
id178919

MULTI-AGENT REINFORCEMENT LEARNING IN
TWO-PLAYER ZERO-SUM GAMES

MARC PAULO MOLINA

Thesis supervisor: JOSEP VIDAL MANZANO (Department of Signal Theory and Communications)

Thesis co-supervisor: MARGA CABRERA BEAN (Department of Signal Theory and Communications)

Degree: Bachelor's Degree in Data Science and Engineering

Thesis report

Facultat d'informàtica de Barcelona (FIB)
Escola Tècnica Superior d'Enginyeria de Telecomunicació de Barcelona (ETSETB)

Facultat de Matemàtiques i Estadística (FME)

Universitat Politècnica de Catalunya (UPC) - BarcelonaTech

Agraïments
En primer lloc, voldria agrair als meus pares i a la meva germana, pel seu ajut al llarg

de la meva trajectòria com a estudiant i, en especial, al llarg del desenvolupament d’aquest
projecte. Sense la seva paciència i suport, recórrer aquest camí no hauria estat possible.

També voldria donar les gràcies al professor Josep Vidal Manzano (director del projecte) i a
la professora Margarita Cabrera Bean (codirectora del projecte) per la seva supervisió i
seguiment. El seu consell i orientació han estat peces clau en la creació del projecte.

Finalment, voldria agrair a tots els professors del Grau en Ciència i Enginyeria de Dades per
la bona qualitat de la formació rebuda. Així mateix, també agrair a totes aquelles persones
que han dedicat el seu temps a desenvolupar els camps de l’Aprenentatge Profund i
l’Aprenentatge per Reforç. Projectes com aquest són possibles gràcies a l’esforç de tots
aquests investigadors i investigadores.

Resum
El principal objectiu d’aquest projecte és comparar com diferents algorismes

d’Aprenentatge per Reforç aprenen a jugar a jocs de suma-zero. En concret, ens centrem en el
joc del Connecta 4 (o Quatre en Ratlla). En primer lloc, comencem introduint els conceptes
teòrics bàsics per a entendre el projecte. Seguidament, proposem un procés d’entrenament
que combina Aprenentatge Supervisat i Aprenentatge per Reforç. Inicialment, els agents
aprenen a imitar els moviments d’un jugador de nivell mitjà. Sobre aquest coneixement après,
s’apliquen diferents algorismes d’Aprenentatge per Reforç amb l’objectiu de millorar el
nivell de joc de cada agent. Per a avaluar els agents entrenats, els fem competir entre ells i els
comparem per a acabar concloent quin algorisme ha permès adquirir un millor nivell de joc.
Finalment, presentem una senzilla Interfície d’Usuari perquè el/la lector/a pugui jugar al joc
del Quatre en Ratlla contra tots els agents que s’han entrenat en aquest projecte.

i

Resumen
El objetivo principal de este proyecto es comparar como distintos algoritmos de

Aprendizaje por Refuerzo aprenden a jugar a juegos de suma-cero. En concreto, nos
centramos en el juego del Conecta 4 (o Cuatro en Raya). En primer lugar, empezamos
comentando los conceptos teóricos básicos para entender el proyecto. Seguidamente,
proponemos un proceso de entrenamiento que combina Aprendizaje Supervisado y
Aprendizaje por Refuerzo. Inicialmente, los agentes aprenden a imitar los movimientos de un
jugador de nivel medio. Sobre este conocimiento aprendido, se aplican distintos algoritmos
de Aprendizaje por Refuerzo con el objetivo de mejorar la calidad de juego de cada agente.
Para evaluar los agentes entrenados, los hacemos competir entre ellos y los comparamos para
acabar concluyendo qué algoritmo ha permitido adquirir un mayor nivel de juego.
Finalmente, presentamos una sencilla Interfaz de Usuario para que el/la lector/a pueda jugar
al juego del Cuatro en Raya contra todos los agentes que han sido entrenados en este
proyecto.

ii

Abstract
The main objective of this project is to compare how different Reinforcement

Learning algorithms learn to play zero-sum games. Specifically, we focus on Connect 4 (or
Four in a Row). Firstly, we start by introducing the basic theoretical concepts to understand
the project. Afterward, we propose a training process that combines Supervised Learning and
Reinforcement Learning. Initially, the agents learn to mimic the actions of a mid-level player.
On this learned knowledge, we apply different Reinforcement Learning algorithms to
improve the performance of each agent. To evaluate the trained agents, they compete against
each other, so we can compare them and conclude which algorithm has achieved the highest
level of play. Finally, we present a simple User Interface to let the reader play Connect 4
against all the agents that have been trained in this project.

iii

iv

Contents
1. Introduction.. 1

1.1. Problem statement... 1
1.2. Objectives..2
1.3. Document structure... 2

2. Theoretical background...4
2.1. Reinforcement Learning..4

2.1.1. Q-learning...6
2.1.2. REINFORCE with baseline... 7
2.1.3. Proximal Policy Optimization..8

2.2. Deep Reinforcement Learning.. 10
2.2.1. Vanilla Deep Q-Network.. 11
2.2.2. Dueling Deep Q-Network.. 12

2.3. Multi-Agent Reinforcement Learning...13
2.4. Two-player zero-sum games... 14
2.5. AlphaGo.. 14

3. Environment... 16
3.1. Connect Four... 16
3.2. Environment structure... 17
3.3. Reward function.. 19

4. Agents.. 22
4.1. Baseline agents..24

4.1.1. Random agent...24
4.1.2. N-step lookahead agent.. 24

4.2. Supervised Learning Task... 26
4.2.1. Dataset creation.. 27
4.2.2. Training.. 27
4.2.3. Results.. 29

4.3. Vanilla and Dueling Deep Q-Network.. 31
4.3.1. Training.. 32
4.3.2. Results.. 34

4.4. REINFORCE with baseline.. 36
4.4.1. Training.. 37
4.4.2. Results.. 39

4.5. Proximal Policy Optimization...41
4.5.1. Training.. 42

4.5.2. Results.. 43

5. Evaluation... 46
5.1. Evaluation setup.. 46
5.2. Competition results... 47
5.3. User Interface.. 50

6. Conclusions..53
6.1. Conclusions... 53
6.2. Contribution.. 54
6.3. Future Work...54

Bibliography... 56

1. Introduction

In this first chapter, we present the purpose of this project. It starts by providing some
context on the problem we tackle and explaining why it is of our interest [1.1]. Afterward, we
define the scope and goals of the project, and we also briefly introduce the strategy we set out
to follow in order to accomplish these goals [1.2]. Finally, we explain the structure of the
document, what is found in each chapter, and how they are related to each other [1.3].

1.1. Problem statement

Artificial Intelligence (AI) is already changing our world. Modern AI systems can
process their environment in real-time while making optimal decisions toward specific
objectives. In recent years, AI has achieved astonishing results in several fields such as
Computer Vision and Natural Language Processing. Despite its recent success, there are some
areas in which AI has always been of great interest even in the times when it was not so
powerful. Board games are one of those areas in which AI has always been present (even as
an abstract idea at the beginning) and has recently achieved superhuman performance in
many games.

Board games are played in any part of the world by people of all ages. There are many
varieties of board games, and their rules and complexity can range from the very simple (e.g.
Snakes and Ladders) to deeply complex (e.g. Shogi). In the late 1990s, board games became
increasingly popular on the Internet because it was easy for players to find opponents of
different levels. Back then, the idea of an Artificial Intelligence playing better than humans
aroused great interest, and the properties of board games made them a perfect environment to
test AI algorithms. Moreover, what is learned to play games may also be useful to solve other
real-world problems.

In this project, we train some Artificial Intelligence algorithms to learn to play zero-sum
board games. In particular, we focus on the game of Connect4, and the algorithms we use are
based on Supervised Learning and Deep Reinforcement Learning. In the following chapters,
we explain these concepts and how we approach this problem in more detail.

1

1.2. Objectives

Our objective is to compare how different Deep Reinforcement Learning algorithms
learn to play the classic Connect4 game. Our planned training strategy consists of two stages.
Firstly, we set out to train a policy network to predict the moves of a mid-level player (a
heuristic that we designed). Secondly, starting from this pre-trained network with basic
knowledge of the game, we intend to improve it by applying some Deep Reinforcement
Learning algorithms with self-play in order to create high-level Connect4 players. The Deep
Reinforcement Learning algorithms that we test in this project are Vanilla Deep Q-Network,
Dueling Deep Q-Network, REINFORCE with baseline, and Proximal Policy Optimization.

Before training the agents, our first objective is to create a Reinforcement Learning
environment to simulate Connect4 games. This process involves creating a meaningful
reward function and implementing the game rules to allow interaction between the agents and
the environment.

After the training phase, our goal is to compare all the trained agents to conclude which
algorithm works better in this particular setting. The trained agents will compete against each
other and against some baselines, and we will measure their win rates and other metrics in
order to elaborate a comprehensive analysis.

Finally, we also set out to create a simple User Interface to play Connect4 and let the reader
interact with the trained agents and play against them. At each turn, the policy followed by
the agent will be displayed, so it also serves as a visual tool for evaluation and debugging.

1.3. Document structure

In Chapter 2, we introduce the technical concepts required to understand the project.
It starts with a general description of Reinforcement Learning and some of the algorithms we
used to train different agents to play Connect4. Then, we explain how Deep Neural Networks
are applied to Reinforcement Learning problems, settings with multiple agents, and
two-player zero-sum games. This chapter ends by explaining the case of AlphaGo, the first
computer program to defeat a human professional player in the full-sized game of Go. The
training pipeline used in our project is partially inspired by the one used to train AlphaGo.

Chapter 3 describes the classic Connect4 game as a Reinforcement Learning environment.
First, we analyze the nature and rules of the game. Afterward, we present the game as an
environment and explain how the agents interact with. Finally, we show the reward function
that we designed for this environment.

2

Chapter 4 is a comprehensive explanation of how we trained the agents. First of all, we
present the Baseline Agents for evaluation purposes. Then, we explain how we trained a
policy network to predict the actions of a mid-level player. This pre-trained network was
improved with different Deep Reinforcement Learning algorithms adapted to two-player
zero-sum games. The algorithms implemented here are Vanilla Deep Q-Network, Dueling
Deep Q-Network, REINFORCE with baseline, and Proximal Policy Optimization. This
chapter covers the entire training process and the proposed solutions for each algorithm.

In Chapter 5, we evaluate the agents trained in the previous chapter. We describe how we
organize a fair competition between two agents and how we analyze the results. Finally, we
present a simple User Interface to let the reader play against our agents and evaluate them.
Further details on how to run the code are provided in that section.

Lastly, Chapter 6 presents the overall conclusions of the project, the contribution we have
made, and some suggestions for future work based on the work we started.

3

2. Theoretical background

In this chapter, we introduce the technical concepts required to understand the project.
It starts with a general description of the key concepts in Reinforcement Learning [2.1] and
some of the algorithms we used to train different agents to play Connect4. These algorithms
are Q-learning [2.1.1] REINFORCE with baseline [2.1.2], and Proximal Policy Optimization
[2.1.3]. Afterward, we analyze how Deep Neural Networks are applied to solve
Reinforcement Learning tasks [2.2]. In particular, we introduce two Deep Learning variants
of Q-learning that were also used in this project: Vanilla Deep Q-Network [2.2.1], and
Dueling Deep Q-Network [2.2.2]. Then, we present different settings in Multi-Agent
Reinforcement Learning [2.3], and we focus on the specific case of two-player zero-sum
games [2.4]. This chapter ends by explaining the case of AlphaGo [2.5], the first computer
program to defeat a human professional player in the full-sized game of Go. The training
pipeline used in our project is partially inspired by the one used to train AlphaGo.

2.1. Reinforcement Learning

Reinforcement Learning (RL) [1] is the area of Machine Learning that is concerned
with training intelligent agents to solve complex decision problems to maximize a notion of
cumulative reward. At each time step, the agent observes part of the environment state, takes
an action, and receives a reward (or punishment) that tells the quality of that action in that
environment state. The action taken by the agent affects the environment and may alter its
state.

Figure 2.1. Scheme of the typical agent-environment interaction in Reinforcement Learning

The main difference between RL and Supervised Learning (SL) is that in RL no reference
answers are available. Due to the lack of a labeled training dataset, the way to find the
optimal strategy is by interacting with the environment using trial-and-error and learning
from the gathered experiences. In SL, the data comes from an external source that might
certify some data properties such as consistency, completeness, or timeliness. But in RL

4

things are different, the data depends on a variable agent that interacts with a potentially
unknown environment.

One of the main challenges in RL is finding a good trade-off between exploration and
exploitation. When the agent exploits the environment, it takes the most effective actions
according to the information it has gathered so far from experience. However, the agent’s
experience is usually limited, so their estimation of actions’ effectiveness may be inaccurate.
To learn better strategies, the agent has to explore the environment. In other words, the agent
takes sub-optimal actions to discover better policies. One of the most simple and well-known
strategies to address this dilemma is decaying epsilon-greedy. The agent chooses exploration
with probability and exploitation with probability . As the agent gathers moreϵ 1 − ϵ
experience, the exploration rate decreases and the focus is on exploiting the environment.

In the following lines, some key components in the RL terminology will be introduced.

Reward signal: it is the feedback that the agent receives from interacting with the
environment. It is usually a scalar value that tells the agent how well it has performed. The
reward signal defines the task to solve. At a time-step , the reward is represented as .𝑡 𝑟

𝑡

Return: at time t, the return is the cumulated reward obtained from the entire duration of an
episode. It is the sum of the subsequent rewards weighted by the discount factor .γ ∈ [0, 1]
This factor indicates the importance of the future rewards at the present moment. The
equation of the return is as follows (on the right, a simpler expression using a recursion):

𝐺
𝑡

= 𝑟
𝑡+1

+ γ · 𝑟
𝑡+2

+ γ2 · 𝑟
𝑡+3

+ ··· =
𝑘≥0
∑ γ𝑘· 𝑟

𝑡+𝑘+1
 𝑜𝑟 𝐺

𝑡
= 𝑟

𝑡+1
+ γ · 𝐺

𝑡+1

Policy: it is a map that gives the probability of taking an action when in a givenπ(𝑎|𝑠) 𝑎
state , so it defines the agent’s behaviour. It can be either stochastic or deterministic, and it𝑠
changes during the learning process. The agent tries to optimize the policy to get the highest
return.

Value function: it represents the expected cumulative reward starting from a given state. In
other words, it expresses the goodness of a state in the long run when following a policy . Aπ
state might have a low reward but still have a high value, and vice versa. It is important to
know that values are more relevant than instant rewards when making decisions to maximize
long-term gains. The expression for the value function is as follows:

𝑣
π
(𝑠) = 𝐸

π
[𝐺

𝑡
|𝑆

𝑡
= 𝑠]

This expression can be decomposed into two parts: the immediate reward, and the future
discounted value. The resulting expression is known as the Bellman Equation for the value
function. It relates the value function for a given state to the value function of its subsequent

5

states in a recursive way. The Bellman Equation for the value function is as follows (stands𝑠'
for the subsequent states):

𝑣
π
(𝑠) =

𝑎
∑ π(𝑎|𝑠)

𝑠',𝑟'
∑ 𝑝(𝑠', 𝑟'|𝑠, 𝑎)[𝑟' + γ𝑣

π
(𝑠')]

Action-value function: the value function for each state-action pair can be defined as well. It
refers to the expected return when the agent is in a particular state and takes a particular
action. This function is also called the Q function. The expression is as follows:

𝑞
π
(𝑠, 𝑎) = 𝐸

π
[𝐺

𝑡
|𝑆

𝑡
= 𝑠, 𝐴

𝑡
= 𝑎]

In an RL setting, the environment is typically modeled as a Markov Decision Process (MDP).
The standard approach for solving RL problems stated as an MDP is by using Dynamic
Programming (DP) to solve the Bellman equation, but RL offers some key advantages.
Especially when the state space is relatively large, RL is considered a much more efficient
solution. Moreover, DP assumes full knowledge of the environment dynamics (model-based),
and it is usually unreasonable for most real-world applications. On the other hand, RL
proposes several trial-and-error algorithms (model-free) to deal with unknown environments.

RL can be used to solve a wide range of real-world problems, in particular those that involve
decision-making, resource allocation, and optimization. In general, it can be said that every
problem that can be translated into a useful reward signal can be potentially solved using an
RL algorithm. In the following section, we will dive into some of the most well-known
model-free algorithms that will be used throughout this project.

2.1.1. Q-learning

Q-learning [1] [2] is a popular off-policy RL algorithm to learn the value of an action in a
particular state. It does not assume that environment dynamics are known, so it is a
model-free algorithm. An agent tries an action in a particular state and evaluates that
transition based on the reward it receives and its estimate of the value of the next state. By
trying a wide range of state-action pairs, it learns which action yields the highest return in
each state. For any RL problem stated as a finite Markov decision process, the Q-learning
algorithm has been proved to converge asymptotically to the optimal Q-function provided
that all the state-action pairs are infinitely visited.

To estimate the Q-values, the agent runs many episodes and follows the update rule shown in
Figure 2.2. At each training episode, the agent takes actions following a policy derived from
the estimation of the Q-values. For each state-action pair , the agent receives a reward(𝑠, 𝑎) 𝑟

6

and observes the next state . The value is updated following the update expression𝑠' 𝑄(𝑠, 𝑎)
that depends on the transition . The next action is chosen greedily on .(𝑠, 𝑎, 𝑟, 𝑠') 𝑎' 𝑄(𝑠',:)

Figure 2.2. Pseudocode of Q-learning algorithm

The tabular Q-learning algorithm stores the action-state values in a look-up table|𝑆| × |𝐴|
(where and are the state and action spaces, respectively). However, this approach is𝑆 𝐴
limited to discrete action and state spaces, and even if they are discrete there might be
memory limitations if the tables are too big. The solution is to use a parametric function and
optimize the weights to find the optimal action-state values. In general, Neural Networks are
a popular choice due to their great performance in complex domains. However, linear
functions or decision trees may also work well in several contexts.

2.1.2. REINFORCE with baseline

One of the main problems with value-based methods is that even if the value
estimations are accurate, the policy derived from them might not be as good as expected.
Policy Gradient methods try to address this issue by learning directly a parametrized optimal
policy by performing gradient ascent to maximize the expected return. The REINFORCE
algorithm [3] is one of the most basic Policy Gradient algorithms. The Policy Gradient
Theorem [4] states that the derivative of the expected reward is the expectation of the product
of the reward and the natural logarithm of the policy. It means that Policy Gradient
techniques are model-free and don’t assume previous knowledge about the environment.

7

Within the REINFORCE training loop, the agent runs an episode using its current policy and
collects the rewards and the log probabilities of the chosen actions. At the end of the episode,
it computes the discounted return for each intermediate time step. The weights of the network
are updated to maximize the expected return. That means that the probability of actions that
yield a high return will be increased, and the ones that yield a low return will be decreased.

REINFORCE is also known for its high variance and slow convergence. One way to palliate
this unstable behaviour is to add an arbitrary baseline function [3]. One of the most common
baseline functions to reduce the variance is an approximation of the state values. There will
be another parameterized function b that learns the state value and it is trained with theω(𝑠)
discounted rewards of each episode (a regression task). In this case, the difference between
the discounted reward and the value estimation is called the advantage function. The
definition of the advantages is one of the key differences between policy gradient algorithms.
The following Figure 2.3 illustrates the training loop of the REINFORCE with baseline.

Figure 2.3. Pseudocode of REINFORCE with baseline algorithm

2.1.3. Proximal Policy Optimization

Proximal Policy Optimization (PPO) [5] is a policy gradient algorithm concerned with
mitigating the high variance of other policy gradient methods such as the REINFORCE
algorithm. PPO tries to improve the Trust Region Policy Optimization (TRPO) algorithm [6],
which also addresses the high variance problem. PPO has proven to improve the results of

8

TRPO in several contexts, it also reduces the complexity of the computations within the
algorithm, and it is easy to implement and fine-tune. PPO was first introduced by OpenAI,
and on their web page they claim that “PPO has become the default reinforcement learning
algorithm at OpenAI because of its ease of use and good performance”.

As a Policy Gradient algorithm, the goal of PPO is to optimize the policy to maximize the
expected reward. The REINFORCE algorithm also has this goal, but its learning is slow and
unstable. TRPO implements a limit on the Kullback–Leibler divergence between the old
policy and the new one, so it ensures that the deviation from the previous policy is relatively
small. This way, the variance is reduced. With the same goal in mind, the improvement that
PPO implements consists of clipping the probability ratios between the old policy andφ(θ)
the new one. Then, this concept is used to create a new clipped surrogate objective LCLIP ,(θ)
that serves as a lower bound for the performance of the policy. PPO has also a
Kullback-Leibler variant, but the clip function is the preferred option by the OpenAI team.
The expression of the clipped surrogate objective is as follows.

𝐿𝐶𝐿𝐼𝑃(θ) = 𝐸
𝑡

𝑚𝑖𝑛 φ
𝑡
(θ) · Â

𝑡
, 𝑐𝑙𝑖𝑝(φ

𝑡
(θ), 1 − ϵ, 1 + ϵ) · Â

𝑡()[]
where φ

𝑡
(θ) =

π
θ
(𝑎

𝑡
|𝑠

𝑡
)

π
θ𝑜𝑙𝑑

(𝑎
𝑡
|𝑠

𝑡
)

Figure 2.4. Plots showing one term of the surrogate function LCLIP as a function of the probability ratio
, for positive advantages (left) and negative advantages (right). The red circle on each plot shows theϕ

starting point for the optimization, i.e., = 1 [5].ϕ

The clip function in LCLIP prevents the ratio from moving outside the intervalϕ(θ)
. Taking the minimum between the clipped and unclipped objective is a[1 − ϵ, 1 + ϵ]

lower bound on the unclipped objective. In Figure 2.4, it can be seen that for positive
advantages the new policy is not allowed to diverge more than from the old one,1 + ϵ
whereas for negative advantages the ratio is not allowed to be less than .1 − ϵ

In the original paper, the creators of PPO address the case of a backbone neural network
followed by two prediction heads (the actor and the critic). In this case, the final objective is a
weighted combination of the (actor) policy objective LCLIP, the (critic) value objective LVF

9

(any regression loss function, e.g. MSE), and a policy entropy bonus to ensure sufficient𝑆[π]
exploration. The final objective function that is maximized (gradient ascent) is as follows (c1
and c2 are coefficients to control the relevance of LVF and , respectively):𝑆[π]

𝐿
𝑡
𝐶𝐿𝐼𝑃+𝑉𝐹+𝑆(θ) = 𝐸

𝑡
𝐿

𝑡
𝐶𝐿𝐼𝑃(θ) − 𝑐

1
· 𝐿

𝑡
𝑉𝐹(θ) + 𝑐

2
· 𝑆[π

θ
(𝑠

𝑡
)]⎡⎢⎣

⎤⎥⎦

REINFORCE is very inefficient in terms of data reusability because each transition is used
only once to update the network weights. The ability to reuse training data several times is
crucial in reinforcement learning since the interaction with the environment might be
expensive in some scenarios. In the case of PPO, there is a buffer that stores different
timesteps from different episodes generated using the same policy weights. Then, it runs
many epochs on this data to update the network weights. The following Figure 2.5 presents
the pseudocode of the general PPO algorithm.

Figure 2.5. Pseudocode of the PPO algorithm. From the original paper [5].

2.2. Deep Reinforcement Learning

Deep Reinforcement Learning (Deep RL) [1] is the area of Machine Learning that
combines Reinforcement Learning (RL) and Deep Learning (DL). In many problems that RL
deals with, the state space might be too large to be solved using traditional RL algorithms
(e.g. the pixels of an image or a computer screen). Here is where DL comes into play by
using Deep Neural Networks to learn the policy, the value functions, and/or the action-value
functions. Deep RL has been achieving increasingly impressive results in several fields such
as self-driving cars, computer games, robotics, and healthcare.

One of the main advantages of using Deep RL is that neural networks are more capable of
generalizing to unseen data than standard RL algorithms. When neural networks are applied
to an RL problem, they learn to extract meaningful features from the input data that may be
useful for unseen data. Moreover, Deep RL can benefit from transfer learning: a model
pre-trained on a similar task can be reused in the problem at hand. However, if a problem is

10

simple enough to be solved using basic RL techniques, Deep RL might not be the best option
due to its inherent instability.

2.2.1. Vanilla Deep Q-Network

With the success of Deep Learning in several domains, one area of exploration was to
apply Neural Networks to implement the concepts of basic Reinforcement learning
algorithms, such as Q-learning [2.1.1]. A Deep Learning version of the Q-learning algorithm
was presented by DeepMind, and they showed that the network learned to play many Atari
2600 games directly from the screen's raw pixels using a convolutional neural network. The
network was trained to estimate the Q-values so it was called Vanilla Deep Q-Network
(Vanilla DQN) [7], and it surpassed human-level performance and other state-of-the-art
approaches in some of the games.

In order to use Neural Networks to learn the Q-values, the correlation within sequences of
consecutive transitions from the same episode poses a problem. In the original paper,
DeepMind proposed the use of an Experience Replay Memory. This memory keeps the most
recent transitions and randomly samples batches of previous transitions to feed the network
with uncorrelated data. Figure 2.6 shows the training process of the DQN with Experience
Replay. Note that the definition of the target yj is based on the Bellman Equation that we
described in [2.1].

Figure 2.6. Pseudocode of Deep Q-Network with Experience Replay (from the original paper [7])

In this approach, the target is computed using the network that is also being trained. This
dependence between the target and the prediction may lead to unstable learning. For the
prediction and the target to be independent, a different network must be used for each one.

11

There are many ways to address this issue, but one of the most common solutions is to use a
target network with a different set of weights that are used to compute the target:θ'

a’Q(j+1 , ;). These weights are always an old version of , and are updated𝑚𝑎𝑥 ϕ 𝑎' θ' θ' θ
() every training steps.θ' ← θ 𝐶

2.2.2. Dueling Deep Q-Network

The success of Deep Q-Networks opened the door to exploit the power of Neural
Networks to estimate the Q-values. Dueling Deep Q-Network (Dueling DQN) [8] is one of the
variants that have been proposed to improve the performance of Vanilla DQN. The Dueling
architecture uses two prediction heads to estimate the advantage of each action and the value
of the state as well. Then, these values are combined to estimate the Q-values. The advantage
subtracts the value of the state from the Q-value to obtain the relative importance of each
action, and separating these two elements works particularly well in the presence of many
similar-valued actions. Since both Vanilla and Dueling architectures aim at estimating the
Q-values, almost every improvement designed for the Vanilla case is likely to also work for
the Dueling case (e.g. experience replay, target network).

Figure 2.7. Comparison between the popular DQN architecture (top) and the Dueling DQN
architecture (bottom) (image from [8]).

We mentioned that the advantages and the value of the states are predicted separately and
then combined to estimate the Q-values. Intuitively, we would use the expression

, but this would lead to poor performance. Following that𝑄(𝑠, 𝑎) = 𝐴(𝑠, 𝑎) + 𝑣(𝑠)
expression, given a value it is not possible to recover and uniquely. One𝑄(𝑠, 𝑎) 𝐴(𝑠, 𝑎) 𝑣(𝑠)
possible solution is to force the advantage of the chosen action to be zero, so𝑎

. The following expression could be used to solve this problem of𝑄(𝑠, 𝑎) = 𝑣(𝑠)
identifiability:

12

𝑄(𝑠, 𝑎) = 𝑣(𝑠) + [𝐴(𝑠, 𝑎) − 𝑚𝑎𝑥
𝑎'

 𝐴(𝑠, 𝑎')]

There is also another approach that adds more stability to the learning process. It consists of
replacing the max operator with the average over the advantages. Subtracting the mean also
helps with identifiability, and it adds stability because the changes in the mean are smoother
than the potential changes in the optimal action’s advantage when the max operator is used.
The following expression replaces the max operator with the average.

𝑄(𝑠, 𝑎) = 𝑣(𝑠) + [𝐴(𝑠, 𝑎) − 𝑚𝑒𝑎𝑛 (𝐴(𝑠, :))]

2.3. Multi-Agent Reinforcement Learning

Multi-Agent Reinforcement Learning (MARL) [9] is the area of Reinforcement
Learning that studies how multiple agents interact in a common environment. The goal of
MARL is to learn a policy for each agent such that all agents together achieve the goal of the
system. In general, the problems that MARL deals with are categorized as NP-Hard due to
their complexity. With the motivation of recent success in deep reinforcement learning,
several researchers have been focusing on MARL.

Essentially, the goals of the agents can be classified into three categories. When the agents
work towards a common goal, it is said to be a cooperative setting (e.g. image classification
with a swarm of robots). Contrarily, if the agents compete with one another to accomplish a
goal, it is said to be a competitive setting (e.g. chess). The last category is some mix of the
two (e.g. two football teams playing a match).

Collaborative MARL is arousing great interest in large-scale cooperation problems. These are
arguably the biggest conflicts in our society and our species, and they can be approached
from a MARL perspective. In a collaborative setting, the agents have to learn to communicate
effectively with each other, because the communication bandwidth and the memory capacity
are usually limited. Moreover, the agents must seek an optimal solution under the constraint
that this solution is in consensus with its neighbours, and that is not always easy.

In a competitive setting, agents have conflicting goals and they need to take into account their
opponents when updating their policies. The minimax principle can be applied here:
maximize one’s benefits under the worst-case assumption that the opponent will always aim
to minimize it. In general, adapting your policy to your opponents requires you to anticipate
your opponents’ next actions to counterattack them effectively. The competitive setting is
widely studied in game theory and economics.

13

2.4. Two-player zero-sum games

Two-player zero-sum games [10] are a mathematical framework for representing
scenarios where two players interact and the advantage for one player is the equivalent loss
for the other. That is, all the resources are available at the beginning of the game, and the
game only allows a redistribution of the initial amount of resources. Contrarily, in
nonzero-sum games, both players can win or lose simultaneously.

Zero-sum games are a case of competitive Multi-Agent Reinforcement Learning since the
players have opposite goals and interact in the same environment. For this reason, zero-sum
games are usually solved using the minimax theorem: maximize one’s benefits under the
worst-case assumption that the opponent will always aim to minimize it.

In the particular case of two-player zero-sum games with deterministic state transitions
(i.e. the current state and action unequivocally determine the next state) and zero rewards
except at a terminal time-step , there is a unique optimal value function that determines the𝑇
outcome from the state following perfect play by both players. The outcome of the game is𝑠
the terminal reward at the end of the game from the perspective of the active player:

for a certain win, and for a certain loss. The expression for the𝑧
𝑇

=+ 𝑟(𝑠
𝑇
) 𝑧

𝑇
=− 𝑟(𝑠

𝑇
)

optimal value function takes into account that players alternate turns to beat each other and
win the game (i.e. states and are player by different players). The expression is as𝑠

𝑡
𝑠

𝑡+1

follows [11].

2.5. AlphaGo

In 2015, DeepMind introduced a new search algorithm that mastered the game of Go
using Monte-Carlo simulations with two deep neural networks to estimate the policy and the
state value. These networks were trained by a combination of supervised learning from
human expert games, and reinforcement learning from games of self-play. The program
AlphaGo [11] became the first computer program to defeat a human professional player in the
full-sized game of Go. It achieved a 99.8% winning rate against other sophisticated19 × 19
Go programs and defeated the world champion Lee Sedol 4 to 1.

14

Monte-Carlo Tree Search (MCTS) is a heuristic search algorithm widely used to play board
games by solving the game tree. Traversing the tree using exhaustive search is unfeasible in
big games such as chess and Go. But AlphaGo implements two networks to reduce the
effective search space. First, the effective breadth may be reduced by sampling actions from
the policy network. Second, the effective depth may be reduced by using the value network to
predict the outcome (i.e. value function) from a given state.

The training pipeline consists of three stages. Firstly, a policy network is trained to predict
expert moves in the game of Go. Then, the policy network is improved by policy gradient
reinforcement learning using the REINFORCE algorithm with a baseline for variance
reduction. Finally, the value network is trained to predict the game outcome from states. Once
these three stages are completed and both networks are trained, AlphaGo combines them with
an MCTS to create a high-performance tree search engine.

The data used in the supervised learning stage came from the KGS Go server, which contains
nearly 30 million positions from 160k games played by KGS professional human players.
The games used in the second and third training stages were generated using self-play, in
other words, letting the policy network play against itself. The data processing steps consisted
of computing all the features relative to the current color to play; for example, the stone color
at each intersection is represented as either player or opponent rather than black or white.
Then, each feature is one-hot encoded in binary planes. In total, there are 4819 × 19
stacked binary features after the one-hot encoding, so the input to the networks is a

stack of feature planes.19 × 19 × 48

A few months later, Deep Mind went a step further and published AlphaGo Zero [11], an
algorithm based solely on self-play reinforcement learning, without human data, guidance, or
domain knowledge beyond game rules. Starting tabula rasa, AlphaGo Zero achieved
superhuman performance, winning 100-0 against the previously published AlphaGo. One of
the improvements is that AlphaGo Zero uses a backbone network with two prediction heads
(the actor and the critic), rather than separate policy and value networks. Moreover, the input
features were only the black and white stones from the board. Since the algorithm only uses
self-play, AlphaGo Zero was able to discover new non-standard strategies beyond the scope
of traditional Go knowledge.

15

3. Environment

In this chapter, we analyze the nature (complexity, properties, solutions) and rules
(game structure, how to play, how to win) of Connect4 [3.1]. Afterward, we present the game
as a Reinforcement Learning environment. We will explain in detail how agents alternate
turns to interact with the environment [3.2]. Finally, we define the reward function that is
used by the environment to tell the quality of a given action in a given state [3.3].

3.1. Connect Four

Connect Four (or Connect4) [12] is a two-player connection game. Each player has 21
colored tokens and they alternate turns to place them in a grid. At each turn, the active6 × 7
player chooses one column to drop a token that will occupy the lowest available position
within that column. The first player who forms a horizontal, vertical, or diagonal line of four
of one’s tokens becomes the winner. If the board is filled before either player achieves four in
a row, then the game is a draw.

Connect Four is a perfect information game, in which there is no hidden information. It
means that what differentiates a good player from a bad player is how effectively they handle
the information of the game. It is also a well-known zero-sum game, and this property entails
that if one player wins, the other player loses. When a player tries to maximize their
probability of winning, it is also minimizing the opponent’s probability of winning (i.e.
maximizing the opponent’s probability of losing).

Figure 3.1. An example of a Connect4 game won by the yellow player (horizontal line)

The fact that the game rules and configuration are simple does not mean that the game
complexity is low. In the case of the classic Connect 4, there are roughly 4,5 trillion valid
board states. The game was created in 1974, and the initial attempts to solve it didn’t rely on

16

brute-force approaches because they seemed infeasible due to the game’s complexity and the
computational power available at the time.

In 1988, the game was solved for the first time. The proposed solution described a
first-player-wins strategy, in which the first player can force a victory by starting in the
central column, even if the second player plays optimally. If the first player starts in the
columns adjacent to the center, the second player can force a draw. If the first move is played
in one of the outer columns, the second player can force a win. In 1995, the game was solved
using brute-force methods that became feasible thanks to the technology at that time.

In general, board games have been broadly studied from a mathematical point of view,
especially in the fields of game theory and artificial intelligence. In these games, the rules
tend to be simple, they usually allow the creation of variants of different complexities, and
they open the door to research work on finding new strategies and solutions. For these
reasons, we decided to explore the possibilities that Deep Reinforcement Learning algorithms
can offer to play Connect4.

3.2. Environment structure

In Reinforcement Learning, the environment is the world in which an agent learns to
solve a given task. Agents are allowed to interact with the environment, but not to change its
rules. In this project, our agents learn to play Connect4, and the environment is the game
itself. In the following paragraphs, we explain how we turned Connect4 into a Reinforcement
Learning environment, how the reward function was defined, and how to deal with two
agents interacting in the same environment.

In the previous section [3.1] we explained the properties and the rules of Connect4. We
mentioned that the classic game board has 6 rows and 7 columns, and players alternate turns
to select columns to drop their pieces. If we use some Reinforcement Learning terminology,
Connect4 is considered a discrete environment. The action space is the finite set of valid𝐴
columns (i.e. not filled columns) at each turn, so . The state space is large but|𝐴| ≤ 7 𝑆
finite, and its size is the number of possible board configurations, which is estimated to be

12. Connect4 is a perfect information game, so agents can observe the full|𝑆| ≈ 4, 5 · 10
state of the environment (no information is hidden).

It is also considered a deterministic environment because the next state is unequivocally
determined by the current state and the agent’s action. Since there are terminal states in
which no more actions can be played (e.g. a win or a draw), it is said to be an episodic
environment. The main difference with respect to the common Reinforcement Learning

17

settings is that in Connect4 two agents with conflicting goals take turns to change the state of
the same environment.

At each turn (or time step), the state of the environment is the board at that turn, and it is
always shown from the perspective of the active player. It means that the board is represented
as a two-dimensional matrix with three different values: ‘0’ for empty positions, ‘1’ for the
active player’s pieces, and ‘-1’ for the opponent’s pieces. This way, all agents can assume that
they always play the ‘1’ pieces. It is the environment that is in charge of alternating the roles
(‘-1’ and ‘1’ pieces) of the active player and the inactive player to ensure the correct
functioning of the game. In other words, from the agents' point of view, there is no such thing
as a red player and a yellow player, it is me and my opponent. Since the agent is not attached
to any color, in Chapter 4 we can use self-play (a single agent playing for both colors in the
same game) to generate training data.

Below there is Figure 3.2 which shows an example of two consecutive turns (one per player).
Note that none of the agents know which color they are playing because the board they
observe is encoded using the aforementioned {-1, 1} or {my opponent, me} notation. Also
note that when Agent1 takes action, the environment state is updated before moving to the
next turn.

Figure 3.2. An example of how two agents interact with the environment to play the game

18

3.3. Reward function

When a Reinforcement Learning agent is trained to solve a task, what the agent
actually learns is to maximize the expected return. For this reason, the definition of the
reward function is crucial in every RL problem since it is the feedback signal that agents
receive to update their strategy. Unfortunately, in most real-world problems the reward signal
is not as good as one would like. The rewards are often sparse and delayed, as happens in
Connect4.

In the particular setting of two-player zero-sum games, there is rarely a simple way to tell the
exact quality of an action in the middle of the game. It could arguably be said that the reward
at an intermediate turn depends on the game outcome in some sense. For instance, in the
game of chess, the queen is one of the most powerful pieces, so when the queen is sacrificed
to win the game it is considered a good move. But if done in vain, it is considered one of the
worst moves. Discovering how each intermediate action affects the outcome of the game is
known as the credit assignment problem.

Before dealing with the reward of intermediate turns, let us first focus our attention on the
last actions of the game (which are played by the winner), and also on the penultimate turns
(which are played by the loser). In other words, we first address the case of terminal states,
certain wins, and certain losses. For the aforementioned scenarios, we designed a non-zero
reward function to help the agent learn how to act in these critical situations. Regardless of
the intermediate turns, when the outcome of the game is at stake it is easy to tell if an action
is good or bad. We took into account the zero-sum property of Connect4: note that when an
agent receives a positive reward the opponent’s situation becomes worse. The following list
explains in more detail these non-zero rewards and the situations where they are given.

- +1 if the agent wins the game or forces a certain win (i.e. when it has more than
one option to win so the opponent can’t do anything to prevent it).

- -1 if the agent loses the game or does not block an opponent’s clear chance to
win in the next turn. The agent is penalized even if the opponent does not seize the
opportunity to win, as it is a bad action anyway.

- +0.5 if the agent blocks an opponent’s clear chance to win in the next turn.

- -0.5 if the agent does not seize a clear opportunity to win in the current turn.

- 0 otherwise.

Despite addressing the reward function for terminal and close-to-terminal states, there are
still a lot of intermediate actions that receive a zero reward. In theory, it would not be a

19

problem because agents learn to maximize future rewards, not the immediate ones. They
should be able to estimate the expected future reward of an action even if the current reward
is zero. However, in practice, the learning process benefits more from non-zero rewards.

We know that intermediate actions somehow have an impact on the outcome of the game for
each player, but we do not know how to quantify that impact accurately. Our approach here is
an estimation based on two important assumptions. First, we assume that the latest actions of
a game have more impact on the outcome than the earlier actions. Second, we assume that all
actions leading to a game win are good to some degree and that all actions leading to a loss
are bad to some degree. Based on these two assumptions, we defined an expression to
estimate the impact (reward) that an intermediate turn t has on the outcome of a game that
lasted T turns. In other words, this expression is used to backpropagate the terminal rewards
to the intermediate turns for both the winner and the loser. It includes an exponent n that can
be fine-tuned and is used to control the slope of the backpropagation.

𝑟𝑒𝑤𝑎𝑟𝑑 𝑡, 𝑇, 𝑟
𝑇
 ; 𝑛() = 𝑟

𝑇
· 𝑡

𝑇()𝑛

Figure 3.3. Reward backpropagation for different ‘n’ values in a game that lasted 20 turns

Figure 3.3 shows how the exponent n affects the backpropagation of the terminal rewards. In
the last turn of the game (the twentieth turn in this example), the winner receives a +1 reward
and the loser receives a -1. The winner backpropagates the positive reward to their
intermediate actions to take them more often in future games. On the other hand, the loser
backpropagates its negative reward to discourage those actions that led to losing the game.

When , the backpropagation is constant so all turns are considered to be equally𝑛 = 0
important, and when there is no backpropagation at all. When , the slope𝑛 → ∞ 𝑛 = 1
decreases linearly, and for earlier turns receive a reward that is close to zero. After𝑛 ≥ 2
testing some values, we finally chose (green line in Figure 3.3) to train our agents in𝑛 = 3
Chapter 4.

20

From our empirical experience, regardless of the n value, backpropagating the last reward
achieved better results (i.e. higher win rate against the baselines) than not backpropagating at
all. We finally chose because it was a good trade-off between giving more credit to the𝑛 = 3
latest actions and also taking into account the earlier ones. It is important to mention that
backpropagation is applied only to those intermediate states with a zero reward. It means that
if a close-to-terminal intermediate state receives a non-zero reward from the list we described
above, we use the reward from that list because it is more reliable than the backpropagated
one.

21

4. Agents

In this chapter, we present how we trained different Deep Reinforcement Learning
agents to play the game of Connect4. In general, Deep RL algorithms face several challenges.
For instance, they tend to be unstable and their performance heavily depends on the chosen
values for the hyperparameters. Apart from that, plenty of data and computational power are
often required to train an agent, even for simple tasks. And when the agent leaves the
simulated training environment to enter the real world, new problems may appear. These
problems may become bigger when agents have to learn from scratch, without any human
supervision. One of the most intuitive ways to give more stability to the algorithms is by
introducing some previous knowledge in the form of human-generated data. This is what we
did in this project.

When DeepMind trained AlphaGo [11] to master the game of Go, the first stage of the training
pipeline consisted of teaching a policy network to predict the next move of professional
players. This supervised learning task provided immediate feedback and high-quality
gradients. In that stage, the goal of the policy network was to imitate human experts. Then,
the network was refined using policy-gradient reinforcement learning with self-play to
maximize the expected return and learn the value of each state. In other words, it was trained
to win games and improve their performance, rather than maximizing the classification
accuracy.

Our training pipeline has two main stages and was partially inspired by how AlphaGo was
trained (for a comprehensive explanation of AlphaGo, refer to section [2.5]). Our first
training stage is a supervised learning one-class classification task. We created a synthetic
dataset with games played by a hand-crafted heuristic (a mid-level player), and we used the
data to train a convolutional network to predict the actions of the heuristic. Then, we applied
transfer learning to reuse the model trained for this first task (Supervised Learning) as the
starting point for the models in our second task (Reinforcement Learning). The pre-trained
weights of the network were used as the starting point of all the RL algorithms that we tested.
The convolutional block was regarded as a feature extractor, so the convolutional pre-trained
weights were frozen. Then, for each Deep RL algorithm, the fully connected block of the
network (which may have either one or two prediction heads depending on the algorithm)
was trained to solve the RL task in each case. Figure 4.1 shows a visual representation of this
transfer learning approach.

Beyond the type of game that is studied, there are important differences between our
approach and AlphaGo. The first one is the objective of the project. AlphaGo aimed at being
the first computer program to defeat a human professional player in the full-sized game of
Go, whereas our main goal is to compare how different Deep RL algorithms learn to play
Connect4. The second difference is the use of Monte-Carlo Tree Search. AlphaGo uses a
high-performance lookahead search to simulate several games and choose its actions,

22

whereas our RL agents are not allowed to simulate future moves. The third difference is the
available computer resources. AlphaGo ran several simulations in parallel and was carefully
designed to be as efficient as possible. Our training pipeline is intended to run on a single
GPU and was designed to be general and simple so we could make a fair comparison between
the different Reinforcement Learning algorithms we tested.

Figure 4.1. Visual representation of how ‘transfer learning’ is applied in our training pipeline.

DeepMind went a step further and created AlphaGo Zero [12], a better version of AlphaGo that
was trained solely by self-play reinforcement learning and outperformed AlphaGo and other
sophisticated computer programs. Without human supervision, AlphaGo Zero managed to
learn non-standard strategies that went beyond the scope of traditional Go knowledge.
However, the goal of our project is not to discover new strategies to play Connect4. Learning
uniquely from self-play requires millions of timesteps before finding good solutions. For this
reason, we first trained a network on a supervised task and then we moved on to self-play
reinforcement learning with a pre-trained network that already had some knowledge of the
game.

In this chapter, we start by introducing the two baselines we have implemented in this project
[4.1], and we explain their main advantages and disadvantages. These baselines are used to
measure the performance of the trainable agents. Afterward, we explain the supervised
learning task in more detail [4.2]: how we generated the dataset [4.2.1], how we trained the
policy network [4.2.2], and what results we obtained in this first stage [4.2.3]. Then, we move
on to the Reinforcement Learning algorithms. Here we tried to refine the policy network to
improve its performance. For each algorithm, we explain how it was adapted to be used in
two-player zero-sum games with alternating turns (a competitive Multi-Agent Reinforcement

23

Learning setting) and the training process. We also present our solutions and the obtained
results. The Deep RL algorithms we tested in this project are Vanilla and Dueling Deep
Q-Networks [4.3], REINFORCE with baseline [4.4], and Proximal Policy Optimization [4.5].

4.1. Baseline agents

We developed two non-trainable agents based on different heuristics to play the game.
These Baseline Agents are used to measure the performance of the Reinforcement Learning
agents. Since the logic applied by the baseline agents is known, if a trainable agent beats a
Baseline Agent, it might mean that they have learned some knowledge beyond the baseline’s
scope. In this section, we introduce our Baseline Agents: the Random Agent and the N-Step
Lookahead Agent.

4.1.1. Random agent

In every scenario, the most basic agent is always the Random Agent. In Connect 4, the
random agent selects one of the available columns to drop their pieces. It does not have a
strategy because it does not know the goal of the game, so the columns are selected at random
regardless of the state of the game. The only rule the Random Agent knows is that if a column
is full, it can’t be chosen. The Random Agent is a very weak player, and a minimum
knowledge of the game will be enough to start winning against it. A reasonably good agent
should consistently beat the Random Agent roughly 90-95% of the time.

4.1.2. N-step lookahead agent

In games where players alternate turns, a human player is concerned about their
current turn but also about how the opponent can counterattack. In other words, a human
player can look ahead and estimate the probabilities of winning the game for each of their
available moves. Depending on the person's capacity, it might also take into account how the
opponent will respond, and imagine even more turns ahead. In the game Connect4, the game
tree structure is shown in Figure 4.2 below:

24

Figure 4.2. Connect 4 game tree for a lookahead search (from Kaggle tutorials [14])

Based on this idea of simulating future games, we implemented an agent that we call N-Step
Lookahead Agent (NstepLA from now on). When the NstepLA takes a turn, it builds the game
tree of depth N, i.e. it explores all the possible combinations for the next N turns. Then, it
uses a hand-crafted evaluation function to assign a score to each board in a leaf node. Finally,
it goes up the game tree collecting the partial results using a minimax search. In a minimax
search, the active agent chooses the action that yields the highest score, and it assumes that
the opponent will counteract this by choosing actions to force the score to be as low as
possible. That is why it is called minimax, because the active player aims at maximizing the
score and the opponent aims at minimizing it. It is considered a pessimistic heuristic because
it assumes that the opponent plays optimally and this is not always true.

The leaf nodes (boards) receive a score that is defined by a hand-crafted evaluation function
that is specifically designed for this game. The idea is to define a set of patterns that are
relevant to the game and assign a score to each of them. Positive scores indicate patterns to
seek, whereas negative scores indicate patterns to avoid. The goal of Connect4 is to connect
four of your pieces in the same line, so positive patterns check the connectivity of your
pieces, and negative ones check the connectivity of the opponent’s pieces. Figure 4.3 is
shown below and presents the patterns and scores that have been used in this project. Many
score values may work, but the ones we used came from the Kaggle Reinforcement Learning
tutorial [14]. With these scores, the 1stepLA consistently beats the Random Agent in almost
every game (≈99% of the time).

The patterns presented in Figure 4.3 are sought vertically, horizontally, and diagonally. Not
just these exact patterns, but also the equivalent ones. For instance, the set of equivalent
patterns for [red, red, red, empty] is all the possible combinations of four connected spaces in
which just one of them is blank and three of them are red. The score assigned to a leaf node
is the sum of the pattern scores weighted by the number of occurrences of each pattern in any
of the allowed directions

25

Figure 4.3. Patterns and scores to evaluate a leaf node (board) in the game tree. These scores are for
the red player to maximize the overall score.

When the minimax search is done, the NstepLA has assigned a score to the actions they can
take in the current turn. When there is more than one action sharing the highest score, there
are two ways to break the tie. The first option is to select at random one of the best-scored
actions. The other option is to select the action that is closer to the central column because
central columns are more valuable in Connect4. If the first option is chosen the policy is
stochastic, whereas the second option leads to a deterministic policy and also a higher win
rate in some cases.

Without any evidence, we could speculate that the level of an average human being is
somewhere between a one-step and a two-step lookahead search. In the common 6 × 7
Conect4 board, it may be easy for a human player to imagine the impact of the 7 actions in
their current turn. However, it may be too difficult to imagine the impact of the 72 = 49
possible combinations of their move and the opponent’s next move, let alone the 73 = 343
possible combinations of three steps ahead. We guess that an average human player can
efficiently perform a full one-step lookahead search and a partial two steps lookahead search
focusing on the moves that lead to crucial game states. This estimation is just a basic and
unofficial human baseline to evaluate the agents.

4.2. Supervised Learning Task

In this section, we trained a policy Neural Network to predict the actions of a
mid-level player. Since we did not have access to a dataset of games played by professional
Connect4 players, we were forced to create a synthetic dataset of moves played by one of our
baselines. We considered the 1-Step Lookahead Agent (1StepLA) to be a mid-level player, and
we created a dataset of 200k unique (state, action) pairs played by this agent. Then, we tried
different network architectures to solve this one-class classification task: to predict the
actions played by 1StepLA. At the end of the training, the best network achieved ≈85% test
accuracy with minimum overfitting. We designed a convolutional architecture with 186k
trainable parameters that we called CNET128.

26

Here we describe the creation of a synthetic dataset of actions played by 1StepLA [4.2.1] and
every detail of the training process: data preprocessing, hyperparameters, and assumptions
[4.2.2]. Finally, we present the results and introduce the next chapter that will improve the
model with different Reinforcement Learning algorithms and self-play [4.2.3].

4.2.1. Dataset creation

The lack of a large dataset to train our supervised policy network forced us to create a
synthetic one. We considered one of our baseline agents to be a mid-level Connect4 player. In
particular, we chose the 1-Step Lookahead Agent (1StepLA from now on) to generate the data.
Of course, other agents that look more steps ahead will play better. But the 1StepLA offers a
trade-off between performance and speed. Looking more steps ahead would increase the
quality of the actions but at the expense of an exponential increase in the computational cost
to simulate and evaluate more boards.

The 1StepLA played against itself and generated 200k unique (state, action) pairs. When
evaluating nodes in the minimax search, 1StepLA breaks the ties by choosing the most central
action. This way, the policy is deterministic and the state completely determines the action.
In the common Connect4 game, a state is a board from the active player's perspective.6 × 7
It means that the board has values: ‘0’ for empty positions, ‘1’ for positions with an active
player’s piece, or ‘-1’ for those with an opponent’s piece. The actions represent the columns
and are values from 0 (leftmost column) to 6 (rightmost column). For more information on
the dynamics of the environment and how agents interact with it, refer to section [3.2]. Before
saving the data, the states were flattened (i.e. collapsed into one dimension) and turned into
string format. The data pairs were saved in a text file. When the data is loaded, the states are
reshaped into a grid of integers.6 × 7

4.2.2. Training

Once the dataset was ready, we trained the convolutional network to estimate the
policy of our 1StepLA. We chose a convolutional architecture to take advantage of the board
structure of the game. There is a convolutional block that is followed by a sequence of fully
connected layers. All the layers are followed by rectified linear units (ReLU) and there are
neither dropout nor pooling layers. The input of the layer is the state of the environment after
some preprocessing steps that are described in this section. A Softmax activation is applied to
the output in order to get the policy. We designed an architecture with 186k trainable
parameters which is shown in Figure 4.4 and we called it CNET128.

27

Figure 4.4. Our CNET128 architecture (186k trainable parameters)

Before feeding the network, the states have to be preprocessed. In the common Connect4
game, a raw state is a board from the active player's perspective. As we explained in6 × 7
section [3.2], it means that the state of the environment is a board with values: ‘0’ for empty
positions, ‘1’ for the active player’s pieces, and ‘-1’ for the opponent’s pieces. The
preprocessing of a raw state has two steps. The first step is a one-hot encoder of the pieces of
both players that results in two binary planes. The first plane has values ‘1’ for the6 × 7
active player’s pieces and ‘0’ for empty positions and opponent’s pieces. The second plane
has values ‘1’ for the opponent’s pieces and ‘0’ for empty positions and the active player’s
pieces. When stacked, the result is a three-dimensional board. The second step is6 × 7 × 2
to highlight the positions that can be filled by the active player in the current turn. These
positions are set to -1 in both channels so the network can easily see the position that can be
filled at that turn. We also tried to feed the network with the raw states (i.e. without the
one-hot encoding and the available positions highlighted), but the test accuracy was ≈5%
lower. We decided to implement these two data preprocessing steps because they could help
the Reinforcement Learning algorithms ([4.3], [4.4], [4.5]) to solve their respective tasks.
Figure 4.5 offers a visual example of how the environment states are preprocessed.

We split the 200k data samples into 160k training samples (80%), 20k validation samples
(10%), and 20k test samples. We trained for 20 epochs, using a batch size of 64, a learning
rate of 5e-4, and a weight decay (L2 regularization) of 2e-3. We also tested other pairs of
batch sizes and learning rates: (64, 1e-4), (128, 1e-4), (128, 5-4). We finally used the
combination (64, 5e-4) but all of them led to very similar results in terms of training speed
and test accuracy when using CNET128.

We tested different networks with the same structure as CNET128 shown in Figure 4.4, but
instead of using 128 convolutional filters or 128 units in each layer, we used 96, 160, and
192. The convolutional kernel sizes were the same for all of them (and). We4 × 4 2 × 2
finally chose CNET128 because it was the best combination of low complexity and high
performance. The results were worse using smaller networks and did not improve
significantly when more complexity was added.

28

Figure 4.5 An example of data preprocessing before feeding the neural network.

4.2.3. Results

After training for 20 epochs, CNET128 achieved ≈87% training accuracy and ≈85%
test accuracy with minimum overfitting. We selected the best network weights to continue the
learning pipeline so they serve as a starting point for the Reinforcement Learning algorithms.
An agent following the trained CNET128 would beat the Random Agent ≈95% of the time
and would beat the 1StepLA ≈50% of the time. Figure 4.6 shows the training and validation
losses (cross-entropy loss) and accuracies. In the plots, it can be seen that the overfitting was
minimal and that after 50k updates the network converged.

After achieving 56% test accuracy, AlphaGo improved its game by playing against itself and
optimizing its policy following a Reinforcement Learning algorithm (in particular,
REINFORCE with baseline). After achieving 85% test accuracy, our network will try to
improve its game using different Reinforcement Learning algorithms. The knowledge of this
part is transferred to the RL agents as shown in Figure 4.1. The convolutional block will be a
non-trainable feature extractor and the fully connected block will be trained to solve the
Reinforcement Learning task in each algorithm. In the following sections, the network will
learn to win games, rather than maximize the classification accuracy.

29

Figure 4.6. CNET128 training and validation results: losses and accuracies.

Some of the Deep RL algorithms in the next section require two different predictions. This
can be accomplished by either using two different networks or by using a single backbone
network with two prediction heads. In this project, we implemented the latter: a two-headed
network. The convolutional block and the first fully connected layers are our backbone
network. Then, two independent heads are appended to learn two different tasks. The first
head outputs seven units (one for each column of the board) to predict either the policy, the
Q-values, or the advantage of each action. The second head (when it is required) outputs the
value of the input state and has 16k trainable parameters. Below there is Figure 4.7 which
shows how the two-headed version of CNET128 is structured and the role that each part of
the network plays in the next training process.

Figure 4.7. Two-headed version of CNET128 architecture. It is used as the starting point for some of
the Deep RL algorithms in the following sections.

We mentioned that the one-headed version of CNET128 has 186k parameters (Figure 4.4). In
this supervised learning task, all of them were trained. However, in the following sections,
the convolutional block (70k parameters) is frozen, as shown in Figure 4.7. It means that in
the next sections (where we train Deep RL algorithms), the one-headed version of CNET128

30

will have 116k trainable parameters (186k in total), and the two-headed version will have
132k trainable parameters (16k for the second head, 202k in total).

Among the RL algorithms used in this project, Vanilla Deep Q-Network [4.3] is the only one
that uses a one-headed network to estimate Q-values, whereas the rest of them require a
two-headed architecture (i.e. two different predictions). Dueling Deep Q-Network [4.3]
estimates the advantage for each action and the state value. REINFORCE with baseline [4.4]
estimates the policy and the state value, and so does PPO [4.5]. In the following sections, we
describe in detail how we used Deep RL algorithms to improve the pre-trained CNET128
model to create stronger Connect4 players.

4.3. Vanilla and Dueling Deep Q-Network

In Chapter 2 we introduced the Q-learning algorithm [2.1.1] to learn the value of an
action in a particular state. We also introduced Vanilla Deep Q-Network (Vanilla DQN)
[2.2.1] and Dueling Deep Q-Network [2.2.2], two Deep Learning variants of Q-learning
which use Neural Networks to estimate the Q-values. However, the original version of these
algorithms was created to deal with the typical single-agent setting, and Connect4 is a
two-player zero-sum game. To train our agents, we first have to adapt the original algorithms
to our particular environment. More importantly, Connect4 is a turn-based game, so when an
agent is in a given state , it must take into account that the next state (the next turn) is𝑠 𝑠'
played by an opponent who is also trying to win the game (and beat the first agent).

In order to use these value-based techniques in a two-player zero-sum game (a competitive
multi-agent setting), some changes in the target have to be made. (Jianqing Fan et al., 2020)
[15] published a paper in which they introduced the Minimax-DQN algorithm for zero-sum
Markov games with two players playing simultaneously. Fortunately, there is also a variant
for turn-based games like Connect4. In this variant, the Q-value for a given pair is(𝑠, 𝑎)
updated taking into account that the next state is played by the opponent.𝑠'

The only difference with respect to the DQN training loop shown in Figure 2.6 is the
definition of the non-terminal target (yj). In turn-based zero-sum games, the next Q-value is
subtracted (instead of added) from the current reward because the expected return for the
active player is the opposite of the expected return for the opponent (one of them will win
and the other one will lose). In the expression below, we use to refer to the𝑄(𝑠, 𝑎; θ, 𝑝𝑙𝑎𝑦𝑒𝑟)
expected return from the state if takes turn using a Q-network with weights .𝑠 𝑝𝑙𝑎𝑦𝑒𝑟 θ

𝑦
𝑗
 = 𝑄(𝑠

𝑗
, 𝑎

𝑗
; θ, 𝑝𝑙𝑎𝑦𝑒𝑟) = 𝑟

𝑗
 − γ · 𝑚𝑎𝑥

𝑎'
 𝑄(𝑠

𝑗+1
, 𝑎'; θ', 𝑜𝑝𝑝𝑜𝑛𝑒𝑛𝑡)

31

In order to add more stability to the predictions, we took advantage of the vertical symmetry
of the board by taking the average of symmetric Q-values. For a given state (board) , we𝑠
compute the symmetric board sym by flipping horizontally (fliplr) the state s. Based on the𝑠
rules of Connect4, these two boards are exactly the same, so their actual Q-values are also the
same (but flipped horizontally as well). By taking the average of these symmetric values, we
reduce the variance and avoid the overestimation bias that comes from using just one
estimation. The expression below shows the computation. We use fliplr to refer to the
horizontal flip operation (left/right direction). This technique is only used when playing
games in competitions, not when training the network.

𝑄𝑎𝑣𝑔(𝑠, :) = 1
2 𝑄(𝑠, :) + 𝑓𝑙𝑖𝑝𝑙𝑟 𝑄(𝑠𝑠𝑦𝑚, :)()[] 𝑤ℎ𝑒𝑟𝑒 𝑠𝑠𝑦𝑚 = 𝑓𝑙𝑖𝑝𝑙𝑟(𝑠)

In the next two sections, we present our solutions for these two value-based Deep RL
algorithms. The only difference between Vanilla DQN and Dueling DQN is in how they
compute the Q-values (i.e. the network architecture), but the training steps are exactly the
same and we also used the same hyperparameters in both cases. For these reasons, we explain
their training process in just one section [4.3.1] instead of in two different ones. After
training the agents, we present the best solutions and results in section [4.3.2].

4.3.1. Training

The training process that is explained here is used to train both Vanilla DQN and
Dueling DQN. We use the term Deep Q-Network (DQN) to refer to the general parts of the
training that are common in both algorithms. In those parts where the implementation is
specific for each algorithm, we discuss each one separately using the terms Vanilla DQN and
Dueling DQN to differentiate them.

Vanilla DQN uses the one-headed version of our CNET128 (defined in [4.2.2]) which has
186k parameters (as shown in Figure 4.4), whereas Dueling DQN uses the two-headed
version which has 202k parameters (as shown in Figure 4.7). Before the training starts, the
DQN inherits the weights of the pre-trained CNET128 model [4.2.3] from the previous
supervised learning task. So, in this section, the convolutional block (feature extractor) has
70k pre-trained parameters that are frozen and remain unchanged. Appended to the
convolutional block is a sequence of fully connected layers, which are optimized to estimate
the Q-values. In the case of Vanilla DQN, there are 116k trainable parameters in the fully
connected layers, whereas this number is 132k for Dueling DQN (the second head has 16k
trainable parameters).

Apart from the online network that is trained, two more networks are also created (but not
trained). The first one is the target network that is used to compute the target and avoid
overestimating the Q-values. The target network starts with the same weights as theθ' θ

32

online network, and it is updated every 400 iterations (. The second network is the oldθ' ← θ)
network that keeps the best weights found so far. When the performance of the online
network decreases, the last updates are undone and it goes back to the old weights. We
considered that the performance decreased when the win rate against the 1StepLA was 8%
lower than the best one achieved so far. Every time that the online network achieves a new
best win rate against the 1StepLA, the old weights are replaced with the online weights

.(θ
𝑜𝑙𝑑

← θ)

Regarding the training data, the training episodes are generated using self-play, i.e. the online
network plays against itself. We used an Experience Replay Memory to store transitions in the
format . It is a first-in-first-out structure in which the older transitions are(𝑠, 𝑎, 𝑟, 𝑠', 𝑑𝑜𝑛𝑒)
removed to add new ones. At each training step, the network samples a random batch of 48
transitions to update the weights. The memory we used had a capacity for 60k transitions, and
the training did not start until it had 30k of them (sufficient to ensure that they are not
correlated). New self-play games are constantly generated to update the data in the memory.

As explained in [3.3], the terminal rewards are backpropagated to give some credit to the
intermediate actions, and this process is done within the memory. When a new self-play game
(episode) is played, the memory preprocesses the transitions of the episode and stores them. It
is assumed that what the memory receives is an ordered sequence of transitions that belong to
the same finished episode, so the reward backpropagation can be done properly.

For each new episode that is added to the memory, a symmetric version is created and added
as well. In Connect4, the board has a vertical symmetry that can be exploited to double the
number of data samples and also to help the network learn to take advantage of this
symmetry. To create a symmetric version of a given transition , the states(𝑠, 𝑎, 𝑟, 𝑠', 𝑑𝑜𝑛𝑒) 𝑠
and are flipped horizontally, and the new action becomes . The values𝑠' #𝑐𝑜𝑙𝑢𝑚𝑛𝑠 − 𝑎 𝑟
and remain unchanged.𝑑𝑜𝑛𝑒

In order to address the exploration-exploitation dilemma, we implemented a decaying
epsilon-greedy strategy. When the training starts, the focus is on exploring the environment,
but eventually, the focus is on exploiting it. The expression below defines the decaying
exploration rate we used for a training episode at timestep t.

𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛_ 𝑟𝑎𝑡𝑒(𝑡) = ϵ
𝑒𝑛𝑑

+ (ϵ
𝑠𝑡𝑎𝑟𝑡

− ϵ
𝑒𝑛𝑑

) · 𝑒𝑥𝑝 −1·𝑡
ϵ

𝑑𝑒𝑐𝑎𝑦
()

𝑤ℎ𝑒𝑟𝑒 ϵ
𝑠𝑡𝑎𝑟𝑡

= 0. 8; ϵ
𝑑𝑒𝑐𝑎𝑦

= 500; ϵ
𝑒𝑛𝑑

= 0. 05

In our initial attempts we realized that, when the exploration rate was minimum, the games
generated with self-play were too repetitive. In the end, the Replay Memory had little variety
of game boards. In order to keep exploiting the environment and still visit a wide range of

33

new game boards, we decided that the initial board would be random. The common initial
empty board was no longer the first environment state. Instead, we let the Random Agent use
self-play to generate a sequence of non-terminal transitions so the online network had to
finish the game. The random moves were not added to the Replay Memory, so in the end, the
memory had a richer variety of high-quality transitions that were chosen by the online
network.

Every 1000 training updates, the online network competes against the Random Agent, against
the old network, and against the 1StepLA. In each competition [5.1], 100 games are played
and the win rates and the average game length are tracked. The win rate against the Random
Agent is expected to be greater than 95% throughout the training. It serves as a sanity check
to make sure that the performance is not decreasing significantly. The win rate against the old
network is not really informative because the old network is constantly updated throughout
the training, so this value is usually around 50%. In this self-competition, we were more
interested in the average game length. Lastly, the win rate against the 1StepLA is 50% before
training the network, so the main objective is to exceed it.

The training loop lasted for 100k updates, which are 10k episodes taking into account the
symmetric versions that we generated. The hyperparameters used were the same in both
Vanilla and Dueling DQN: we used the Adam algorithm to perform stochastic gradient
descent, the loss function was the Mean Squared Error (MSE), the batch size was 48, the
learning rate was 1e-4, the weight decay (L2 regularization) was 5e-4, and the discount factor
was 0.95. For each new episode that was added to the memory, 20 training steps were
performed.

4.3.2. Results

Our starting point was a pre-trained network that learned to predict the actions of
1StepLA (a mid-level player) with 85% of accuracy. Unsurprisingly, the win rate of this≈
pre-trained network against the 1StepLA was 50%. Our will in this section was to further≈
improve this network using two variants of the Q-learning algorithm that are based on Deep
Learning. After learning the Q-values, the Vanilla DQN beat the 1StepLA 87% of the time
(+37% increase in win rate). The training of Dueling DQN was also successful and was able
to beat the 1StepLA 94% of the time (+44% increase in win rate).

Figure 4.8 shows the plots of the evolution of the losses throughout the training loop. For
visualization purposes, the first 1000 losses were discarded because they were extremely
high. The reason is that the network needed some updates to transition from the supervised
classification task to the Q-values regression task. The loss values that are shown here were
smoothed using a moving average of 200 points. It is important to bear in mind that the
training data varies throughout the training (new self-play games are generated and stored in

34

the Replay Memory, and the oldest ones are replaced), so the loss is not our key indicator of
the quality of the learning.

Figure 4.8. Training loss for both Vanilla and Dueling DQN

Every 1000 updates, the online network competes against its older version to see if the last
updates make the performance increase or decrease. In this self-competition, the most
important indicator is the average length of the games. The fact that the games last longer
means that the network has more and more problems when it tries to win its older version: the
network is learning to win games but also to prevent the opponent from winning, and this is
very important to become a strong player. Both Vanilla and Dueling DQN started averaging
less than 15 turns per game. In both cases, the maximum average game length was around 30
turns. Dueling DQN, unlike Vanilla DQN, manages to maintain this good value.

Figure 4.9. Average game length in self-play games for both Vanilla and Dueling DQN.

Finally, we show the evolution of the win rate against the 1StepLA. The results for the
Dueling DQN look more stable, but both of them are quite good. At the end of the training,
we keep the model that achieved the highest win rate. These best models will join the global
competition in Chapter 5.

35

Figure 4.10. Evolution of the win rate against 1StepLA for both Vanilla and Dueling DQN

4.4. REINFORCE with baseline

In this section, we present our approach using REINFORCE with baseline [2.1.2] to
learn to play Connect4. Honestly, the results we obtained were not as good as we expected.
We tried to reduce the variance by using a baseline function and by fine-tuning the
hyperparameters to take smaller update steps toward more stable directions. And yet, despite
our efforts, the learning process was quite unstable and the maximum win rate against the
1StepLA was 59% (+9% increase in win rate).

The network did not seem to learn new meaningful strategies of the game throughout the
training, and the average win rate against the 1StepLA was around 50% both at the beginning
and at the end. However, we wanted to include these results to compare them with the ones
obtained using Proximal Policy Optimization (in the next section [4.5]) so we could analyze
the benefits that PPO offers to reduce the variance.

As happened in [4.3] with Deep Q-Networks, to train our agents using the REINFORCE
algorithm we also have to adapt the original version to our particular environment. As we
mentioned, Connect4 is a turn-based game, so when an agent is in a given state , it must take𝑠
into account that the next state (the next turn) is played by an opponent who is also trying𝑠'
to win the game (and beat the first agent). As shown in the expression below, we changed
how the return is computed. Note that, since it is a turn-based game, the turn t is played by
the active player but the opponent plays the turn at time t+1.

𝐺
𝑡

= 𝑟
𝑡

− γ · 𝐺
𝑡+1

In order to add more stability to the predictions, we took advantage of the vertical symmetry
of the board by taking the average of symmetric probabilities (as we did in [4.3] with the
Q-values). For a given state (board) , we compute the symmetric board sym by flipping𝑠 𝑠

36

horizontally (fliplr) the state s. Based on the rules of Connect4, these two boards are exactly
the same, so their optimal policies are also the same (but flipped horizontally as well). By
taking the average of these symmetric probabilities, we reduce the variance and avoid the
overestimation bias that comes from using just one estimation. The following expression
shows the computation. We use fliplr to refer to the horizontal flip operation (left/right
direction). This technique is only used when playing games in competitions, not when
training the network.

π𝑎𝑣𝑔(𝑠, :) = 1
2 π(𝑠, :) + 𝑓𝑙𝑖𝑝𝑙𝑟 π(𝑠𝑠𝑦𝑚, :)()[] 𝑤ℎ𝑒𝑟𝑒 𝑠𝑠𝑦𝑚 = 𝑓𝑙𝑖𝑝𝑙𝑟(𝑠)

In the next two sections, we present our solution using REINFORCE with baseline. The
training steps and the choice of hyperparameters are explained in section [4.4.1]. As we
mentioned, the results obtained were not as good as we expected. However, we decided to put
them in section [4.4.2] in order to compare them with the Proximal Policy Optimization
approach [4.5.2], which is the other policy-gradient algorithm tested in this project.

4.4.1. Training

REINFORCE with baseline uses the two-headed version of our CNET128 (defined in
[4.2.3]) which has 202k parameters (as shown in Figure 4.7). Before the training starts, the
network inherits the weights of the pre-trained CNET128 model [4.2.3] from the previous
supervised learning task. So, in this section, the convolutional block (feature extractor) has
70k pre-trained parameters that are frozen and remain unchanged. Appended to the
convolutional block is a sequence of fully connected layers that split into two prediction
heads. In total, there are 132k trainable parameters in the fully connected layers: 17k for the
policy head, 16k for the value head, and 99k that precede the prediction heads and are shared
by both of them.

Apart from the current network that is trained, there is a second network called the old
network that keeps the best weights found so far. When the performance of the current
network decreases, the last updates are undone and it goes back to the old weights. We
considered that the performance decreased when the win rate against the 1StepLA was 8%
lower than the best one achieved so far. Every time that the current network achieves a new
best win rate against the 1StepLA, the old weights are replaced with the current weights

.(θ
𝑜𝑙𝑑

← θ)

Regarding the training data, the training episodes are generated using self-play, i.e. the
current network plays against itself. We used a buffer to store transitions in the format

. At each iteration, the buffer is filled with a new self-play episode generated(𝑠, 𝑎, 𝑟, 𝑑𝑜𝑛𝑒)
using the most recent weights of the network. Then, as explained in [3.3], the terminal

37

rewards are backpropagated to give some credit to the intermediate actions, and this process
is done within the buffer. Each transition is only used once to update the weights.

For each new episode that is added to the buffer, a symmetric version is created and used as
well. In Connect4, the board has a vertical symmetry that can be exploited to double the
number of data samples and also to help the network learn to take advantage of this
symmetry. To create a symmetric version of a given transition , the state is(𝑠, 𝑎, 𝑟, 𝑑𝑜𝑛𝑒) 𝑠
flipped horizontally, and the new action becomes . The values and#𝑐𝑜𝑙𝑢𝑚𝑛𝑠 − 𝑎 𝑟 𝑑𝑜𝑛𝑒
remain unchanged.

The exploration-exploitation dilemma is addressed by learning a stochastic policy and
sampling actions from it. However, in order to let the network visit a wider range of game
boards, we decided that the initial board would be random. The common initial empty board
was no longer the first environment state. Instead, we let the Random Agent use self-play to
generate a sequence of non-terminal transitions so the network had to finish the game. The
random moves were not added to the buffer, so in the end, the network was able to visit a
richer variety of high-quality transitions.

Every 100 training episodes, the current network competes against the Random Agent,
against the old network, and against the 1StepLA. In each competition [5.1], 100 games are
played and the win rates and the average game length are tracked. The win rate against the
Random Agent is expected to be greater than 95% throughout the training. It serves as a
sanity check to make sure that the performance is not decreasing significantly. The win rate
against the old network is not really informative because the old network is constantly
updated throughout the training, so this value is usually around 50%. In this self-competition,
we were more interested in the average game length. Lastly, the win rate against the 1StepLA
is 50% before training the network, so the main objective is to exceed it.

To reduce the variance, we tried different small learning rates such as 5e-5, 1e-5, and 5e-6.
We finally chose 5e-6, but our experiments showed that smaller learning rates did not prove
to reduce the variance and achieve better results. We trained for 100k updates using the Adam
algorithm to perform stochastic gradient ascent. The weight decay (L2 regularization) was
1e-3 and the discount factor was 0.95. The loss function for the value head was the Smooth
L1 Loss (Lvalue), and the loss for the policy head (Lpolicy) was the one described in [2.1.2]. The
objective function to maximize is a weighted combination of these two partial losses (with
their proper signs). We tested different c1values but they made no significant difference in the
results. In a general scenario, the recommended values for c1 are in the interval [0.5, 1], so we
chose 0.75.

𝐿
𝑡
(θ) = 𝐿

𝑡
𝑝𝑜𝑙𝑖𝑐𝑦(θ) − 𝑐1 · 𝐿

𝑡
𝑣𝑎𝑙𝑢𝑒(θ) 𝑤ℎ𝑒𝑟𝑒 𝑐1 = 0. 75

38

4.4.2. Results

Our starting point was a pre-trained network that learned to predict the actions of
1StepLA (a mid-level player) with 85% of accuracy. Unsurprisingly, the win rate of this≈
pre-trained network against the 1StepLA was 50%. Our will in this section was to further≈
improve this network using REINFORCE with baseline. Our best solution got a 59% win rate
against 1StepLA. However, despite all our effort to reduce the variance and improve the
learning process, the win rates fluctuated at each iteration and never seemed to start
improving consistently.

In Figure 4.11, it can be seen that the training loss did not improve during the training. The
network seemed to be always trying new strategies without favouring either of them. We
guess that this indecisive behaviour comes from using self-play to generate training episodes.
At each self-play game, the network applies its best strategy to play the role of both players.
But the game always ends with a winner and a loser, and in self-play, the network is both of
them. In other words, it is extremely difficult for the network to learn a winning strategy (i.e.
a policy that guarantees a higher expected reward) because the self-play data shows that all
policies led to the exact same number of wins as the number of losses. The same happens
with the estimation of the value function (i.e. the baseline), the network is unable to learn
which states are more valuable (i.e. more likely to lead to winning the game). Due to the high
variance, the loss values that are shown here were smoothed using a moving average of 1000
points.

Figure 4.11. Training loss for REINFORCE with baseline

Every 100 training episodes, the network competes against its older version to see if the last
updates make the performance increase or decrease. In this self-competition, the most
important indicator is the average length of the games. The fact that the games last longer
means that the network has more and more problems when it tries to win its older version: the
network is learning to win games but also to prevent the opponent from winning, and this is
very important to become a strong player. In the case of REINFORCE with baseline, the
average game length did not increase, it remained below 15 turns. This means that the

39

network was not acquiring more knowledge of the game since beating its older version was
not getting more difficult.

Figure 4.12. Average game length in self-play games for REINFORCE with baseline.

Finally, we show the evolution of the win rate against the 1StepLA. The values range from
40% to 60%, and there is no clear evidence that the network is improving its performance as
the learning progresses. In fact, the highest win rate is achieved within the first 12k training
steps. At the end of the training, we keep the model that achieved the highest win rate of
59%. This model will join the global competition in Chapter 5.

Figure 4.13. Evolution of the win rate against 1StepLA for REINFORCE with baseline

40

4.5. Proximal Policy Optimization

In the previous section [4.4], we presented the results we obtained using the
REINFORCE algorithm with a baseline for variance reduction. Despite our efforts, the results
showed no evidence of the network increasingly improving its knowledge of the game
throughout the training. We achieved a maximum win rate of 59% against the 1StepLA, but
the average win rate was around 50% both at the beginning and at the end of the training.
Proximal Policy Optimization [2.1.3] was created to reduce the high variance of some
policy-gradient algorithms (e.g. REINFORCE) and to improve the data reusability by
allowing the network to use each transition many times to update the weights. In this section,
we will see if the novel ideas that PPO implements are useful to learn to play Connect 4 and
hopefully get better results than the ones using REINFORCE.

As happened with other RL algorithms we tested, the original version of PPO was created to
deal with the typical single-agent setting, and Connect4 is a two-player zero-sum game. To
train our PPO agent, we first have to adapt the original algorithm to our particular
environment. As we mentioned, Connect4 is a turn-based game, so when an agent is in a
given state , it must take into account that the next state (the next turn) is played by an𝑠 𝑠'
opponent who is also trying to win the game (and beat the first agent). As shown in the
expression below, we changed how the return is computed. Note that, since it is a turn-based
game, the turn t is played by the active player but the opponent plays the turn at time t+1.

𝐺
𝑡

= 𝑟
𝑡

− γ · 𝐺
𝑡+1

As we did in the previous section with the REINFORCE algorithm, in order to add more
stability to the predictions, we took advantage of the vertical symmetry of the board by taking
the average of symmetric probabilities. For a given state (board) , we compute the𝑠
symmetric board sym by flipping horizontally (fliplr) the state s. Based on the rules of𝑠
Connect4, these two boards are exactly the same, so their optimal policies are also the same
(but flipped horizontally as well). By taking the average of these symmetric probabilities, we
reduce the variance and avoid the overestimation bias that comes from using just one
estimation. The following expression shows the computation. We use fliplr to refer to the
horizontal flip operation (left/right direction). This technique is only used when playing
games in competitions, not when training the network.

π𝑎𝑣𝑔(𝑠, :) = 1
2 π(𝑠, :) + 𝑓𝑙𝑖𝑝𝑙𝑟 π(𝑠𝑠𝑦𝑚, :)()[] 𝑤ℎ𝑒𝑟𝑒 𝑠𝑠𝑦𝑚 = 𝑓𝑙𝑖𝑝𝑙𝑟(𝑠)

In the next two sections, we present our solution using the PPO algorithm. The training steps
and the choice of hyperparameters are explained in section [4.5.1]. We also present the
obtained results and our final solution in section [4.5.2]. Fortunately, the improvement that
PPO implements helped the network to follow a more stable learning path than the
REINFORCE algorithm with baseline.

41

4.5.1. Training

Proximal Policy Optimization uses the two-headed version of our CNET128 (defined
in [4.2.3]) which has 202k parameters (as shown in Figure 4.7). Before the training starts, the
network inherits the weights of the pre-trained CNET128 model [4.2.3] from the previous
supervised learning task. So, in this section, the convolutional block (feature extractor) has
70k pre-trained parameters that are frozen and remain unchanged. Appended to the
convolutional block is a sequence of fully connected layers that split into two prediction
heads. In total, there are 132k trainable parameters in the fully connected layers: 17k for the
policy head, 16k for the value head, and 99k that precede the prediction heads and are shared
by both of them.

Apart from the current network that is trained, there is a second network called the old
network that keeps the best weights found so far. When the performance of the current
network decreases, the last updates are undone and it goes back to the old weights. We
considered that the performance decreased when the win rate against the 1StepLA was 8%
lower than the best one achieved so far. Every time that the current network achieves a new
best win rate against the 1StepLA, the old weights are replaced with the current weights

.(θ
𝑜𝑙𝑑

← θ)

Regarding the training data, the training episodes are generated using self-play, i.e. the
current network plays against itself. As shown in Figure 2.5 (pseudocode for the PPO
algorithm), we used a buffer to store a set of 2000 transitions in the format

from different episodes using the current network. In each(𝑠, 𝑎, 𝑟, 𝑠', 𝑙𝑜𝑔_𝑝𝑟𝑜𝑏, 𝑑𝑜𝑛𝑒)
transition, is the natural logarithm of the probability of choosing action in the𝑙𝑜𝑔_𝑝𝑟𝑜𝑏 𝑎
state following the policy defined by the current network. When the buffer is full, we run 5𝑠
epochs over the entire buffer using a batch size of 32 samples. The update rule for the PPO
algorithm is explained in [2.1.3]. After all the epochs are done, the buffer is discarded. As
explained in [3.3], for each episode, the terminal rewards are backpropagated to give some
credit to the intermediate actions, and this process is done within the buffer.

For each new episode that is added to the buffer, a symmetric version is created and added as
well. In Connect4, the board has a vertical symmetry that can be exploited to double the
number of data samples and also to help the network learn to take advantage of this
symmetry. To create a symmetric version of a given transition ,(𝑠, 𝑎, 𝑟, 𝑠', 𝑙𝑜𝑔_𝑝𝑟𝑜𝑏, 𝑑𝑜𝑛𝑒)
the states and are flipped horizontally, and the new action becomes . The𝑠 𝑠' #𝑐𝑜𝑙𝑢𝑚𝑛𝑠 − 𝑎

is computed for the symmetric action in the symmetric state, and the values and𝑙𝑜𝑔_𝑝𝑟𝑜𝑏 𝑟
remain unchanged.𝑑𝑜𝑛𝑒

The exploration-exploitation dilemma is addressed by learning a stochastic policy and
sampling actions from it. However, in order to let the network visit a wider range of game
boards, we decided that the initial board would be random. The common initial empty board
was no longer the first environment state. Instead, we let the Random Agent use self-play to

42

generate a sequence of non-terminal transitions so the current network had to finish the game.
The random moves were not added to the buffer, so in the end, the network was able to visit a
richer variety of high-quality transitions.

Every time an old buffer is discarded and a new one is created, the current network competes
against the Random Agent, against the old network, and against the 1StepLA. In each
competition [5.1], 100 games are played and the win rates and the average game length are
tracked. The win rate against the Random Agent is expected to be greater than 95%
throughout the training. It serves as a sanity check to make sure that the performance is not
decreasing significantly. The win rate against the old network is not really informative
because the old network is constantly updated throughout the training, so this value is usually
around 50%. In this self-competition, we were more interested in the average game length.
Lastly, the win rate against the 1StepLA is 50% before training the network, so the main
objective is to exceed it.

We trained for 100k updates using the Adam algorithm to perform stochastic gradient ascent.
The weight decay (L2 regularization) was 5e-5, the learning rate was 1e-4, the clip parameter

was 0.2, and the discount factor was 0.95. The loss function for the value head was the(ϵ)
Smooth L1 Loss (LVF), and the clipped surrogate objective for the policy head (LCLIP) was the
one described in [2.1.2]. The objective function to maximize is a weighted combination of
these two partial losses (with their proper signs) and an entropy bonus to ensure sufficient
exploration . We used c1=0.75 because it was the value that we used with REINFORCE𝑆[π]
[4.4.2], and c2=0.04. The final expression to maximize is as follows.

𝐿
𝑡
𝐶𝐿𝐼𝑃+𝑉𝐹+𝑆(θ) = 𝐸

𝑡
𝐿

𝑡
𝐶𝐿𝐼𝑃(θ) − 0. 75 · 𝐿

𝑡
𝑉𝐹(θ) + 0. 04 · 𝑆[π

θ
(𝑠

𝑡
)]⎡⎢⎣

⎤⎥⎦

4.5.2. Results

Our starting point was a pre-trained network that learned to predict the actions of
1StepLA (a mid-level player) with 85% of accuracy. Unsurprisingly, the win rate of this≈
pre-trained network against the 1StepLA was 50%. Our will in this section was to further≈
improve this network using Proximal Policy Optimization. Our best solution achieved an
84% win rate against 1StepLA, surpassing the 59% that we achieved using REINFORCE with
baseline [4.4.2]. Despite being outperformed by both Deep Q-Networks [4.3], PPO managed
to follow the smoothest learning path compared to all the Deep RL algorithms that we tested
before.

In Figure 4.14, we observe a behaviour similar to that observed using REINFORCE (Figure
4.11): the training loss did not improve during the training (explained in more detail in
[4.4.2]). The network seems to be always trying new strategies without favoring either of

43

them. Because we use self-play to generate new data, all policies lead to the exact same
number of wins as the number of losses, so the network seems to be unable to tell which
policy guarantees a higher expected return. However, unlike the case of REINFORCE, here
we observed that the win rate against the 1StepLA constantly increased throughout the
training. For visualization purposes, the loss values were smoothed using a moving average
of 1000 points.

Figure 4.14. Training loss for Proximal Policy Optimization Algorithm

Every time an old buffer is discarded and a new one is created, the network competes against
its older version to see if the latest updates make the performance increase or decrease. In this
self-competition, the most important indicator is the average length of the games. The fact
that the games last longer means that the network has more and more problems when it tries
to win its older version: the network is learning to win games but also to prevent the
opponent from winning, and this is very important to become a strong player. In the case of
PPO, the average game length increased consistently up to 25 turns per game.

Figure 4.15. Average game length in self-play games for Proximal Policy Optimization

Finally, we show the evolution of the win rate against the 1StepLA. Unlike REINFORCE
(Figure 4.13), PPO managed to gradually increase its performance. At the end of the training,
we keep the model that achieved the highest win rate of 84%. This model will join the global
competition in Chapter 5.

44

Figure 4.16. Evolution of the win rate against 1StepLA for Proximal Policy Optimization

45

5. Evaluation

In this chapter, we describe the evaluation process to measure the performance of the
best agents trained in the previous chapter. We start by describing the competition system that
we designed to evaluate the agents. This type of competition involves two agents and consists
of 100 “special” games to test how the agents act in a wide range of game boards [5.1]. Then,
we display the results (win rates and average game lengths) in different tables, and we
compare the overall performance and skills of all the agents [5.2]. Finally, we introduce the
User Interface that was designed to let the reader interact with all the agents created in this
project and try to beat them [5.3].

5.1. Evaluation setup

One of the most effective ways to measure the performance of an RL agent is to run a
set of episodes and average the received cumulative reward. To give meaning to this value, it
must be compared with some baselines or previous values from the same agent to check
whether it is better. However, in a competitive multi-agent setting we can’t evaluate the
performance of an agent alone. Instead, we have to measure their performance against other
agents. To play Connect4, two players are needed.

We did a pairwise evaluation of the agents by making them compete against each other. For
the competition between two players to be fair, each player must take the first turn half of the
time. In Connect4, the first player can force a victory if it plays optimally. Even if it does not
play optimally, the first player is always one piece ahead of the second player. For this
reason, we track the win rates separately depending on which agent plays first.

In some cases, an agent may follow a deterministic (or close to deterministic) policy. For
instance, those agents that learn the Q-values have a deterministic policy that consists of
taking the action with the highest expected return. Apart from that, policy-based agents can
also act greedily on their stochastic policies and derive a deterministic policy. If two
deterministic agents (Agent1 and Agent2) play many games starting on an empty board, they
will always play the same turns, resulting in just two different games (when Agent1 plays
first, and when Agent2 plays first). In other words, the results of the competition will be the
same whether they play two games or ten thousand games.

One way to add more diversity to the competition is by forcing the agents to take random
actions with some probability. However, this random element may have a huge impact in
turns where the game outcome is at stake (i.e. one of the players could win the game in the
current or the next turn), or when the competition is tight. The solution we propose is to add

46

two random turns (one per agent) at the beginning of the game. Then, the agents will finish
the games following their own policies. It means that they will have to adapt to the initial
boards. In the next paragraph, we elaborate more on this idea and how to control these first
two random turns to make the competition fair.

Since the classic Connect4 board has 7 columns, there are 72=49 combinations of the first two
turns (one per agent) of the game. If we also count the empty board, there are 50 different
combinations of zero or two turns. We did not consider one-turn initializations because they
only involve the first player and we want both players to have the same initial conditions (in
terms of randomness). Of course, even if the first two turns are different for each game, some
of them might eventually lead to the same final board. But at least, the sequence of actions
taken in each game will be unique. So, a competition between Agent1 and Agent2 consists of
100 games: 50 games in which Agent1 plays first, and 50 games in which Agent2 plays first.
In each case, these 50 games will be initialized with one of the combinations of the first zero
or two random turns, and Agent1 and Agent2 will play to finish each of the games.

In a competition, the win rate is the most important metric. It tells the percentage of wins in
the competition. It is important to bear in mind that the win rate is not a general quality of an
agent, since it heavily depends on the opponent. The formula we use to compute the win rates
is as follows.

𝑤𝑖𝑛 𝑟𝑎𝑡𝑒 = 𝑤𝑖𝑛𝑠 + 0.5 · 𝑡𝑖𝑒𝑠
𝑡𝑜𝑡𝑎𝑙 𝑔𝑎𝑚𝑒𝑠

5.2. Competition results

Using the competition system described in [5.1], we evaluated our agents by making
them compete against each other. We also included our baselines 1StepLA and 2StepLA in the
competition. Since all our agents beat the Random Agent in almost every game, we did not
include it. Versions of NStepLA with were not included because the 2StepLA is𝑁 ≥ 2
already an upper bound for the agents’ performance.

First of all, we measured the average time that each type of agent needs to choose an action.
The general NStepLA has to evaluate 7N boards at each turn, whereas the trained agents have
to preprocess the state and run a forward pass through the neural network (CNET128
architecture). In Table 5.1, we present our results. The exact times may differ depending on
the hardware in which the experiment is run (in our case, we used a CPU AMD Ryzen 7
4800h). We measured the total time to play 400 turns and we took the average for each agent.
In our experiment, the results show that the trained agents are 20x faster than 1StepLA and
70x faster than 2StepLA.

47

Table 5.1. Table of the average time that each type of agent needs to choose an action

In turn-based games like Chess or Connect4, being the first player gives you an important
advantage and increases your probability of winning the game. In the case of Connect4, the
first player is always one piece ahead of the second player, so the probability of Agent1
beating Agent2 may heavily depend on who plays first. For this reason, we decided to present
the win rates separately for each agent playing first. In other words, in a competition
Agent1-vs-Agent2, we differentiate the games in which Agent1 plays first and those in which
Agent2 plays first. From these partial win rates, we can compute the general win rates of the
competition.

The table presented below (Table 5.2) contains the win rates of all the possible competitions
between the agents introduced in this project. This table is intended to be read row by row
because the win rates are from the perspective of the row player. The value of each cell is the
win rate of the row player versus the column player, only considering those games where the
row player plays first. Since the stochastic policies of PPO and REINFORCE (‘REI’) can be
turned into deterministic policies (i.e. acting greedily instead of sampling), we added both
types of policies as different agents. We use the abbreviation ‘sto’ to refer to stochastic
policies, and ‘det’ to refer to deterministic policies. We use a green cell background to
indicate the values that are greater than 0.5, and a red background otherwise.

row player
win rates

vs.
1StepLA

vs.
2StepLA

vs.
DQN

vs.
DuDQN

vs.
PPOsto

vs.
PPOdet

vs.
REIsto

vs.
REIdet

1StepLA - - - 0.23 0.20 0.12 0.26 0.26 0.56 0.58

2StepLA 0.79 - - - 0.75 0.49 0.70 0.79 0.94 0.82

DQN 0.96 0.44 - - - 0.18 0.52 0.54 0.86 0.86

DuDQN 1.00 0.48 0.62 - - - 0.64 0.68 0.88 0.96

PPOsto 0.82 0.36 0.48 0.44 - - - 0.86 0.82 0.86

PPOdet 0.86 0.40 0.44 0.40 0.82 - - - 0.94 0.68

REIsto 0.60 0.17 0.30 0.20 0.24 0.22 - - - 0.62

REIdet 0.66 0.16 0.24 0.20 0.26 0.34 0.62 - - -
Table 5.2. Table of competition win rates.

For instance, the first non-empty cell (first row, second column) is the win rate of 1StepLA
(row player) versus 2StepLA (column player) in those games in which 1StepLA plays first.

48

Since this value is 0.23, it means that the win rate of 2StepLA when 1StepLA plays first is
1-0.23=0.77. Following the same example, if we look at the cell in the second row of the first
column, we can see the same information but from the perspective of 2StepLA and for those
games in which 2StepLA plays first (here, 2StepLA is the row player). In this case, the win
rate of 2StepLA is 0.79 and the win rate of 1StepLA is 1-0.79=0.21. In this example, we
would say that the expected result in a 100-game fair competition between 1StepLA and
2StepLA is 22 to 78 (the average of the partial win rates mentioned above).

The first two rows and columns are the win rates against the baselines. When our trained
agents play first, all of them beat 1StepLA (first column) but none of them beat 2StepLA
(second column). REINFORCE is the only trained agent that does not beat 1StepLA when
1StepLA plays first (first row). The best results against the baselines are achieved by Dueling
DQN: a consistent 0.94 win rate against 1StepLA and a 0.495 win rate against 2StepLA. We
could argue that Dueling DQN has the same level of the game as 2StepLA.

In the case of REINFORCE and PPO, the results using stochastic policies do not look too
different from the ones using deterministic policies. It might mean that the average entropy is
low in both cases. Interestingly, the win rates of PPOsto-vs-PPOdet are 48-52 (in
percentage), but when PPOsto plays first these values are 86-14 (sto-det), and when PPOdet
plays first are 18-82 (sto-det). This is a perfect example of how the probability of winning the
game heavily depends on who plays first. Something similar happens in the competition
REIsto-vs-REIdet.

In Table 5.3, we gathered the results from Table 5.2 to compute the general win rate for each
agent and create a ranking with all of them. For each agent, its average win rate takes into
account all the competitions of that agent.

ranking Agent average win rate

1 Dueling DQN 0.7307

2 2StepLA 0.7171

3 Vanilla DQN 0.5950

4 PPO (sto) 0.5857

5 PPO (det) 0.5607

6 REINFORCE (det) 0.2929

7 REINFORCE (sto) 0.2664

8 1stepLA 0.2514
Table 5.3. Final ranking of the agents, based on their general win rate.

49

On average, all our trained agents are better than 1StepLA, and our Dueling DQN achieves a
higher win rate than the 2StepLA. It is interesting to see that PPO benefits more from the
stochastic policy than the deterministic policy, but in the case of REINFORCE, the opposite
happens. Among the different Reinforcement Learning algorithms tested in this project,
value-based (off-policy) algorithms have proven to achieve better results than policy-based
(on-policy) algorithms.

game
length

vs.
1StepLA

vs.
2StepLA

vs.
DQN

vs.
DuDQN

vs.
PPOsto

vs.
PPOdet

vs.
REIsto

vs.
REIdet

1StepLA 12.5 26.1 17.6 17.6 15.9 16.0 12.2 12.7

2StepLA 23.1 39.0 31.2 31.2 31.2 30.3 19.8 23.1

DQN 17.2 34.2 27.4 29.0 27.7 25.3 17.0 17.0

DuDQN 15.2 32.1 26.0 29.8 23.0 23.8 15.8 16.2

PPOsto 15.9 28.2 27.1 21.3 18.3 25.7 14.8 15.1

PPOdet 15.9 28.2 25.6 21.2 24.1 19.3 16.0 15.5

REIsto 12.2 23.7 17.1 16.8 16.6 16.1 13.1 13.1

REIdet 12.5 23.3 19.0 18.0 16.6 16.5 12.6 12.7

Table 5.4. Table of the average game length of each competition

Finally, in Table 5.4 we show the average game length of each competition. Here, we also
included the self-competitions (values in the main descending diagonal). The table is read the
same way as the table of win rates (Table 5.2). There are several values greater than 30,
especially in those competitions that involve high-level players like Dueling DQN, Vanilla
DQN, or 2StepLA. On the other hand, agents with a lower level of the game (e.g.
REINFORCE and 1StepLA) rarely exceed 20 turns per game.

5.3. User Interface

In the previous section, we measured the performance of the trained agents in an
agent-versus-agent mode. Since the objective of this project was to compare how different
Reinforcement Learning algorithms learn to play Connect4, sections [5.1] and [5.2] were
enough to accomplish our goals. Even so, we wanted to go a step further and let the readers
play against the agents. With this idea in mind, we implemented a simple User Interface (UI)
to play Connect4 against the best agents we have seen within this project. In this section, we
explain in detail the features of the UI, how to use it, and how to run the code.

50

The application was programmed using Python. In particular, we used a Python module
called Pygame which allows us to create simple video games such as Connect4. The
application runs on your local machine, so you must have the code of the entire project
(agents, environment, models, etc) on your local computer. Apart from that, you have to run
the application every time you want to play the game. The code created in this project can be
found in a public GitHub repository following this link. The README file explains the steps
to follow in order to set up the Python environment and run all the code.

Everything related to the User Interface is found in the ‘src/game’ directory. Inside the
‘src/game/game_config’, there are the configuration files to customize the game as you want
(every color, the screen size, the board size, etc). To play the game, do: (1) clone the
repository (if not cloned yet) and activate the Python environment, (2) open a terminal, (3)
navigate to the directory where the ‘src’ directory of the project is located, (4) enter python3
src/game/connect_game_main.py or python src/game/connect_game_main.py in your
terminal.

When you run the program, it shows an initial menu to choose your opponent (Figure 5.5).
The list of opponents is fully customizable and can be easily modified in the file
‘src/game/game_logic/opponents_list.py’. Use your mouse to right-click on the colored box
with the name of your preferred opponent.

Figure 5.5. User Interface. Game menu to choose your opponent.

After choosing your opponents, the menu is closed and a new game board is created. The first
player is chosen at random, so if your opponent does not drop one of their pieces, it means
that you play first. Use your mouse to click on the columns where you want to drop your
pieces. The information about the current state of the game (who is taking the current turn,
who has won the game, etc) is found in the top-left corner of the screen. Click ‘RESTART’
(in the top-right corner) to start a new game at any moment.

51

https://github.com/marcpaulo15/RL-connect4

Figure 5.6. User Interface. An example of an ongoing game against Vanilla DQN

Above each column, there is a value that indicates the ‘score’ that your opponent assigns to
that column in the given board. These ‘scores’ depend on the type of agent and define the
logic that is followed to choose actions. For scored-based agents (N-Step Lookahead Agent),
the ‘scores’ are the scores computed using the minimax search and the evaluation function
described in [4.1.2]. For value-based agents (Deep Q-Networks), the ‘scores’ are the
Q-values. For policy-based agents (REINFORCE, PPO) the ‘scores’ are the probabilities.
These values are displayed at every turn, even for those turns that are not played by the agent.
Of course, when it is your turn, you don’t have to follow these ‘scores’ since they are
displayed only for evaluation purposes. You are free to follow your own strategy.

At any turn, it is possible to review past actions and game states, but you are not allowed to
change them. Use your left arrow key to move one turn backward in time. You can visit all
the past boards with their respective scores. Use your right arrow key to come back to the
current turn and finish the game.

Figure 5.7. User Interface. An example of an ongoing game against PPO.

52

6. Conclusions

In this last chapter, we present the overall conclusions of the project [6.1], the
contribution we have made [6.2], and some suggestions for future work based on the work we
started [6.3].

6.1. Conclusions

In this project, we tested two off-policy RL algorithms to learn the optimal Q-values
(Vanilla and Dueling DQNs [4.3]), and two on-policy algorithms to learn the optimal policy
(REINFORCE with baseline [4.4] and PPO [4.5]). After training them, they competed against
each other to check their performance and their knowledge of the game.

Our experimental results show that the two off-policy algorithms achieved better results than
the two on-policy algorithms in the particular case of zero-sum games when the training data
is generated using self-play. In sections [4.4.2] and [4.5.2] we presented the training results
for REINFORCE and PPO, respectively. We plotted the evolution of the loss function
throughout the training (Figure 4.11 and Figure 4.14) and there was no evidence that the
network was learning anything. Then, we realized that the data was generated using self-play.
Since Connect4 is a zero-sum game, there is always a winner and a loser, and the network is
both of them in self-play games. It was impossible for the network to optimize the policy so
the training data had more wins than losses.

On one hand, we could argue that using self-play in zero-sum games provides the network
with a healthy balance of positive and negative transitions, so it does not get stuck in a local
minimum. On the other hand, the learning becomes more difficult, and if the algorithm has
high variance (e.g. REINFORCE), it might be unable to complete the training successfully.
Despite the noisy losses, PPO managed to take more stable update steps and become a
stronger player.

The value-based off-policy methods that we tested seem to be more robust to this kind of
training data (i.e. zero-sum games using self-play). It might be because they learn the
Q-values and derive a policy from them, rather than learning a policy directly to maximize
the expected return.

In section [4.1.2], we defined the N-Step Lookahead baseline and we speculated that the level
of an average human being is somewhere between a one-step and a two-step lookahead
search. We guess that the level of an average human player would be the equivalent of
performing a full one-step lookahead search and a partial two-step lookahead search focusing

53

on the moves that lead to crucial game states. This estimation is not backed by any evidence,
it is just an unofficial human-level approximation. Based on this assumption, we could
arguably say that our Dueling DQN achieves average human-level performance in Connect4.
The results of the competitions [5.2] show that our Dueling DQN achieves better results (i.e.
higher win rates) than the 2-Step Lookahead agent (which simulates and evaluates 49 future
boards at each turn).

6.2. Contribution

The first part of this document provides a theoretical overview of some of the basic
concepts in Single-Agent Reinforcement Learning, Multi-Agent Reinforcement Learning,
and Deep Reinforcement Learning applied to two-player zero-sum games.

We also presented an implementation of Connect4 as a Reinforcement Learning environment,
including the reward function that we designed for this game. Both the environment structure
and the reward function could inspire other approaches to solve similar zero-sum board
games.

We used different Deep Reinforcement Learning algorithms to train a set of agents to play
Connect4. We made them compete against each other and analyzed their performance and
their knowledge of the game. We finally drew some conclusions about how each algorithm
performed in this particular zero-sum game [6.1].

Finally, we provide free access to all the Python code implemented in this project: scripts,
algorithms, documentation, notebooks, and trained models. Moreover, we also provide the
code to run the application that we designed to play against the trained agents (more
information about the application is found in section [5.3]). To access the public repository
refer to https://github.com/marcpaulo15/RL-connect4.

6.3. Future Work

The work we started can be extended and improved in several ways. There are other
more advanced techniques to create stronger Connect4 players than the agents we trained
here. In this last chapter, we explore some ways to improve the methods we used and the
results we got.

The most advanced techniques to solve zero-sum board games involve a look-ahead search to
simulate future games. This type of search is usually known as Monte-Carlo Tree Search.

54

https://github.com/marcpaulo15/RL-connect4

However, for most games, exploring the entire game tree is unfeasible due to their
complexity. To reduce the search space, the breadth and depth of the tree must be pruned. For
the purpose of our project, the agents we implemented were not allowed to perform any
look-ahead search. However, some of them could be used to guide a Monte-Carlo Tree
Search (e.g. using a Deep Q-Network to evaluate the states, or a policy network to select
actions). Even with a shallow search, our results could be remarkably improved. Of course,
simulating future moves increases the computation required to take each turn.

Our training approach consists of two stages: a Supervised Learning task, and self-play
Reinforcement Learning. It would be better to design an end-to-end training pipeline based
solely on Reinforcement Learning and self-play. This approach would not depend on the
particular game so it could be easily used for other zero-sum games. Moreover, the agents
would not be limited to any human knowledge and would be able to potentially learn new
strategies of the game at hand. However, it would probably require more computational
resources because the training process might be slower and more unstable.

55

Bibliography

[1] Sebastian Raschka, Vahid Mirjalili. “Python Machine Learning. Machine Learning
and Deep Learning with Python, scikit-learn, and TensorFlow 2”. Chapter 18,
“Reinforcement Learning for Decision Making in Complex Environments”. Third
edition. December 2019. Published by Packt Publishing Ltd.

[2] C. J. C. H. Watkins. “Learning from delayed rewards”. Ph.D. dissertation. King’s
College. Cambridge. 1989.

[3] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist
reinforcement learning”. Machine Learning, vol. 8, no. 3, pp. 229–256, May 1992.

[4] Richard S. Sutton, David McAllester, Satinder Singh, Yishay Mansour. “Policy
Gradient Methods for Reinforcement Learning with Function Approximation”.
AT&T Labs - Research, 180 Park Avenue, Florham Park, NJ 07932.

[5] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal Policy
Optimization Algorithms”. arXiv e-prints. p. arXiv:1707.06347. Jul. 2017.

[6] J. Schulman, S. Levine, P. Moritz, M. Jordan, and P. Abbeel. “Trust region policy
optimization”. in Proceedings of the 32Nd International Conference on International
Conference on Machine Learning - Volume 37, ser. ICML’15. JMLR.org, 2015, pp.
1889–1897

[7] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, Martin Riedmiller. “Playing Atari with Deep
Reinforcement Learning”. DeepMind Technologies. arXiv:1312.5602v1 [cs.LG] 19
Dec 2013

[8] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot, Nando de
Freitas. “Dueling Network Architectures for Deep Reinforcement Learning”. Google
DeepMind, London, UK. arXiv:1511.06581v3 [cs.LG] 5 Apr 2016

[9] Kaiqing Zhang, Zhuoran Yang, Tamer Basar. “Multi-Agent Reinforcement Learning:
A Selective Overview of Theories and Algorithms”. arXiv:1911.10635v2 [cs.LG] 28
Apr 2021

[10] Zero-sum game. (2023, May 28). In Wikipedia.
https://en.wikipedia.org/wiki/Zero-sum_game

56

https://en.wikipedia.org/wiki/Zero-sum_game

[11] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J.
Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe,
J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T.
Graepel, and D. Hassabis, “Mastering the game of go with deep neural networks and
tree search”. Nature, vol. 529. no. 7587. pp. 484–489. Jan 2016.

[12] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T.
Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den
Driessche, T. Graepel, and D. Hassabis. “Mastering the game of go without human
knowledge”. Nature. vol. 550. no. 7676. pp.354–359. Oct 2017.

[13] Connect Four. (2023, June 2). In Wikipedia.
https://en.wikipedia.org/wiki/Connect_Four

[14] Kaggle. Intro to Game AI and Reinforcement Learning. accessed June 1st, 2023.
https://www.kaggle.com/learn/intro-to-game-ai-and-reinforcement-learning

[15] Jianqing Fan, Zhaoran Wang, Yuchen Xie, Zhuoran Yang. “A Theoretical Analysis of
Deep Q-Learning”. arXiv:1901.00137v3 [cs.LG]. 24 Feb 2020.

57

https://en.wikipedia.org/wiki/Connect_Four
https://www.kaggle.com/learn/intro-to-game-ai-and-reinforcement-learning

