
Final Master’s Tesis
Double Master’s degree in Industrial Engineering

and in Automatic Control and Robotics

Robot Agnostic Interface for
Industrial Aplications

MEMORY

Author: Álvaro Ibáñez Moreno

Supervisor: Cecilio Angulo Bahón

Academic Year: 2022-23

Escola Tècnica Superior
d’Enginyeria Industrial de Barcelona

Robot Agnostic Interface for Industrial Aplications i

Summary

The quick evolution of robotic arms has generated many manufacturers of robotic arms,
such as Universal Robots, ABB, or Fanuc. Each manufacturer offers a unique interface
to program and control their robots. This can limit companies choices when selecting a
suitable robot for their industrial operations, as they will choose an interface that doesn’t
require new training. For that reason, and based on the experience at UPC CIM, this
project will focus on creating a common interface for robotic arms.

The main objectives are to produce an interface to simulate robots from different manu-
facturers, save and load data, and create a simple scripting language. By using ROS, an
open-source software infrastructure to communicate between different robotic elements,
and Python, the code will be created in five different modules: the launch application,
obtaining information about the robot, editing files, moving the robot, and scripting
actions.

To test the resulting interface, first a setup sequence is performed to see the limitations of
the interaction. Then, three theoretical scenarios are proposed, and a scripting sequence
is created for each one: Pick and Place, Sorting, and Bin Picking.

While limited in some aspects, the application performs as expected and offers the basic
options to solve many robot implementations. New options for the future of robot in-
teraction are open with this project, as people could also further develop this program if
considered.

ii Master Thesis

Robot Agnostic Interface for Industrial Aplications iii

Contents

1 Introducction 1
1.1 State of the Art . 2
1.2 Motivation . 6
1.3 Objectives . 8
1.4 Scope . 9

2 Resources 11
2.1 Linux-Ubuntu . 11
2.2 ROS . 11
2.3 Programming Languages . 13
2.4 Robots . 14
2.5 Other Resources . 14

3 Implementation 15
3.1 Structure . 15
3.2 Launching the Simulation . 16
3.3 Obtaining Information about the Robot 18
3.4 Storing and Loading Data . 20
3.5 Moving the Robot . 24
3.6 Scripting Movements . 26

4 Testing 29
4.1 Configuration . 29
4.2 Pick and Place . 30
4.3 Sorting . 31
4.4 Bin Picking . 33

5 Results 37

6 Impact 39

7 Conclusions 41

Conclusions 42

Bibliografia 43

Robot Agnostic Interface for Industrial Aplications v

List of Figures
1 Unimate, the robot developed by George Devol, [16] 1
2 Fanuc Robots in an Industrial Environment, [17] 1
3 UR Polyscope interface, [18] . 3
4 Fanuc Teach Pendant interface, [19] . 4
5 ABB RoboStudio software interface, [20] 5
6 Looming Factory project description diagram 7
7 Program Structure diagram . 15
8 File Structure for Launch Files . 17
9 Gazebo whith a UR3 loaded when the launch files are correctly configured 18
10 Menu Editor with various options available 24
11 Move Menu with different optind to indicate where to move the robot . . . 26

Robot Agnostic Interface for Industrial Aplications vii

List of Tables
1 Main ROS-1 and ROS-2 differences . 12
2 Summary of costs . 40

Robot Agnostic Interface for Industrial Aplications ix

Listings
1 Example of a Text File to Import . 22
2 Pick and Place Configuration File . 30
3 Pick and Place Script . 30
4 Sorting Configuration File . 31
5 Pick and Place Script . 31
6 Bin Picking Configuration File . 33
7 Bin Picking Script . 34

Robot Agnostic Interface for Industrial Aplications 1

1 Introducction

A Bit of History

The Industrial Revolution of the 18th and 19th centuries brought significant advancements
in mechanical engineering, leading to the creation of various machines and automated
systems. During this period, robotic arms began to emerge as tools for automating
repetitive tasks in manufacturing industries.

The 20th century witnessed remarkable progress in robotics and the birth of modern
robotic arms. In the 1950s, George Devol and Joseph Engelberger introduced the first
digitally operated robotic arm. This breakthrough marked the beginning of an era where
robotic arms played an integral role in automation.

Figure 1: Unimate, the robot developed by George Devol, [16]

As technology advanced, robotic arms became more versatile and capable. In the 1960s,
General Electric developed the first electrically powered robot, the GE 400 Series. This
robot had six axes of motion, providing greater flexibility and dexterity. Around the
same time, researchers at Stanford University developed the Stanford Arm, which utilized
hydraulics to achieve precise movements.

The advent of microprocessors and computer control in the 1970s and 1980s brought sig-
nificant advancements to robotic arms. These arms could be programmed and controlled
with greater precision, making them ideal for applications in assembly lines, welding, and
material handling. Companies like ABB, Fanuc, and KUKA emerged as leaders in the
industrial robotics market, producing robotic arms capable of performing complex tasks
with high accuracy and repeatability.

Figure 2: Fanuc Robots in an Industrial Environment, [17]

2 Master Thesis

Today, robotic arms continue to evolve, driven by advancements in artificial intelligence,
sensors, and materials. Collaborative robots, or cobots, are becoming increasingly popu-
lar, working alongside humans in a shared workspace. With improved sensing capabilities
and advanced control algorithms, these robots can perform intricate tasks while ensuring
the safety of human workers.

More Common, Easier to Programm

The recent developments in robotics have allowed them to stop being a luxury item
reserved only for big companies with large production lines and become more affordable
and manageable for medium and small companies as well.

The overall reduction in costs was caused by the improvement of manufacturing technolo-
gies and the scalability of the robots, as more models, sizes, and capabilities allowed for
the selection of the robot that fit the best in the planned environment.

On the other hand, accessibility was improved with the simplification of the installa-
tion and configuration processes. User-friendly interfaces and standardized connections
reduced the need for a highly qualified technician and allowed anyone, given a little train-
ing, to set up, program, and use the robot in the target environment.

1.1 State of the Art

Accessible Automation

Universal Robots (UR) is a leading manufacturer and pioneer in collaborative robotic
technology. It specializes in the design and production of lightweight, flexible, and user-
friendly industrial robotic arms. The company’s mission is to democratize automation by
making robotic solutions accessible to businesses of all sizes.

The collaborative robots, also known as cobots, offered by Universal Robots come in var-
ious models with different payload capacities, allowing businesses to select the robot that
best matches their specific needs. The cobots can perform tasks such as pick-and-place
operations, assembly, machine tending, quality inspection, packaging, and more. They
can be easily integrated into existing workflows thanks to their plug-and-play functional-
ity and compatibility with a wide range of accessories and tools. They are also designed
to work alongside humans without the need for safety barriers, enabling safe and efficient
human-robot collaboration.

Robot Agnostic Interface for Industrial Aplications 3

Figure 3: UR Polyscope interface, [18]

Universal Robots’ cobots are known for their user-friendly programming. To program a
Universal Robots (UR) robot, you can use the UR teach pendant, a handheld device with
an intuitive graphical user interface (GUI). With the teach pendant, you can manually
guide the robot through the desired movements and record waypoints to create a program.
Additionally, UR robots support script programming using a simplified version of Python.
This allows for more complex logic and customization. Universal Robots also provides
powerful software, such as the UR+ platform, which offers a wide range of pre-built
software and hardware components that can be easily integrated with their cobots.

With their innovative technology and emphasis on accessibility, Universal Robots have
played a significant role in revolutionizing the automation landscape. Their cobots have
helped businesses of all sizes increase productivity, improve efficiency, and enhance worker
safety.

Other Robot Interfaces

FANUC Corporation is a global leader in the manufacturing of industrial robots, renowned
for their high performance, reliability, and precision. FANUC robots are widely used in
industries such as automotive, electronics, aerospace, and more. They offer a diverse
range of robot models, including articulated robots, delta robots, and collaborative robots
(cobots). FANUC robots excel in speed, accuracy, and repeatability, enabling them to
handle complex tasks with efficiency. With user-friendly programming interfaces and
advanced control systems, FANUC robots are easy to integrate into production lines and
adapt to changing needs. FANUC’s commitment to innovation and quality has made
them a trusted choice for industrial automation worldwide.

4 Master Thesis

Figure 4: Fanuc Teach Pendant interface, [19]

To program a FANUC robot, you typically use the proprietary programming language
called FANUC Robotics TP (Teach Pendant) or KAREL (Kawasaki Advanced Robot
Language). Using the teach pendant, you can manually guide the robot through the
desired motions and record these movements as part of the program. Alternatively, you
can write TP or KAREL code directly on the teaching pendant or through offline pro-
gramming software. The code instructs the robot on specific tasks, such as movements,
interactions with peripherals, and logic operations. Once the program is completed, it
can be executed, modified, or saved for future use.

ABB is a leading manufacturer of industrial robots that are widely recognized for their
precision, reliability, and versatility. ABB robots are designed to perform a wide range of
tasks in various industries, including automotive, electronics, pharmaceuticals, and more.
They are known for their high-speed operation, advanced motion control, and superior
accuracy. ABB offers a diverse portfolio of robot models, including articulated robots,

Robot Agnostic Interface for Industrial Aplications 5

SCARA robots, and collaborative robots (cobots), catering to different payload capacities
and application requirements. With user-friendly programming interfaces, ABB robots
can be easily integrated into existing workflows and controlled efficiently. ABB’s robotic
solutions empower businesses to optimize productivity, improve quality, and enhance over-
all manufacturing efficiency.

Figure 5: ABB RoboStudio software interface, [20]

To program an ABB robot, you can use the ABB RobotStudio software. It offers a user-
friendly interface for offline programming and simulation. You can create robot programs
by dragging and dropping commands or by writing ABB’s proprietary programming lan-
guage, RAPID, which is similar to C++. The software allows you to define robot move-
ments, logic operations, and interactions with peripherals. After programming, you can
simulate and validate the robot’s behavior virtually. Once satisfied, the program can
be transferred to the ABB robot controller for execution. ABB RobotStudio simplifies
the programming process and enables efficient integration of ABB robots into various
applications.

ROS and ROS Industrial

ROS, which stands for Robot Operating System, is an open-source framework widely
used in the field of robotics for building and controlling robotic systems. ROS provides
a collection of software libraries, tools, and conventions that aid in the development of
robotic applications. It offers a flexible and modular architecture, enabling seamless
communication between various components of a robotic system.

ROS provides a wide range of functionalities, including hardware abstraction, device
drivers, messaging systems, visualization tools, and more. It allows developers to write
robot control software in various programming languages, such as C++ or Python, for
example. ROS also offers a rich ecosystem of packages and libraries contributed by a
large community of developers, which accelerates the development process by providing

6 Master Thesis

ready-to-use components and functionalities.

ROS-Industrial (ROS-I) is an extension of ROS, specifically focused on industrial automa-
tion and robotics. It aims to bridge the gap between traditional industrial systems and
the ROS framework. ROS-I provides a set of packages, tools, and best practices tailored
for industrial applications, making it easier to integrate ROS into industrial environments.

ROS-I offers standardized interfaces and drivers for industrial robots, allowing seamless
communication and control of various robot models and brands. It provides integration
with industrial hardware, such as sensors, grippers, and programmable logic controllers
(PLCs). ROS-I also facilitates interoperability with other industrial systems, such as
manufacturing execution systems (MES) and enterprise resource planning (ERP) systems.

The adoption of ROS and ROS-I has enabled significant advancements in industrial au-
tomation. They have simplified the development process, reduced integration efforts, and
promoted the reusability of software components.

1.2 Motivation

CIM Looming Factory

During the course of this project, I had the opportunity to briefly work on the Looming
Factory project, carried out by the CIM foundation, which is part of the UPC group.

The CIM foundation is an entity that has as its mission to transmit technology and tools
to companies to create and improve their products and manufacturing processes. By
means of I+D+i projects, it generates new product and process technologies, which it
then incorporates into its formative courses.

One of these projects is the Looming Factory project. Its objectives are focused on group-
ing, consolidating, and directing the current research in the 4.0 Industry at the different
research centers in Catalonia. To do so, different experiments and exhibits are carried
out in order to digitize environments, integrate big data technologies, implement cyber-
physical hybridization, implement cloud technologies, or achieve energetic and economic
optimization.

Problem Description

The exhibit on which I collaborated aimed to integrate a CNC machine, an AGV, a robotic
arm, and a PLC. Different university departments worked on different parts, so a level of
coordination was required. The main objective was also to make all parts as independent
of each other as possible, so if a company would like to implement a similar system, they
could do it with the appropriate resources for the application.

Robot Agnostic Interface for Industrial Aplications 7

Figure 6: Looming Factory project description diagram

The AGV would bring an unsorted set of pieces in a box to machine in the CNC, and the
robotic arm would have to pick one to load into the CNC. To do so, a camera attached
to the robotic arm would capture the position of the pieces, and using a computer vision
algorithm, the position of the closest piece would be given to the robot. Once the robot
has picked the piece and loaded it into the CNC, the doors are shut, and the robot waits
for the machining process to finish. When the doors open, the robot picks up the piece
and places it in another box. The whole process is managed by a PLC to which all
components are connected, as well as a pneumatic system to open and close the door and
activate the suction gripper on the robotic arm.

My main function was to set up the robot in order to be able to move it on command
from the PLC. It would also have to receive information about the piece’s location and
move to it.

Obstacles and Problems

With so many parts having to work in a synchronized manner, it comes as no surprise
that many obstacles and problems arose during the development of the project. The robot
chosen for this application was a UR10 robot, and while the simplicity of the Polyscope
interface facilitated some things, it also made others more complicated.

8 Master Thesis

The Polyscope interface, characteristic of the UR series, greatly helped in storing and
changing the different positions the robot had to navigate. Also, the simple programming
language allowed the robot to execute different sequences of movements depending on the
values set by the PLC.

But, in order to integrate the robot with the camera, a more complex datatype containing
the pose calculated by the camera had to be used. More over, a change of frame of
reference and an inverse kinematics computation had to be carried out, and the Polyscope
interface fell short to do that.

Finally, by using the UR interface, we were limiting the implementation to UR robots. In
order to allow the use of other Robotic arms, a program independent of the robot manu-
facturer would need to be written. Even if this objective was more of an extra, I found it
interesting to have a common interface for different Robots. This way, Robot operators
would only require training in a single system, and not for every robot manufacturer.

1.3 Objectives

Robot Independent Interface

The first objective of this project is to create an interface to control any type of robotic
arm. Currently, all major robot manufacturers provide a custom interface in order to
interact with their robots. This causes operators to need to learn a new interface for
each type of robot they encounter. This also limits the selection pool for new robots, as
companies would always prefer a robot with which the operators are already familiar.

With a common interface, training costs would be reduced, and the new robot selection
pool would expand.

Easy Storing and Loading of Data

As part of the interaction of the user with the robot, a system to store, load, and change
data will be set up. In order to facilitate the data exchange and also allow for fine-tuning
without much hassle, functions to import from a text file will be set in a simple language.

Simple Script Language

Finally, the main feature the interface has to have is a simple scripting language. Apart
from the common functions to move and compute trajectories, the main feature that opens
up the interface is the capacity to work cyclically and according to input parameters. A
simple scripting language allows for more flexible automation and reduces the level of
supervision robots need, as they can work independently of the operators if all major
cases are taken into account.

Robot Agnostic Interface for Industrial Aplications 9

1.4 Scope

Robot Simulation

Given the limited access to real robots, a simulation of those robots will be set up to mimic
their behavior. ROS Industrial offers a variety of 3D robot models and the required
parameters in order to simulate as close to reality as possible. Also, given that ROS
Industrial also provides drivers to control the real robots and that the communication
between a real robot and the simulated robot is compatible, changing from a simulation
to the real robot shouldn’t present much of a problem if, in future work, this project is
expanded.

Input/Output Signals

There are numerous possible communication devices, each with its own communication
protocol or system. It is unrealistic to try to implement communication protocols when
there is no actual hardware available and knowledge about them is limited. Data type
transformations, connections to servers or master-slave systems, and sending and receiving
data also deviate from the approach to this project. A more solid case analysis would be
needed to implement this function.

For these reasons, communication with external elements will also be simulated by using
a Python script. The information that would be sent will be written into a file, and the
communication simulation script will read the file and modify it accordingly with the data
that would be sent to the program.

Simple UI

The user interface will be simplified, as the core objective is to create an interface, but
not necessarily an eye-catching interface. The interaction with the program will be done
using the terminal command line, to which the user will input the menu option that
wants to be accessed. However, the functions and objects will be set in place to facilitate
the integration of a more pleasant UI. By associating the functions with the interactive
objects, the UI can be set without many complications.

Robot Agnostic Interface for Industrial Aplications 11

2 Resources

2.1 Linux-Ubuntu

The choice of the OS is conditioned by the version of ROS that wishes to be used, as
currently two versions of ROS are being maintained. ROS 1’s latest release is targeted at
the Ubuntu 20.04 (Focal) release, while ROS 2’s latest version can be installed on Ubuntu
22.04 (Jammy) and Windows 10.

As it will be discussed later, the use of ROS 1 is preferred, so the Ubuntu Focal Release
is chosen as the OS. Ubuntu Focal is the previous LTS (Long Time Service) version of
the OS, released on April 23, 2020, with an end of support planned for April 2025. LTS
versions of Ubuntu are stable releases that will be maintained for 5 years since the initial
release. There is a LTS version every 2 years, the latest one being Ubuntu 22.04 (Jammy),
released on April 21, 2022.

Ubuntu is a popular open-source operating system based on the Linux kernel. It is known
for its user-friendly interface, stability, and security. Ubuntu provides a complete software
ecosystem, including a wide range of applications and tools, and offers regular updates
and long-term support. It promotes free and open-source software principles, which allow
for flexibility and customization.

2.2 ROS

ROS, which stands for Robot Operating System, is an open-source framework widely
used in the field of robotics for building and controlling robotic systems. ROS provides
a collection of software libraries, tools, and conventions that aid in the development of
robotic applications. It offers a flexible and modular architecture, enabling seamless
communication between various components of a robotic system.

ROS provides a wide range of functionalities, including hardware abstraction, device
drivers, messaging systems, visualization tools, and more. It allows developers to write
robot control software in various programming languages such as C++, Python, and
more. ROS also offers a rich ecosystem of packages and libraries contributed by a large
community of developers, which accelerates the development process by providing ready-
to-use components and functionalities.

ROS versions

The ROS project started back in 2007, and a lot has changed since then in the robotics
community. The ROS-2 project started in 2015 to accommodate new trends in the robotics
world. Instead of being a common update to the ROS environment, ROS-2 goes a step
further and has been rewritten from the ground up. The main differences between the
two systems are as follows:

12 Master Thesis

ROS-1 ROS-2
Communication
Protocol

TCPROS protocol based on
TCP/IP

Data Distribution Service
(DDS) protocol

Scalability
Designed for single-host sys-
tems

Built with a more dis-
tributed architecture

Real-time Capa-
bilities

Lacks native support
Support through the use of
DDS

Security
Limited built-in security
features

Security as a core design
principle

Development
and Ecosystem

Well-established, wide
range of libraries, packages,
and tools

Gradually growing, fewer
packages and libraries

Table 1: Main ROS-1 and ROS-2 differences

Given that the improvements offered by ROS-2 don’t add any direct value to this project
and that the ROS-2 number of packages and libraries is considerably smaller than ROS-1,
it has been decided to use ROS-1 for this project. Another reason for this choice is that I
am already familiar with ROS-1, and ROS-2 would require a considerable update in my
knowledge of the system.

ROS-1, however, will not be updated any further, but it will be maintained until May
2025. This last version that will be used is called ROS Noetic Ninjemys. The ROS
development team recommends a gradual migration to ROS-2 and offers different tools to
ease the process. If this project has to be updated to ROS-2, it shouldn’t be complicated,
as it is envisioned to work with the common ROS features.

Basic Features

Nodes: Represent the different processes that are being run in the ROS framework. Nodes
are the main feature in ROS programming, as most of the code is written for a node that
communicates with other nodes and takes actions based on the information provided.

Topics: They are data buses with names that nodes use to communicate with each other.
Nodes may publish to a topic to send information, or subscribe to it to read the information
it contains. The content handled by topics can range from simple bits to complex data
structures.

Services: Refer to the different actions that a node offers to do. Nodes advertise their
services and perform an action that yields a single result when called upon. They are
meant to be one-time actions, like capturing an image frame or reading the current sensor,
rather than continually processing commands.

Parameter Server: A shared database that all nodes can access. It contains static infor-
mation that does not usually change over time (like the robot geometry or the controller
parameters) and is loaded when launching the application.

Robot Agnostic Interface for Industrial Aplications 13

Utilities

Rviz: 3D visualization tool that allows the display of robots, environments, and sensor
data.

Rosbag: Useful tool for recording and playing back historical data published on ROS
topics.

Catkin: The build system for ROS. Based on Cmake, it allows for the building, testing,
and packaging of software.

Rosbash: Expansion of the bash shell’s functionality. Adds functions and improves some
of the default ones.

Roslaunch: tool used to launch multiple nodes with the same file and load parameters to
the Parameter Server.

Additional Packages

Actionlib: A standardized interface for services that can be preempted.

MoveIt!: Motion planning package for robotic manipulators.

tf2: System to represent, tack, and transform coordinate frames.

gazebo ros: Integration of ROS with the Gazebo Simulator.

ros control: includes controller interfaces, controller messages, transmissions, and hard-
ware interfaces.

trac ik: a library for solving generic Inverse Kinematics.

RQT: GUI for development in ROS. Offers many visualization tools for different param-
eters.

2.3 Programming Languages

C++: The main body of ROS is written in C++. It is a high-level, multipurpose lan-
guage designed for high performance, flexibility, and efficiency. A basic knowledge of this
language is required if some functions or ROS need to be analyzed in detail.

Python: General-purpose language focused on readability. It avoids premature optimiza-
tion, which allows it to be more flexible and forgiving with data operations. The main
body of the project will be written in Python in order to simplify readability, error han-
dling, and debugging. Python also provides multiple packages in the default installation
that expand the possibilities offered. In recent years, it has grown into one of the most
popular programming languages for its portability and flexibility.

XML: Markup language and file format for storing, transmitting, and reconstructing

14 Master Thesis

arbitrary data. It is used in a variety of places in the ROS architecture.

The ROSlaunch utility uses XML files to write roslaunch files. It can load parameters
to the server, configure the startup of a node, or load other XML files, such as other
roslaunch files or, for example, urdf files.

URDF (Unified Robot Description Format) is a file format based on XML used for the
description of the geometry of robots. It can be used to obtain the kinematic parameters
for calculations or to load a model into a simulator.

Xacro is an XML macro language used to ease the construction of XML files. In ROS is
commonly used to transform a set of parameters into an URDF file.

2.4 Robots

The ROS Industrial Package offers a wide pool of robot models to work with. UR, Fanuc,
and ABB, for example, are some of the possible robot models that can be used. Each
manufacturer can also decide which information is made public, so not all robots have a
complete set of parameters ready for simulation. The ROS-I package is mainly focused
on real applications, and manufacturers offer their own simulation software as a service.
The UR series is the only robot that has published the physical characteristics of its
robots, such as their links’ mass and inertia, as well as the controllers and files necessary
for simulation. The main focus will be on using different UR models and also trying to
complete some of the missing files for other models. Specific values will not be accurate,
and therefore the simulation will not be precise, but a rough simulation and control can
be achieved.

2.5 Other Resources

Atom: Integrated development environment (IDE) that supports multiple languages and
a variety of plugins.

Terminator: Terminal Interface that simplifies working with multiple terminals by juxta-
posing them in a single window.

Git: Version control system to keep track of code modifications as well as store data in
the cloud. Simplifies the task of working on multiple computers.

Robot Agnostic Interface for Industrial Aplications 15

3 Implementation

3.1 Structure

Given the objectives set, the environment, and the resources given, the code length can
be roughly estimated. The size is planned to be too big for a single code file to hold it
all and have a clear organization. For this reason, the code is decidedly segmented into
modules, each containing a specific set of functions for a specific purpose.

Figure 7: Program Structure diagram

The program will contain a main menu used to access the rest of the functionalities. In the
first menu, the robot will be selected, and the simulation will start. From there, the next
module will focus on accessing information about the robot, like the joint states, the pose
of the Tool Center Point (TCP), the robot geometry to compute the Inverse Kinematics
(IK) or the parameters to configure JointState and Pose ROS datatype objects given
input data.

Once we are able to read information about the robot, the next step will be storing and
reading that information. Data will be stored in a Python Dictionary, and functions to
load, save, and modify this data will be set. To ease the setup of data, a tool is needed
to read information from a text file and transform it into a Python Dictionary.

The next step is moving the robot to, for example, the positions stored previously. The
module will offer the basic functions to compute trajectories and publish those to the
execution server. Also, a set of utility functions will be set up to ease use.

Finally, with the robot being able to move, a Scripting Module will be set in place. The
module will read the corresponding necessary files and execute the script. It will be able to
read and modify the stored data in order to act according to external signals. To simulate
the input and output signals, a script that simulates the behavior and makes sequential
modifications to the data based on the existing data will be executed in parallel.

16 Master Thesis

3.2 Launching the Simulation

Launch Files

ROS offers a tool named roslaunch, which uses XML files to start different programs, load
variables, or load other XML files at the same time. With this tool, it becomes much
easier to configure the multiple elements that must be started in order to start a ROS
program.

The most commonly used functions in launch files are loading arguments into the param-
eter server, configuring and launching ROS nodes, and loading other launch files. With
this combination of functions, one can have generic launch files and load specific config-
urations depending on the variables used. This way, every robot can have simple launch
files that call generic files to start the application. This is also useful for debugging, as
solving an error solves it for all the robots that use that file.

In the main menu, the robot will be selected, and when the simulation is started, the
launch file will be set and executed. A series of parameters need to be set to properly
interact with ROS from Python, and after that, the rest of the initial Python configuration
is set. Finally, the main menu is shown.

Launch Configuration

One of the main objectives of this project is to be able to use different robots with the
same interface. For that reason, it is necessary to load the same information for each
robot.

The ROS Industrial package offers a variety of robot models, launch files, configurations,
and drivers. The most complete one is the package belonging to the UR series, which
offers ready-to-use launch files for the real robot and the simulation in Gazebo. In order
to simulate other robots, it will be necessary to set the launch files necessary to start the
simulation with them. To create these files, it is taken as a base the structure used in the
UR series launch files.

Robot Agnostic Interface for Industrial Aplications 17

robot bringup.launch

Include: load robot.launch.xml (Robot Description)

Param: Execute robot.xacro

Load: robot macro.xacro (From sim package)

Load: robot macro.xacro (From description package)

Load: robot transmissions.xacro (From sim package)

Param: Link Configurations

Param: Gazebo plugin

Param: world, tool0 (Links)

Node: Robot State Publisher

Include: robot control.launch

Rosparam: robot/type controllers.yaml (Controller Config File)

Include: Launch empty Gazebo world

Node: Spawn Model

Node: Load and Start Ros Controllers

Node: Load Stopped Ros Controllers

Figure 8: File Structure for Launch Files

The main launch file for each robot has three functions: load the file that loads the robot
description into the parameter server, start the Robot State Publisher node that gives
access to the current position of the actuators of the robot, and load the file that starts
the gazebo simulation.

The robot description is loaded by executing a xacro command that returns the parameter
to load.

The xacro file loads a macro to compute the robot description and adds links to join the
robot to the world and the TCP to its controller. The robot description macro adds the
geometry description given by the robot description macro, adds the description of the
transmissions, configures the collision of the links for gazebo, and loads the gazebo plugin
to use Ros control.

The second file, first, loads into the parameter server the parameters described in the
controller configuration file. It then loads the launch file provided by the Gazebo package,
which starts a gazebo simulation with an empty environment. Finally, it starts nodes to
spawn the robot model into the simulation, to load and start the controllers, and to load
but not start the controllers that are not needed at the start.

18 Master Thesis

Figure 9: Gazebo whith a UR3 loaded when the launch files are correctly configured

Creating Launch Files

The ROS Industrial packages for the UR series contain the file structure shown previously
and allow running simulations of the robots. Unfortunately, not all the robots provided
offer a complete set of files. For example, the Fanuc package is not conceived for simulation
but only to directly control the real robot. For this reason, specific files to launch a
simulation of these robots need to be set up.

Fanuc provides the files to compute the macro that loads the robot’s geometric description.
Apart from that, the rest of the files must be manually created. Firstly, the generic files
to load the simulations and the transmissions are set. Then, for each robot, a macro file
that joins the geometry description and the rest of the gazebo parameters is set. Also, for
each robot, a xacro file that loads the previous macro and joins it with the additional links
is also set. Next, the file that executes the xacro command is set for each robot. Finally,
controllers for each robot are written, and everything is wrapped in a single launch file
for each robot.

When writing the transmission interface and the controllers, these must share the type of
transmission, be it position, velocity, or effort. Also, Fanuc does not provide the inertial
values for the links, which need to be added in order to be able to run in Gazebo. For
that reason, the PID values set for the controllers can not be calibrated, but are set for
the simulation to run. The inertial values are set to generic values, so the control of the
Fanuc robots is expected to not be accurate.

3.3 Obtaining Information about the Robot

Once the simulation has started, information from the robot starts to be published into
different topics by the Robot State Publisher node started by the launch file. The infor-
mation published then needs to be accessed and treated in order to standardize its use
by other functions, to store it, or to simply present it to the user.

Robot Agnostic Interface for Industrial Aplications 19

Current Joint State and Pose

ROS offers two standard data types useful for representing the current state of the robot.
The first one is the JointState (JS) type, which contains the name of the joints, the position
value of the actuators, and can contain their velocity and effort but are not required
parameters. The second main data type is the Pose type. It contains the information of
a point in space in Cartesian coordinates x, y, and z and its orientation in x, y, z, and w.
It will be useful to store the position of the TCP.

The procedure to obtain the current Joint State is very straightforward, as the data type
published is the same as the type that will store the information. Simply by reading the
published information, the values can be obtained. From this information, another useful
function is set that simply returns the joint names.

Obtaining the Pose of the TCP needs a bit more work as the information is not directly
published. What is published is a set of transformations between all the Cartesian frames
set in the geometry description file of the robot. Every object has a reference frame from
which its geometry is defined. Then these frames are placed relative to the previous frame
in the kinematic chain. The frames of interest are the world frame, which is used as the
global origin of coordinates, and the tool0 frame, which represents the position of the
TCP. With the use of the tf2 library, the current frame transformations are read and
stored in a Buffer, and from that buffer, the specific transformation from the world frame
to the tool0 frame is obtained. These transformation values are then set to a pose object
to obtain the TCP coordinates relative to the origin.

Joint State and Pose from List of Values

These utility functions will simplify translating a list of values into a JointState or Pose
object. For the JointState, apart from the list of values, it will be necessary to provide
a list of the joint names to which each value corresponds. Other methods may provide
the values in a different order. In the case of the Pose, it will be required to provide the
format in which the rotation is written. The first 3 values will always refer to the x, y,
and z values, but the rotation values may be given in RPY or Quaternion format. RPY is
a rotation format that is easier for humans to visualize and calculate, but for computers,
it is much easier to do operations using Quaternions. Both formats are available, but the
default value is the RPY format.

Joint State and Pose from User Input

It is also taken into account the possibility of manually entering each value for the Joint
State or Pose desired. For the Joint State, the function will ask the user to write the
value for each of the joints of the robot, and for the Pose, it will ask for the x, y, and
z values, and then for the RPY or Quaternion values, depending on the format desired.
These functions will then return the objects for use by other functions.

20 Master Thesis

Inverse Kinematics

One of the main issues in robotics is computing the inverse kinematics of a kinematic
chain. The inverse kinematics (IK) has as an objective to obtain the Joint State values
that place the TCP in a given Pose. It is usually an under-determined type of system,
so the solution may be multiple, unique, or nonexistent. Consistently and rapidly solving
these kinds of systems is a big field of research and study, but for the purposes of this
project, the trac ik package will be used.

Trac IK is based on the widely used KDL IK algorithm but solves some shortcomings
by considering joint limits, limiting computing time instead of the number of iterations,
and running different methods in parallel to give the fastest result. Trac IK needs to be
specified the reference frames for the IK desired to compute, in this case the world frame
and the tool0 frame. With this information, an IK solver object is created that also feeds
on the kinematic model of the robot to configure itself. Once it is set up, by providing
the x, y, and z values and the Quaternion values, it returns the joint values that place the
TCP in that Pose. The joint values then need to be rearranged, as they are returned in
alphabetical order, not the order used as a standard by the robot. A seed state can also
be given to the solver to accelerate the convergence.

3.4 Storing and Loading Data

Now that the simulation is running and data about the robot can be obtained, the next
step is to be able to store and load this data. This section will focus on creating an
interface in order to read and write data from files that can later be easily moved. It will
also feature a menu with the basic features used in many programs, like load, save, save
as, etc.

Variables Needed

First, a set of common variables must be set in order to keep track of the state of the
program and the information flow.

File Path: path to the folder that contains the files to read or write.

List of files: a list of the names of the files in the File Path.

Working File: name of the file on which the program is currently working.

Data Dictionary: data object that contains the information read, stored, or intended for
use.

File Saved: Boolean variable that indicates if the data has been saved to the file or if
there are still changes to be saved.

Robot Agnostic Interface for Industrial Aplications 21

Dictionaries

Dictionaries are a Python data type that allows for storing multiple key-value pairs and
efficiently retrieving the data when needed. Each data unit is uniquely identified by a
key, which serves to access the corresponding data. Each dictionary can contain multiple
data types at the same time, be it text, numbers, or even other dictionaries. They are an
unordered data type, meaning that data is not guaranteed to maintain a specific order.

Dictionaries are a very flexible data type as they can store multiple data types. For this
application, it will be useful to store diverse information in the same file. One can create
a dictionary by using curly braces ({ }) and separating the key-value pairs with colons
(:). They also offer multiple built-in functions to add, remove, overwrite, or check the
existing keys.

Loading and Saving Complex Data

Dictionaries, as they can contain any data type, cannot be easily stored in a simple text
file. It is necessary to store them in a binary file for it to remember the data structures
present. Python provides the Pickle library, which allows reading and writing binary files
in the Pickle format.

The functions to load and save data are written as the point of interaction between the
program and the file system. They are conceived as simply as possible in order to avoid
bugs and problems when reading or writing data.

Loading and Saving Data From a File

Once the interaction with the file system has been set, the next step is to configure how
the user interacts with it. For that, the functions to load and save the files display a series
of messages, await the input of the user, and act accordingly.

To load a file, it displays the list of available files to open, asks the user to input the name
of the desired file, and opens it. If the file is not found, it will ask if the user wants to
create it. Additional input parameters to the function can skip the UI to use the function
faster.

To save a file, it will ask for the name of the file to save it as, and if it already exists,
it will ask if the user wants to overwrite it. It will then be saved or aborted. As before,
additional function parameters can skip the UI.

Removing Files

To remove files from within the program, it will ask the user for the name of the file to
delete. If found in the file list, it will ask for confirmation from the user and delete the
file requested, and it will reset the necessary variables. Additional parameters can skip
the UI.

22 Master Thesis

Storing Data

As dictionaries can store multiple data types, the data parsed into the function to store
the data can be of any type. This function will add an entry to the dictionary that will
contain the data provided, and the key will be asked for. If the key already exists, it will
ask the user if they want to overwrite the data, and if they choose not to, it will ask if
they want to choose another name for the key and start again. If a name for the key is
already provided in the parameters, the UI asking for the name will be skipped.

Importing Data From a Text File

Currently, adding data to the dictionary can be slow if a lot of data needs to be stored.
To add a small amount of data, it is manageable, but if a collection of points wants to be
stored, it can become tedious moving between the different menus for each single point.
For this reason, a utility function is set up in order to transform data described in a text
file into entries in the dictionary. This will allow for easy input of data into the system
in a more readable and manageable way.

The syntax expected is as follows: Each line of the text file will contain first the type
of data to store, a colon, and then the value to store. The possible expected data types
available for reading are the following:

JS: If it is read, the following information will refer to the ordered names of the joints of
the robot. It will also indicate that if a ‘point’ data type is read, it will follow this format.
The string is transformed into a list and then given to the function that transforms a list
of values into the correct data type.

POSE: indicates the format of the rotation and that the next ‘point’ data inputs will be
a pose of that format. The string is transformed into a list and then given to the function
that transforms a list of values into the correct data type.

Name: indicates the key of the next value to be stored in the dictionary.

Point: the following set of values will represent a JointState or a Pose in RPY or Quater-
nion. Values are separated by commas.

Bool: indicates a Boolean type, and next is the value, True or False, to be stored.

Num: a number is to be stored.

Text: The following string is to be saved.

1 Name: ScriptFile

2 Text: cycle

3

4 Name: Repetitions

5 Num: 10

6

7 Name: GripperActive

8 Bool: False

Robot Agnostic Interface for Industrial Aplications 23

9 Name: GripperInactive

10 Bool: True

11

12 JS: elbow_joint shoulder_lift_joint shoulder_pan_joint wrist_1_joint

wrist_2_joint wrist_3_joint

13 Name: Home

14 Point: 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

15

16 Name: DropPoint

17 Point: 0.5, 0.2, 2.0, 0.0, 0.0, 0.0

18

19 Pose: RPY

20 Name: PickPoint

21 Point: 5.0, 3.0, 2.0, 0.0, 0.0, 0.0

Listing 1: Example of a Text File to Import

For example, if the points are JS, first the joint names will be written, then the name of
the point to store, and then the values. For each entry to be stored in the dictionary, first
the name must be written and then the value. If no new name is used, it will use the
previous name and overwrite the previous data. It will also always overwrite the data if
the key already exists.

Deleting Data

This function will allow deleting dictionary entries. Will ask for the key of the value to
delete, and then ask for confirmation. The key to delete and an option to skip confirmation
can also be given as parameters to avoid the UI.

Using the Editing Menu

A function that displays a menu with different options that the user can select is set as a
UI to allow interaction with the different functions. It offers the following options for files:
Loading, Saving, Save as, List files in Directory, and Delete a Data file. For data handling,
it offers the following functions: Save Current JS, Save Current Pose, Save Input JS, Save
Input Pose, Save Input Boolean, Save Input Number, Save Input Text, Import From Text
File, Delete Point, and List Keys.

These options execute the corresponding functions and, if needed, use the necessary robot
information functions. When accessing the functions through this menu, the default
options are presented, and no option to skip the UI is given. These options are only
available when the functions are manually used in other parts of the code.

24 Master Thesis

Figure 10: Menu Editor with various options available

3.5 Moving the Robot

Now that the information about the robot can be stored, the next step is to actually
move the robot into one of the desired positions. In order to move the robot, first all the
different positions that it has to visit need to be calculated, as the information can be
presented in multiple ways. Then the duration of the movement must be set. With this
information, the object that the execution server can read needs to be set up, and then
the information must be published.

Setting the Trajectory of Joint States

There are two main ways to store the state of a robotic arm: the state of the joints, or
the position of the TCP. Also, multiple ways to store or input the information have been
prepared. But in order to move the robot, the first step is to compile all the positions we
want the robot to visit in a Joint State format.

First, a list of the types of points that will be input is set. This list contains the same
number of elements as the number of points we want the robot to visit during the next
move sequence. Each value of the list is either ‘JS’ for a JointState type, ‘P’ for a Pose
type, ‘F’ for a point in a file, or ‘L’ for a point in the list given as a parameter. If no value
is given, it will ask the user to input a value.

Then, the list will be iterated, and a Joint State object will be added to the list. If the
input type is JS or P, it will ask the user to input the necessary values, and in the case
of a P input, it will also calculate the Inverse Kinematics, all making use of the functions
to obtain robot information. If the type is selected to be from a file, it will then ask the
user for the file and the point, and if the point is of the Pose type, compute the IK to
obtain the JointState. Finally, if it’s a point on the list given as a parameter, it will read
the point from the given data and do the IK if necessary.

Robot Agnostic Interface for Industrial Aplications 25

With this, a list containing a sequence of Joint State configurations is obtained, which
can then be given to the execution server.

Setting the Move duration

Another aspect that must be set for each point that the robot visits is the duration of
the movement up to that point. During the iteration of the point-type list that yields
the objective Joint State, a calculation for the move time is made for each movement and
added to a list containing all the durations for that set of movements.

To calculate the move duration, a simplified approach has been taken. Supposing that
a constant velocity is desired, the duration of a movement between two points has to
be proportional to the distance between those points. If the distance is calculated in
Cartesian space, then the trajectory would have to be be linear for the calculation to be
correct, which is far from the truth. Instead, it is taken the approach to calculate the
distance in the Joint Space. By using as a base the distance that the joints have to rotate,
an accurate distance is obtained, and is faster when computing as no IK calculations need
to be done. The distance is then multiplied by a factor, which the user can change by
using an available function.

It is also given the option for the user to manually input the time in seconds that the
move duration is desired to take.

Set Trajectory Points and Goal

Once all the Joint State points are set, as well as the duration of each movement, the
next step is creating the object necessary for the server to execute the movements.

A Joint Trajectory Point object will be set for each desired point in the trajectory, given
its Joint State and Duration. All the Trajectory Point objects will be added to a list
belonging to a Joint Trajectory Goal Object. This object contains all the Joint Trajectory
Point objects as well as other information related to the robot. This object now contains
all the information necessary to be sent to the Execution server.

Publish the trajectory to Move the Robot

In order for the robot to move, the Joint Trajectory Goal object needs to be published
for the execution server to execute it.

First, an action client to connect to the server is set up with an adequate controller
for the robot. Once a connection to the server is established, the rest of the necessary
parameters are set, and the goal is sent to the server. The server then executes the
movement instructed and informs the program when it has finished correctly.

Utility functions

This module also offers some utility functions to facilitate its use:

26 Master Thesis

The Go Home function moves the robot to a desired stored state. By default, this is the
zero configuration, where all the joints are in the 0 position. It is useful, for example, to
set the initial position of the robot or have a safe position in which to wait.

The RQT library offers a Joint Trajectory Controller interface that allows moving each
joint independently. It can be started from within the program and allows for easily
moving the robot to specific joint configurations.

The Move Menu offers a variety of options to move the robot to different Joint States
or Poses. For example, it allows moving the Robot to an input JS, an Input Pose, a
point in a File, an input JS trajectory, an input Pose Trajectory, an input File Trajectory,
a trajectory combination of the previous types, Start/Stop the RQT Joint Trajectory
Controller, changing the Duration calculation to Automatic or Manual, and changing the
Duration conversion scale.

Figure 11: Move Menu with different optind to indicate where to move the robot

3.6 Scripting Movements

With the ability to move the robot and store information, the next and last functionality
to implement is the execution of scripts. Scripts are a sequence of instructions executed,
not by the computer directly but by another program. In this case, we want commands
to control the flow of execution, read and write variables, and move the robot, all while
keeping the syntax easy to read and understand. This will allow the robot to operate
autonomously through cycles of movements without having an operator imputing each
command.

Data Needed

For the script to be executed, the instructions are not enough. It is also necessary for the
program to know which variables are being referenced when executing some commands.
For this reason, the information is divided into three different files:

Data About the Script: This contains the basic information about the script. Specifically,

Robot Agnostic Interface for Industrial Aplications 27

it contains the names of the rest of the files needed and the basic variables and initial
values used during the execution of the script. The format is the same as for importing
data from a text file, or it can be stored in a binary file. These variables will be loaded
into a dictionary for their use.

Points used in the script: This file will contain the different points that the robot can be
ordered to move to. It is decided to be a different file to allow more flexible data handling.
Data can be changed mid-script, and the execution does not stop. For example, if a
position is obtained externally, a placeholder point should be set up and modified when
the data is read.

The Script: a text file containing the sequence of instructions. Each line is limited to
a single instruction, and the commands available are limited, but enough to handle the
common cases.

Loading or Reading the Data

First, the script information has to be the first to be loaded into the program, as it
contains the rest of the files that have to be loaded. Two options are given: loading
directly from a binary file or importing from a text file. Which one is used will depend
on how the data has been stored.

Next, the corresponding file containing the points will be loaded or imported, depending
on how the data is stored.

Finally, the text file containing the instructions will be read and stored.

Executing the Script

When executing the script, each line is read sequentially, one after the other. Each line
contains one command word and the necessary parameters, if needed. There are two
types of commands: those that perform a set action or function, and those that control
the flow of the execution.

Function Commands:

-Load: it deletes the current data dictionary and then loads the information from a binary
file.

-Import: Same as ‘Load’, but for text files that must be imported.

-Set: It changes the value of the named variable to the value provided.

-MoveTo: Moves the robot to the specified stored point.

-Wait: It pauses the execution until a condition is met. Can wait for a variable to become
’True’, wait for any user input, or wait the given number of seconds.

Flow Commands:

28 Master Thesis

-While: This function checks if the variable specified is ‘True’ or not. If it is, it stores the
line in which this ’While’ is and proceeds with the execution normally. If the variable is
set to ‘False’, it will not execute the following lines unless it’s an ‘EndWhile’.

-EndWhile: When encountering this command, if the last ‘While’ was being executed,
it makes the execution jump to the location of that ’While’ and continue from there. If
the last ‘While’ had a ‘False’ condition and was not executing commands, it allows from
this point forward the execution of commands and deletes the last stored line number to
return to, as it is no longer needed because the while loop is now finished.

-If: When the variable given is ‘True’, it allows the execution of the next commands and
blocks it if the condition is ‘False’.

-Else: If execution was permitted from the last ‘If’, it now blocks it, and if it was blocked,
it now allows it.

-EndIf: It eliminates the last variable that indicated if commands had to be executed or
not. From now on, execution is not conditioned and can proceed normally.

Dummy PLC Simulator

In order to simulate Input/Output signals, a Python program is written to cyclically
read the data file and modify it accordingly when some variables are found to meet some
requirements. The script can then reload the file with the updated variables and act
accordingly.

The Python program is refreshed every second and is hard-coded, meaning it is pro-
grammed to do a specific function and simulate a specific environment. It is not a formal
part of the interface programmed in this project; it is just a tool used for testing.

Robot Agnostic Interface for Industrial Aplications 29

4 Testing

Once the program has been set up, to examine the extent of its capabilities, a series of
tests are conducted and later evaluated. This will determine if the objectives set have
been successfully achieved, what parts can be improved, and how future work can do it.
In this section, the steps to set up the different experiments will be explained.

4.1 Configuration

The first test will be, starting with an empty environment, how a user would use the
program to create the files necessary for executing a script.

-When the program is started, the first thing to do is select the robot that we will be
working with. By entering ’3’, the program will show us a list of all the available robots at
the moment. We then enter the number corresponding to the robot desired. If no robot
is selected, it will load the UR3 by default.

-We are returned to the previous menu, and from there the simulation is started by
entering ‘1’ into the console. The Gazebo simulation will start, and the robot will move
to the Home position. Once everything has loaded correctly, the next menu will appear.

-We enter the File Editor menu, and from here various options appear. To create the
main file for the script, we can either import the information from a text file, or add the
data one by one and save it in a binary document.

-For the first case, importing from a text file, we have to write according to the correct
syntax. That is, first writing ‘Name:’ and stating the name we want to give to the next
variable to import. Then we must state the type of value, followed by the actual value.
Repeat this for every variable desired to be used in the script.

-For the second case, manually entering the values, we must select the option with the data
type we want to store, then enter the value, and finally the name. Once the dictionary is
set, we have to save it.

-The next file to set up is the one containing the possible points the robot can be ordered
to move to. As before, we can import the data from a data file written in the correct
syntax, or we can save the file manually. To manually store the information, various
options are given: we can use the Editor interface to input the data manually if we know
the values of the joints or pose; we can move the robot with external control and then
store the current position; or we can move the robot using the built-in menu to position
the robot and read the current position. With all the points in place, we save the file with
the name specified in the script configuration.

-Finally, we create a text file with the name set in the configuration and write the opera-
tions and logic we want the script to have.

-Editing the text files must be done by the text editor on the computer; the program does

30 Master Thesis

not offer a text editing feature. Different Scripts will be shown in the next tests.

4.2 Pick and Place

Pick and place is one of the most basic robot arm operations. It consists of placing the
robot in a position to grab an object, retreat in a controlled way, go to another position,
approach carefully, and release.

This script will use 5 boolean variables and 7 robot positions. The Boolean Activate-
Gripper, GripperActive, DeactivateGripper, and GripperInactive variables will control
the state of the gripper, and Repeat ensures cyclic execution. The points are the pick
and the place location, the pre-pick and pre-place location, 2 pass-through points, and
the Home point.

1

2 Name: PointFile

3 Text: PAPpoints

4 Name: ScriptFile

5 Text: PAPscript

6

7 Name: Repeat

8 Bool: True

9 Name: ActivateGripper

10 Bool: False

11 Name: DeactivateGripper

12 Bool: False

13 Name: GripperActive

14 Bool: False

15 Name: GripperInactive

16 Bool: True

Listing 2: Pick and Place Configuration File

1

2 load cycledata

3 moveto p0

4 while Repeat

5 wait time 1

6 moveto PrePick

7 wait time 1

8 moveto Pick

9 wait time 1

10 set ActivateGripper True

11 wait GripperActive

12 wait time 1

13 moveto PrePick

14 wait time 1

15 moveto Pass1

16 wait time 1

17 moveto Pass2

18 wait time 1

19 moveto PrePlace

20 wait time 1

21 moveto Place

Robot Agnostic Interface for Industrial Aplications 31

22 wait time 1

23 set DeactivateGripper True

24 wait GripperInactive

25 wait time 1

26 moveto PrePlace

27 endwhile

Listing 3: Pick and Place Script

The script will cyclically repeat the sequence of movements until the Repeat value is set
to ’False’. It will also wait for the variables that express the state of the gripper to be set
to the values requested.

This test shows the basic capabilities needed to perform pick-and-place operations.

4.3 Sorting

The next test will be an expansion of the Pick and Place algorithm. The pickup location
will always be the same, but the place location can change depending on a Boolean
variable. This variable represents, for example, a sensor that classifies the picked object
as one type or another. This way, the robot will place the object in one location or another
depending on the sensor, classifying it.

In this test, the ability to deal with conditional clauses and the capacity to connect
information signals into the script are shown.

1

2 Name: PointFile

3 Text: SORpoints

4 Name: ScriptFile

5 Text: SORscript

6

7 Name: Repeat

8 Bool: True

9 Name: Type1

10 Bool: False

11 Name: Type2

12 Bool: False

13 Name: ActivateGripper

14 Bool: False

15 Name: DeactivateGripper

16 Bool: False

17 Name: GripperActive

18 Bool: False

19 Name: GripperInactive

20 Bool: True

Listing 4: Sorting Configuration File

1

2 load cycledata

3 moveto p0

4 while Repeat

32 Master Thesis

5 wait time 1

6 moveto PrePick

7 wait time 1

8 moveto Pick

9 wait time 1

10 set ActivateGripper True

11 wait GripperActive

12 wait time 1

13 moveto PrePick

14 wait time 1

15 moveto Pass

16 wait time 1

17

18 if Type1

19 set Type1 False

20 moveto Pass1

21 wait time 1

22 moveto PrePlace1

23 wait time 1

24 moveto Place1

25 wait time 1

26 set DeactivateGripper True

27 wait GripperInactive

28 wait time 1

29 moveto PrePlace1

30

31 else

32 if Type2

33 set Type2 False

34 moveto Pass2

35 wait time 1

36 moveto PrePlace2

37 wait time 1

38 moveto Place2

39 wait time 1

40 set DeactivateGripper True

41 wait GripperInactive

42 wait time 1

43 moveto PrePlace2

44

45

46 else

47 set Type1 False

48 set Type2 False

49 moveto Pass3

50 wait time 1

51 moveto PrePlace3

52 wait time 1

53 moveto Place3

54 wait time 1

55 set DeactivateGripper True

56 wait GripperInactive

57 wait time 1

58 moveto PrePlace3

59

Robot Agnostic Interface for Industrial Aplications 33

60 endif

61 endif

62 endwhile

Listing 5: Pick and Place Script

4.4 Bin Picking

It is a core problem in the fields of computer vision and robotics. The goal is for the robot
to pick up pieces that are in an unordered state by finding the correct position for the
pickup with sensors and cameras. The computer vision software will analyze an image
taken of the unordered group of pieces and return the position of a piece to pick. That
position will be sent to the robot, and the necessary calculations will be done to move the
robot to that position, pick up the piece, and move it to the required location.

This problem combines multiple disciplines like robotics, computer vision, communica-
tions, and logic control. To adapt the problem and be able to test only the robotic part,
the communications are simulated with a Python script that will modify the stored data
according to the necessary logic.

The script will offer the option of two movements: loading the machine or unloading
the machine. Variables to indicate the desired movement are set in place, and when the
external logic sets one of them to ’True’, the robot will then execute that movement.

Each movement has a predetermined number of positions the robot will sequentially visit.
Except for the position to pick up the piece, where the script will wait until the external
program informs it that it has set the pickup point, a placeholder pickup point must be
set in place when stating the available points.

This script shows two pick-and-place sequences, where the external signal selects which
to execute. Moreover, one of the points the robot has to move to is changed every cycle
by the external script. This shows all the main capabilities the program has to offer.

1

2 Name: PointFile

3 Text: BINpoints

4 Name: ScriptFile

5 Text: BINcycle

6

7 Name: Repeat

8 Bool: True

9 Name: LoadMachine

10 Bool: False

11 Name: UnloadMachine

12 Bool: False

13 Name: AskPickupPoint

14 Bool: False

15 Name: PickupPointSet

16 Bool: False

17 Name: ActivateGripper

18 Bool: False

34 Master Thesis

19 Name: DeactivateGripper

20 Bool: False

21 Name: GripperActive

22 Bool: False

23 Name: GripperInactive

24 Bool: True

Listing 6: Bin Picking Configuration File

1 load cycledata

2 moveto p0

3 wait time 1

4 while Repeat

5 load cycledata

6 wait time 1

7 if LoadMachine

8 set LoadMachine False

9 set AskPickupPoint True

10 wait var PickupPointSet

11 set PickupPointSet False

12 moveto pinput

13 wait time 1

14 set ActivateGripper True

15 wait GripperActive

16 moveto p0

17 wait time 3

18 moveto p1

19 wait time 3

20 moveto p2

21 wait time 3

22 set DeactivateGripper True

23 wait GripperInactive

24 moveto p2

25 wait time 3

26 moveto p1

27 wait time 3

28 moveto p0

29 wait time 3

30 else

31 if UnloadMachine

32 set UnloadMachine False

33 moveto p0

34 wait time 3

35 moveto p2

36 wait time 3

37 moveto p1

38 wait time 3

39 set ActivateGripper True

40 wait GripperActive

41 moveto p3

42 wait time 3

43 moveto p4

44 wait time 3

45 set DeactivateGripper True

46 wait GripperInactive

47 moveto p4

Robot Agnostic Interface for Industrial Aplications 35

48 wait time 3

49 moveto p3

50 wait time 3

51 moveto p0

52 wait time 3

53 endif

54 endif

55 endwhile

Listing 7: Bin Picking Script

Robot Agnostic Interface for Industrial Aplications 37

5 Results

With these tests executed, a full understanding of the program’s capabilities and limi-
tations can be obtained. From the general setup to the simple and complex scripts, the
program has managed to execute properly and yield the expected results. Still, shortcom-
ings have also been found.

During the configuration stage, one is able to easily store all the main information desired.
Storing simple data is very straightforward through the presented interface. In the case
of storing points for the robot, it gets a bit more complicated. Changing between menus
multiple times makes the task tedious, and importing requires knowing the position be-
forehand. The interface for editing existing values is also lacking, as it is faster to simply
overwrite the data.

In the scripting part, the robot is shown to be able to work cyclically, do pick-and-place
operations, and act according to variables that are modified by an external input. It
meets the basic requirements for the most common operations done with robots, but for
more complex systems, the options provided may not be enough. Firstly, the syntax and
requirements can be a bit confusing if one is not familiar with them. The script being
in text shape does not help with readability, making it more complex to write longer
programs. Finally, the number of commands available can be found to be limited, as no
mathematical or Boolean operations are allowed, and there are only two functions that
control the flow of the program. The functions provided are enough for simple programs,
but complex ones may require some intricate use of these functions.

Robot Agnostic Interface for Industrial Aplications 39

6 Impact

Industrial Application

This program is not yet fit for industrial application, but with more work and polishing,
it could make its way into the industry. It would significantly reduce the training time
for the robot operators, as learning one interface could be enough to program different
manufacturers’ robots.

Open Source

This project has been conceived in an Open Source context, as have most of the tools
used during its development. With this, the community of robotic enthusiasts can edit
and improve the program and expand the viewpoints, skills, manpower, and impact that
this program can have.

Access to all the code can be done through my Github Repository [21].

Personal Learning

On a personal level, this project has allowed me to improve my programming skills,
deepen my knowledge about ROS, and consolidate everything learned during this master’s
degree. It has also helped with soft skills like organization, synthesizing, research, analysis,
commitment, and focus.

Environmental

This project’s software does not have any direct impact on an environmental level, but
its development and use require electricity, which needs to be generated, which in turn
generates CO2 emissions. This project has been completed in approximately 600 hours,
and the work has been done exclusively on a computer as simulations were run instead
of real robots. The total energy consumption of an 80W computer is 48 kWh. With an
average of 195 gCO2/kWh [4], this results in the emission of 9.36 kg of CO2 into the
atmosphere.

Economic

The economic impact this project has had is calculated by adding all the costs of the
different elements that have participated in the project. First, the cost of the dedication of
an engineer has been estimated at 15AC/h, which for the 600 hours of labor results in a cost
of 9000AC. The next term is associated with the materials used, in this case, the computer.
Two different computers have been used: a desktop and a laptop computer. The first
one had an initial cost of 1500AC, and the laptop 1000AC. With an amortization rate of
20% per year, the 6 months of this project yield 10% of amortization. As each computer
was used for half the time, the amortization is actually half of that value. This yields 75
and 50 ACin amortization costs, respectively. Finally, the consumption of electricity. The

40 Master Thesis

power consumption of both computers is equivalent, so the previous calculated electricity
consumption is used. 48 kWh at 0.2966AC/kWh [3] results in 14.23ACspent on electricity.

Concept Base Amortization Hourly cost Hours Subtotal
Engineer 15AC/h 600 h 9000AC

Desktop Computer 1500AC 5% 75AC
Laptop Computer 1000AC 5% 50AC

Electricity 48 kWh 0.2966AC/kWh 600 h 14.23AC
Total 9139.23AC

Table 2: Summary of costs

Robot Agnostic Interface for Industrial Aplications 41

7 Conclusions

Objectives Achieved

The objectives initially described started with the intention of creating an interface in
order to control any type of robotic arm. The bulk of the project has been done in
simulation with a UR3 robot, but limited testing with other robots has also been done.
The UR series is provided with all the necessary files for launching the simulations, but
Fanuc and ABB lack some simulation files. By manually creating these files, a workaround
is found, but some parameters not provided make the simulation inaccurate. The pool of
selectable robots is currently limited to UR and a couple Fanuc robots, but this amount
can be easily expanded by completing the files for the simulation with the model described.
This objective has been achieved, even if this feature is in a limited state, but it can be
improved with ease.

The second main objective was creating a system to store and load data. It has been
completed by allowing the storage of data in a dictionary, which can hold multiple data
types. Also, an import file option makes it easier than using the rudimentary interface.
Importing is preferred in cases with a lot of data, while the interface would be preferable
for adding or modifying data units.

The scripting language created is also capable of solving the initial problems presented.
The number of functions is limited, but sufficient to successfully solve the typical cases of
robotic arm operations. An important feature is being able to communicate data through
a very simple and rough method, but reading and writing nonetheless.

Further Work

The objectives accomplished represent a milestone, but improvements, optimizations, and
expansions could be made. Firstly, expanding the robot models available and testing with
real robots. It would increase the usability of the program and make it more accessible
to whoever would like to use it.

Also, an improvement in the user interface would help. Currently, it is only a simple
interface, as the focus of the project was to create the program without necessarily making
it look good. The way the program is structured is to facilitate the later integration of a
UI done with, for example, PyQt.

Finally, improving the scripting language by expanding the functions available and adding
more options for the existing ones would facilitate writing scripts. Currently, some knowl-
edge of programming is required to write complex scripts, but with more options, it could
be reduced.

Doing so can be done by researchers or collaborators of the ROS project, as the code is
open source and anyone can contribute to improving it.

42 Master Thesis

Overall Conclusions

This project has served to do an analysis of the current state of robotic arms and the tools
available to program and control them. ROS is a very powerful tool, and its flexibility
allows creating environments capable of working with different robots, even from different
manufacturers. This can serve as a starting point for great further developments, by
allowing community and researches to have a solid starting point to continue developing
this idea, if they see future in it.

Robot Agnostic Interface for Industrial Aplications 43

Bibliography

[1] Brief Robotic Arm History ”https://tedium.co/2018/04/19/
robotic-arm-history-unimate-versatran/”

[2] Brief History of Industrial Robots, ”https://www.wevolver.com/article/
a-history-of-industrial-robots”

[3] Average Electricity prices in Spain ”https://electricityinspain.com/
electricity-prices-in-spain/”

[4] Emisions of CO2 per kWh, ”https://www.nowtricity.com/country/spain/”

[5] Trac-IK webpage, ”https://traclabs.com/projects/trac-ik/”

[6] ROS Documentation, ”http://wiki.ros.org/”

[7] Python Documentation, ”https://docs.python.org/3/”

[8] Git description, ”https://git-scm.com/”

[9] ROS-2 Documentation , ”https://docs.ros.org/en/rolling/index.html”

[10] Ubuntu Releases, ”https://wiki.ubuntu.com/Releases”

[11] Main ROS webpage, ”https://www.ros.org/”

[12] CIM-upc webpage, ”https://www.cimupc.org/en/”

[13] ABB interface example, ”https://control.com/technical-articles/
introduction-to-abb-robot-programming-language/”

[14] ABB RoboStudio, ”https://new.abb.com/products/robotics/robotstudio”

[15] Fanuc Programming example, ”https://control.com/technical-articles/
introduction-to-fanuc-robot-programming/”

[16] Unimate Picture, ”https://www.techspot.com/images2/trivia/bigimage/2021/
2021-12-17-image.jpg”

[17] Fanuc Robots Picture, ”https://www.techspot.com/images2/trivia/bigimage/
2021/2021-12-17-image.jpg”

[18] UR interface Picture, ”https://www.universal-robots.com/media/1810404/1.
png?width=800&height=500”

[19] Fanuc Interface Picture, ”https://motioncontrolsrobotics.com/wp-content/
uploads/2018/01/alarm-history.pngg”

https://tedium.co/2018/04/19/robotic-arm-history-unimate-versatran/
https://tedium.co/2018/04/19/robotic-arm-history-unimate-versatran/
https://www.wevolver.com/article/a-history-of-industrial-robots
https://www.wevolver.com/article/a-history-of-industrial-robots
https://electricityinspain.com/electricity-prices-in-spain/
https://electricityinspain.com/electricity-prices-in-spain/
https://www.nowtricity.com/country/spain/
https://traclabs.com/projects/trac-ik/
http://wiki.ros.org/
https://docs.python.org/3/
https://git-scm.com/
https://docs.ros.org/en/rolling/index.html
https://wiki.ubuntu.com/Releases
https://www.ros.org/
https://www.cimupc.org/en/
https://control.com/technical-articles/introduction-to-abb-robot-programming-language/
https://control.com/technical-articles/introduction-to-abb-robot-programming-language/
https://new.abb.com/products/robotics/robotstudio
https://control.com/technical-articles/introduction-to-fanuc-robot-programming/
https://control.com/technical-articles/introduction-to-fanuc-robot-programming/
https://www.techspot.com/images2/trivia/bigimage/2021/2021-12-17-image.jpg
https://www.techspot.com/images2/trivia/bigimage/2021/2021-12-17-image.jpg
https://www.techspot.com/images2/trivia/bigimage/2021/2021-12-17-image.jpg
https://www.techspot.com/images2/trivia/bigimage/2021/2021-12-17-image.jpg
https://www.universal-robots.com/media/1810404/1.png?width=800&height=500
https://www.universal-robots.com/media/1810404/1.png?width=800&height=500
https://motioncontrolsrobotics.com/wp-content/uploads/2018/01/alarm-history.pngg
https://motioncontrolsrobotics.com/wp-content/uploads/2018/01/alarm-history.pngg

44 Master Thesis

[20] ABB Interface Picture, ”https://roboticsbook.com/wp-content/uploads/2018/
11/Fig_67.png”

[21] Github page where to fing the code, ”https://github.com/Lynkx95/TFM”

https://roboticsbook.com/wp-content/uploads/2018/11/Fig_67.png
https://roboticsbook.com/wp-content/uploads/2018/11/Fig_67.png
https://github.com/Lynkx95/TFM

	Introducction
	State of the Art
	Motivation
	Objectives
	Scope

	Resources
	Linux-Ubuntu
	ROS
	Programming Languages
	Robots
	Other Resources

	Implementation
	Structure
	Launching the Simulation
	Obtaining Information about the Robot
	Storing and Loading Data
	Moving the Robot
	Scripting Movements

	Testing
	Configuration
	Pick and Place
	Sorting
	Bin Picking

	Results
	Impact
	Conclusions
	Conclusions
	Bibliografia

