THE CANONICAL TUTTE POLYNOMIAL FOR SIGNED GRAPHS

A. GOODALL, B. LITJENS, G. REGTS AND L. VENA

ABSTRACT. We construct a new polynomial invariant for signed graphs, the trivariate Tutte polynomial, which contains among its evaluations the number of proper colorings and the number of nowhere-zero flows. In this, it parallels the Tutte polynomial of a graph, which contains the chromatic polynomial and flow polynomial as specializations. While the Tutte polynomial of a graph is equivalently defined as the dichromatic polynomial or Whitney rank polynomial, the dichromatic polynomial of a signed graph (defined more widely for biased graphs by Zaslavsky) does not, by contrast, give the number of nowhere-zero flows as an evaluation in general. The trivariate Tutte polynomial contains Zaslavsky's dichromatic polynomial as a specialization. Furthermore, the trivariate Tutte polynomial gives as an evaluation the number of proper colorings of a signed graph under a more general sense of signed graph coloring in which colors are elements of an arbitrary finite set equipped with an involution.

1. INTRODUCTION

The trivariate Tutte polynomial of a signed graph is a moderately-sized special case of the "huge polynomial Tutte invariant" of weighted gain graphs [4] and, in the sense of [7], is the "canonical Tutte polynomial" for switching equivalence classes of signed graphs [11, §3]: it has a subset expansion, satisfies a deletion-contraction recurrence and is universal for deletion-contraction invariants, and satisfies duality and convolution formulas. Here we show that the trivariate Tutte polynomial also contains the number of nowhere-zero flows and the number of proper colorings of a signed graph as specializations, in this way resembling the Tutte polynomial of a graph in its guise as the dichromate [9]. The trivariate Tutte polynomial contains Zaslavsky's dichromatic polynomial [12] as a specialization; in contrast to the Tutte polynomial of a graph, the dichromatic polynomial of a signed graph does not in general give the number of nowhere-zero flows of a signed graph as an

Received June 3, 2019.

²⁰¹⁰ Mathematics Subject Classification. Primary 05C22, 05C31.

The first author was supported by Czech Science Foundation GA ČR 19-21082S.

The second author was supported by the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement no. 339109. The third author was supported by a NWO Veni grant.

The fourth author was supported by the European Research Council under the European Union's

Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement no. 339109.

evaluation. A more expansive treatment of the trivariate Tutte polynomial is given in our preprint [6], including its generalization to pairs of matroids on a common ground set and the enumeration of the analogue of graph tensions defined for signed graphs by Chen [2]; while all (nowhere-zero) tensions for graphs arise from (proper) vertex colourings, only some (nowhere-zero) tensions for signed graphs arise from (proper) signed graph vertex colourings.

1.1. The Tutte polynomial of a graph

Let $\Gamma = (V, E)$ be a finite graph, $k(\Gamma)$ the number of connected components of Γ , and Γ_A the restriction of Γ to $A \subseteq E$. The Tutte polynomial of Γ has subset expansion

(1)
$$T_{\Gamma}(X,Y) = \sum_{A \subseteq E} (X-1)^{k(\Gamma_A) - k(\Gamma)} (Y-1)^{|A| - |V| + k(\Gamma_A)}.$$

Alternatively, letting $\Gamma \setminus e$ and Γ / e denote the deletion and contraction of Γ by an edge e, the Tutte polynomial is defined by the recurrence

(2)
$$T_{\Gamma}(X,Y) = \begin{cases} T_{\Gamma/e}(X,Y) + T_{\Gamma\backslash e}(X,Y) & \text{if } e \text{ is an ordinary edge of } \Gamma, \\ XT_{\Gamma/e}(X,Y) & \text{if } e \text{ is a bridge of } \Gamma, \\ YT_{\Gamma\backslash e}(X,Y) & \text{if } e \text{ is loop of } \Gamma, \\ 1 & \text{if } \Gamma \text{ has no edges,} \end{cases}$$

where a loop is an edge whose endpoints coincide, and a bridge is an edge whose deletion increases the number of connected components. For a finite additive abelian group G, the number of nowhere-zero G-flows of Γ is

(3)
$$(-1)^{|E|-|V|+k(\Gamma)}T_{\Gamma}(0,1-|G|),$$

and for a finite set X the number of proper vertex colorings of Γ using colors from X is equal to

(4)
$$(-1)^{|V|-k(\Gamma)|} |X|^{k(\Gamma)} T_{\Gamma}(1-|X|,0).$$

Theorems 3.4 and 3.5 give counterparts to formulas (3) and (4) for signed graphs. If U is a graph invariant multiplicative over disjoint unions and satisfying

$$U_{\Gamma} = \begin{cases} \alpha U_{\Gamma/e} + \beta U_{\Gamma \setminus e} & \text{if } e \text{ is an ordinary edge of } \Gamma, \\ x U_{\Gamma/e} & \text{if } e \text{ is a bridge of } \Gamma, \\ \gamma y^{\ell} & \text{if } \Gamma \text{ consists of } \ell \ge 0 \text{ loops,} \end{cases}$$

then

(5)
$$U_{\Gamma} = \alpha^{r(\Gamma)} \beta^{|E| - r(\Gamma)} \gamma^{k(\Gamma)} T_{\Gamma} \left(x/\alpha, y/\beta \right).$$

The Tutte polynomial is defined more generally for a matroid M = (E, r) with ground set E and rank function r by

(6)
$$T_M(X,Y) = \sum_{A \subseteq E} (X-1)^{r(E)-r(A)} (Y-1)^{|A|-r(A)}.$$

750

THE CANONICAL TUTTE POLYNOMIAL FOR SIGNED GRAPHS

2. Signed graphs and their matroids

A signed graph is a pair $\Sigma = (\Gamma, \sigma)$, where $\Gamma = (V, E)$ is a finite graph, called the underlying graph of Σ , and σ is a function $\sigma : E \to \{-1, 1\}$ that associates a sign to each edge of Γ , called the signature of Σ . A cycle $C = (v_1, e_1, v_2, \ldots, v_k, e_k, v_1)$ in Γ is called balanced in Σ if $\prod_{i=1}^k \sigma(e_i) = 1$ and unbalanced otherwise. The signed graph $\Sigma = (\Gamma, \sigma)$ is itself called balanced if each cycle of Γ is balanced in Σ and unbalanced otherwise. Let $k(\Sigma) := k(\Gamma)$, and let $k_b(\Sigma)$ and $k_u(\Sigma)$ denote the number of balanced and unbalanced connected components of Σ , respectively. Switching at a vertex v means negating the sign of every edge that is incident with v, while keeping the sign of each loop attached to v. Two signed graphs $\Sigma_1 =$ (Γ_1, σ_1) and $\Sigma_2 = (\Gamma_2, \sigma_2)$ are switching equivalent if the graph Γ_1 is isomorphic to the graph Γ_2 , and if, under such an isomorphism, the signature σ_1 can be obtained from σ_2 by a sequence of switchings at vertices.

The deletion of an edge e in $\Sigma = (\Gamma, \sigma)$ yields the signed graph $\Sigma \setminus e := (\Gamma \setminus e, \sigma')$, where σ' is the restriction of σ to $E \setminus \{e\}$ and where $\Gamma \setminus e$ is the graph obtained from Γ by deleting e as a graph edge. The contraction of a non-loop edge e of Γ that has positive sign in $\Sigma = (\Gamma, \sigma)$ yields the signed graph $\Sigma/e := (\Gamma/e, \sigma')$, where σ' is the restriction of σ to $E \setminus \{e\}$ and where Γ/e is the graph obtained from Γ by contracting e as a graph edge. By switching we can always ensure that the sign of a non-loop edge is positive. When e is a loop with positive sign in Σ we set $\Sigma/e = \Sigma \setminus e$. We need not define contraction of negative edges (which requires the definition of signed graphs to be enlarged to include half-arcs and free loops [10]).

2.1. Two matroids associated with a signed graph

The cycle matroid $M(\Gamma)$ of the underlying graph $\Gamma = (V, E)$ of $\Sigma = (\Gamma, \sigma)$ is the matroid on ground set E whose circuits are edge sets of a subdivided loop. An edge e is a bridge in Γ if $k(\Gamma \setminus e) > k(\Gamma)$ and ordinary in Γ if e is neither a bridge nor loop. A subdivision of the graph consisting of two loops on a common vertex is a tight handcuff, and a subdivision of the graph consisting of two loops joined by an edge is a loose handcuff. A loose handcuff or a tight handcuff in Σ is contrabalanced if neither of the cycles it contains is balanced in Σ . The frame matroid $F(\Sigma)$ of Σ is the matroid on ground set E whose circuits are the edge sets of subdivisions of a loop that are balanced, or subdivisions of handcuffs that are contrabalanced. A circuit path edge of Σ is an edge of a loose handcuff that belongs to neither of its cycles. An edge e is ordinary in Σ if it belongs to some circuit of Σ consisting of at least two edges (i.e. e is not a positive loop in Σ) and deleting e does not increase the number of unbalanced connected components.

3. The trivariate Tutte polynomial, flows and colorings

Definition 3.1. The trivariate Tutte polynomial of a signed graph $\Sigma = (\Gamma, \sigma)$ with underlying graph $\Gamma = (V, E)$ is defined by

(7)
$$T_{\Sigma}(X,Y,Z) := \sum_{A \subseteq E} (X-1)^{k(\Sigma_A) - k(\Sigma)} (Y-1)^{|A| - |V| + k_b(\Sigma_A)} (Z-1)^{k_u(\Sigma_A)},$$

in which Σ_A is obtained from Σ by deleting the edges not in A.

The trivariate Tutte polynomial $T_{\Sigma}(X, Y, Z)$ includes the Tutte polynomial of $M(\Gamma)$ and the Tutte polynomial of $F(\Sigma)$ as specializations:

(8)
$$T_{M(\Gamma)}(X,Y) = T_{\Sigma}(X,Y,Y), \text{ and}$$

(9)
$$T_{F(\Sigma)}(X,Y) = (X-1)^{k_u(\Sigma)} T_{\Sigma} (X,Y,X/(X-1)).$$

Theorem 3.2 ([6]). The trivariate Tutte polynomial $T_{\Sigma} = T_{\Sigma}(X, Y, Z)$ of a signed graph $\Sigma = (\Gamma, \sigma)$ with underlying graph $\Gamma = (V, E)$ satisfies, for each positive edge $e \in E$,

	$T_{\Sigma/e} + T_{\Sigma\setminus e}$	if e is an ordinary edge of Γ , if e is a bridge of Γ and a circuit path edge of Σ , if e is a bridge of Γ not a circuit path edge of Σ , if e is a loop of Γ positive in Σ , if Σ is a single vertex with $\ell \geq 1$ negative loops, if Σ has no edges.
$T_{\Sigma} = \langle$	$T_{\Sigma/e} + (X-1)T_{\Sigma\setminus e}$	if e is a bridge of Γ and a circuit path edge of Σ ,
	$XT_{\Sigma/e}$	if e is a bridge of Γ not a circuit path edge of Σ ,
	$YT_{\Sigma \setminus e}$	if e is a loop of Γ positive in Σ ,
	$1 + (Z - 1) [1 + Y + \dots + Y^{\ell - 1}]$	if Σ is a single vertex with $\ell \geq 1$ negative loops,
	1	if Σ has no edges.

Theorem 3.3 (Recipe Theorem [6]). Let R be an invariant of signed graphs preserved by switching and multiplicative over disjoint unions. Suppose that there are constants $\alpha, \beta, \gamma, x, y$ and z, with $\gamma \neq 0$, such that, for a signed graph $\Sigma = (\Gamma, \sigma)$ with underlying graph $\Gamma = (V, E)$ and positive edge $e \in E$,

	$\alpha R_{\Sigma/e} + \beta R_{\Sigma \setminus e}$	if e is ordinary in Γ and in Σ ,
	$\alpha R_{\Sigma/e} + \gamma R_{\Sigma \setminus e}$	if e is ordinary in Γ and $k_u(\Sigma \setminus e) < k_u(\Sigma)$,
	$\alpha R_{\Sigma/e} + \frac{\beta(x-\alpha)}{\gamma} R_{\Sigma \setminus e}$	if e is ordinary in Γ and in Σ , if e is ordinary in Γ and $k_u(\Sigma \setminus e) < k_u(\Sigma)$, if e bridge in Γ and a circuit path edge in Σ , if e bridge in Γ , not a circuit path edge in Σ , if e is a loop in Γ and in Σ , if Σ consists of $\ell \geq 1$ negative loops, if Σ has no edges.
$R_{\Sigma} = \langle$	$xR_{\Sigma/e}$	if e bridge in Γ , not a circuit path edge in Σ ,
	$y R_{\Sigma \setminus e}$	if e is a loop in Γ and in Σ ,
	$\beta^{\ell-1}\gamma + (z-\gamma)\sum_{i=0}^{\ell-1} y^{\ell-1-i}\beta^{i}$	if Σ consists of $\ell \geq 1$ negative loops,
	1	if Σ has no edges.

Then R_{Σ} is a polynomial in α, β, x, y and z over $\mathbb{Z}[\gamma, \gamma^{-1}]$ and (10) $R_{\Sigma} = \alpha^{r_M(E)} \beta^{|E| - r_F(E)} \gamma^{r_F(E) - r_M(E)} T_{\Sigma} (x/\alpha, y/\beta, z/\gamma).$

3.1. Flows

Given a graph $\Gamma = (V, E)$, we call a pair (v, e) with $v \in V$ and $e \in E$ an edge containing v a half-edge. (A loop comprises two half-edges.) A bidirected graph is a pair (Γ, ω) , where $\Gamma = (V, E)$ is a graph in which every half-edge (v, e) receives an orientation $\omega(v, e) \in \{-1, 1\}$. (The two half-edges associated with a loop at a vertex consist of the same vertex-edge pair but receive orientations independently.) The orientation ω is compatible with the signature σ of a signed graph $\Sigma = (\Gamma, \sigma)$ if for each edge e = uv we have

(11)
$$\sigma(e) = -\omega(u, e)\omega(v, e).$$

Let G be a finite additive abelian group. For $k \in \mathbb{N}$ and $x \in G$, we let $kx = \sum_{i=1}^{k} x$ and (-k)x = -kx. Let $2G := \{2x : x \in G\}$.

752

A G-flow of a bidirected graph $(\Gamma = (V, E), \omega)$ [1] is a function $f : E \to G$ such that at each vertex v of Γ

(12)
$$\sum_{(v,e):v\in e} \omega(v,e)f(e) = 0,$$

where the summation runs over half-edges (v, e) incident with v, so if e is a loop it contributes with two terms to the sum (if the loop is positive these terms cancel each other, while if the loop is negative they have the same sign). A *G*-flow of a signed graph $\Sigma = (\Gamma, \sigma)$ is a function $f : E \to G$ such that f is a *G*-flow for the bidirected graph (Γ, ω) , where ω is an orientation of Γ compatible with σ . A *G*-flow is nowhere-zero if $f(e) \neq 0$ for all $e \in E$.

Theorem 3.4 ([6]). Let G be a finite additive abelian group. Then, for a signed graph $\Sigma = (\Gamma = (V, E), \sigma)$, the number of nowhere-zero G-flows of Σ is equal to

$$(-1)^{|E|-|V|+k(\Gamma)}T_{\Sigma}(0,1-|G|,1-|G|/|2G|)$$

Proof (sketch). The number of nowhere-zero *G*-flows satisfies a deletion-contraction recurrence, given in [3], with parameters $(x, y, z, \alpha, \beta, \gamma) = (0, |G| - 1, |G|/|2G| - 1, 1, -1, -1)$ in Theorem 3.3.

When 2G = G, i.e. G is of odd order, the number of nowhere-zero G-flows of Σ given in Theorem 3.4 is by (9) an evaluation of the Tutte polynomial of the frame matroid $F(\Sigma)$. Theorem 3.4 is equivalent to the special case of [5, Theorem 4.6] of flows of a map taking values in an abelian group (a flow of a signed graph can be regarded as a flow of a map with the same underlying graph, the twisted edges of the map corresponding to negative edges of the signed graph [5, Remark 4.12]). Theorem 3.4 in the form given by the subset expansion (7) of the trivariate Tutte polynomial was found independently by Qian [8, Theorem 4.3].

3.2. Colorings

Let X be a finite set and ι an involution on X. A (X, ι) -coloring of a signed graph $\Sigma = (\Gamma, \sigma)$ with underlying graph $\Gamma = (V, E)$ is a function $f: V \to X$ such that, for each edge e = uv, $f(u) \neq f(v)$ if $\sigma(e) = +1$ and $\iota(f(u)) \neq f(v)$ if $\sigma(e) = -1$.

Theorem 3.5 ([6]). The number of (X, ι) -colorings of Σ is equal to

(13) $(-1)^{|V|-k(\Sigma)|} |X|^{k(\Sigma)} T_{\Sigma} (1-|X|, 0, 1-t/|X|), \text{ where } t = |\{x : \iota(x) = x\}|.$

Proof (sketch). The number of (X, ι) -colorings satisfies the deletion-contraction of Theorem 3.3 with $(x, y, z, \alpha, \beta, \gamma) = (1 - |X|, 0, 1 - t/|X|, -1, 1, 1)$, except in taking value $|X|^k$ on edgeless signed graphs with k vertices.

Remark 3.6. When t = 1, the evaluation of the trivariate Tutte polynomial in (13) is an evaluation of the Tutte polynomial of $F(\Sigma)$ at (1 - |X|, 0); otherwise, when $t \neq 1$, the number of (X, ι) -colorings of Σ is not given by an evaluation of the Tutte polynomial of $F(\Sigma)$.

When $X = \{0, \pm 1, ..., \pm n\}$ (or $X = \{\pm 1, ..., \pm n\}$), with ι negation, (X, ι) colorings coincide with Zaslavsky's notion of proper (non-zero) n-colorings of a

signed graph [11] and Theorem 3.5 yields Zaslavsky's Theorem 2.4 in [10]. When X is the set of elements of a finite additive abelian group G and ι is negation, Theorem 3.5 gives that the number of proper colorings of Σ using elements of G as colors is equal to

$$(-1)^{|V|-k(\Sigma)|} |G|^{k(\Sigma)} T_{\Sigma} \left(1 - |G|, 0, 1 - 1/|2G|\right),$$

as $t = \frac{|G|}{|2G|}$ is the number of self-inverse elements of G. In a way that can be made precise [6], this formula is dual to that in Theorem 3.4, giving the number of nowhere-zero G-flows of Σ .

References

- Bouchet A., Nowhere-zero integral flows on a bidirected graph, J. Combin. Theory Ser. B 34 (1983), 279–292.
- Chen B. and Wang J., The flow and tension spaces and lattices of signed graphs, European J. Combin. 30 (2009), 263–279.
- 3. DeVos M., Rollová E. and Šámal R., A note on counting flows in signed graphs, arXiv:1701.07369.
- Forge D. and Zaslavsky T., Lattice points in orthotopes and a huge polynomial Tutte invariant of weighted gain graphs, J. Combin. Theory Ser. B 118 (2016), 186–227.
- Goodall A., Litjens B., Regts G. and Vena L., A Tutte polynomial for maps II: the nonorientable case, arXiv:1804.01496.
- Goodall A., Litjens B., Regts G. and Vena L., Tutte's dichromate for signed graphs, arXiv: 1903.07548v2.
- Krajewski T., Moffatt I. and Tanasa A., Hopf algebras and Tutte polynomials, Adv. Appl. Math. 95 (2018), 271–330.
- 8. Qian J., Flow polynomials of a signed graph, arXiv:1805.07878v2.
- Tutte W. T., A contribution to the theory of chromatic polynomials, Canad. J. Math. 6 (1954), 3–4.
- 10. Zaslavsky T., Signed graph coloring, Discrete Math. 39 (1982), 215–228.
- 11. Zaslavsky T., Signed graphs, Discrete Appl. Math. 4 (1982), 47–74.
- Zaslavsky T., Biased graphs. III. Chromatic and dichromatic invariants, J. Combin. Theory Ser. B 64 (1995), 17–88.

A. Goodall, Charles University, Prague, Czech Republic, *e-mail*: andrew@iuuk.mff.cuni.cz

B. Litjens, University of Amsterdam, Amsterdam, Netherlands, *e-mail*: bart_litjens@hotmail.com

G. Regts, University of Amsterdam, Amsterdam, Netherlands, *e-mail*: guusregts@gmail.com

L. Vena, University of Amsterdam, Amsterdam, Netherlands, *e-mail*: lluis.vena@gmail.com

754