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Abstract—Low-power processors have attracted attention due
to their energy-efficiency. A large market, such as the mobile
one, relies on these processors for this very reason. Even
High Performance Computing (HPC) systems are starting to
consider low-power processors as a way to achieve exascale
performance within 20MW, however, they must meet the right
performance/Watt balance. Current low-power processors con-
tain in-order cores, which cannot re-order instructions to avoid
data dependency-induced stalls. Whilst this is useful to reduce the
chip’s total power consumption, it brings several challenges. Due
to the evolving performance gap between memory and processor,
memory is a significant bottleneck. In-order cores cannot re-
order instructions and are memory latency bound, something
data prefetching can help alleviate by ensuring data is readily
available.

In this work, we do an exhaustive analysis of available data
prefetching techniques in state-of-the-art in-order cores. We
analyze 5 static prefetchers and 2 dynamic aggressiveness and
destination mechanisms applied to 3 data prefetchers on a set of
HPC mini- and proxy-applications, whilst running on in-order
processors. We show that next-line prefetching can achieve nearly
top performance with a reasonable bandwidth consumption when
throttled, whilst neighbor prefetchers have been found to be best,
overall.

Keywords—Data prefetching, in-order processor, High Perfo-
mance Computing

I. INTRODUCTION

Multi-core architectures are the main trend in current pro-
cessor development. Processor vendors can improve perfor-
mance without increasing clock rates or instruction level
paralellism (ILP).

This trend has several issues. One is the added pressure on
shared hardware resources in the chip multiprocessor (CMP).
As such, adding more cores in a processor puts more pressure
on the memory system, which is one of the main bottlenecks
nowadays [1].

The High Performance Computing (HPC) field seeks to
increase performance of current system to reach exascale,
whilst maintaining a 20MW power budget [2]. This level of
performance/Watt needs solutions with unprecedented levels
of energy efficiency [3, 4]. Current commodity hardware such
as embedded and mobile processors is designed to be energy
efficient due to constraints such as battery life and over-
heating. Usually, these low-power processors contain in-order
cores, which are significantly smaller (area, power) and lower
performance compared to the typical desktop or server-class
out-of-order processors. Nonetheless, low-power processors
are promising due to their density for HPC, and they have
previously been investigated for such purposes [5–8].

To alleviate the memory wall problem different solutions
are available. Current out-of-order processors can reorder
instructions to avoid being idle waiting for data. Therefore,
the order of execution, within consistency constraints, is based
on the availability of data instead of the original order of
execution. Another option vendors use to reduce memory
latency is to include a hardware data prefetcher. This device
brings data to the processor’s cache before it is needed, thus
reducing stalls.

When we refer to low-power processors, more specifically
those based on in-order cores, instruction reordering is not an
option to increase performance, however, data prefetching is.

In this work, we perform an exhaustive analysis on how
data prefetching affects in-order cores, whilst running a suite
of HPC mini- and proxy-applications. We also implement
different dynamic mechanisms for data prefetching to improve
efficiency for in-order micro-architectures. We show that even
relatively simple prefetching mechanisms, such as next-line,
can achieve top or near top performance, whilst maintaining
low bandwidth requirements.

Our main contributions are:
• We evaluate 5 hardware prefetchers on an in-order core

in single and multi-core systems, with 2 state-of-the-art
dynamic mechanisms, across 9 HPC mini- and proxy-
applications.

• We show that dynamically reconfiguring the data
prefetcher on in-order cores can speedup executions up
to 1.4x in in-order cores.

• In the context of in-order cores, we show (1) that in sim-
ple1 data prefetchers, cache pollution affects performance
and they waste memory bandwidth by bringing more data
than needed; (2) that in complex data prefetchers, memory
bandwidth is used more efficiently, cache pollution is
lower and prefetcher accuracy is higher. Yet, complex data
prefetchers need more area on the chip, which can be a
large percentatge of an in-order core and (3) that dynamic
throttling mechanism can bring the benefits of complex
prefetcher to simpler ones.

This paper is organized as follows: Section 2 provides the
required background on data prefetchers for this work, Section
3 covers our dynamic mechanisms. Section 4 describes the
experimental setup, while Section 5 and 6 shows the results
of our experiments for single and multi core, respectively.
Section 7 discusses the related work. We present the paper’s
conclusions in Section 8.

1We refer to data prefetchers with a straightforward algorithm with little
or no decision making as simple data prefetcher.
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II. BACKGROUND ON DATA PREFETCHING

Hardware data prefetchers can reduce memory latency by
bringing data to the processor’s cache before it is needed. This
reduces the stall time when the processor needs to perform a
memory operation.

In the case of out-of-order cores, memory latency can be
alleviated by data prefetching or by reordering instructions.
On the other hand, in-order cores cannot re-order instructions,
which makes data prefetching even more important.

Data prefetchers do not always improve performance [9].
Memory access patterns of the applications have a major im-
pact on the data prefetcher performance. Predictable memory
access patterns and spatial locality benefit from it, whilst
random or unpredictable accesses can cause the prefetchers
to thrash the caches, thus potentially leading to application
performance degradation. Typically, complex data prefetchers
offer more performance at the cost of more area and increased
power consumption. Simpler data prefetchers occupy less area
but they usually perform worse than a complex data prefetcher,
due to being unable to recognize complex memory access
patterns.

Ideally, a hardware data prefetcher brings the exact amount
of data needed by the processor, in a timely manner and
without evicting useful data. In practice, different application
behaviors require hardware data prefetchers to tune their
aggressiveness during application execution.

Several prefetchers can be tuned in such a way, although
traditionally this needed to be done manually, due to the lack
of automatic mechanisms. An incorrectly tuned prefetcher,
such as a too aggressive one could waste enegy and lead
to performance degradation, due to cache pollution. A non-
aggressive prefethcer would degrade performance by prefetch-
ing old data.

Some configurable prefetcher parameters are:
• Degree: Number of cache lines transferred in every

prefetch request. Increasing this parameter can help im-
prove performance by bringing more cache lines. This
also leads to an increased prefetcher aggressiveness,
which can lead to the eviction of useful data.

• Distance: Number of cache lines ahead of the current
memory address being accessed that will be prefetch.
Increasing this parameter will prefetch cache lines further
than the offended cache line, which can improve perfor-
mance by prefetching ahead. Therefore, reducing latency
and possible late prefetches. It can also happen that the
prefetcher evicts useful cache data.

When measuring a prefetcher’s performance, we need to
take into account whether the prefetcher is bringing in useful
data and whether it does so in a timely fashion without
evicting useful data. Therefore, the performance of prefetchers
is measured using the following metrics:

• Accuracy: if the issued prefetches are useful or not
• Timeliness: if the prefetched block does not arrive before

the cache line is referenced.
• Pollution: if prefetched blocks evict useful blocks from

the cache

Ahigh Alow Tlateness Tpollution Tcongestion
0.75 0.40 0.05 0.001 0.005

TABLE I: Thresholds used in this work for the dynamic
aggressiveness mechanism.

Hardware prefetchers are attached to a single cache. There-
fore, it is possible to have different types of prefetchers in
different cache levels and have different configurations. The
prefetchers which we evaluate in this work are:

• Nextline Prefetcher A simple prefetcher that detects
sequential access patterns and prefetches the next con-
secutive cache line [10].

• Stream Prefetcher In this prefetching scheme, the hard-
ware prefetches consecutive cache blocks after a short
training period during which it observes memory access
streams. A stream is a group of data references in a short
period of time that frequently repeat and are stable [11].

• Stride Prefetcher In this scheme, the hardware
prefetcher calculates the distance between memory ad-
dresses (or stride) from the same instructions.
When the prefetcher is trained, upon a cache miss of an
instruction that is recognized, the missing cache line and
the cache line with the same requested address plus the
stride are returned [12].

• Neighbor Prefetcher In this scheme, the hardware
prefetcher brings to the cache the surrounding cache
lines of the demanded cache line [13]. The surrounding
cache lines to be prefetched are called the neighborhood,
which is composed by different cache lines near to the
missing cache block (how near or far are the cache lines
depends on the defined size of the neighborhood). The
neighborhood needs a training phase to work properly.

• Correlation (Global History Buffer prefetcher) In this
scheme, the hardware keeps an ordered list of memory ad-
dresses generated by the same memory instruction. This
information is used in a training phase to observe possible
correlations. Those correlations are used to prefetch cache
blocks [14].

III. DYNAMIC MECHANISMS

We implement 2 dynamic mechanisms to modify dynami-
cally the behavior of the different possible prefetchers.

Our dynamic mechanisms are checked and reconfigured at
the end of an interval. An interval is defined when half of
the blocks of the cache are evicted, which give us useful
metrics based on cache activity. We use their global history
of the metrics to take into account the global behavior of the
application in order to reduce the noise of small application
phases. We use an interval based on cache activity instead of
fixed-time, as the cache-related data is more relevant to the
prefetcher.

A. Dynamic prefetcher aggressiveness

We dynamically tune the prefetcher aggressiveness at exe-
cution time following the proposed algorithm in [15]. This
dynamic mechanism can only be applied to queue-based



prefetchers in gem5 due to design implementations in non-
queue-based prefetchers, as explained in Section II.

At the end of each interval, metrics for that interval are
collected. Based on the interval metrics and the global history
metrics, prefetcher sets a configuration for its degree and
destination. Original thresholds from the work by Srinath et
al. [15] are changed to adapt them to our in-order system,
which we show in Table I. We needed to increase the lateness
threshold (Tlateness) and reduce the pollution one (Tpollution) in
order to not lose performance since original thresholds were
causing a reduction in prefetcher aggressiveness.

In total, there are 5 possible configurations for the prefetcher
aggressiveness: (1) very conservative (distance: 4, degree: 1);
(2) conservative (distance: 8, degree: 1); (3) middle-of-the-
road (distance: 16, degree: 2); (4) aggressive (distance: 32,
degree: 4); (5) very aggressive (distance: 64, degree: 4).

B. Dynamic destination

We implement a mechanism to decide dynamically where
a cache stores the prefetched cache lines. This is done for 2
reasons: (1) to be able to prefetch even if the cache is blocked
due to having too many demand accesses and (2) to alleviate
the memory bandwidth requirements for the caches.

In this mechanism, we select a cache to be a master cache,
which it will decide at each interval where to store the
prefetched cache lines. A master cache uses the full memory
access stream to train the prefetcher. Then, the master cache
can decide based on several metrics to store the prefetched
cache line into another cache level if the cache is polluted
or to issue a prefetch from another prefetcher if the cache is
congested.

This strategy allows the master cache to keep prefetching
even if the master cache cannot prefetch more (cache is
congested) or to send prefetched cache lines to other caches
of the system if the master cache is congested or polluted.
Therefore, increasing prefetch accuracy.

In our experiments, we use the L1 cache as master. There-
fore, all L1 caches can send prefetches to their respective
private L2 or to the shared L3 cache. We set the master cache
to the L1 cache for several reasons: (1) L1 cache is the best
performing one in terms of latency of all the caches due to its
proximity to the core; (2) usually, it is the cache most limited
by the memory bandwidth.

At the end of each interval, the master cache checks the
pollution and congestion levels of the cache where current
prefetches are being stored, starting with itself.

In the case the cache is polluted or congested, new
prefetches will be send to the next level cache for the next
interval (i.e. pollution level or congestion level are greater
than Tpollution or Tcongestion, respectively). If that next cache
level is polluted or congested, prefetches are sent to the last
level cache. This happens irrespective whether the L3 cache
is polluted or congested.

At the end of every interval, the master cache checks its
own pollution and congestion levels in order to try to prefetch
always to itself, which performs better since we set the master
cache to the L1 cache, closest cache to the processor.

Configurable parameter DL1 L2 L3
Size 32kB 256kB 2MB

Hit latency (cycles) 1 4 20
MSHRs 8 20 30

Associativity 4 16 16

TABLE II: Configurable parameters for the caches

C. Metrics
Our dynamic mechanisms are based on the following gath-

ered metrics:
• Prefetch Accuracy: This measures if the prefetcher is

bringing in useful data before the cache block is accessed.
We define data as useful when it is accessed during its
lifetime. We consider its lifetime as all the time that exists

in a cache. It is defined as:
Number of useful prefetches
Number of issued prefetches

• Prefetch Lateness: This measures whether the prefetch
requests arrived in a timely fashion, in time to satisfy the
demand access. It is defined as:

Number of late prefetches
Number of useful prefetches

• Cache Pollution: This measures the useless data brought
in by the prefetcher in the cache. It is defined as:
Number of misses caused by the prefetcher

Number of misses
In order to track useless data, we track cache lines that
are brought by the prefetcher. If there is a miss on a cache
line that was brought by the prefetcher, we consider it as
useless data brought by the prefetcher.

• Cache Congestion: This measures the time that the
cache’s prefetcher cannot issue more prefetches due to
the unavailability of free Miss Status Handling Registers
(MSHRs). It is defined as:
Number of times cache is blocked due to a MSHR miss

Number of MSHR misses
IV. EXPERIMENTAL SETUP

A. Simulation infrastructure
We use a customized iced version of gem5 [17] to simulate

a 64-bit ARMv8 system. We report results whilst running in
full-system mode with a 4-core configurations. These cores
are ARM Cortex-A53-like. Each core has private L1 and L2
exclusive caches, and a shared, inclusive L3. The replacement
policy for cache lines is least recently used (LRU). Table II
summarizes the cache parameters. The system is configured
such that prefetches occur on cache misses. The memory used
is a DDR4 running at 2.4GHz, with 1 channel and a 16-byte
bus.

On the simulated system, we run a Linux kernel version
3.16 with a configured base page size of 64kB. We use MPICH
3.2 [18] to run MPI benchmarks. Hardware-wise, the L1 data
prefetcher is allowed to cross page boundaries if the accessed
page is already translated in the translation lookaside buffer
(TLB). Therefore, the accessed page is in memory.

B. Prefetchers hardware configuration
We evaluate 5 different prefetchers, including running ex-

periments without any hardware prefetching. Every cache



Description Input Heap usage (MB)
CoMD Co-designed Molecular Dynamics: a classical molecular dynamics proxy application 20 -N 20 -T 4000 70

DGEMM Double precision real matrix-matrix multiplication 5000 10
FFT One-dimensional Discrete Fourier Transform 5000 35

PTRANS Parallel matrix transpose 5000 65
STREAM Sustainable memory bandwidth 5000 55

HPCG High Performance Conjugate Gradient:preconditioned Conjugate Gradient method 24 55
mcb Monte Carlo Benchmark: a simple heuristictransport equation using a Monte Carlo technique 320000 12

miniFE Implicit Finite Elements: a proxy application for unstructured implicit finite element codes 860 95
pathfinder Signature-search mini-application medlarge1 15

TABLE III: Input and heap usage for the benchmarks used in the evaluation. Heap usage is measured on a physical 64-
bit ARMv8 machine, using Valgrind [16]. Total memory footprint used exceeds the total cache size. gem5 reports for all
benchmarks a high heap usage (>95%)

level can have a hardware prefetcher, and we perform a
full design-space exploration, running every benchmark with
all the possible combinations of prefetchers. The prefetchers
we evaluate are described in Section II: Neighbor, Nextline,
Correlation, Stride and Stream.

In gem5, prefetchers can be queue-based, which means they
inherit from the Queue class1 in gem5. If this is the case, they
can be generically tuned with parameters such as distance or
degree. If they are not queue-based prefetchers, the available
parameter set relies on each prefetcher’s implementation,
which may not have distance or degree exposed. As such, we
only apply our dynamic aggressiveness mechanisms on the
queue-based prefetchers: Nextline, Stream and Stride.

C. Benchmarks
In order to evaluate the effectiveness of the different

prefetchers implemented, we use benchmarks from different
suites: Mantevo [19], HPC Challenge [20], Proxy applica-
tions [21], Trinity benchmarks [22] and the High Performance
Conjugate Gradients (HPCG) benchmark [23]. These bench-
marks are high performance computing-oriented benchmarks
and parallelized using OpenMP or MPI.

Brief descriptions, including a list of parameters can be
found in Table III.

We simulate the Region of Interest (ROI) of each bench-
mark until either the ROI finishes or a maximum number of
instructions is reached. This maximum number of instructions
is selected such that all cores do useful work. We select the
ROI manually via source-code instrumentation, as the Sim-
Point methodology [24] cannot be applied to multi-threaded
applications. Later, a gem5 checkpoint is created at the start
of the ROI.

We warm-up the simulation for all benchmarks using 50M
instructions. The standard detailed simulation interval is 500M
(except in the FFT benchmark, which runs for 1B instructions).
The number of instructions simulated is chosen taking into
account that every thread must be doing useful work. We
define useful work as progress on the execution, which ensures
execution is not stalled in an idle loop waiting for data.
We measure this via number of memory, scalar or floating
operations executed.

1The Queue class in gem5 is a class for existing prefetchers in gem5
(Stride and Nextline prefetchers), which process every memory request
ordered by age.

Benchmark L2 Prefetcher L3 Prefetcher
CoMD Neighbor Neighbor

DGEMM Stride Stride
FFT Neighbor Stride

PTRANS Stride Stride
STREAM Neighbor Stride

HPCG Neighbor Stride
mcb Neighbor Stride

miniFE Neighbor Neighbor
pathfinder Stride Stride

TABLE IV: L2 and L3 prefetchers used in the single core
experiments. These configurations are the most performing
ones in static experiments.

V. RESULTS SINGLE-CORE

In this section, we cover results obtained using a single-core
system, and all benchmarks were run using a single thread. All
others components are the same as detailed in Section IV-A.
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Fig. 1: System-wide IPC in static experiments with different
prefetchers for the L1 cache against no prefetching. The
L1 prefetcher can prefetch cache lines into the L1 (normal
behavior), L2 or L3 caches in order to explore possible benefits
using the dynamic destination explained in Section III-B

We start by evaluating the possible performance gains of
dynamic destination mechanisms. Figure 1 shows the perfor-
mance in terms of IPC of different L1 data cache prefetchers
using dynamic destination, with respect to no prefetching at
any cache level. Table IV lists which prefetchers were used for
the L2 and L3 caches. Please note that these vary depending
on the application, as we chose the best L2 and L3 prefetchers
in each case.

We observe that as prefetcher inserts the prefetched lines
into upper levels in the cache hierarchy, we reduce application
performance, as upper cache levels have higher latency. The
most complex the prefetcher, the most sensitive to prefetch-



ing into the upper cache levels. This can be observed for
prefetchers such as Correlation and Neighbor. In the case
of Neighbor, this technique is typically detrimental, which
is caused by the way the prefetchers on all the cache levels
interact in this experiment. We cover this in further detail later.
In the case of simple prefetchers, this technique leads to a
higher performance improvement since these bring in more
data than the complex ones. Therefore, being able to increase
a prefetcher’s own effective cache capacity by using the L2
and L3 caches helps increase performance by overall reducing
the load latency.
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Fig. 2: System-wide IPC with different L1 prefetchers and dif-
ferent configurations with the dynamic mechanisms explained
in Sections III-A and III-B. L2 and L3 prefetchers are fixed
across the different configurations to the prefetchers specified
in Table IV. Due to implementantation limitations, Neighbor
and Correlation prefetchers cannot dynamically adapt their
aggressiveness.

Figure 2 shows the performance of various L1 data cache
prefetchers, using the configurations listed in Table IV, relative
to no prefetching. The L2 and L3 configurations are as outlined
in Table V. Results show that, typically, all prefetchers benefits
from the dynamic mechanisms, however, at different rates.

The Neighbor prefetchers shows a small gain when the
dynamic destination is enabled. As we explain in detail later,
the Neighbor prefetcher has a high accuracy, which leads it to
place useful prefetchers further away from the L1 cache, thus
affecting the overall latency by keeping in the cache hierarchy
useful cache lines.

The Nextline prefetcher gains the most out of the dynamic
destination mechanism, as the prefetcher normally issues a
large number of prefetches which, if all the prefetched cached
lines placed in the same cache, would lead to increased levels
of pollution. As such, by using this mechanism we can increase
the prefetch data’s utilization.

The Correlation prefetcher has performance gains of 10%
across the different static and dynamic configurations against
not using an L1 data cache prefetcher. The lowest gain is
when all prefetchers have the dynamic aggressiveness enabled.
This is caused by pollution added by the L2 and L3 cache
prefetchers. The dynamic destination mechanism renders the
highest performance.

The Stride prefetchers slightly benefits from all dynamic
mechanisms. The dynamic destination, for example, reduces
cache pollution, whilst the aggressiveness can help save mem-
ory bandwidth by not over-prefetching.

The Stream prefetcher’s performance is lower than the other
prefetchers. As we cover in further detail later, this is caused

Configuration L1 Prefetcher L2 Prefetcher L3 Prefetcher
1 - No prefetcher config. - - -

2 - Static config. - - -
3 - L1 Aggr. DA DA DA
4 - L1 Dest. DD DD DD
5 - All Aggr. DA DA DA

6 - All Aggr + L1 Dest DA & DD DA & DD DA & DD

TABLE V: Prefetcher configurations used in this work. DA is
Dynamic Aggressiveness enabled. DD is Dynamic Destination
enabled.

by the prefetcher not using sufficient memory bandwidth.
The Stream perfetcher’s performance lowers whenever any
dynamic mechanism is used.

VI. RESULTS MULTI-CORE

In this section, we show our experimental results whilst
running a multi-core system.

We report Instructions per Cycle (IPC) of the overall sys-

tem (
Total number of instructions

Total number of cycles
), memory bandwidth, cache

misses, cache pollution and a classification in terms of used,
late and unused prefetches for every prefetch issued.

We experiment with several prefetcher configurations, as
shown in Table V.

Configuration 1 is a processor with no prefetcher in any
cache level. Configuration 2 is a standard configuration for
current in-order processors. In configuration 3, we enable the
dynamic aggressiveness feature only in the L1 data cache
prefetcher. In configuration 4, we instead enable the dynamic
destination feature, whilst in 5 the dynamic aggressiveness is
enabled for all prefetchers in the system. Finally, configuration
6 uses the dynamic aggressivenes features for all prefetcher
levels and the dynamic destination for the L1 data cache
prefetcher.

Results from the rest of the section have a specific prefetcher
configuration for the second and last level cache. We set a
Nextline prefetcher for the second level cache and a Stride
prefetcher for the last level cache. This configuration is one
of the most performing ones seen in our experiments, which
offers a view of possible performance gains for the dynamic
mechanisms.

A. Performance

Figure 3 shows the speed-up in terms of execution time and
memory bandwidth of different prefetcher configurations with
respect to no prefetching.

We observe that the main cause of performance increase
is using a prefetcher on the L1 cache, which can speed-
up execution time by 28% and up to 65% with the Stream
prefetcher offering the least performance increase, whilst the
Neighbor prefetcher increasing performance the most. As ex-
plained previously, the Stream prefetcher memory bandwidth
usage is low compared to the other prefetchers.

The Neighbor prefetcher maintains constant performance
with respect to the static configuration when enabling the
dynamic destination and aggressiveness in all the cache lev-
els. Yet, performance degrades a 2.0% when enabling both
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Fig. 3: System-wide IPC and system-wide bandwidth for
several configurations with the dynamic mechanisms with
respect to no prefetching on L1, L2, nor L3 cache. Due to im-
plementation limitations, Neighbor and Correlation prefetchers
cannot dynamically adapt their aggressiveness. Their degree
and distance parameters are not reconfigurable.

dynamic features at the same time. At the moment there is
pollution on the L1 cache, the dynamic destination kicks in and
sends cache lines to the L2 or L3 cache, which can influence
on their aggressiveness due to increased pollution. Potentially,
lowering their aggressiveness hurts performance.

The Nextline prefetcher does not lose performance when en-
abling any dynamic mechanism. The dynamic aggressiveness
mechanism improves performance by 3.2%. This is because
the Nextline prefetcher reduces cache misses by bringing as
many cache lines as possible before these cache lines are
needed. Therefore, the dynamic aggressiveness mechanism
chooses a performing configuration for the aggressiveness
of the prefetcher while the dynamic destination mechanism
reduces pollution in the L1 cache.

The Correlation prefetcher obtains a good speed-up by
adding a L2 and L3 prefetchers. When the dynamic aggres-
siveness mechanism is enabled, performance degrades for 2%
and 4%. This is caused by a higher miss cache rate in the
L2 and L3 caches (3% higher miss cache rate when only the
dynamic aggressiveness is enabled and 7% when the dynamic
destination is enabled), whilst a lower aggressive is set due to
the added pollution from the L1 prefetcher with the dynamic
destination enabled.

The Stride prefetcher maintains performance across the
different prefetcher configurations. The only exception is
when both dynamic mechanisms are enabled, which leads
to performance degradation due to increased pollution. Pol-
lution is increased by 5% in the L3 cache with respect to
only enabling the dynamic aggressiveness mechanism. Stride
prefetcher shows a lower performance than Nextline prefetcher
due to its lower memory bandwidth usage.

The Stream prefetcher suffers from a performance degrada-
tion when the dynamic aggressiveness mechanism is enabled,
going from 1.30x speed-up to a 1.26x speed-up due to the
mechanism choosing a less aggressive configuration. The
Stream prefetcher shows a lower performance than Stride
prefetcher due to lower memory bandwidth usage.

In the Figure 3, we observe that there is a trade-off between
memory bandwidth usage and performance. Enabling our
dynamic mechanisms, the same performance can be achieved

while decreasing memory bandwidth, cache misses, and cache
pollution.
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Fig. 4: Overall cache misses in the system. Cache misses
in L1, L2 and L3 cache are taken into account. We report
half misses: miss in cache, but it hits on the MSHR; due
to prefetcher: cache misses that are caused by the prefetcher
itself; full misses: miss in cache and the data must be bring
from another location.

1) Cache misses: Figure 4 shows system-wide cache misses
across all the cache in order to have a perspective of how data
prefetchers affect the entire system.

Cache misses are classified in 3 categories: (1) Half miss,
a prefetch was issued, but the prefetch has not arrived to the
cache yet; (2) Due to prefetcher, cache misses caused by a
prefetcher overwriting cache blocks for prefetched data; and
(3) Full miss, the data is in memory and must be brought.

Cache misses are very similar across the different prefetcher
configurations. We can see that misses due to the prefetcher
are mainly seen in simple prefetchers. Also, it is interesting
to see how the misses due to the prefetcher are mainly seen
in the simple prefetchers. Overall, Nextline is the prefetcher
that causes most system-wide misses compared to others (even
compared to simple prefetchers).

In terms of the dynamic mechanisms, increasing the ag-
gressiveness of the L1 prefetcher for the Nextline, Stride and
Stream prefetchers does not increase performance since they
do not reduce cache misses. Therefore, their aggressiveness
level is not highly increased due to other constraints such as
pollution or congestion. As we can see with the Neighbor and
the Correlation prefetchers, they obtain similar performance
compared to the simpler prefetchers, whilst lowering band-
width usage (see Figure 3).

When enabling the dynamic destination, L1 cache misses
are increased, yet, we can see that the overall cache misses
decrease. This is not highly reflected in terms of performance
due to a higher latency access to the L2 and L3 caches but it
should impact on overall power consumption.

2) Issued Prefetches: We measure how useful are the issued
prefetches in Figure 5. We classify every prefetch issued by the
L1 prefetcher into: (1) unused, when a prefetched block is not
addresses by the application; (2) late, the system performs a
demand access to an address, that address misses in the cache
and hits on a prefetch register (MSHR); and (3) used, when a
prefetched block is addressed by the application.
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Fig. 5: Classification of the issued prefetchers for different
prefetcher configurations. They are classified and unused: the
cache block prefetched was not used by the processor; late:
the cache line was accessed before the cache line arrived to
the cache and used: the prefetcher brought a cache line that
was used in time.

In Figure 5, the Unused component is mostly present in the
simple prefetchers due to their simplistic nature.

The Nextline prefetcher without dynamic destination can
waste up to 40% of the issued prefetches. When we enable
dynamic destination, the Nextline Unused prefetches decrease
by up to 5% due to cache lines can be prefetched into an
upper cache level to be reused in the future. The Neighbor
and Correlation prefetchers lead to a better utilization of the
prefetched cache lines since they bring in fewer cache lines
and in a more efficient way. They waste up to 10% of the
issued prefetches.

In terms of lateness, the prefetcher issuing late requests is
Correlation. This behavior is highlighted when there are no
prefetchers in the L2 nor the L3 cache. This is casued by the
training phase of the Correlation prefetcher, adding a L2 or
L3 cache prefetcher can help to reduce the overall latency, and
therefore reducing the training phase, which helps to increase
timely prefetches.
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Fig. 6: Cache pollution of the system for different prefetcher
configurations. It is measured as the ratio between cache
misses caused by having a prefetcher and the total misses of
the system.

3) Cache Pollution: In Figure 6, we report the overall
cache pollution of the system for the different prefetcher
configurations. The figure shows the ratio between misses
caused by having a prefetcher and the total misses of the
system.

Pollution is higher with the Nextline and the Stride prefetch-
ers, both of them are simple prefetchers. The Neighbor and
Correlation prefetchers offer the best rate performance to
pollution rate.

When evaluating the dynamic mechanisms, we see that
dynamic aggressiveness does not affect pollution negatively,
unless all the prefetchers in the cache hierarchy have the
dynamic aggressiveness enabled (such the case of the Nextline
and Stride prefetchers). Dynamic destination can help to
reduce cache pollution since cache line can be stored in other
cache levels.

VII. RELATED WORK

Data prefetching is a known approach to solve the prob-
lem for the evolving gap between processor and memory.
Therefore, it is a field that has attracted much attention from
researchers.

Previous works propose prefetcher implementations to im-
prove performance on, usually, out-of-order multi-core chips.

Several of these works implement hardware modifications
in order to improve performance [25–27]. In this work, we
focus on hardware prefetchers that can be found in current
processors.

Previous works evaluated modifying the aggressiveness of
the hardware data prefetcher at runtime. Srinath et al. improve
performance by adjusting the prefetching based on several
metrics [15]. Ebrahimi et al. provide mechanisms in order to
improve performance and fairness of shared resources with
data prefetching in a multi-core processor scenario [28–30].
Jimenez et al. modify the aggressiveness of the prefetcher
based on the overall demands of the applications running on
the system [31]. Nesbit et al. divide the memory address into
equal-sized zones and detect patterns within each zone. Then,
they adapt the prefetcher aggressiveness and the size of the
zones [32]. Both works are developed in out-of-order cores,
they evaluate serial or multi-programmed workloads and stick
to one prefetcher analysis.

Previous work with parallel applications evaluated the dy-
namic reconfiguration of the prefetcher, Li et al. apply machine
learning to reconfigure the data prefetcher, this needs of an
offline training phase [33]. Prat et al. use a task-based runtime
to manage the aggressiveness of the data prefetcher when
running parallel applications [34]. Ortega et al. automatically
coordinates at execution time the aggressiveness of the data
prefetcher and the Simultaneous Multithreading level at exe-
cution time [35]. On these works, they work with only one
hardware prefetcher and they improve it by setting different
behaviors for different workloads. In this work, we explore
several hardware prefetchers with dynamic mechanisms based
on several cache and prefetch metrics.

VIII. CONCLUSIONS

Data prefetching in in-order cores has a major impact on the
overall performance since it is a known technique to alleviate
the evolving performance gap between processor and memory.
There are several data prefetchers available, but research has
been focused in out-of-order processors.



In this work we perform an exhaustive analysis of different
data prefetchers in terms of performance, bandwidth and cache
requirements. We implement 2 state-of-the-art dynamic mech-
anisms and evaluate them in our in-order core infrastructure.

Results show that there is a trade-off between complexity
and memory bandwidth requirements. Simple data prefetch-
ers have a higher memory bandwidth usage, which can be
unaffordable for low-power processors. On the other hand,
complex data prefetchers can be expensive in terms of area,
which can be unaffordable for embedded processors.

Dynamically increasing the aggressiveness of the data
prefetcher can increase performance at the cost of a higher
memory bandwidth usage. While other mechanisms such as
the dynamic destination can increase the efficiency of the
prefetchers and the caches. Therefore, simple data prefetchers
with dynamic mechanisms can match the performance of
complex data prefetchers while using less area, which can meet
the requirements for embedded and low-power processors.
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