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ABSTRACT

This paper describes a comparative evaluation of dif-
ferent controllers for a position regulation 2-link robot
manipulator. The equation of motion for two link robot
is a nonlinear differential equation. The controllers,
namely two proportional plus derivative with a nonlin-
ear compensation and a terminal control, are designed
from the dynamic description of the two link robot and
then the controlled system is simulated by means of Mat-
lab/Simulink software which allows animated simulations
using 3D World Editor (Matlab).

I. INTRODUCTION

It is well known that robot manipulators are highly
nonlinear, dynamically coupled and time-varying systems
which are extensively used in industries. Furthermore,
robotic manipulators are generally subjected to uncer-
tainties. Because of these uncertainties and nonlinear
behavior, it’s a challenging task to control the motion of
robot manipulator to an accurate position.
This work is based in several articles which deal with
the terminal control of nonlinear systems ([1],[3],[4]). In
it, the robot dynamics and the controllers design will be
presented for a later simulation, from which the results
and conclusions will be obtained. Finally, to better un-
derstand the results, a 3D animation of the robot will be
created.

II. ROBOT DYNAMICS

The 2-link robot arm studied is shown in Fig 1:

FIG. 1: 2-link robot arm. (Figure from ([5]))

The method for deriving the dynamic equations of me-

chanical systems is via Euler-Lagrange equation:

d

dt

∂L

∂q̇
− ∂L

∂q
= τ,

where q = (q1, q2), L is the Lagrangian of the system and
τ are the generalized forces that act upon the system.
By solving the Euler-Lagrange equation, as in [1] and [2],
the robot dynamics system of equations is :

H(q)q̈ + C(q, q̇)q̇ + g(q) = τ. (1)

From Reyes et. all 1997 [1], the entries of the robot
dynamics are:

H(q) =

(
θ1 + 2θ2 cos (q2) θ3 + θ2 cos (q2)
θ3 + θ2 cos (q2) θ3

)
, (2)

C(q̇,q) =

(
−2θ2 cos (q2)q̇2 −θ2 cos (q2)q̇2
θ2 cos (q2)q̇1 0

)
, (3)

g(q) =

(
θ4 sin (q1) + θ5 sin (q1 + q2)

θ5 sin (q1 + q2)

)
, (4)

with: 

θ1 = m1l
2
c1 +m2l

2
1 +m2l

2
c2 + I1 + I2

θ2 = l1m2lc2
θ3 = m2l

2
c2 + I2

θ4 = g(lc1m1 +m2l1)

θ5 = gm2lc2

As a consequence, the robot dynamics can be expressed
as a order two system, defining x1 as a vector composed
of both angles and x2 the vector of the angular velocities:{

ẋ1 = x2

ẋ2 = H(x1)−1
(
τ − C(x1, x2)x2 − g(x1)

)
.

(5)

Hence, the equilibrium points of the system are:

x∗1 = xd1 & x∗2 = 0.

Therefore, redefining the system in terms of the errors,
we obtain:{
ė1 = e2

ė2 = H(e1 + xd1)−1
(
τ − C(e1 + xd1, e2)e2 − g(e1 + xd1)

)
,

(6)
where e1 = x1 − xd1 and e2 = x2.
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III. CONTROLLER DESIGN

This section provides the controller formulation along
with its integration with the system dynamics. Three dif-
ferent controllers are considered, two different controllers
with a proportional and derivative term (PD) and non-
linear compensation terms and a terminal sliding mode
controller.

A. PD controller

The PD controller is given by:

τ = H(x1)(−KP e1 −KDe2) +C(x1, x2)x2 + g(x1), (7)

where KP and KD represent the proportional and deriva-
tive gain diagonal matrices.
For simplification purposes the parameters are set as
KP 1 = KP 2 = KP and KD1 = KD2 = KD. Therefore,
the closed-loop system (6) becomes:{

ė1 = e2
ė2 = −KP e1 −KDe2.

(8)

The closed-loop stability is checked by means of the fol-
lowing Lyapunov function candidate:

V =
1

2

(
eT2 e2 + eT1KP e1

)
,

which is globally positive definite, in turn:

V̇ = eT2 ė2 + eT1KP ė1 = eT2 (−KP e1 −KDe2) + eT1KP e2

V̇ = −eT2KDe2 < 0 ∀x \ {x2 = 0}.

Applying LaSalle’s theorem, R = {e ∈ R2; V̇ = 0} =
{(e1, 0)}. The largest invarient set within R is given by
M = {e ∈ R2; e2 = ė2 = 0}, and

ė2

∣∣∣
e2=0

= −KP e1 −KDe2

∣∣∣
e2=0

= −KP e1 = 0

⇒ e1 = 0⇒ ė1 = 0.

Therefore, the largest invariant set is M = {0}. By
the Corollary of LaSalle’s invariance principle this is an
asymptotically stable equilibrium of the system.
It is also demonstrated to be a globally asymptotically
stable equilibrium:

V =
1

2

(
eT2 e2 + eT1KP e1

)
≤ 1

2
λ||e||2 ||e||

2→∞−−−−−−→∞.

The system of ordinary differential equations is solved by
using ode4 solver in Matlab/Simulink environment. The
block diagram for this control is shown on figure (2).
The first three blocks, starting from the left side of the
block diagram, describe the control block while the last
one implements the non-linear differential equation of the
robot’s dynamics.

B. PD controller v.2

This second PD controller does not include the inertia
matrix on its description, in such a way that stability is
not as easily demonstrated.
The controller studied is given by:

τ = −KP e1 −KDe2 + C(x1, x2)x2 + g(x1). (9)

Therefore, the closed-loop system in terms of the error
becomes:{

ė1 = e2

ė2 = −H(e1 + xd1)−1
(
KP e1 +KDe2

)
.

(10)

Hence, the Lyapunov function candidate:

V =
1

2

(
eT2H(x1)e2 + eT1KP e1

)
,

which is globally positive definite, its derivative cannot
be proven negative definite. Therefore, stability will be
demonstrated locally by linearizing around the equilib-
rium.
Defining the components of the error vectors:

e1 = [ε1, ε2]T & e2 = [ε̇1, ε̇2]T ,

the linearized system of order 4 around x∗1 = xd1 and
x∗2 = 0, that is to say, around e1 = 0 and e2 = 0, is:ε̇1ε̇2ε̈1

ε̈2

 =


0 0 1 0
0 0 0 1

−KP θ3D
KPα
D −KDθ3D

KDα
D

KPα
D −KP βD

KDα
D −KDβD


ε1ε2ε̇1
ε̇2

 , (11)

where D = 1
θ3θ1−θ23−θ22 cos2 qd2

, α = θ3 + θ2 cos qd2 and

β = θ1 + 2θ2 cos qd2 .
Finding the characteristic polynomial and applying
Routh’s criterion, the stability of the system for any de-
sired position remains within the shaded region of com-
binations of KP and KD of figure (3).
From figure (3), we are able to guarantee local asymp-
totic stability near the equilibrium for certain values of
the proportional and derivative gain parameters.
The block diagram for this controller is shown on figure
(2), the difference from both controllers is the appearance
of the inertia matrix in block Calcul tau, and is thereafter
solved by using ode4 in Matlab/Simulink environment.

C. Terminal controller

The last controller is a type of terminal controller
which makes use of a sliding surface. The design of the
control switch surface in Terminal sliding mode (TSMC)
can be performed with the objective of adding proper-
ties to the resulting dynamics beyond the characteristic
of convergence to the steady state in finite time ([4],[3]).
Therefore, our main aim is to find an expression for τ
such that the angles reach the desired position assymp-
totically and that the error, e = x− xd, approaches zero
at an exponential rate.

e→ 0 as t→∞
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FIG. 2: PD control Block Diagram

FIG. 3: Stability region for different KP and KD values

Defining the sliding surface as:

st = λeγ1 + ė1 = λeγ1 + e2,

the former parameters must satisfy the following condi-
tions: λ > 0 and 0 < γ = n

d < 1, where n and d are odd
positive integers.
The sliding dynamics obtained on the terminal structure
sliding surface is given by the imposition: st = 0.

st = 0 ⇒ ė1 = −λeγ1

e1(t) = 1−γ
√
−λ(1− γ)t+ |e1(0)|1−γ

The system reaches e1 = 0 at a finite time, ts:

ts =
|e1(0)|1−γ

λ(1− γ)
.

Computing the first derivative of the sliding surface, in
such a way that, the control term τ appears and is gen-
erated to cancel out the terms of ṡt:

ṡt = λγeγ−11 ė1 + ë1.

Replacing the expressions of ė1 and ė2 found in (10) and
going back to the initial variables (x1,x2), the previous
equation reads:

ṡt = λγ(x1−xd1)γ−1x2+H(x1)−1
(
τ−C(x1, x2)x2−g(x1)

)
.

Therefore, selecting τ such as:

τ = C(x1, x2)x2 + g(x1)−H(x1)λγ(x1 − xd1)γ−1x2.

Choosing the following positive definite Lyapunov func-
tion candidate:

V =
s2t
2

→ V = stṡt = 0.

Hence, to guarantee stability an extra term is incorpo-
rated to the control definition:

τ = C(x1, x2)x2+g(x1)−H(x1)(λγ(x1−xd1)γ−1x2+ηsign(s)),

where η is able to control the instant at which the de-

sired position is reached treach ≤ |st(0)|η , and therefore, is

chosen in such a way that the desired position is reached
in a certain time.
The system of ordinary differential equations is solved by
using ode4 solver in Matlab/Simulink environment. The
block diagram for this control is shown on figure (4).

IV. RESULTS AND DISCUSSION

Using Matlab/Simulink environment we have evalu-
ated the performance of our results in simulations. The
total simulation time is T = 20 s with a sampling time
of ts = 0.001 s. For simulation, the system parameters
selected are those of Table 1 (Reyes et. all, 1997, p.567)
[1].

Parameter Notation Value Unit
Length link 1 l1 0.45 m
Mass link 1 m1 23.902 Kg
Mass link 2 m2 10.880 Kg

Length link 1 lc1 0.225 m
Length link 2 lc2 0.1 m
Inertia link 1 I1 1.266 Kg m2

Inertia link 2 I2 0.493 Kg m2

Gravity acceleration g 9.81 m/s2

TABLE I: Parameter values. (Table from [1])

All controls will be simulated starting from a given initial
position, with null initial speed, i.e.,

q1,0 = π q2,0 = 0.3π q̇1,0 = q̇2,0 = 0

which imply nonzero initial position errors.
And, therefore, will end in a desired position, i.e,

qd1 =
π

3
qd2 =

11π

6
q̇d1 = q̇d2 = 0
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FIG. 4: TSMC Block Diagram

In the following figure we can see, qualitatively, how the
different values of the PD control parameters affect the
behavior of our system. Following this idea, several simi-
lar tests have been carried out to find those values of KP

and KD which ensure the desired behavior of the robot.

FIG. 5: Comparison of different control parameters in
PD control

It can be seen from figure (5) the proportional gain in-
creases the rise time decreases, moreover, if the derivative
gain increases the overshoot also decreses and so does the
settling time. Therefore, after many attempts the final
parameters have been set to:

Control KP KD η

PD v.1 30 10 -
PD v.2 30 10 -
SMC - - 25

TABLE II: Control Parameters

The response using the PD controller is depicted in fig-
ure (6), it is clear that the PD controller v.1 takes at
least 2.5 seconds to bring the arm at the desired position
with maximum control. The second PD controller has a
slower response but is as well capable of taking the robot
arm to the desired position. The SMC, on other hand, is
capable of moving the arm to the desired position in less
than 2 seconds (see in figure (6)).
Thereafter, to interactively visualize the movement of the
robotic arm, we have implemented a 3D animation using

FIG. 6: Temporal response of the three different
controls

Simulink/3D World Editor from Matlab’s environment.
This animation is linked to the Simulink simulation re-
sult and therefore perfectly captures the theoretical tra-
jectory of the arm. An image of the 3D animation is
shown on figure (7).

FIG. 7: 3D animation of the robot arm

V. CONCLUSIONS

In this article, a robust control based on the conven-
tional sliding mode controller has been introduced to con-
trol the motion of the two-link robotic arm at specific
position, and it has been compared with two different
PD controls. The obtained results have shown that the
SMC outperform the PD controller in terms of fast and
robust response though with higher control signal. The
high joint speeds in case of SMC, which are a consequence
of high control signal in this case, are required for rapid
movement of the links. It is expected that adaptive SMC
control may lead to a better response.
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3-5 julio 2019”. p. 583-588.

[5] Cui, M., Wu, Z., & Xie, X. (2013). TRACKING CON-
TROL FOR A TWO-LINK PLANAR RIGID ROBOT
MANIPULATOR.


	TERMINAL CONTROL OF A 2-LINK ROBOT MANIPULATOR
	INTRODUCTION
	ROBOT DYNAMICS
	CONTROLLER DESIGN
	PD controller
	PD controller v.2
	Terminal controller

	RESULTS AND DISCUSSION
	CONCLUSIONS


