of } \Gamma \\ \gamma y^{\ell} & \text { if } \Gamma \text { consists of } \ell \geq 0 \text { loops }\end{cases}
$$

then

$$
\begin{equation*}
U_{\Gamma}=\alpha^{r(\Gamma)} \beta^{|E|-r(\Gamma)} \gamma^{k(\Gamma)} T_{\Gamma}(x / \alpha, y / \beta) \tag{5}
\end{equation*}
$$

The Tutte polynomial is defined more generally for a matroid $M=(E, r)$ with ground set E and rank function r by

$$
\begin{equation*}
T_{M}(X, Y)=\sum_{A \subseteq E}(X-1)^{r(E)-r(A)}(Y-1)^{|A|-r(A)} \tag{6}
\end{equation*}
$$

2. Signed graphs and their matroids

A signed graph is a pair $\Sigma=(\Gamma, \sigma)$, where $\Gamma=(V, E)$ is a finite graph, called the underlying graph of Σ, and σ is a function $\sigma: E \rightarrow\{-1,1\}$ that associates a sign to each edge of Γ, called the signature of Σ. A cycle $C=\left(v_{1}, e_{1}, v_{2}, \ldots, v_{k}, e_{k}, v_{1}\right)$ in Γ is called balanced in Σ if $\prod_{i=1}^{k} \sigma\left(e_{i}\right)=1$ and unbalanced otherwise. The signed graph $\Sigma=(\Gamma, \sigma)$ is itself called balanced if each cycle of Γ is balanced in Σ and unbalanced otherwise. Let $k(\Sigma):=k(\Gamma)$, and let $k_{b}(\Sigma)$ and $k_{u}(\Sigma)$ denote the number of balanced and unbalanced connected components of Σ, respectively. Switching at a vertex v means negating the sign of every edge that is incident with v, while keeping the sign of each loop attached to v. Two signed graphs $\Sigma_{1}=$ $\left(\Gamma_{1}, \sigma_{1}\right)$ and $\Sigma_{2}=\left(\Gamma_{2}, \sigma_{2}\right)$ are switching equivalent if the graph Γ_{1} is isomorphic to the graph Γ_{2}, and if, under such an isomorphism, the signature σ_{1} can be obtained from σ_{2} by a sequence of switchings at vertices.

The deletion of an edge e in $\Sigma=(\Gamma, \sigma)$ yields the signed graph $\Sigma \backslash e:=\left(\Gamma \backslash e, \sigma^{\prime}\right)$, where σ^{\prime} is the restriction of σ to $E \backslash\{e\}$ and where $\Gamma \backslash e$ is the graph obtained from Γ by deleting e as a graph edge. The contraction of a non-loop edge e of Γ that has positive sign in $\Sigma=(\Gamma, \sigma)$ yields the signed graph $\Sigma / e:=\left(\Gamma / e, \sigma^{\prime}\right)$, where σ^{\prime} is the restriction of σ to $E \backslash\{e\}$ and where Γ / e is the graph obtained from Γ by contracting e as a graph edge. By switching we can always ensure that the sign of a non-loop edge is positive. When e is a loop with positive sign in Σ we set $\Sigma / e=\Sigma \backslash e$. We need not define contraction of negative edges (which requires the definition of signed graphs to be enlarged to include half-arcs and free loops [10]).

2.1. Two matroids associated with a signed graph

The cycle matroid $M(\Gamma)$ of the underlying graph $\Gamma=(V, E)$ of $\Sigma=(\Gamma, \sigma)$ is the matroid on ground set E whose circuits are edge sets of a subdivided loop. An edge e is a bridge in Γ if $k(\Gamma \backslash e)>k(\Gamma)$ and ordinary in Γ if e is neither a bridge nor loop. A subdivision of the graph consisting of two loops on a common vertex is a tight handcuff, and a subdivision of the graph consisting of two loops joined by an edge is a loose handcuff. A loose handcuff or a tight handcuff in Σ is contrabalanced if neither of the cycles it contains is balanced in Σ. The frame matroid $F(\Sigma)$ of Σ is the matroid on ground set E whose circuits are the edge sets of subdivisions of a loop that are balanced, or subdivisions of handcuffs that are contrabalanced. A circuit path edge of Σ is an edge of a loose handcuff that belongs to neither of its cycles. An edge e is ordinary in Σ if it belongs to some circuit of Σ consisting of at least two edges (i.e. e is not a positive loop in Σ) and deleting e does not increase the number of unbalanced connected components.

3. The trivariate Tutte polynomial, flows and colorings

Definition 3.1. The trivariate Tutte polynomial of a signed graph $\Sigma=(\Gamma, \sigma)$ with underlying graph $\Gamma=(V, E)$ is defined by

$$
\begin{equation*}
T_{\Sigma}(X, Y, Z):=\sum_{A \subseteq E}(X-1)^{k\left(\Sigma_{A}\right)-k(\Sigma)}(Y-1)^{|A|-|V|+k_{b}\left(\Sigma_{A}\right)}(Z-1)^{k_{u}\left(\Sigma_{A}\right)} \tag{7}
\end{equation*}
$$

in which Σ_{A} is obtained from Σ by deleting the edges not in A.
The trivariate Tutte polynomial $T_{\Sigma}(X, Y, Z)$ includes the Tutte polynomial of $M(\Gamma)$ and the Tutte polynomial of $F(\Sigma)$ as specializations:

$$
\begin{align*}
& T_{M(\Gamma)}(X, Y)=T_{\Sigma}(X, Y, Y), \quad \text { and } \tag{8}\\
& T_{F(\Sigma)}(X, Y)=(X-1)^{k_{u}(\Sigma)} T_{\Sigma}(X, Y, X /(X-1)) . \tag{9}
\end{align*}
$$

Theorem 3.2 ([6]). The trivariate Tutte polynomial $T_{\Sigma}=T_{\Sigma}(X, Y, Z)$ of a signed graph $\Sigma=(\Gamma, \sigma)$ with underlying graph $\Gamma=(V, E)$ satisfies, for each positive edge $e \in E$,
$T_{\Sigma}= \begin{cases}T_{\Sigma / e}+T_{\Sigma \backslash e} & \text { if } e \text { is an ordinary edge of } \Gamma, \\ T_{\Sigma / e}+(X-1) T_{\Sigma \backslash e} & \text { if } e \text { is a bridge of } \Gamma \text { and a circuit path edge of } \Sigma, \\ X T_{\Sigma / e} & \text { if } e \text { is a bridge of } \Gamma \text { not a circuit path edge of } \Sigma, \\ Y T_{\Sigma \backslash e} & \text { if } e \text { is a loop of } \Gamma \text { positive in } \Sigma, \\ 1+(Z-1)\left[1+Y+\cdots+Y^{\ell-1}\right] & \text { if } \Sigma \text { is a single vertex with } \ell \geq 1 \text { negative loops, } \\ 1 & \text { if } \Sigma \text { has no edges. }\end{cases}$
Theorem 3.3 (Recipe Theorem [6]). Let R be an invariant of signed graphs preserved by switching and multiplicative over disjoint unions. Suppose that there are constants $\alpha, \beta, \gamma, x, y$ and z, with $\gamma \neq 0$, such that, for a signed graph $\Sigma=$ (Γ, σ) with underlying graph $\Gamma=(V, E)$ and positive edge $e \in E$,

$$
R_{\Sigma}= \begin{cases}\alpha R_{\Sigma / e}+\beta R_{\Sigma \backslash e} & \text { if } e \text { is ordinary in } \Gamma \text { and in } \Sigma, \\ \alpha R_{\Sigma / e}+\gamma R_{\Sigma \backslash e} & \text { if } e \text { is ordinary in } \Gamma \text { and } k_{u}(\Sigma \backslash e)<k_{u}(\Sigma), \\ \alpha R_{\Sigma / e}+\frac{\beta(x-\alpha)}{\gamma} R_{\Sigma \backslash e} & \text { if } e \text { bridge in } \Gamma \text { and a circuit path edge in } \Sigma, \\ x R_{\Sigma / e} & \text { if e bridge in } \Gamma, \text { not a circuit path edge in } \Sigma, \\ y R_{\Sigma \backslash e} & \text { if } e \text { is a loop in } \Gamma \text { and in } \Sigma, \\ \beta^{\ell-1} \gamma+(z-\gamma) \sum_{i=0}^{\ell-1} y^{\ell-1-i} \beta^{i} & \text { if } \Sigma \text { consists of } \ell \geq 1 \text { negative loops, } \\ 1 & \text { if } \Sigma \text { has no edges. }\end{cases}
$$

Then R_{Σ} is a polynomial in α, β, x, y and z over $\mathbb{Z}\left[\gamma, \gamma^{-1}\right]$ and

$$
\begin{equation*}
R_{\Sigma}=\alpha^{r_{M}(E)} \beta^{|E|-r_{F}(E)} \gamma^{r_{F}(E)-r_{M}(E)} T_{\Sigma}(x / \alpha, y / \beta, z / \gamma) . \tag{10}
\end{equation*}
$$

3.1. Flows

Given a graph $\Gamma=(V, E)$, we call a pair (v, e) with $v \in V$ and $e \in E$ an edge containing v a half-edge. (A loop comprises two half-edges.) A bidirected graph is a pair (Γ, ω), where $\Gamma=(V, E)$ is a graph in which every half-edge (v, e) receives an orientation $\omega(v, e) \in\{-1,1\}$. (The two half-edges associated with a loop at a vertex consist of the same vertex-edge pair but receive orientations independently.) The orientation ω is compatible with the signature σ of a signed graph $\Sigma=(\Gamma, \sigma)$ if for each edge $e=u v$ we have

$$
\begin{equation*}
\sigma(e)=-\omega(u, e) \omega(v, e) \tag{11}
\end{equation*}
$$

Let G be a finite additive abelian group. For $k \in \mathbb{N}$ and $x \in G$, we let $k x=$ $\sum_{i=1}^{k} x$ and $(-k) x=-k x$. Let $2 G:=\{2 x: x \in G\}$.

A G-flow of a bidirected graph $(\Gamma=(V, E), \omega)[\mathbf{1}]$ is a function $f: E \rightarrow G$ such that at each vertex v of Γ

$$
\begin{equation*}
\sum_{(v, e): v \in e} \omega(v, e) f(e)=0 \tag{12}
\end{equation*}
$$

where the summation runs over half-edges (v, e) incident with v, so if e is a loop it contributes with two terms to the sum (if the loop is positive these terms cancel each other, while if the loop is negative they have the same sign). A G-flow of a signed graph $\Sigma=(\Gamma, \sigma)$ is a function $f: E \rightarrow G$ such that f is a G-flow for the bidirected graph (Γ, ω), where ω is an orientation of Γ compatible with σ. A G-flow is nowhere-zero if $f(e) \neq 0$ for all $e \in E$.

Theorem $3.4([\mathbf{6}])$. Let G be a finite additive abelian group. Then, for a signed graph $\Sigma=(\Gamma=(V, E), \sigma)$, the number of nowhere-zero G-flows of Σ is equal to

$$
(-1)^{|E|-|V|+k(\Gamma)} T_{\Sigma}(0,1-|G|, 1-|G| /|2 G|) .
$$

Proof (sketch). The number of nowhere-zero G-flows satisfies a deletioncontraction recurrence, given in [3], with parameters $(x, y, z, \alpha, \beta, \gamma)=(0,|G|-$ $1,|G| /|2 G|-1,1,-1,-1)$ in Theorem 3.3.

When $2 G=G$, i.e. G is of odd order, the number of nowhere-zero G-flows of Σ given in Theorem 3.4 is by (9) an evaluation of the Tutte polynomial of the frame matroid $F(\Sigma)$. Theorem 3.4 is equivalent to the special case of [$\mathbf{5}$, Theorem 4.6] of flows of a map taking values in an abelian group (a flow of a signed graph can be regarded as a flow of a map with the same underlying graph, the twisted edges of the map corresponding to negative edges of the signed graph [5, Remark 4.12]). Theorem 3.4 in the form given by the subset expansion (7) of the trivariate Tutte polynomial was found independently by Qian [8, Theorem 4.3].

3.2. Colorings

Let X be a finite set and ι an involution on X. A (X, ι)-coloring of a signed graph $\Sigma=(\Gamma, \sigma)$ with underlying graph $\Gamma=(V, E)$ is a function $f: V \rightarrow X$ such that, for each edge $e=u v, f(u) \neq f(v)$ if $\sigma(e)=+1$ and $\iota(f(u)) \neq f(v)$ if $\sigma(e)=-1$.

Theorem $3.5([6])$. The number of (X, ι)-colorings of Σ is equal to

$$
\begin{equation*}
(-1)^{|V|-k(\Sigma)}|X|^{k(\Sigma)} T_{\Sigma}(1-|X|, 0,1-t /|X|), \quad \text { where } t=|\{x: \iota(x)=x\}| \tag{13}
\end{equation*}
$$

Proof (sketch). The number of (X, ι)-colorings satisfies the deletion-contraction of Theorem 3.3 with $(x, y, z, \alpha, \beta, \gamma)=(1-|X|, 0,1-t /|X|,-1,1,1)$, except in taking value $|X|^{k}$ on edgeless signed graphs with k vertices.

Remark 3.6. When $t=1$, the evaluation of the trivariate Tutte polynomial in (13) is an evaluation of the Tutte polynomial of $F(\Sigma)$ at $(1-|X|, 0)$; otherwise, when $t \neq 1$, the number of (X, ι)-colorings of Σ is not given by an evaluation of the Tutte polynomial of $F(\Sigma)$.

When $X=\{0, \pm 1, \ldots, \pm n\}$ (or $X=\{ \pm 1, \ldots, \pm n\}$), with ι negation, (X, ι) colorings coincide with Zaslavsky's notion of proper (non-zero) n-colorings of a
signed graph [11] and Theorem 3.5 yields Zaslavsky's Theorem 2.4 in [10]. When X is the set of elements of a finite additive abelian group G and ι is negation, Theorem 3.5 gives that the number of proper colorings of Σ using elements of G as colors is equal to

$$
(-1)^{|V|-k(\Sigma)}|G|^{k(\Sigma)} T_{\Sigma}(1-|G|, 0,1-1 /|2 G|),
$$

as $t=\frac{|G|}{|2 G|}$ is the number of self-inverse elements of G. In a way that can be made precise [6], this formula is dual to that in Theorem 3.4, giving the number of nowhere-zero G-flows of Σ.

References

1. Bouchet A., Nowhere-zero integral flows on a bidirected graph, J. Combin. Theory Ser. B 34 (1983), 279-292.
2. Chen B. and Wang J., The flow and tension spaces and lattices of signed graphs, European J. Combin. 30 (2009), 263-279.
3. DeVos M., Rollová E. and Šámal R., A note on counting flows in signed graphs, arXiv:1701.07369.
4. Forge D. and Zaslavsky T., Lattice points in orthotopes and a huge polynomial Tutte invariant of weighted gain graphs, J. Combin. Theory Ser. B 118 (2016), 186-227.
5. Goodall A., Litjens B., Regts G. and Vena L., A Tutte polynomial for maps II: the nonorientable case, arXiv:1804.01496.
6. Goodall A., Litjens B., Regts G. and Vena L., Tutte's dichromate for signed graphs, arXiv: 1903.07548v2.
7. Krajewski T., Moffatt I. and Tanasa A., Hopf algebras and Tutte polynomials, Adv. Appl. Math. 95 (2018), 271-330.
8. Qian J., Flow polynomials of a signed graph, arXiv:1805.07878v2.
9. Tutte W. T., A contribution to the theory of chromatic polynomials, Canad. J. Math. 6 (1954), 3-4.
10. Zaslavsky T., Signed graph coloring, Discrete Math. 39 (1982), 215-228.
11. Zaslavsky T., Signed graphs, Discrete Appl. Math. 4 (1982), 47-74.
12. Zaslavsky T., Biased graphs. III. Chromatic and dichromatic invariants, J. Combin. Theory Ser. B 64 (1995), 17-88.
A. Goodall, Charles University, Prague, Czech Republic,
e-mail: andrew@iuuk.mff.cuni.cz
B. Litjens, University of Amsterdam, Amsterdam, Netherlands,
e-mail: bart_litjens@hotmail.com
G. Regts, University of Amsterdam, Amsterdam, Netherlands, e-mail: guusregts@gmail.com
L. Vena, University of Amsterdam, Amsterdam, Netherlands,
e-mail: lluis.vena@gmail.com

[^0]: Received June 3, 2019
 2010 Mathematics Subject Classification. Primary 05C22, 05C31.
 The first author was supported by Czech Science Foundation GA CR 19-21082S.
 The second author was supported by the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement no. 339109.
 The third author was supported by a NWO Veni grant.
 The fourth author was supported by the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement no. 339109.

