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THE CANONICAL TUTTE POLYNOMIAL

FOR SIGNED GRAPHS

A. GOODALL, B. LITJENS, G. REGTS and L. VENA

Abstract. We construct a new polynomial invariant for signed graphs, the trivari-

ate Tutte polynomial, which contains among its evaluations the number of proper

colorings and the number of nowhere-zero flows. In this, it parallels the Tutte poly-
nomial of a graph, which contains the chromatic polynomial and flow polynomial as

specializations. While the Tutte polynomial of a graph is equivalently defined as the
dichromatic polynomial or Whitney rank polynomial, the dichromatic polynomial

of a signed graph (defined more widely for biased graphs by Zaslavsky) does not,

by contrast, give the number of nowhere-zero flows as an evaluation in general. The
trivariate Tutte polynomial contains Zaslavsky’s dichromatic polynomial as a spe-

cialization. Furthermore, the trivariate Tutte polynomial gives as an evaluation the

number of proper colorings of a signed graph under a more general sense of signed
graph coloring in which colors are elements of an arbitrary finite set equipped with

an involution.

1. Introduction

The trivariate Tutte polynomial of a signed graph is a moderately-sized special case
of the “huge polynomial Tutte invariant” of weighted gain graphs [4] and, in the
sense of [7], is the “canonical Tutte polynomial” for switching equivalence classes
of signed graphs [11, §3]: it has a subset expansion, satisfies a deletion-contraction
recurrence and is universal for deletion-contraction invariants, and satisfies duality
and convolution formulas. Here we show that the trivariate Tutte polynomial also
contains the number of nowhere-zero flows and the number of proper colorings
of a signed graph as specializations, in this way resembling the Tutte polynomial
of a graph in its guise as the dichromate [9]. The trivariate Tutte polynomial
contains Zaslavsky’s dichromatic polynomial [12] as a specialization; in contrast
to the Tutte polynomial of a graph, the dichromatic polynomial of a signed graph
does not in general give the number of nowhere-zero flows of a signed graph as an
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evaluation. A more expansive treatment of the trivariate Tutte polynomial is given
in our preprint [6], including its generalization to pairs of matroids on a common
ground set and the enumeration of the analogue of graph tensions defined for
signed graphs by Chen [2]; while all (nowhere-zero) tensions for graphs arise from
(proper) vertex colourings, only some (nowhere-zero) tensions for signed graphs
arise from (proper) signed graph vertex colourings.

1.1. The Tutte polynomial of a graph

Let Γ = (V,E) be a finite graph, k(Γ) the number of connected components of Γ,
and ΓA the restriction of Γ to A ⊆ E. The Tutte polynomial of Γ has subset
expansion

(1) TΓ(X,Y ) =
∑
A⊆E

(X − 1)k(ΓA)−k(Γ)(Y − 1)|A|−|V |+k(ΓA).

Alternatively, letting Γ\e and Γ/e denote the deletion and contraction of Γ by an
edge e, the Tutte polynomial is defined by the recurrence

(2) TΓ(X,Y ) =


TΓ/e(X,Y ) + TΓ\e(X,Y ) if e is an ordinary edge of Γ,

XTΓ/e(X,Y ) if e is a bridge of Γ,

Y TΓ\e(X,Y ) if e is loop of Γ,

1 if Γ has no edges,

where a loop is an edge whose endpoints coincide, and a bridge is an edge whose
deletion increases the number of connected components. For a finite additive
abelian group G, the number of nowhere-zero G-flows of Γ is

(3) (−1)|E|−|V |+k(Γ)TΓ(0, 1− |G|),

and for a finite set X the number of proper vertex colorings of Γ using colors from
X is equal to

(4) (−1)|V |−k(Γ)|X|k(Γ)TΓ(1− |X|, 0).

Theorems 3.4 and 3.5 give counterparts to formulas (3) and (4) for signed graphs.
If U is a graph invariant multiplicative over disjoint unions and satisfying

UΓ =


αUΓ/e + βUΓ\e if e is an ordinary edge of Γ,

xUΓ/e if e is a bridge of Γ,

γy` if Γ consists of ` ≥ 0 loops,

then

(5) UΓ = αr(Γ)β|E|−r(Γ)γk(Γ)TΓ (x/α, y/β) .

The Tutte polynomial is defined more generally for a matroid M = (E, r) with
ground set E and rank function r by

(6) TM (X,Y ) =
∑
A⊆E

(X − 1)r(E)−r(A)(Y − 1)|A|−r(A).
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2. Signed graphs and their matroids

A signed graph is a pair Σ = (Γ, σ), where Γ = (V,E) is a finite graph, called the
underlying graph of Σ, and σ is a function σ : E → {−1, 1} that associates a sign
to each edge of Γ, called the signature of Σ. A cycle C = (v1, e1, v2, . . . , vk, ek, v1)

in Γ is called balanced in Σ if
∏k

i=1 σ(ei) = 1 and unbalanced otherwise. The
signed graph Σ = (Γ, σ) is itself called balanced if each cycle of Γ is balanced in
Σ and unbalanced otherwise. Let k(Σ) := k(Γ), and let kb(Σ) and ku(Σ) denote
the number of balanced and unbalanced connected components of Σ, respectively.
Switching at a vertex v means negating the sign of every edge that is incident
with v, while keeping the sign of each loop attached to v. Two signed graphs Σ1 =
(Γ1, σ1) and Σ2 = (Γ2, σ2) are switching equivalent if the graph Γ1 is isomorphic to
the graph Γ2, and if, under such an isomorphism, the signature σ1 can be obtained
from σ2 by a sequence of switchings at vertices.

The deletion of an edge e in Σ = (Γ, σ) yields the signed graph Σ\e := (Γ\e, σ′),
where σ′ is the restriction of σ to E\{e} and where Γ\e is the graph obtained from
Γ by deleting e as a graph edge. The contraction of a non-loop edge e of Γ that
has positive sign in Σ = (Γ, σ) yields the signed graph Σ/e := (Γ/e, σ′), where σ′

is the restriction of σ to E \ {e} and where Γ/e is the graph obtained from Γ by
contracting e as a graph edge. By switching we can always ensure that the sign
of a non-loop edge is positive. When e is a loop with positive sign in Σ we set
Σ/e = Σ\e. We need not define contraction of negative edges (which requires the
definition of signed graphs to be enlarged to include half-arcs and free loops [10]).

2.1. Two matroids associated with a signed graph

The cycle matroid M(Γ) of the underlying graph Γ = (V,E) of Σ = (Γ, σ) is
the matroid on ground set E whose circuits are edge sets of a subdivided loop.
An edge e is a bridge in Γ if k(Γ\e) > k(Γ) and ordinary in Γ if e is neither a
bridge nor loop. A subdivision of the graph consisting of two loops on a common
vertex is a tight handcuff, and a subdivision of the graph consisting of two loops
joined by an edge is a loose handcuff. A loose handcuff or a tight handcuff in Σ
is contrabalanced if neither of the cycles it contains is balanced in Σ. The frame
matroid F (Σ) of Σ is the matroid on ground set E whose circuits are the edge
sets of subdivisions of a loop that are balanced, or subdivisions of handcuffs that
are contrabalanced. A circuit path edge of Σ is an edge of a loose handcuff that
belongs to neither of its cycles. An edge e is ordinary in Σ if it belongs to some
circuit of Σ consisting of at least two edges (i.e. e is not a positive loop in Σ) and
deleting e does not increase the number of unbalanced connected components.

3. The trivariate Tutte polynomial, flows and colorings

Definition 3.1. The trivariate Tutte polynomial of a signed graph Σ = (Γ, σ)
with underlying graph Γ = (V,E) is defined by

(7) TΣ(X,Y, Z) :=
∑
A⊆E

(X − 1)k(ΣA)−k(Σ)(Y − 1)|A|−|V |+kb(ΣA)(Z − 1)ku(ΣA),
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in which ΣA is obtained from Σ by deleting the edges not in A.

The trivariate Tutte polynomial TΣ(X,Y, Z) includes the Tutte polynomial of
M(Γ) and the Tutte polynomial of F (Σ) as specializations:

TM(Γ)(X,Y ) = TΣ(X,Y, Y ), and(8)

TF (Σ)(X,Y ) = (X − 1)ku(Σ)TΣ (X,Y,X/(X − 1)) .(9)

Theorem 3.2 ([6]). The trivariate Tutte polynomial TΣ = TΣ(X,Y, Z) of a
signed graph Σ = (Γ, σ) with underlying graph Γ = (V,E) satisfies, for each positive
edge e ∈ E,

TΣ =



TΣ/e + TΣ\e if e is an ordinary edge of Γ,

TΣ/e + (X−1)TΣ\e if e is a bridge of Γ and a circuit path edge of Σ,

XTΣ/e if e is a bridge of Γ not a circuit path edge of Σ,

Y TΣ\e if e is a loop of Γ positive in Σ,

1+(Z−1)
[
1+Y +· · ·+Y `−1

]
if Σ is a single vertex with ` ≥ 1 negative loops,

1 if Σ has no edges.

Theorem 3.3 (Recipe Theorem [6]). Let R be an invariant of signed graphs
preserved by switching and multiplicative over disjoint unions. Suppose that there
are constants α, β, γ, x, y and z, with γ 6= 0, such that, for a signed graph Σ =
(Γ, σ) with underlying graph Γ = (V,E) and positive edge e ∈ E,

RΣ =



αRΣ/e + βRΣ\e if e is ordinary in Γ and in Σ,

αRΣ/e + γRΣ\e if e is ordinary in Γ and ku(Σ\e) < ku(Σ),

αRΣ/e + β(x−α)
γ

RΣ\e if e bridge in Γ and a circuit path edge in Σ,

xRΣ/e if e bridge in Γ, not a circuit path edge in Σ,

y RΣ\e if e is a loop in Γ and in Σ,

β`−1γ + (z − γ)
∑`−1
i=0 y

`−1−iβi if Σ consists of ` ≥ 1 negative loops,

1 if Σ has no edges.

Then RΣ is a polynomial in α, β, x, y and z over Z[γ, γ−1] and

(10) RΣ = αrM (E)β|E|−rF (E)γrF (E)−rM (E)TΣ (x/α, y/β, z/γ) .

3.1. Flows

Given a graph Γ = (V,E), we call a pair (v, e) with v ∈ V and e ∈ E an edge
containing v a half-edge. (A loop comprises two half-edges.) A bidirected graph is
a pair (Γ, ω), where Γ = (V,E) is a graph in which every half-edge (v, e) receives
an orientation ω(v, e) ∈ {−1, 1}. (The two half-edges associated with a loop at a
vertex consist of the same vertex-edge pair but receive orientations independently.)
The orientation ω is compatible with the signature σ of a signed graph Σ = (Γ, σ)
if for each edge e = uv we have

(11) σ(e) = −ω(u, e)ω(v, e).

Let G be a finite additive abelian group. For k ∈ N and x ∈ G, we let kx =∑k
i=1 x and (−k)x = −kx. Let 2G := {2x : x ∈ G}.
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A G-flow of a bidirected graph (Γ = (V,E), ω) [1] is a function f : E → G such
that at each vertex v of Γ

(12)
∑

(v,e):v∈e

ω(v, e)f(e) = 0,

where the summation runs over half-edges (v, e) incident with v, so if e is a loop
it contributes with two terms to the sum (if the loop is positive these terms cancel
each other, while if the loop is negative they have the same sign). A G-flow of
a signed graph Σ = (Γ, σ) is a function f : E → G such that f is a G-flow for
the bidirected graph (Γ, ω), where ω is an orientation of Γ compatible with σ. A
G-flow is nowhere-zero if f(e) 6= 0 for all e ∈ E.

Theorem 3.4 ([6]). Let G be a finite additive abelian group. Then, for a signed
graph Σ = (Γ = (V,E), σ), the number of nowhere-zero G-flows of Σ is equal to

(−1)|E|−|V |+k(Γ)TΣ (0, 1− |G|, 1− |G|/|2G|) .

Proof (sketch). The number of nowhere-zero G-flows satisfies a deletion-
contraction recurrence, given in [3], with parameters (x, y, z, α, β, γ) = (0, |G| −
1, |G|/|2G| − 1, 1,−1,−1) in Theorem 3.3. �

When 2G = G, i.e. G is of odd order, the number of nowhere-zero G-flows of Σ
given in Theorem 3.4 is by (9) an evaluation of the Tutte polynomial of the frame
matroid F (Σ). Theorem 3.4 is equivalent to the special case of [5, Theorem 4.6]
of flows of a map taking values in an abelian group (a flow of a signed graph can
be regarded as a flow of a map with the same underlying graph, the twisted edges
of the map corresponding to negative edges of the signed graph [5, Remark 4.12]).
Theorem 3.4 in the form given by the subset expansion (7) of the trivariate Tutte
polynomial was found independently by Qian [8, Theorem 4.3].

3.2. Colorings

Let X be a finite set and ι an involution on X. A (X, ι)-coloring of a signed graph
Σ = (Γ, σ) with underlying graph Γ = (V,E) is a function f : V → X such that,
for each edge e = uv, f(u) 6= f(v) if σ(e) = +1 and ι(f(u)) 6= f(v) if σ(e) = −1.

Theorem 3.5 ([6]). The number of (X, ι)-colorings of Σ is equal to

(13) (−1)|V |−k(Σ)|X|k(Σ)TΣ (1− |X|, 0, 1− t/|X|) , where t = |{x : ι(x) = x}|.

Proof (sketch). The number of (X, ι)-colorings satisfies the deletion-contraction
of Theorem 3.3 with (x, y, z, α, β, γ) = (1 − |X|, 0, 1 − t/|X|,−1, 1, 1), except in
taking value |X|k on edgeless signed graphs with k vertices. �

Remark 3.6. When t = 1, the evaluation of the trivariate Tutte polynomial
in (13) is an evaluation of the Tutte polynomial of F (Σ) at (1−|X|, 0); otherwise,
when t 6= 1, the number of (X, ι)-colorings of Σ is not given by an evaluation of
the Tutte polynomial of F (Σ).

When X = {0,±1, . . . ,±n} (or X = {±1, . . . ,±n}), with ι negation, (X, ι)-
colorings coincide with Zaslavsky’s notion of proper (non-zero) n-colorings of a
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signed graph [11] and Theorem 3.5 yields Zaslavsky’s Theorem 2.4 in [10]. When
X is the set of elements of a finite additive abelian group G and ι is negation,
Theorem 3.5 gives that the number of proper colorings of Σ using elements of G
as colors is equal to

(−1)|V |−k(Σ)|G|k(Σ)TΣ (1− |G|, 0, 1− 1/|2G|) ,

as t = |G|
|2G| is the number of self-inverse elements of G. In a way that can be

made precise [6], this formula is dual to that in Theorem 3.4, giving the number
of nowhere-zero G-flows of Σ.
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