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Abstract
Three polynomials are defined for sets S of n points in general position in the plane: The Voronoi
polynomial with coefficients the numbers of vertices of the order-k Voronoi diagrams of S, the circle
polynomial with coefficients the numbers of circles through three points of S enclosing k points, and
the E≤k polynomial with coefficients the numbers of (at most k)-edges of S. We present several
formulas for the rectilinear crossing number of S in terms of these polynomials and their roots. We
also prove that the roots of the Voronoi polynomial lie on the unit circle if and only if S is in convex
position. Further, we present bounds on the location of the roots of these polynomials.

1 Introduction

Let S be a set of n ≥ 4 points in general position in the plane, meaning that no three points
of S are collinear and no four points of S are cocircular. The Voronoi diagram of order k

of S, Vk(S), is a subdivision of the plane into cells such that points in the same cell have
the same k nearest points of S. Voronoi diagrams have found many applications in a wide
range of disciplines, see e.g. [7, 27]. We define the Voronoi polynomial pV (z) =

∑n−1
k=1 vkzk−1,

where vk is the number of vertices of Vk(S). Proximity information among the points of S is
also encoded by the circle polynomial of S, which we define as pC(z) =

∑n−3
k=0 ckzk, where ck

is the number of circles passing through three points of S that enclose exactly k other points
of S. The numbers vk and ck are related via the well-known relation

vk = ck−1 + ck−2 (1)

where c−1 = 0 and cn−2 = 0, see e.g. [21]. The two polynomials pV (z) and pC(z) are
especially interesting due to their connection to the rectilinear crossing number problem.

The rectilinear crossing number of a point set S, cr(S), is the number of pairwise edge
crossings of the complete graph Kn when drawn with straight-line segments on S, i.e. the
vertices of Kn are the points of S. Equivalently, cr(S) is the number of convex quadrilaterals
with vertices in S. We denote cr(S) as α

(
n
4
)
, with 0 ≤ α ≤ 1. Note that for S in convex

position, α = 1. The rectilinear crossing number problem consists in, for each n, finding the
minimum value of cr(S) among all sets S of n points, no three of them collinear, commonly
denoted as cr(Kn). The limit of cr(Kn)/

(
n
4
)
, when n tends towards infinity, is the so-called

rectilinear crossing number constant α∗. This problem is solved only for n ≤ 27 and n = 30,
and the current best bound for the rectilinear crossing number constant is α∗ > 0, 37997, see
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the survey [3] and the web page [5]. A fruitful approach to the rectilinear crossing number
problem is proving bounds on the numbers of j-edges and of (≤ k)-edges of S [1, 2, 6, 11, 20].
An (oriented) j-edge of S is a directed straight line ℓ passing through two points of S such
that the open half-plane bounded by ℓ and on the right of ℓ contains exactly j points of
S. The number of j-edges of S is denoted by ej , and E≤k =

∑k
j=0 ej is the number of

(≤ k)-edges. We then also consider the E≤k polynomial pE(z) =
∑n−3

k=0 E≤kzk, which also
encodes information on higher order Voronoi diagrams, since the number of j-edges ej is the
number of unbounded cells of the order-(j +1) Voronoi diagram of S (see, e.g., Proposition 30
in [13]). Note that pE(z) has no term E≤n−2. For an illustration of the defined polynomials
for a particular point set, see Figure 1.

Figure 1 Left: 1591-th entry of the order type database for 8 points [4]. With complex stream
plots of its Voronoi polynomial (center): pV (z) = 10 + 23z + 27z2 + 24z3 + 17z4 + 9z5 + 2z6, and its
E≤k polynomial (right): pE(z) = 4 + 13z + 22z2 + 34z3 + 43z4 + 52z5; roots are red points.

For a point set S, we show that cr(S) appears in the first derivatives of these three
polynomials when evaluated at z = 1 and, in addition, we obtain appealing formulas for
cr(S) in terms of the roots of the polynomials. Motivated by this, we study the location of
such roots, showing several bounds on their modulus. As a particular result, we also prove
that the roots of the Voronoi polynomial lie on the unit circle if and only if S is in convex
position. Furthermore, the circle polynomial comes into play when considering the random
variable X that counts the number of points of S enclosed by the circle defined by three
points chosen uniformly at random from S. The probability generating function of X is
pC(z)/

(
n
3
)
. In [24] a central limit theorem for random variables with values in {0, . . . , n}

was shown, under the condition that the variance is large enough and that no root of the
probability generating function is too close to 1 ∈ C. We show that the random variable X

does not approximate a normal distribution, and use the result from [24] to derive that pC(z)
has a root close to 1 ∈ C.

Throughout this work, points (a, b) in the plane are identified with complex numbers
z = a + ib. To avoid cumbersome notation we omit indicating the point set S where it is
clear from context; for example, each polynomial considered depends on a point set S but
we write pC(z) instead of pS

C(z).

2 Known relations

A main source is the work by Lee [19], from where several of the following formulas can be
obtained.

For any point set S, and 0 ≤ k ≤ n − 3, it holds that, see [8, 12, 13, 19, 21],

ck + cn−k−3 = 2(k + 1)(n − k − 2). (2)
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From [15] we get the following two equations.

n−3∑

k=0
k · ck =

(
n

4

)
+ cr(S) = (1 + α)

(
n

4

)
. (3)

This was essentially also obtained in [29], though not stated in terms of cr(S).

n−3∑

k=0
k2 · ck =

(
n

5

)
+
(

n

4

)
+ (n − 3)cr(S). (4)

For k ≤ n−3
2 it holds that, see Lemma 3.1 in [14],

ck ≥ (k + 1)(n − k − 2), and cn−k−3 ≤ (k + 1)(n − k − 2). (5)

Next Equations (6), (7) and (8) hold for a point set S in convex position.

2ck = ck−1 + ck+1 + 2. (6)

Then, the number of vertices of Vk(S) fulfills, see e.g. Proposition 34, Equation (4) in [13],

vk = ck−1 + ck−2 = (2k − 1)n − 2k2 . (7)

This implies that
vk = vn−k. (8)

For every set S of n points in general position, the relation between E≤k and ck is, see
e.g. Proposition 33 in [13],

ck + E≤k = (k + 1)(2n − k − 2). (9)

3 Properties of the Voronoi, circle and E≤k
polynomials

For every set S of n points in general position:

▶ Proposition 1. Polynomials pC(z) =
∑n−3

k=0 ckzk, and pV (z) =
∑n−1

k=1 vkzk−1 satisfy

pV (z) = (1 + z)pC(z). (10)

▶ Proposition 2. The circle polynomial pC(z) =
∑n−3

k=0 ckzk satisfies
1. pC(1) =

(
n
3
)
.

2. p′
C(1) =

(
n
4
)

+ cr(S).
3. p′′

C(1) =
(

n
5
)

+ (n − 4)cr(S).
4. pC(−1) = n−1

2 for n odd.

▶ Proposition 3. The Voronoi polynomial pV (z) =
∑n−1

k=1 vkzk−1 satisfies
1. pV (1) = 2

(
n
3
)
.

2. p′
V (1) =

(
n
3
)

+ 2
(

n
4
)

+ 2cr(S).
3. p′′

V (1) = 2
(

n
4
)

+ 2
(

n
5
)

+ 2(n − 3)cr(S).
4. pV (−1) = 0.

5. p′
V (−1) = n−1

2 for n odd.

▶ Proposition 4. The E≤k
polynomial pE(z) =

∑n−3
k=0 E≤k

zk satisfies:
1. pE(1) = 3

(
n
3
)
.
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2. p′
E(1) =

∑n−3
k=0 kE≤k = 9

(
n
4
)

− cr(S).
3. p′′

E(1) =
∑n−3

k=0 k(k − 1)E≤k = 35
(

n
5
)

− (n − 4)cr(S).
4. pE(−1) = n(n−1)

2 for n odd.

Using Lemma 1 of Aziz and Mohammad in [9], we get an intriguing family of formulas
for the rectilinear crossing number.

▶ Proposition 5. The coefficients of the polynomials pV (z), pC(z) and pE(z) satisfy

1) cr(S) = 4
3(n − 3)

n−3∑

k=1

n−3∑

j=0
cj

zj+1
k

(zk − 1)2 =
n−3∑

j=0
cj

(
4

3(n − 3)

n−3∑

k=1

zj+1
k

(zk − 1)2

)
, (11)

where the zk are the (n − 3)-th roots of −3.

2) cr(S) = 2
3(n − 1)

n−1∑

k=1

n−1∑

j=1
vj

zj
k

(zk − 1)2 =
n−1∑

j=1
vj

(
2

3(n − 1)

n−1∑

k=1

zj
k

(zk − 1)2

)
, (12)

where the zk are the (n − 1)-th roots of −3.

3) cr(S) = − 4
n − 3

n−3∑

k=1

n−3∑

j=0
E≤j

zj+1
k

(zk − 1)2 =
n−3∑

j=0
E≤j

(
−4

n − 3

n−3∑

k=1

zj+1
k

(zk − 1)2

)
, (13)

where the zk are now the (n − 3)-th roots of − 1
3 .

4 On the roots of the Voronoi, circle and E≤k
polynomials

In this section, we study properties for the roots of these polynomials. By Proposition 1,
pV (z) has the same roots as pC(z) plus the root z = −1. A direct relation between roots of
polynomials and the rectilinear crossing number can be derived from the well-known relation

P ′(z)
P (z) =

n∑

i=1

1
z − ai

, (14)

where P (z) is a polynomial of degree n with roots a1, . . . , an, and z is any complex number
such that P (z) ̸= 0. For the circle polynomial pC(z) and z = 1, using Proposition 2 we get

(
n
4
)

+ cr(S)(
n
3
) =

n−3∑

i=1

1
1 − ai

, (15)

where the ai are the roots of pC(z) =
∑n−3

k=0 ckzk. Note that 1 is never a root of a polynomial
whose coefficients are all positive, as is the case in the polynomials introduced in this work.
Using Equation (14) and the reciprocal polynomial p∗

C(z) =
∑n−3

k=0 ckzn−k−3 we obtain

▶ Proposition 6.
n−3∑

k=0
(n − k − 3)ck = 3

(
n

4

)
− cr(S). (16)

▶ Proposition 7.
−2
(

n
4
)

+ 2cr(S)(
n
3
) =

n−3∑

i=1

1 + ai

1 − ai
, (17)

where the ai are the roots of pC(z) =
∑n−3

k=0 ckzk (also works for the roots of pV (z)).
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Of particular interest is pV (z) =
∑n−1

k=1 vkzk−1 for a set of n points in convex position.
By Equation (7), vk = (2k − 1)n − 2k2. By Equation (8), pV (z) is a palindromic polynomial,
so it has roots ai and 1/ai. Then, for sets S of n points in convex position,

n−2∑

i=1

1
1 − ai

= n − 2
2 , (18)

where the ai are the roots of pV (z) =
∑n−1

k=1 vkzk−1. For S in convex position, from
Proposition 7 we also have,

n−2∑

i=1

1 + ai

1 − ai
= 0. (19)

For our next result we use a theorem due to Malik [23], also see [28], Corollary 14.4.2.

▶ Theorem 4.1. Let S be a set of points in general position. Then S is in convex position if
and only if all the roots of the Voronoi polynomial of S, pV (z) =

∑n−1
k=1 vkzk−1, lie on the

unit circle.

In order to find a lower bound on the largest modulus of the roots of pC(z) with S not
in convex position, we use two theorems. The first one is due to Laguerre [18], Theorem 1,
see also [25], and [28], Theorem 3.2.1b. The second theorem is due to Obrechkoff [26], also
see [10] and [22], Chapter IX, 41, Exercise 5.

▶ Theorem 4.2. For every set S of n > 3 points in general position with rectilinear crossing
number cr(S) = α ·

(
n
4
)
, the Voronoi polynomial pV (z) =

∑n−1
k=1 vkzk−1 has a root of modulus

at least 1 + (1−α)π2

16(n−3)2 + O
( 1

n4

)
.

Figure 2 Left: Point set S minimizing the rectilinear crossing number for n = 18 [5]. With
complex stream plots of its Voronoi (center), and E≤k (right) polynomials; with roots as red points
and circles illustrating, respectively, the bounds of Theorems 4.2 and 4.5.

For an illustration of Theorem 4.2 see Figure 2, center. We further show that the Voronoi
polynomial pV (z) has a root close to point 1 in the complex plane. Thereto, we apply
Theorem 1.2 from Michelen and Sahasrabudhe [24].

▶ Theorem 4.3. Let α be a constant from (0, 1] and let S be a set of n points in general
position with cr(S)

(n
4) = α. Then the Voronoi polynomial of S, pV (z) =

∑n−1
k=1 vkzk−1, has a

root ζ such that |1 − ζ| ∈ o
(

log(n)
n

)
.
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In the following, we study the location of the roots of the E≤k polynomial pE(z) =∑n−3
k=0 E≤kzk of a point set S. Note that its coefficients E≤k form an increasing sequence of

positive numbers. The well-known Eneström-Kakeya theorem [17] tells us that all the roots
of pE(z) are contained in the unit disk, and more precisely, that they are contained in an
annulus: The absolute values of the roots of pE(z) lie between the greatest and the least of

E≤n−4
E≤n−3

,
E≤n−5
E≤n−4

, . . . ,
E≤1
E≤2

,
E≤0
E≤1

.

We give a lower bound on the largest modulus of the roots of the E≤k polynomial.

▶ Theorem 4.4. Let S be a set of n > 3 points in general position, with rectilinear crossing
number cr(S) = α ·

(
n
4
)
. Then the E≤k polynomial of S, pE(z) =

∑n−3
k=0 E≤kzk, has a root of

modulus at least 3+α
9−α .

Next, we show a better lower bound on the largest modulus of pE(z) when n is large
enough. Thereto, we apply a theorem of Titchmarsh ([31], p. 171), also see [16], Theorem A.

▶ Theorem 4.5. Let S be a set of n points with h of them on the boundary of the convex
hull of S, in general position. Then pE(z) =

∑n−3
k=0 E≤kzk has a root of modulus at least

(
3
(

n
3
)

h

)− 1
n−3

.

For an illustration of Theorem 4.5, see Figure 2, right.

5 Discussion

We have introduced three polynomials pV (z), pC(z), pE(z) for sets S of n points in general
position in the plane, showing their connection to cr(S) and several bounds on the location
of their roots. The obvious open problem is using bounds on such roots to improve upon
the current best bound on the rectilinear crossing number problem. To the best of our
knowledge, this approach has not been explored so far. Besides, we think that the presented
polynomials are interesting objects of study on their own, given the many applications of
Voronoi diagrams. For some of the formulas presented for one of the polynomials, like
Equation (15), there are analogous statements for the other polynomials considered.

Further, several other polynomials on point sets can be considered. The reader interested
in crossing numbers has probably in mind the j-edge polynomial pe(z) =

∑n−2
j=0 ejzj of a

point set S. For this, the known formula for the rectilinear crossing number cr(S) in terms
of the numbers of j-edges ej of S, see [20], Lemma 5, translates into

2cr(S) − 6
(

n

4

)
= p′′

e (1) − (n − 3)p′
e(1). (20)

As is the case for the Voronoi polynomial and the circle polynomial, for sets S of n points
in convex position, the j-edge polynomial pe(z) has all its roots on the unit circle. This is
readily seen since pe(z) is then n times the all-ones polynomial, pe(z) = n

∑n−2
j=0 zj , as ej = n

for all j, if S is in convex position. Its roots are the (n − 1)-th roots of unity, except z = 1.

We finally propose to study the presented polynomials for random point sets. The
expected rectilinear crossing number is known for sets of n points chosen uniformly at
random from several convex shapes K, see e.g. [30], Section 1.4.5. pp. 63–64, and [3].



M. Claverol, A. de las Heras-Parrilla, D. Flores-Peñaloza, C. Huemer, D. Orden 15:7

Acknowledgments. M. C., A. d.-P., C. H., and D. O. were supported by project PID2019-
104129GB-I00/MCIN/AEI/10.13039/501100011033. C.H. was supported by project Gen.
Cat. DGR 2021-SGR-00266. D. F.-P. was supported by grants PAPIIT IN120520 and
PAPIIT IN115923 (UNAM, México).

References

1 B. M. Ábrego, M. Cetina, S. Fernández-Merchant, J. Leaños, G. Salazar, On ≤ k-edges,
crossings, and halving lines of geometric drawings of Kn. Discrete and Computational
Geometry, 48, 192–215, 2012.

2 B. M. Ábrego, S. Fernández-Merchant, A lower bound on the rectilinear crossing number.
Graphs and Combinatorics, 21, 293–300, 2005.

3 B. M. Abrego, S. Fernández-Merchant, G. Salazar, The rectilinear crossing number of Kn:
Closing in (or are we?), Thirty Essays on Geometric Graph Theory, 5–18, Springer, 2012.

4 O. Aichholzer, http://www.ist.tugraz.at/aichholzer/research/rp/triangulations/
ordertypes/, accessed 2022.

5 O. Aichholzer, http://www.ist.tugraz.at/aichholzer/research/rp/triangulations/
crossing/, accessed 2022.

6 O. Aichholzer, J. García, D. Orden, P. Ramos, New lower bounds for the number of (≤ k)-
edges and the rectilinear crossing number of Kn, Discrete and Computational Geometry, 38,
1–14, 2007.

7 F. Aurenhammer. Voronoi diagrams – a survey of a fundamental geometric data structure.
ACM Computing Surveys, 23(3), 345–405, 1991.

8 F. Ardila, The number of halving circles, The American Mathematical Monthly, 111, 586–591,
2004.

9 A. Aziz, Q. G. Mohammad, Simple proof of a theorem of Erdős and Lax. Proceedings of the
American Mathematical Society, 80, 119–122, 1980.

10 W. Bergweiler, A. Eremenko, Distribution of zeros of polynomials with positive coefficients,
Annales Academiae Scientiarum Fennicae Mathematica, 40, 375–383, 2015.

11 J. Balogh, G. Salazar, k-sets, convex quadrilaterals, and the rectilinear crossing number of
Kn, Discrete and Computational Geometry 35, 671–690, 2006.

12 K. L. Clarkson, P. W. Shor, Applications of random sampling in computational geometry,
II, Discrete and Computational Geometry, 4, 387–421, 1989.

13 M. Claverol, A. de las Heras-Parrilla, C. Huemer, A. Martínez-Moraian, The edge labeling
of higher order Voronoi diagrams. https://arxiv.org/abs/2109.13002, 2021.

14 M. Claverol, C. Huemer, A. Martínez-Moraian, On circles enclosing many points, Discrete
Mathematics, 344(10), 112541, 2021.

15 R. Fabila-Monroy, C. Huemer, E. Tramuns, The expected number of points in circles, 28th
European Workshop on Computational Geometry (EuroCG 2012), 69–72, 2012.

16 R. Gardner, B. Shields, The number of zeros of a polynomial in a disk, Journal of Classical
Analysis 3, 167–176, 2013.

17 S. Kakeya, On the limits of the roots of an algebraic equation with positive coefficients,
Tôhoku Mathematical Journal 2, 140–142, 1912.

18 M. Laguerre, Sur la résolution des équations numériques, Nouvelles annales de mathématiques
2e série, 17, 20–25, 1878.

19 D. T. Lee, On k-nearest neighbor Voronoi diagrams in the plane, IEEE Transactions on
Computers, 31, 478–487, 1982.

20 L. Lovász, K. Vesztergombi, U. Wagner, E. Welzl, Convex quadrilaterals and k-sets. Towards
a theory of geometric graphs, Contemporary Mathematics, 342, 139–148, 2004.

21 R. C. Lindenbergh, A Voronoi poset, Journal for Geometry and Graphics, 7, 41–52, 2003.

EuroCG’23



15:8 Voronoi polynomials of point sets and crossing numbers

22 M. Marden, The geometry of polynomials, Mathematical Surveys and Monographs, Number
3, 1949. American Mathematical Society.

23 M. A. Malik, On the derivative of a polynomial, Journal of the London Mathematical Society,
s2-1(1), 57–60, 1969.

24 M. Michelen, J. Sahasrabudhe, Central limit theorems and the geometry of polynomials.
https://arxiv.org/abs/1908.09020, 2019.

25 J. von Sz. Nagy, Über einen Satz von Laguerre. Walter de Gruyter, Berlin/New York Berlin,
New York, 1933.

26 N. Obrechkoff, Sur un problème de Laguerre, Comptes Rendus 177, 102–104, 1923.
27 A. Okabe, B. Boots, K. Sugihara, S. N. Chiu. Spatial Tessellations: Concepts and Applica-

tions of Voronoi diagrams, second edition, Wiley, 2000.
28 Q. I. Rahman, G. Schmeisser, Analytic theory of polynomials. London Mathematical Society

Monographs New Series 26, Clarendon Press, Oxford, 2002.
29 J. Urrutia, A containment result on points and circles. Preprint, February 2004. https:

//www.matem.unam.mx/~urrutia/online_papers/PointCirc2.pdf
30 L. Santaló, Integral geometry and geometric probability, 2nd edition, Cambridge University

Press, 2004.
31 E. C. Titchmarsh, The theory of functions, 2nd edition, Oxford University Press, London,

1939.


