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Abstract

Climate models estimate the dynamics of the fluids on Earth by solving

equations on finite grids. The physical processes below the resolution of

climate models have statistical effects on the resolved scales. To account

for them, models incorporate subgrid parametrizations. Devising effective

parametrizations is crucial when producing accurate, long-term climate

predictions. In this work, we address this challenge by using the scattering

transform to study and model the closure problem in the scattering domain

and we develop a generative model and a super-resolution method for

turbulence fields.
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scattering transform, signal processing, super-resolution, turbulence
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Resum

Els models climàtics estimen la dinàmica dels fluids a la Terra resolent

equacions contínues en quadrícules finites. Els processos físics per sota

de la resolució dels models climàtics tenen efectes estadístics a les escales

resoltes. Per tenir-los en compte, els models incorporen parametritzacions.

El desenvolupament de parametritzacions efectives és crucial per produir

prediccions climàtiques precises a llarg termini. En aquest treball, abordem

aquest problema utilitzant l’scattering transform per estudiar i modelar el

problema de clausura en el domini d’scattering, i desenvolupem un model

generatiu i un mètode de superresolució per a camps de turbulència.

Paraules clau: clima, problema de clausura, modelatge generatiu, aprenent-

atge automàtic, scattering transform, processament del senyal, superresolució,

turbulència

MSC2020: 68T07, 76F65, 94A12



Resumen

Los modelos climáticos estiman la dinámica de los fluidos en la Tierra

resolviendo ecuaciones en cuadrículas finitas. Los procesos físicos por debajo

de la resolución de los modelos climáticos tienen efectos estadísticos en las

escalas resueltas. Para tenerlos en cuenta, los modelos incorporan parametriza-

ciones. El desarrollo de parametrizaciones efectivas es crucial para producir

predicciones climáticas precisas a largo plazo. En este trabajo, abordamos

este problema utilizando la scattering transform para estudiar y modelar el

problema de clausura en el dominio de scattering, y desarrollamos un modelo

generativo y un método de superresolución para campos de turbulencia.

Palabras clave: clima, problema de clausura, modelado generativo, aprend-

izaje automático, scattering transform, procesamiento del señal, superresolu-

ción, turbulencia
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Introduction 1
Climate models play a vital role in understanding and pre-

dicting the Earth’s climate system. One important aspect

that these models need to consider is the representation of

ocean mesoscale eddies, which are large swirling motions of

water in the ocean. These eddies hold a significant amount

of the ocean’s kinetic energy and are crucial for transporting

heat and trace chemicals. The choice of grid resolution in

climate models is a critical decision. If the resolution is too

fine, it can result in lengthy simulations. On the other hand,

a coarse grid may fail to resolve many important processes.

To address this challenge, climate scientists design subgrid

parametrization techniques. These techniques involve incor-

porating statistical models of unresolved scales to achieve

physically realistic results while keeping the simulations

computationally efficient.

On another topic, the scattering transform is a translation-

invariant representation of a signal obtained by cascading

wavelet transforms, applying non-linearities, and averaging

the wavelet coefficients. This transform is stable to additive

noise and Lipschitz continuous to the action of small diffeo-

morphisms, while preserving the energy of the signal.

The objective of our work is to leverage the properties of the

scattering transform to address the closure problem in large

eddy simulations. To achieve this, we develop a generative

model for turbulence fields and a super-resolution method

that can enhance low-resolution fields to high-resolution

ones. These components form the foundation for the devel-

opment of a subgrid parametrization approach that utilizes

the scattering transform. In our study, we focus on po-

tential vorticity fields generated using a quasi-geostrophic

model, which is a testbed model that effectively captures

the dynamics of mesoscale eddies.

This report is organized as follows. In Chapter 2, we provide

an introduction to climate models and describe the model

used to simulate ocean turbulence. Chapter 3 addresses the

closure problem in large eddy simulations and explores the

challenges encountered by data-driven parametrizations
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when tackling this problem. Chapter 4 introduces the scat-

tering transform and examines its various mathematical

properties. Chapter 5 presents our implementation of the

scattering transform, building upon the Kymatio package

while making improvements to the existing code. We also

conduct an analysis of its correctness and performance. In

Chapter 6, we outline the synthesis method for turbulence

fields. Chapter 7 focuses on the super-resolution method

and provides a comparison with current approaches to

demonstrate its potential.

The results presented in this thesis will be expanded upon

in the near future as they show a promising approach to

turbulence closure modeling.



Figure 2.1: Spatial resolution

evolution in global climate mod-

els featured in the IPCC As-

sessment Reports: FAR (IPCC,

1990), SAR (IPCC, 1996), TAR

(IPCC, 2001a), and AR4 (2007).

The figure shows the progress-

ive improvement in horizontal

resolution for Northern Europe

across successive generations of

climate models. Vertical resolu-

tion is not depicted, but has also

increased in both atmospheric

and oceanic models. Reprinted

from (Le Treut, Somerville et al.

2007).
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2.1 Grid-Based Climate Dynamics . 3

2.2 Multiscale Dynamics of the

Ocean . . . . . . . . . . . . . . . . 4

2.3 Oceanic Dual Energy Cascade . 5

2.4 2-Layer Quasi-Geostrophic

Model . . . . . . . . . . . . . . . . 6

Climate models are complex simulations that provide valu-

able insights into the future of our planet’s climate. Climate

refers to the statistical properties of meteorological variables

over extended periods, ranging from months to decades

and beyond. Unlike short-term weather forecasting, climate

models focus on predicting long-term climate patterns.

By simulating various scenarios, such as changes in green-

house gas emissions, climate models enable us to anticipate

how the climate will evolve in the future. However, the

accuracy of these models depends on various factors, such

as their complexity and the computing resources available.

Climate models are computationally expensive and require

significant time and resources to produce reliable results.

Achieving high accuracy can be particularly challenging,

and even with the use of powerful supercomputers, it can

be cost-prohibitive.

2.1 Grid-Based Climate Dynamics

In order to simulate Earth’s climate, climate models divide

the Earth’s surface into a grid, assigning prognostic variables

to each grid cell and facilitating a transfer of information

between neighboring cells. Numerical methods are then

used to solve equations of fluid motion for these variables to

approximate the dynamics of Earth’s fluids. These equations

typically consist of partial differential equations, such as

the Navier-Stokes equations or simplified versions, along

with thermodynamics and conservation laws.

Depending on the model’s specific objective, the grid config-

uration can be either two-dimensional or three-dimensional

and may cover particular regions or the entire planet. This

decision impacts the grid’s resolution and determines the

number of cells that can be taken into account while main-

taining computational feasibility.

Climate dynamics are modeled using both scalar variables,

such as air temperature, pressure, density, and water vapor
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Figure 2.2: Anticyclonic 150-

kilometer-wide eddy, located

approximately 800 kilometers

south of South Africa. Eddies

within the Agulhas current are

often among the world’s largest.

The light blue color is a result of

a phytoplankton bloom. Reprin-

ted from (Allen and NASA Earth

Observatory 2011).

Figure 2.3: Chlorophyll concen-

trations in the waters off of South

Korea and Japan showing the dy-

namics of surface currents. Re-

printed from (Allen and NASA

Earth Observatory 2016).

content, and vector variables, like wind. The physical laws

governing these variables include the ideal gas law and

conservation principles for air mass, water mass, energy,

and air momentum. By solving these equations over space

and time, we can simulate the behavior of Earth’s climate.

To represent the various components of Earth’s climate,

including the atmosphere, the ocean, and the ice, climate

models are frequently subdivided and coupled together in

global models (Eltahir and Krol 2021).

2.2 Multiscale Dynamics of the Ocean

The ocean serves as the planet’s primary reservoir for heat

and carbon. Ocean circulation redistributes these elements

around the globe, having a major role in the evolution

of the climate system. Ocean flow dynamics span a wide

range of scales, from those imposed by land boundaries to

Kolmogorov dissipation scales, which represent the smallest

scales in turbulent flows and where kinetic energy dissipates

into heat. This discussion will focus on three ocean processes

occurring at different scales: ocean mixing, mesoscale ocean

eddies, and large-scale ocean dynamics.

Ocean mixing, a small-scale process insufficiently represen-

ted in modern ocean models, has a considerable impact on

the large-scale ocean climate. The mixing process is driven

by mechanical forces (wind and tides), buoyancy forces

in surface layers (ice formation), and friction forces at the

ocean floor. This process alters the water’s temperature,

salinity, dissolved gases, and nutrient content, ultimately

shaping oceanic conditions (Legg and Hallberg 2023).

At larger scales, ocean mesoscale eddies are swirling strong

water currents with horizontal scales ranging from tens to

hundreds of kilometers and can persist for weeks to months

(Adcroft, Griffies et al. 2023). Although their depth spans

only a few kilometers, they account for the bulk of the

kinetic energy in ocean circulation. Eddies play a crucial

role in transporting heat, nutrients, and dissolved gases

like carbon dioxide across vast distances. Figure 2.2 by

(Allen and NASA Earth Observatory 2011) and Figure 2.3

by (Allen and NASA Earth Observatory 2016) depict eddies

in the Agulhas Current and near Japan and South Korea,
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respectively. These eddies upwell nutrients from the depths,

sustaining marine life in surface waters.

Mesoscale eddies can form through two primary mech-

anisms: baroclinic instability and local topography. In the

presence of baroclinic instability, eddies develop by drawing

potential energy from the mean flow (Grotjahn 2003). Local

topography can also create disturbances in the surround-

ing water, as observed in the eddy formed within the East

Greenland Current (Smith, Morison et al. 1984).

Lastly, large-scale ocean dynamics significantly impact

global and regional climate systems. One notable example is

the Atlantic Meridional Overturning Circulation (AMOC),

a circulation system that transports warm water northward

and cold water southward, with both currents eventually

looping back. It takes roughly a thousand years for a cu-

bic meter of water to travel through the network of global

ocean currents known as the global conveyor belt (NOAA

2023). The AMOC is an integral component of this global

conveyor belt, affecting various climate phenomena such

as Sahel and Indian summer monsoon rainfall, Atlantic

hurricane activity, and Arctic climate conditions (Zhang

2023). Gaining insights into the dynamics of large-scale

ocean circulation and associated low-frequency patterns is

essential for accurately predicting not only low-frequency

climate variability but also its overall contribution to the

entire system.

2.3 Oceanic Dual Energy Cascade

Solar radiation, wind, and tides act on large scales of the or-

der of 103 kilometers and are the primary external forces on

the ocean. The energy acquired in these processes eventually

dissipates as heat on much smaller scales, the Kolmogorov

scales, which are around 1 millimiter in size. Oceanic tur-

bulence redistributes the energy across this wide spectrum

of scales, ranging from local ocean mixing processes to

global ocean currents. The various scales interact in a non-

linear manner and relatively locally in frequency, so that

the transfer occurs between scale-adjacent circulations.

A dual behavior can be observed in the ocean’s turbulent

energy cycle, as the kinetic energy flows in two directions.
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On the one hand, eddies dissipate as their energy is trans-

ferred to smaller scales through a forward cascade of kinetic

energy. On the other hand, there is also an inverse energy

cascade, where energy from smaller scales is transferred

back and powers large-scale circulations.

Within the mesoscale range, a small fraction of the energy

dissipates towards the submesoscale range. However, the

majority of the energy follows the inverse cascade, lead-

ing to the formation of large-scale structures in the ocean.

For accurate predictions, simulations need to successfully

capture the backscatter from small to large scales. If not,

energy may accumulate and lead to numerically unstable

and unrealistic models.

2.4 2-Layer Quasi-Geostrophic Model

The quasi-geostrophic equations are derived from simpli-

fying the Navier-Stokes fluid equations of motion by con-

sidering hydrostatic and geostrophic balance. Hydrostatic

balance refers to the balance between the pressure gradient

and the gravitational force in the vertical direction, while

geostrophic balance is the balance between the pressure

gradient and the Coriolis force in the horizontal direction.

These equilibriums are relevant in the context of climate

modeling because large-scale processes in the atmosphere

and the ocean are characterized by approximate hydrostatic

and geostrophic equilibrium (Vallis 2017).

Quasi-geostrophic models have been proven useful to de-

velop and test physics-based ocean parametrizations, as

they can resolve ocean mesoscale eddies and be efficiently

simulated in comparison to more sophisticated ocean mod-

els such as general circulation models (GCMs). GCMs are

coupled atmosphere-ocean three-dimensional models that

numerically solve the Navier-Stokes equations (Mechoso

and Arakawa 2015).

As single-layer quasi-geostrophic models fail to describe

oceanic vertical motions, we use multi-layer quasi-geostrophic

models. In particular, a 2-layer idealized model is a common

and suitable choice. The 2-layer quasi-geostrophic model

considers two layers of homogeneous fluids with constant

densities ρ1 and ρ2. The lighter fluid lies on top, ensuring the
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Figure 2.4: Potential vorticity

fields of the top and bottom lay-

ers, generated using the PyQG

package for the low-resolution

configuration.

Figure 2.5: Potential vorticity

fields of the top and bottom lay-

ers, generated using the PyQG

package for the low-resolution

configuration.

system is gravitationally stable, with ρ1 ≤ ρ2. The system

is confined in a rotating box, and the interface between the

two fluids is a horizontal plane. The depth of each layer is

denoted by H1 and H2 (Pedlosky 1970).

The potential vorticity qi and the streamfunction ψi of layer

i ∈ 1, 2 are key variables in the model. The potential vorti-

city is modeled by quasi-geostrophic systems and is propor-

tional to the scalar product of the absolute vorticity and the

gradient of the potential temperature. The streamfunction

ψi is related to the flow velocity components ui and vi in

the x and the y direction, respectively, by the equations

ui = −∂ψi

∂y
, vi =

∂ψi

∂x
.

Following (Abernathey, rochanotes et al. 2022), we write

the 2-layer quasi-geostrophic evolution equations as

∂tq1 + J(ψ1, q1) + β1∂xψ1 = ssd (2.1)

∂tq2 + J(ψ2, q2) + β2∂xψ2 = ssd − rek∇2ψ2, (2.2)

where the non-linear horizontal Jacobian is defined as

J(u, v) = ∂xu∂yv − ∂yu∂xv.

The term rek denotes the Ekman friction parameter and ssd

denotes small-scale dissipation. The mean potential vorticity

gradients are β1 = β+F1(U1−U2) and β2 = β−F2(U1−U2),

where the beta-plane approximation is used, such that the

Coriolis acceleration is a linear function of latitude y with

slope β, i.e. f = f0 + βy. The quantity U1 − U2 is a fixed

mean zonal velocity shear between the two fluid layers,

F1 =
k2d
1+δ

and F2 = δF1. The layer thickness ratio is δ = H1

H2

and the deformation wavenumber is

k2d =
f 2
0

g′
H1 +H2

H1H2

,

where g′ is the reduced gravity or buoyancy jump

g′ =
g(ρ2 − ρ1)

ρ1

and f0 is the Coriolis parameter. The ssd term accounts for

the dissipation that occurs at small-scales when the energy
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cascades down to them. It is implemented as an exponential

filter that attenuates the energy in the small scales. The

linear bottom drag in 2.2 dissipates kinetic energy from the

large scales and smoothes the structures in the bottom layer.

With this notation, the potential vorticities are

q1 = ∇2ψ1 + F1(ψ2 − ψ1) (2.3)

q2 = ∇2ψ2 + F2(ψ1 − ψ2). (2.4)

To simulate the 2-layer model we use PyQG, a Python

package devised for simulating quasi-geostrophic dynamics

in both atmospheric and oceanic fluid systems (Abernathey,

rochanotes et al. 2022). It relies on a pseudo-spectral method

that computes fast Fourier transforms considering periodic

boundary conditions. We use the 2-layer model in the PyQG

package because of its computational speed and capacity to

resolve eddies, even within an idealized model framework.

Although it does not capture all the details of complex

climate models, PyQG effectively represents the essential

fluid dynamics needed for our research and can lead to

relevant insights applicable to other models. The model

parameters mirror the eddy configuration outlined in (Ross,

Li et al. 2023) and are given in Table 2.1 and Table 2.2.

Table 2.1: Parameters of the 2-layer quasi-geostrophic model used in the simulations. They correspond to

the eddy configuration in (Ross, Li et al. 2023).

Simulation parameters

Integration time 5 years

Time step ∆t 1 hour

Domain size (L,W ) (1000, 1000) km

Ocean depth H = H1 +H2 2500 m

Upper layer thickness H1 500 m

Bottom drag rek 5.787 · 10−7
s
−1

Differential rotation β 1.5 · 10−11 (m · s)−1

Deformation radius rd =
1
kd

15 km

Mean flow (U1, U2) (0.025, 0) m / s

Table 2.2: Grid parameters used in the simulations.

Grid parameters Resolution Grid step

High resolution 256× 256 3.9 km

Low resolution 64× 64 15.6 km

We will simulate 5-year trajectories on a 1000 km × 1000

km rectangular domain with a temporal resolution ∆t of 1
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hour. Our study considers two different spatial resolutions.

The high-resolution configuration uses a 256 × 256 grid,

translating to a grid step of 3.9 km, while the low-resolution

configuration uses a 64 × 64 grid with a grid step of 15.6

km. Figure 2.4 and Figure 2.5 depict how the potential

vorticity fields look like for these settings. We refer to the

high-resolution simulation as eddy-resolving because it

has the capacity to accurately resolve mesoscale eddies.

On the other hand, the low-resolution configuration is

termed eddy-permitting, given that mesoscale eddies can

appear in the simulations, but their dynamics are not fully

resolved (Chen, Barham et al. 2018). The simulations start

with banded random initial conditions and go through a

transient spin-up state until they reach the quasi-steady

state after a few simulation years.
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Oceanic turbulence flows exhibit temporal and spatial scales

of motion spanning many orders of magnitude, from the

largest scales defined by the boundaries to the Kolmogorov

scales where the disspation occurs, making direct simu-

lations at high resolutions cost-prohibitive. Instead, large

eddy simulations choose to only resolve low-frequency com-

ponents of the spectrum and statistically model the effect of

high-frequency components on the resolved scales. This ap-

proach involves fixing a resolution that is computationally

feasible, but excludes processes occurring on smaller scales,

such as ocean mixing, which can have an impact on larger

scales due to the inverse energy cascade.

These overlooked processes are referred to as subgrid pro-

cesses and can be modeled in climate models using subgrid

parametrizations. Parametrizations model the statistical ef-

fects of subgrid processes on resolved scales, providing a

computationally efficient way to achieve more realistic simu-

lations without increasing the resolution. The ultimate goal

is to design a closed system that accurately describes climate

evolution, with a closure map that accounts for the impact

of unresolved processes on modeled variables. Developing

effective and comprehensive parameterizations remains one

of the most critical challenges in creating accurate climate

models and is currently an active area of research.

The main references for this chapter are (Lesieur 1997) and

(Sagaut 2001).

3.1 Turbulence Closure Modeling

J. Boussinesq first introduced the problem of turbulence

closure modeling, which has been extensively studied for

over a century. Despite the long history of research in this

area, it remains an active topic due to its importance and

relevance to a wide range of fields.
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Note that we do an abuse of nota-

tion because we use q to denote

indistintively the filtering or the

filtering and coarse-graining of

the field.

3.1.1 Problem Statement

Let q(x, t) be the solution of the continuous equations we

want to solve and let the dynamics of this field be described

by the differential equation

∂q

∂t
= F (q), (3.1)

where F is a non-linear operator. When we are numerically

solving this problem, we consider q, the solution of the dis-

cretized equations on a grid. The problem then becomes

∂q

∂t
= F (q), (3.2)

where the time-stepping is carried out with a numerical

method, hence the introduction of the overline in F . The

filtered and coarse-grained field is denoted with q. As

the high-frequencies are attenuated, the field is typically

subsampled onto a coarser grid after the filtering. It is

important to note that the mapping between the high-

resolution and low-resolutions representations is many-to-

one.

The filtering process can be expressed as

q(x, t) = q(x, t) + q′(x, t) (3.3)

q(x, t) = G ∗ q(x, t), (3.4)

where G represents a low-pass filter and q′(x, t) represents

the unresolved term. A detailed examination of the filtering

process will be presented later. We are studying the explicit

large eddy simulation approach as described in (Sagaut

2001), which involves adding a forcing term, known as the

subgrid model, at each time-step when numerically solving

the governing equations. The subgrid model is formulated

in terms of the resolved scales, and several definitions of

the subgrid forcing are commonly used in this context. We

have chosen to utilize the total tendency definition given

by

S =
∂q

∂t
− ∂q

∂t
, (3.5)

which allows us to adjust the method at each step using

∂q

∂t
= F (q) + S. (3.6)
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In this scenario, the subgrid forcing accounts for the com-

mutation error
∂q
∂t

̸= ∂q
∂t

and includes the nonlinear advection

present in the governing equations along with the numer-

ical dissipation. Although this definition is less physically

inspired than other alternatives, it is suitable for our pur-

poses, as we aim to model S using a data-driven oracle.

Moreover, tests have indicated that different definitions

yield numerically equivalent results for the problem at

hand.

A common strategy for accounting for the effects of un-

resolved processes in simulations is to run both high-

resolution and low-resolution simulations with the same

initial conditions. At each step of the low-resolution simula-

tion, a subgrid correction term is added using Equation 3.6

to account for the unaccounted effects of unresolved scales.

Hence, the subgrid term is problem-specific and depends

heavily on the filter used for scale separation. Since it is

incorporated into the numerical simulation workflow, it

must also be computationally efficient and locally specific

in space and time, while preserving the stability of the

numerical simulation.

3.1.2 Scale-Separation Filtering

The scales in the solution are divided into resolved scales

and subgrid scales, as depicted in Figure 3.1. The lower fre-

quencies are computed spatially using a numerical method,

while the higher frequencies are modeled through the sub-

grid term. In other words, the governing equations are

solved on a coarser grid where small scales are not represen-

ted. The explicit separation between small and large scales

is done with a low-pass filter.

In our case, we use a sharp filter such as the operator 1 in

(Ross, Li et al. 2023), which attenuates the high-frequencies.

Specifically, we consider the filterGwith transfer function

Ĝ(ω) =

{
1 if |ω| < κ

exp[−23.6 · (|ω| − κ)4 · (∆x)4] otherwise,

(3.7)

where ∆x represents the spatial resolution of the coarser

grid and κ is
2
3

of the Nyquist frequency of the coarser grid.
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Figure 3.1: Illustration of the

concept of scale separation in

large eddy simulations. The x-

axis represents the wavenumber

k in the spectral domain, while

the y-axis represents the energy

of the field. The cutoff line de-

picted in the figure indicates

the separation that would be ob-

tained by a sharp cutoff filter.

This filter separates the field into

resolved and unresolved scales,

with all frequencies below the

cutoff line considered resolved

and all those above the cutoff

line considered unresolved.

By the definition of the convolution, the filter is linear,

G ∗ (u+ v) = G ∗ u+G ∗ v, (3.8)

and it commutes with the time derivative

G ∗ ∂q
∂t

=
∂

∂t
(G ∗ q). (3.9)

The filterG is not a Reynolds operator, which means that the

filtered variable q is not equal to the double filtering of q, so

q ̸= q, and that the filtering of the unresolved term q′ does

not vanish, so q′ ̸= 0. In fact, this filter is invertible, since

it has not yet projected the field onto a lower dimensional

space. The resulting filtered field q is more regular than the

original field q, as it attenuates the high frequencies.

This filter is non-local in space and non-local in frequency,

and there is a little overlap in frequencies between the

filtered field q and the unresolved term q′. However, it is

close to a sharp cutoff filter, which is a common filtering

choice that is non-local in space but local in frequency. Other

classical filters include the top-hat filter, which is local in

space but non-local in frequency, and the Gaussian filter,

which is non-local both in frequency and space due to its

non-compact support.

After the filtering, the data is subsampled in the spatial

domain to obtain the desired resolution for the coarse-

grained field. The cutoff frequency is chosen to retain all

active scales in the filtered field, and this is the step where

the loss of information occurs. We use this filter because it is

the same filter utilized by PyQG implement the small-scale
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dissipation in the governing equations. As a result, it is the

most conservative choice of filter, given that the numerical

method already applies it.

3.2 Challenges of Data-driven Parametrizations

Traditional approaches use fluid mechanics knowledge to

identify certain properties in the resolved scales that imply

the presence of small-scale effects, or they introduce latent

variables like the kinetic energy of the subgrid scales. The

modeling of large eddy simulations has been transformed

by the use of data-driven parameterizations and machine

learning techniques. For instance, Figure 3.2 by (Yuval and

O’Gorman 2020) shows how a random forest parametriz-

ation significantly improves the accuracy of the modeling.

Deep neural networks are a promising approach, as they

can approximate arbitrary functions with a small number

of parameters that does not scale exponentially with the

problem space dimension. This makes them suitable for

problems in high-dimensional spaces, such as the closure

map we aim to model. However, these models are heavily

reliant on high-quality training data, which is not always

available. Moreover, it has been seen that neural networks

can be unstable and may not generalize well to unseen

regimes (Ross, Li et al. 2023).

To address these limitations, neural networks that incor-

porate physical priors into the model have been developed.

These networks have shown improved accuracy and stabil-

ity, even when training data is limited. For example, the

incorporation of rotational equivariance priors and global

enstrophy constraints in the loss function of a convolutional

neural network has been shown to enhance the accuracy

and stability of simulations (Guan, Subel et al. 2023). By

reducing the space of possible functions, these added con-

straints guide the optimization towards more physically

meaningful parameterizations.

Another recent development is the coupling of PDE solvers

with automatic-differentiation toolchains (Rackauckas, Ma

et al. 2020), which allows for the training of subgrid for-

cing terms embedded in the model’s governing equations

(Shankar, Puri et al. 2023). However, since most climate mod-

els are not differentiable, there remains a need to develop
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Figure 3.2: a shows a high-

resolution simulation, b shows a

low-resolution simulation and

c shows a low-resolution sim-

ulation with a random forest

parametrization. Reprinted from

(Yuval and O’Gorman 2020).

parametrizations for subgrid terms that correct the numer-

ical time-stepping, as explained in the previous section.

These subgrid models can also provide valuable guidance

for the development of new differentiable climate models

and existing climate models can be run in ensemble to re-

inforce their results and provide more robust predictions.

As such, they remain a key research focus in the field of

climate modeling.

To explore the potential of the scattering transform for

modeling subgrid forcings, we will use the 2-layer quasi-

geostrophic model as a test bed. The scattering transform

is particularly well-suited for this task due to its geometric

properties and interpretability, which provide insights into

the modeled physical processes.



Figure 4.1: The Morlet wavelet

is a Gaussian window modu-

lated by a sinusoid. It is com-

monly used to define the scatter-

ing transform.
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The scattering transform is a wavelet transform first intro-

duced by S. Mallat in (S. Mallat 2012). It is built by recursively

applying wavelet modulus decompositions followed by a

lowpass filter. The resulting signal representation is both

translation invariant and stable to the action of small diffeo-

morphisms. While Mallat’s work laid the foundation for the

scattering transform, subsequent research by I. Waldspurger

in (Waldspurger 2017) relaxed the admissibility conditions

on the wavelets used in the transform. This chapter draws

upon these two works, as well as (J. Bruna 2022).

4.1 The Scattering Representation

Let ψ ∈ L2(Rd) be a mother wavelet with zero mean∫
Rd

ψ(u) du = 0

and a fast decay. Figure 4.1 shows an example of such a

mother wavelet for d = 1. The first step to built a represent-

ation for an input signal x ∈ L2(Rd) is to convolute it with

rotations and dilations of ψ.

Let a ∈ R with a > 1 be a scale factor that generates

a sequence {aj}j∈Z. For the purpose of this case and to

simplify notation, we set a = 2, which is a common choice

for image processing. Let G be a group of rotations of Rd

and let λ = 2jr ∈ Λ = 2Z×Gwith |λ| = 2j be the parameter

of the daughter wavelets. A dilation by 2j and a rotation

by r ∈ G of the mother wavelet generate the daughter

wavelet

ψλ(u) = |λ|−dψ(λ−1u). (4.1)

The filter bank {Wλx(u) = x ∗ ψλ(u)}λ∈Λ gives a redundant

representation of the signal. If x and ψ̂ are real, W−λx =

Wλx
∗ = Wλx, and hence we can restrict us to the quotient

group G+ = G/ {−1, 1} of positive rotations. To ensure

these conditions, we will be interested in mother wavelets of

the form ψ(u) = eiη·uθ(u), where η ∈ Rd
and θ is a lowpass
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Figure 4.2: ψλ with diferent dila-

tion factors when ψ is a real-

valued Morlet wavelet.

Figure 4.3: ψ̂λ with diferent dila-

tion factors when ψ is a real-

valued Morlet wavelet.

window such that θ̂ is real. Thus, ψ̂(w) = θ̂(w − η) and

ψ̂λ(w) = θ̂(λw − η) will be real.

Figure 4.2 and Figure 4.3 show daugther wavelets and their

Fourier transform for different values of λ in the d = 1 case,

where G+
is the trivial group. The normalization factor in

the definition of ψλ ensures that ψ̂λ(w) = ψ̂(λw), as can be

observed in Figure 4.3.

The wavelet transform of x is the redundant representation

{x ∗ ψλ}λ∈Λ. These wavelet coefficients are not translation

invariant, because the convolutions translate as the input

signal is translated. With this in mind, we use the com-

plex modulus and compute U [λ]x = |x ∗ ψλ|. This proced-

ure is iterated by computing new wavelet decompositions

across paths. A sequence p = (λ1, . . . , λm) ∈ Λm
defines

a path, which is an ordered product of non-linear and
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non-commuting operators

U [p]x = U [λm] . . . U [λ2]U [λ1]x

= |. . . ||x ∗ ψλ1| ∗ ψλ2| · · · ∗ ψλm |,

with U [∅] = Id.

A wavelet transform with a finite scale 2J only considers

dilations up to that scale, this is ψλ with |λ| ≤ 2J . The

remaining wavelets do not capture frequencies lower than

2−J
, so higher values of J increase the captured range of

frequencies. To recover the low frequencies, we use a low-

pass filter ϕJ with a spatial support proportional to 2J . To

define this filter, we consider a real-valued and positive

function ϕ and define the scaled spatial window

ϕJ(u) = 2−dJϕ(2−Ju). (4.2)

Then, we define the scattering transform of order m as

SJ [PJ ]x = {SJ [p]x = U [p]x ∗ ϕJ}p∈PJ
(4.3)

where PJ is the set of paths of length less or equal than

m and elements in Λ+
J . This procedure restores averages

that are translation-invariant and stable to the action of

diffeomorphisms. For each path p, the coefficient SJ [p]x(u)

can be subsampled at intervals proportional to the window

size 2J .
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Figure 4.4: Illustration of the scattering transform for the coefficients SJ [p]x up to order m = 2 and

Λ = (j1, j2)× (r1, r2).

4.2 Properties of the Wavelet Transform

In this section, we are going to see that the wavelet trans-

form is both stable and complete. Consider the wavelet

transform

WJx = {x ∗ ϕJ , {Wλx}λ∈ΛJ
} (4.4)

with norm defined as

∥WJx∥22 = ∥x ∗ ϕJ∥22 +
∑
λ∈ΛJ

∥Wλx∥22. (4.5)

Then,

WJ : L2(Rd) → L2(Rd)×
∏
λ∈ΛJ

L2(Rd) (4.6)

is a linear operator to a product space of copies of L2(Rd).

The linearity of WJ comes from the linearity of the convolu-

tion operator. Now, we are going to see that under certain

conditions, this operator defines a frame of L2(Rd).
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Definition 4.2.1 Let V be an inner product space. The set of
vectors {vi}i∈I ⊂ V with I ⊂ N is a frame for V if there exist
α, β ∈ R such that 0 < α ≤ β < +∞ and

α∥u∥2 ≤
∑
i∈I

|⟨u, vi⟩|2 ≤ β∥u∥2 (4.7)

for every u ∈ V .

We need that the frequency supports of the wavelets cover

uniformly the whole frequency domain. With this, we can

show that WJx defines a frame.

Proposition 4.2.1 If there exists 0 ≤ ϵ < 1 such that

1− ϵ ≤ |ϕ̂J(ω)|2 +
∑
λ∈ΛJ

|ψ̂λ(ω)|2 ≤ 1 (4.8)

for almost every ω ∈ Rd, then WJ is a frame of L2(Rd) with

(1− ϵ)∥x∥22 ≤ ∥WJx∥22 ≤ ∥x∥22 (4.9)

for every x ∈ L2(Rd).

Proof. Let w0 = ϕJ and wι(λ) = ψλ for some injection ι :

ΛJ ↪→ N \ 0. Let IJ denote the set of indices ι(ΛJ) ∪ 0. The

set of indices IJ might be finite or infinite. In any case, we

are concerned with the space of finite energy coefficients

ℓ2(IJ) = {u :
∑

i∈IJ∥ui∥
2
2 < +∞}. Then, we can use the

notation WJx = (x ∗ wi)i∈IJ for the wavelet transform and

for its norm

∥WJx∥22 =
∑
i∈IJ

∥x ∗ wi∥22.

With the introduced notation, we can rewrite Equation 4.8

and Equation 4.9 as

1− ϵ ≤
∑
i∈IJ

|ŵi(ω)|2 ≤ 1 (4.10)

and

(1− ϵ)∥x∥22 ≤
∑
i∈IJ

∥x ∗ wi∥22 ≤ ∥x∥22. (4.11)
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Using Parseval’s theorem

∥x ∗ wi∥22 = ∥x̂ · ŵi∥22 =
∫
Rd

|x̂(ω)|2|ŵi(ω)|2 dω

Then ∑
i∈IJ

∥x ∗ wi∥22 =
∑
i∈IJ

∫
Rd

|x̂(ω)|2|ŵi(ω)|2 dω

=

∫
Rd

|x̂(ω)|2
∑
i∈IJ

|ŵi(ω)|2 dω

and using Equation 4.10 we obtain Equation 4.11. We call

this a frame even if this result is not exactly the same as the

definition of frame stated in Equation 4.7, but because it

frames the norm of the operator WJx.

The condition in Proposition 4.2.1 is a so-called Littlewood-

Paley condition and this result proves that the wavelet trans-

form is complete and stable. The completeness comes from

Equation 4.8 because this, together with ψ̂λ(w) = ψ̂(λw),

implies that the whole frequency domain is covered by the

dilations and rotations of ψ̂. Hence, the signal x can be

recovered from its wavelet transform. The stability comes

from Equation 4.9. Note that the wavelet transform is re-

dundant, so that a sequence of coefficients is not necessarily

the wavelet transform of some signal.

4.3 Properties of the Scattering Representation

In this section, we review and prove several key properties

of the scattering transform.

4.3.1 Stability to Additive Noise

By leveraging the properties of the wavelet transform dis-

cussed earlier, we can establish the stability of the scattering

transform to additive noise. In addition to the references

mentioned earlier, we also consulted (S. Mallat and Zhong

1992) when preparing this section.

Let us start by seeing that WJ is a non-expansive operator.
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Proposition 4.3.1 If, for every x ∈ L2(Rd),

(1− ϵ)∥x∥22 ≤ ∥WJx∥22 ≤ ∥x∥22, (4.12)

then WJ is a non-expansive operator.

Proof. ∥WJx−WJx
′∥22 = ∥WJ(x−x′)∥22 ≤ ∥x−x′∥22. Here

we have used the linearity of the operator and the frame

condition proved before.

Now, define the propagator operator

UJx = {x ∗ ϕJ , {U [λ]x}λ∈ΛJ
}, (4.13)

such that the first layer of the scattering representation

is obtained by applying UJ to the input signal and the

successive layers are obtained by applying UJ to the output

of the previous layer, so that

UJU [p]x = {U [p]x ∗ ϕJ , {U [p+ λ]x}λ∈ΛJ
} (4.14)

= {SJ [p]x, {U [p+ λ]x}λ∈ΛJ
}, (4.15)

where we have used that U [λ]U [p] = U [p+ λ].

We can see now that this operator is also non-expansive.

Proposition 4.3.2 UJ is a non-expansive operator.

Proof. ∥UJx−UJx
′∥22 = ∥x∗ϕJ−x′∗ϕJ∥22+

∑
λ∈ΛJ

∥|x∗ψλ|−
|x′∗ψλ|∥22 ≤ ∥x∗ϕJ−x′∗ϕJ∥22+

∑
λ∈ΛJ

∥x∗ψλ−x′∗ψλ∥22 =
∥WJx−WJx

′∥22 ≤ ∥x−x′∥22, where we have used that the

modulus is non-expansive, so that ||u| − |v|| ≤ |u− v|, and

the result of Proposition 4.3.1.

With this, we can prove that the scattering transform is

also non-expansive and stable to additive noise, defining its

norm as

∥SJ [P ]x∥22 =
∑
p∈P

∥SJ [p]x∥22, (4.16)

where P is a set of paths.
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Proposition 4.3.3 The scattering transform is a non-expansive
operator.

Proof. SJ [PJ ] is constructed by propagating UJ as shown in

Equation 4.15. Since UJ is a non-expansive operator, SJ [PJ ]

is also non-expansive.

Proposition 4.3.4 The scattering transform is stable to additive
noise.

Proof. By the fact that the scattering transform is non-

expansive, ∥SJ [PJ ]x− SJ [PJ ](x+ ϵ)∥22 ≤ ∥ϵ∥22.

4.3.2 Energy Conservation

A wavelet decomposition is called unitary if the wavelets

satisfy the condition in Proposition 4.2.1 with ϵ = 0. In that

case,

∥WJx∥22 = ∥x∥22. (4.17)

Proposition 4.3.5 If the wavelet decomposition is unitary, then

∥x∥22 =
∑
|p|<m

∥SJ [p]x∥22 +
∑
|p|=m

∥U [p]x∥22 (4.18)

for any order m ∈ N.

Proof. We will prove it by induction on the order m. The

base case is m = 0, when∑
|p|<0

∥SJ [p]x∥22 +
∑
|p|=0

∥U [p]x∥22 = ∥U [∅]x∥22 = ∥x∥22

and hence Equation 4.18 is true form = 0. For the induction

step, assume it is true for m = k ∈ N. Then∑
|p|<k+1

∥SJ [p]x∥22 +
∑

|p|=k+1

∥U [p]x∥22

=
∑
|p|<k

∥SJ [p]x∥22 +
∑
|p|=k

∥SJ [p]x∥22 +
∑

|p|=k+1

∥U [p]x∥22.
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Observe that∑
|p|=k

∥SJ [p]x∥22 +
∑

|p|=k+1

∥U [p]x∥22

=
∑
|p|=k

[∥U [p]x ∗ ϕJ∥22 +
∑
λ∈ΛJ

∥U [λ]U [p]x∥22]

=
∑
|p|=k

∥UJU [p]x∥22 =
∑
|p|=k

∥WJU [p]x∥22

=
∑
|p|=k

∥U [p]x∥22,

where we have used that the wavelet decomposition is

unitary and

∥UJx∥22 = ∥x ∗ ϕJ∥22 +
∑
λ∈ΛJ

∥Uλx∥22

= ∥x ∗ ϕJ∥22 +
∑
λ∈ΛJ

∥|Wλx|∥22

= ∥x ∗ ϕJ∥22 +
∑
λ∈ΛJ

∥Wλx∥22

= ∥WJx∥22.

Thus, Equation 4.18 holds for m = k + 1. By the principle

of induction, it holds for all m ∈ N.

The previous proposition decomposes the energy of the

signal into two terms: the energy captured by the first m

layers of the scattering transform, and a residual energy

term that we define as follows.

Definition 4.3.1 Given a signal x ∈ L2(Rd), the residual
energy of its scattering transform of order m is

RJ(m) =
∑
|p|=m

∥U [p]x∥22.

Our objective at this point is to characterize the residual

energy, which can serve as a guide when determining the

appropriate number of layers needed to capture the bulk

of the signal’s energy. For this, we first define a Gaussian

function as follows.
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Definition 4.3.2

Figure 4.5: Fourier transform χ̂α

of the Gaussian function χα. In-

creasing the value of the para-

meter α results in a wider Four-

ier transform, as indicated by the

arrows in the diagram.

For any α > 0, χα is the Gaussian function

χα(t) =
√
πα exp(−(παt)2)

for t ∈ R, with Fourier transform

χ̂α(ω) = exp(−ω
2

α2
)

for ω ∈ R.

The one-dimensional scattering transform’s residual energy

is bounded by the following theorem by (Waldspurger

2017).

Theorem 4.3.6 Equation 4.19 is a Littlewood-

Paley condition that ensures

the wavelet transform is non-

expansive, preventing it from

amplifying certain frequencies

of x, and causing the energy in

m-length paths to decrease as m

increases.

Equation 4.20 specifies that

the wavelets must give greater

weight to positive frequencies

than to the negative ones, which

guarantees that the energy of the

signal shifts towards the low fre-

quencies.

Equation 4.21 guarantees that

the wavelets have more than one

zero momentum. This is a pre-

requisite for the proof in (Wald-

spurger 2017), but may not be

necessary.

For the d = 1 case, let {ψλ}λ∈ΛJ
be a family

of wavelets. First, assume that∑
λ∈ΛJ

(
|ψ̂λ(ω)|2 + |ψ̂λ(−ω)|2

)
≤ 2 (4.19)

for every ω ∈ R. Second, assume that

|ψ̂λ(−ω)| ≤ |ψ̂λ(ω)| (4.20)

for every λ ∈ ΛJ and ω > 0 and that for any such ω, exists
λ ∈ ΛJ such that the inequality is strict. Third, assume that
there exists ϵ > 0 such that

ψ̂(ω) = O(|ω|1+ϵ) (4.21)

when ω → 0. Then, for any J ∈ Z, there exist r > 0 and a > 1

such that
RJ(m) ≤ ∥x∥22 − ∥x ∗ χram∥22 (4.22)

for every m ≥ 2 and x ∈ L2(R).

For Equation 4.22, using Parseval’s theorem, we observe

that

∥x ∗ χram∥22 = ∥x̂ · χ̂ram∥22.

Hence, the Fourier transform χ̂ram covers a broader fre-

quency range asm increases, and the residual energy bound

approaches zero.

This theorem establishes the energy conservation of the

scattering transform and proves an exponential rate of



4 The Scattering Transform 26

energy decay through the scattering tree. In particular, the

energy in x coming from frequencies around 2m is captured

afterO(m) layers. We do not include its proof as it is extense

and highly technical.

It is believed that this theorem can be extended to L2(R)d
for d ≥ 1. A previous theorem in (S. Mallat 2012) guarantees

energy conservation for any d ≥ 1, but it imposes stricter

conditions on the wavelets and does not provide an explicit

convergence rate. These results explain why in applications

we can discard the high-order scattering coefficients. In our

case, we will consider coefficients up to order m = 2.

4.3.3 Translation Invariance

To prove the translation invariant property of the scattering

transform, we first define an admissibility condition on the

family of wavelets used.

Definition 4.3.3 A mother wavelet ψ is admissible if there
exist η ∈ Rd and ρ ≥ 0, with ρ̂(0) = 1 and |ρ̂(ω)| ≤ |ϕ̂(2ω)|,
such that the function Ψ defined as

Ψ̂(ω) = |ρ̂(ω − η)|2 −
+∞∑
j=1

j
(
1− |ρ̂(2−jω − 2−jη)|2

)
satisfies

inf
1≤|ω|≤2

+∞∑
j=−∞

∑
r∈G

Ψ̂(2−jr−1ω)|ψ̂(2−jr−1ω)|2 > 0.

Let xτ (u) = x(u− τ) denote the translation of x ∈ L2(Rd)

by τ ∈ Rd
. In (S. Mallat 2012), the following proposition is

proved.

Proposition 4.3.7 For all x,y ∈ L2(Rd) and J ∈ Z,

∥SJ+1[PJ+1]x−SJ+1[PJ+1]y∥22 ≤ ∥SJ [PJ ]x−SJ [PJ ]y∥22.

This implies that as J increases, the distance between two

signals in the scattering domain does not increase. As it

is positive and non-increasing, as J approaches infinity it

converges and defines a limit distance that is translation
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invariant. The last result is formalized in (S. Mallat 2012) as

the following theorem.

Theorem 4.3.8 Let {ψλ}λ be a family of wavelets with a mother
wavelet ψ that satisfies the admissibility condition. Then, for
any x ∈ L2(Rd) and τ ∈ Rd,

lim
J→+∞

∥SJ [P ]x− SJ [P ]xτ∥22 = 0

The translation invariance lies in the fact that wavelet mod-

ulus decompositions translate along with the input signal,

and the presence of the averaging operator in the scattering

transform.

4.3.4 Lipschitz Continuity under the Action of
Diffeomorphisms

Lastly, we look at the Lipschitz continuity of the scattering

transform under the action of C2
diffeomorphisms. A dif-

feomorphism τ acts on a signal x ∈ L2(Rd) mapping it to

xτ (u) = x(u− τ(u)). (S. Mallat 2012) states the following

theorem.

Theorem 4.3.9 Let Ω ⊂ Rd be a compact set. Then, there exists
C such that for allx ∈ L2(Rd) (compactly) supported inΩwith
∥U [P ]x∥1 < ∞ and for all τ ∈ C2(Rd) with ∥∇τ∥∞ ≤ 1/2,
if ∥τ∥∞ ≤ 2J∥∇τ∥∞, then

∥SJ [P ]xτ −SJ [P ]x∥2 ≤ C∥U [P ]x∥1 (∥∇τ∥∞ + ∥Hτ∥∞) ,

where H denotes the Hessian matrix.

The proof can be found in (S. Mallat 2012), where an upper

bound for ∥SJ [P ]xτ − SJ [P ]x∥2 in a more general case is

also provided.
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We are interested in computing the scattering transform

of images with a single channel. This can be achieved

using Kymatio, a Python implementation of the scattering

transform. Kymatio is highly efficient and it can be used for

large-scale experiments in machine learning. It is compatible

with PyTorch, TensorFlow, JAX, and other APIs, and can

be run on both CPUs and GPUs. Additionally, Kymatio

supports 1, 2, and 3-dimensional wavelet filter banks, as

described in (Andreux, Angles et al. 2020).

For this project, we have developed a Python implement-

ation of the scattering transform for learning purposes,

using 2-dimensional wavelets and specifically for image

analysis. We built this implementation with PyTorch and

based its main algorithms on Kymatio. All the code and

documentation for our implementation can be accessed

in the scattering repository, which also offers tools for im-

age synthesis, super-resolution, and other functionalities

relevant to our modeling task. We plan to expand the im-

plementation in the future to incorporate a phase harmonic

covariances representation.

5.1 Scattering Representation of Images

This section elaborates on the implementation of the scat-

tering transform for the case where d = 2, which was previ-

ously introduced in Chapter 4. Table 5.1 shows the possible

values for the parameters of the scattering representation

in our implementation.

Table 5.1: Symbol and domain of the parameters of the scattering representation.

Parameter Symbol Domain
Scale J 1 ≤ J ≤ log2(min(N,M))

Number of rotations L L ≥ 1
Maximum order m∗ 0 ≤ m∗ ≤ 2

Let us consider signals defined on a grid of dimensions

N ×M . We can represent the periodic convolution of two

signals using the notation x ⊛ y[n,m]. Additionally, let

https://www.kymat.io
https://github.com/mariaprat/scattering
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Figure 5.1: Size of the scattering

representation for different val-

ues of J , with m = 2, L = 8 and

N =M = 64.

There is only one coefficient of

order 0. For 1-order coefficients,

there areLJ options for the para-

meter λ. When it comes to 2-

order coefficients, we have to

choose (j1, r1) and (j2, r1) such

that j1 > j2. Therefore, there are

L2
(
J
2

)
coefficients of order 2.

ϕJ [n,m] denote a lowpass filter with an averaging scale

of 2J . We introduce a wavelet filter bank ψλ[n,m]λ∈Λ with

Λ = j : 1 ≤ j ≤ J × G+
, where G+

represents a set of L

rotations uniformly distributed in a semicircle. Then, the

0-order scattering coefficient is

S0x[n,m] = x⊛ ϕJ [n,m]. (5.1)

The 1-order scattering coefficients are

S1[λ]x[n,m] = |x⊛ ψλ|⊛ ϕJ [n,m] λ ∈ Λ. (5.2)

The 2-order scattering coefficients are

S2[λ1, λ2]x[n,m] = ||x⊛ψλ1 |⊛ψλ2|⊛ϕJ [n,m] λ1, λ2 ∈ Λ

(5.3)

To minimize the size of the representation, we select wavelets

with |λ2| > |λ1| since |x ⊛ ψλ1| is a low-frequency signal.

This is because most of the signal’s energy is concentrated

in the paths with strictly decreasing frequency. Additionally,

as per Theorem 4.3.6, high-order coefficients generally have

negligible energy. Hence, we follow Kymatio’s approach

and compute coefficients up to second order only. To further

reduce memory requirements, we downsample the filtered

low-frequency signals.

Hence, the computed scattering transform with a scale factor

J and L rotations of a N ×M image will be a tensor with

shape [
1 + LJ + L2

(
J

2

)]
× N

2J
× M

2J
(5.4)

The first term corresponds to the number of paths, and the

second and third terms come from to the downsampling.

Figure 5.1 shows the total size of the scattering representa-

tion as we increase J . Although the number of coefficients

1 + LJ + L2
(
J
2

)
increases with J , the size of every coeffi-

cient
N
2J

× M
2J

decreases exponentially. Table 5.2 displays

the total size of the scattering transform for low-resolution

and high-resolution images and various combinations of

parameters.
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J L = 4 L = 8

1 5120 9216

2 6400 20736

3 3904 13888

4 1808 6672

5 724 2724

6 265 1009

J L = 4 L = 8

1 81920 147456

2 102400 331776

3 62464 222208

4 28928 106752

5 11584 43584

6 4240 16144

7 1460 5604

8 481 1857

Table 5.2: Total size of the scat-

tering representation of an im-

age for various combinations of

J and L. The left table displays

the results for 64 × 64 images,

while the right table shows them

for 256 × 256 images. Any rep-

resentations that exceed the cor-

responding image size of 642 =
4096 or 2562 = 65536 are high-

lighted in magenta.

Figure 5.2: Real and imaginary

parts of a Morlet wavelet filter.

The scale factor j increases from

the top to the bottom.

Filters

Morlet filters are used to analyze whether there is any

information of a specific frequency in an image within a

particular direction. These filters are built by modulating a

Gaussian function with a sinusoidal wave. We use Morlet

wavelets of the form

g(x, y;σ, θ, ξ, γ) =
γ

2πσ2
exp

(
−x

′2 + γ2y′2

2σ2

)
exp (iξx′),

(5.5)

where x′ = x cos θ+ y sin θ and y′ = y cos θ− x sin θ. In this

expression, σ corresponds to the standard deviation of the

Gaussian envelope, θ specifies the orientation of the parallel

stripes, ξ is the wavenumber of the sinusoidal wave and γ

determines the ellipticity of the filter.

The wavelets ψλ are defined as in Kymatio using complex

Morlet wavelets. Figure 5.2 and Figure 5.3 illustrate how

these filters look like for different rotations and dilation

factors choices. Figure 5.5 shows the Fourier transforms

of these wavelets, which are real signals as explained in

Chapter 4. The dilations and rotations of the mother wavelet

cover a semicircle in the frequency domain.

For the lowpass filters ϕJ , we use real Gaussian envelopes

without any modulation, resulting in positive signals. Figure

5.6 shows how the filters and their Fourier transforms look

like for different values of J . As the filters are even real

functions, their Fourier transforms are also real.

Padding

In order to mitigate boundary effects generated by the peri-

odic convolutions computed with fast Fourier transforms,



5 Implementation of the Scattering Transform 31

(a) Reflection padding (b) Periodic padding
Figure 5.4: Illustration of the two

implemented padding modes.

Figure 5.3: Real and imaginary

parts of Morlet wavelet filter pro-

duced by rotating the filter from

Figure 5.2. The scale factor j in-

creases from the top to the bot-

tom.

one can apply a padding to the input image. Figure 5.4

illustrates the two implemented padding modes. Although

not applying padding would yield the same results as ap-

plying periodic padding due to the convolutions’ periodic

nature, the resulting extension would contain discontinu-

ities that could impact the values at the boundaries of

the coefficients.Thus, Kymatio utilizes reflection padding,

which generates a more continuous extension that can be

beneficial in many scenarios.

In this work, we focus on potential vorticity fields that have

periodic boundary conditions, resulting in a highly continu-

ous periodic extension. Although no padding maintains

the signal size and is computationally advantageous, we

must consider the potential impact of the padding choice.

We implemented reflection padding solely for comparison

purposes with Kymatio, which uses a reflection padding

by default. Therefore, we did not prioritize the efficiency of

this padding option. Applying no padding is, of course, a

very efficient choice.

5.2 Analysis of the Implementation

To verify the correctness of our implementation of the scat-

tering transform, we compared it with Kymatio, which

has been thoroughly tested. Additionally, we analyzed the

performance of our implementation on both a CPU and a

GPU. CPUs are optimized for general-purpose computing

tasks, while GPUs are designed to perform highly parallel

computations on large datasets simultaneously. Vectoriza-

tion involves performing operations on arrays or matrices

instead of individual elements, and our implementation is
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Figure 5.5: Fourier modulus of

the Morlet wavelet filters from

Figure 5.2 and Figure 5.3. The

scale factor j increases from the

top to the bottom.

Figure 5.6: Lowpass filters ϕ and

their Fourier transforms ϕ̂ for

diferent scale factors J . All the

signals are real.

highly vectorized, which makes it particularly well-suited

for GPUs.

5.2.1 Correctness

We evaluate the accuracy of our solution by comparing its

outputs with those of Kymatio. Our evaluation set comprises

2000 low-resolution and 2000 high-resolution images, all

featuring PyQG potential vorticity fields. Half of these

images are from the top layer, and the other half are from the

bottom layer. We calculate all coefficients up to the second

order and compare them across a spectrum of values for

both J and L.

Following (Oyallon, Zagoruyko et al. 2019), we quantify the

relative error in the scattering domain as

re(SJx) =
∥Sk

Jx− SJx∥2
∥Sk

Jx∥2
, (5.6)

where SJx represents our computation of the scattering

coefficients for an image x and Sk
Jx represents the equival-

ent computation by Kymatio, which we use as the reference

value. The relative error for the low-resolution images,

across the entire range of possible J values and for three

distinct L values, is depicted in Figure 5.7. The correspond-

ing results for high-resolution images are shown in Figure

5.8. The relative error is plotted on a logarithmic scale.

Our approach yields coefficients that closely match those

generated by Kymatio. Specifically, the norm of the dif-

ference falls between 3% and 0.001% of the norm of the

reference coefficients. We attribute these discrepancies to

minor variances in the filter definitions and numerical ap-

proximations within our method.

5.2.2 Performance on a CPU

Figure 5.9a and Figure 5.9b show the time comparison

between Kymatio and our method for calculating the scat-

tering coefficients on a CPU of low-resolution and high-

resolution images, respectively. The observed difference is

a result of our highly vectorized implementation, which

significantly speeds up filter initialization, and the fact that
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Figure 5.7: Relative error in the scattering domain (on a log10 scale) between our method’s coefficients and

Kymatio’s coefficients for 2000 low-resolution images, plotted against the values of J and L.

Figure 5.8: Relative error in the scattering domain (on a log10 scale) between our method’s coefficients and

Kymatio’s coefficients for 2000 high-resolution images, plotted against the values of J and L.



5 Implementation of the Scattering Transform 34

(a) Low-resolution images (b) High-resolution images

Figure 5.9: Time taken for Kyma-

tio and our implementation to

compute the scattering coeffi-

cients of images with L = 8 and

varying values of J on a CPU.

Each data point represents an av-

erage of 10 runs, with each run

processing a batch of 64 images.

Error bars are omitted, as they

are barely visible.

(a) Results for low-resolution im-

ages.

(b) Results for high-resolution im-

ages.

Figure 5.10: Time taken for

Kymatio and our implementa-

tion to compute the scattering

coefficients of images withL = 8
and varying values of J on a

GPU. Each data point represents

an average of 10 runs, with each

run processing a batch of 64 im-

ages. Error bars are omitted, as

they are barely visible.

Kymatio adds a reflection padding to the signal. With these

experiments we want to show that our implementation is

correct and fast for images with periodic boundary condi-

tions, although it is an unfair comparison with Kyamtio

because it enlarges the input signals with padding. It is

worth emphasizing that our filter initialization is consider-

ably faster than Kymatio’s.

The difference becomes more pronounced with larger values

of J , where the filters become bigger, and our method is

over 10 times faster than Kymatio. In addition, the time

complexity of our method grows linearly with J , while that

of Kymatio exhibits an exponential growth. Both methods

require similar amounts of memory, as they both traverse

the scattering tree in a depth-first manner. This approach

reduces memory usage, which is especially important when

running the code on a GPU.

5.2.3 Performance on a GPU

Using a GPU instead of a CPU to run Kymatio code can res-

ult in significant speedups, especially in the 2-dimensional

case. We compare the time taken for Kymatio and our im-

plementation to compute the scattering of low-resolution

and high-resolution images in a GPU. The results shown in
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(a) Results for low-resolution im-

ages.

(b) Results for high-resolution im-

ages.

Figure 5.11: Comparison

between the time taken for our

implementation to compute

the scattering coefficients with

L = 8 and varying values of

J on a CPU and on a GPU.

Each data point represents an

average of 10 runs with each run

processing a batch of 64 images.

Error bars are omitted, as they

are barely visible.

Figure 5.10a and Figure 5.10b show again that our imple-

mentation is faster.

Figure 5.11a and Figure 5.11b compare the use of a CPU or a

GPU for the particular case of our implementation. As we

expected, the vectorization of our code is suited for GPUs

and we observe remarkable results across all values of J .

Given these results, we are considering proposing a pull

request to modify the filter initialization in Kymatio with a

vectorized version in order to further optimize the code’s

speed.
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High-dimensional generative models are employed to gen-

erate new data that exhibits similar characteristics to a given

input dataset. To accomplish this, the models must capture

the underlying patterns in the provided examples. Scatter-

ing representations can define geometric priors that exploit

the available information while providing robust mathem-

atical guarantees. Previous studies have demonstrated their

effectiveness as image representations (Oyallon, Zagoruyko

et al. 2019; Joan Bruna 2013). In this section, we explore their

capability to represent potential vorticity fields.

6.1 Description of the Generative Method

According to the principle of maximum entropy, the prob-

ability distribution that better represents the current know-

ledge of a system is that with the highest entropy. If we have

a constraint on a data distribution given by its scattering

representation, we can use it as the sufficient statistics of

a maximum entropy model. The effectiveness of this ap-

proach has been corroborated, as the scattering transform

outperforms the power spectrum and other representations

with higher-order statistics for texture synthesis tasks (Joan

Bruna 2013; Cheng and Ménard 2021).

We use microcanonical gradient descent models obtained by

transporting a maximum entropy measure with a gradient

descent algorithm (Portilla 2000; Joan Bruna and Stéphane

Mallat 2019). In other words, we use a generative model

that produces images with the same summary statistics. If

those statistics are indeed sufficient, the generated fields

will have similar properties to the input image. To do so, we

iteratively minimize

1

2
∥SJx− y∥22, (6.1)

where y is the vector with the target statistics and x is

initialized from i.i.d. Gaussian random variables. In our

case, we take y to be the scattering representation of the
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image we want to recover. This approach converges for an

appropriate energy vector as the one we choose (Joan Bruna

and Stéphane Mallat 2019).

6.2 Implementation of the Algorithm

The optimization problem is solved with a gradient descent

approach that uses PyTorch’s automatic differentiation en-

gine. We choose the Adam optimizer because it has several

advantages over other optimization algorithms. Adam is

an adaptive optimization algorithm that adjusts the learn-

ing rate automatically during training, leading to faster

and more robust convergence than traditional stochastic

gradient descent. In fact, it combines the benefits of two

other optimization techniques, adaptive gradient and root

mean square propagation. Moreover, it is computationally

efficient, requires minimal memory and little tuning of the

hyperparameters (Kingma and Ba 2015).

The optimization is initialized on random Gaussian noise

with the mean µ and standard deviation σ of the original

image for convenience. As the potential vorticity fields we

want to recreate are Gaussian, this is equivalent to normaliz-

ing the images beforehand and sampling the random noise

from a standard Gaussian distribution. After approxim-

ately 100 iterations or steps of the optimizer, the algorithm

reaches a plateau in the loss function and produces visually

plausible estimates.

We have tuned the hyperparameters of the method to op-

timize its performance. To ensure convergence, we perform

300 steps of the optimizer for the 64-by-64 images, but

fewer steps can be used to reduce resource usage and time

without affecting the results. For the 256-by-256 images,

we perform 500 steps. The learning rate is set to 10−3
for

the 64-by-64 images and to 10−2
for the 256-by-256 images,

after assessing the results obtained with learning rates 10−α

for integer α with 0 ≤ α ≤ 7.

Furthermore, we have explored a variation of the generative

algorithm to determine if it can enhance the procedure. We

clip the image at each iteration by clamping all its pixels

into the range [µ− 3σ, µ+3σ], but this did not produce any

noticeable effect. We conclude that the initial random noise
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Figure 6.1: Normalized sum of

the modulus of the Fourier trans-

form of the filters ψ used for the

scattering transform of a 64-by-

64 image with J = 1 and L = 4.

and the scattering coefficients suffice for the algorithm to

correctly scale the image.

The code can be found in the scattering repository.

6.3 Avoiding Aliasing in Discrete Images

After generating some image samples, we noticed that the

low-resolution generated images displayed a checkerboard

pattern. This pattern arises when adjacent pixels have altern-

ating brightness values. Some of these artifacts are framed

in the middle image of Figure 6.2.

The checkerboard artifacts can be attributed to the ψλ filters

in the scattering transform failing to capture certain high-

frequency components of the signal. Upon examining the

frequency coverage of the ψλ filters in Figure 6.1, we can see

that the outer region of the circle inscribed in the image fre-

quency square is incompletely covered. The lack of enough

information of these frequencies in the scattering repres-

entation leads to the generation of the artificial patterns in

the image. The checkerboard pattern is characterized by

frequencies within that particular range of values.

To address this issue, one approach is to remove the un-

wanted frequency components in the output image with a

circular mask. The non-filtered generated image has non-

zero values outside the frequency circle as shown in Figure

6.5, and the rightmost image in Figure 6.2 shows that the

filter effectively removes these artifacts. This approach is

justified by the fact that the images have negligible energy

outside the frequency circle.

In natural images, the frequency content is predominantly

concentrated within a circle inscribed in the frequency

square. However, due to the filtering in the numerical

method, the frequency content of potential vorticity fields

is further concentrated within a smaller circle centered

at the origin. By applying a mask that excludes the arti-

ficial contributions outside of this circle, we obtain better

reconstructions.

The frequency content distributions and their cumulative

versions can be observed in Figure 6.3 and Figure 6.4. For

64-by-64 images, approximately 99.99% of the content is

https://github.com/mariaprat/scattering
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Figure 6.2: Original and generated images from a scattering representation with J = 1 and L = 4. The

checkerboard artifacts were visible in the non-filtered sample and were framed in each image for easy

identification.

Figure 6.3: Frequency content

distribution and cumulative dis-

tribution for 64-by-64 potential

vorticity fields. These plots rep-

resent the averaging of 1000 im-

ages of independent first-layer

fields and 1000 images of in-

dependent second-layer fields.

The shadowed area indicates

wavenumbers smaller or equal

to 26.

contained within wavenumbers less than or equal to 26.

Similarly, for 256-by-256 images, wavenumbers less than

or equal to 100 account for roughly 99.99% of the content.

We are conservative in the choice of the radius to not lose

relevant frequencies.

6.4 Reconstruction of Potential Vorticity Fields

Figure 6.8 and Figure 6.9 present the results obtained from

the generative models for all the possible values of J and

L = 8. Based on these results, we can conclude that selecting

no padding is suitable since there are no visible artifacts

along the borders of the generated images, which would be

apparent for a bad padding choice.

As detailed in Table Table 5.2, for smaller values of J the

size of the scattering representation is comparable to the

size of the image. However, as J increases, the size of the

scattering transform becomes significantly smaller relative

to the image size. Furthermore, as J increases, the averaging

effect within the scattering transform becomes more pro-

nounced. This leads to an underconstrained system where

very different images end up having the same coefficients.

Consequently, the entropy of the model increases with J

and the representations obtained capture statistical prop-

erties that have demonstrated remarkable performance as
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Figure 6.5: Modulus of the Four-

ier transform of the images in

Figure 6.2 and modulus of the

Fourier transform of the resid-

uals between the filtered and the

original image.

Figure 6.4: Frequency content

analysis similar to Figure 6.3

for 256-by-256 potential vorticity

fields.

models for textures and stochastic processes, as shown in

(Joan Bruna 2013; Sifre and S. Mallat 2013).

Finding the right balance for the scale parameter J is crucial.

On one hand, we prefer a larger J because we want to

include typical samples from the data distribution in the

representation preimage. On the other hand, excessively

large J may introduce excessive variability, resulting in

the generation of atypical samples for our desired distribu-

tion.

The reconstructions exhibit two distinct regimes based on

the value of J . In the case of low-resolution images, a small

value of J (specifically, J ≤ 3) defines a scattering rep-

resentation that captures local information and is nearly

invertible and the reconstruction has good perceptual qual-

ity. However, when J ≥ 4, the morphological information

in the representation drops, leading to a loss of spatial loc-

alization in the reconstructed structures. Nevertheless, the

reconstructed images still preserve similar texture details as

the originals, and they resemble potential vorticity fields.

Similar trends are observed for high-resolution fields, with

the cutoff scale occurring atJ = 4. Beyond this point, the loss
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Figure 6.6: Relative errors in the image and scattering domain for varying values of J and L. The box plots

depict the performance on 100 low-resolution potential vorticity fields images, divided equally between the

top and bottom layers.

of spatial localization becomes evident in the reconstructed

images.

Figure 6.6 and Figure 6.7 show the errors obtained by

the generative model in both the image domain and the

scattering domain, considering various choices of J and

L. The relative errors are calculated using the following

definitions:

reimg(x) =
∥x− xtrue∥2
∥xtrue∥2

re(SJx) =
∥SJx− SJxtrue∥2

∥SJxtrue∥2
,

(6.2)

where reimg(x) represents the relative error in the image do-

main, and re(SJx)denotes the relative error in the scattering

domain.

We observe consistent trends across both low-resolution

and high-resolution scenarios. As the value of J increases,

the error in the image domain also increases, as the ability

to recover the spatial localization of the features is lost by

the averaging. In the scattering domain, the error initially

rises but then begins to decrease, which is probably related

to the changes in the size of the representation. Regarding

the different values of L, slightly better results are obtained

in the image domain when L = 8, as it considers more

rotations of the wavelets. In the scattering domain, we

cannot compare the errors directly as the representation

with L = 4 is smaller.
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Figure 6.7: Relative errors in the image and scattering domain for varying values of J and L. The box plots

depict the performance on 100 high-resolution potential vorticity fields images, divided equally between the

top and bottom layers.

It is worth mentioning that further improvement in the

recovery of the scattering transform could be achieved by

tuning the hyperparameters of the optimization method.

However, considering the balance between good recovery

and computational time, we are satisfied with the current

trade-off. Finally, the presence of smooth features in the

bottom layer of the ocean facilitates the modeling with the

scattering transform, resulting in better overall performance

in the image domain.
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(a) Top layer fields (q1). (b) Bottom layer fields (q2).

Figure 6.8: Reconstruction of potential vorticity 64-by-64 fields from their scattering coefficients for different

scale factors J and L set to 8. reimg represents the relative error in the image domain and reSJ
represents

the relative error in the scattering domain.
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(a) Top layer fields (q1). (b) Bottom layer fields (q2).

Figure 6.9: Reconstruction of potential vorticity 256-by-256 fields from their scattering coefficients for

different scale factors J and L set to 8. reimg represents the relative error in the image domain and reSJ

represents the relative error in the scattering domain.
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The scattering transform is a powerful tool for regularizing

ill-posed inverse problems, such as super-resolution ima-

ging. Super-resolution involves constructing high-resolution

images from their downsampled counterparts, typically

through models with priors that regularize the estima-

tion.

Recent data-driven approaches, like the use of CNNs, have

led to successful results, as training data can help adjust

the prior to the empirical distribution (Kim, Lee et al. 2016;

Tai, Yang et al. 2017; Huang, He et al. 2017; Tian, Xu et al.

2021). However, multiple valid high-resolution images may

correspond to a single low-resolution image and this mul-

timodality can make the mapping between low-resolution

and high-resolution signals highly unstable. Consequently,

CNNs may suffer from an effect commonly referred to as

regression to the mean, resulting in linear blurring in the

reconstructed images and, thus, a loss of details and fine

textures.

The loss function in CNNs plays a crucial role in guiding

the system to identify the regularities and geometric prop-

erties of the images. The L2
-norm in the image domain is a

common choice, but it is not always correlated with good

perceptual quality since it is not stable to small deform-

ations and can lead to the regression to the mean effect.

This occurs when the prediction is an average of the modes

of a multi-modal distribution, which may not be a typical

realization of the distribution. To address this issue and

model the multi-modality found in many inverse problems,

(Joan Bruna, Sprechmann et al. 2016) proposes modeling

the conditional distribution p(x | y) with a collection of

hidden variables that capture its multi-modality, where

x ∈ RM
represents the high-resolution images and y ∈ RN

represents the low-resolution images, with N < M .

As proposed in (Joan Bruna, Sprechmann et al. 2016), we use

the scattering transform to learn a non-linear representation

of the target signal Ψ(x) that expresses the multi-modal
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distribution as a Gibbs density

p(x | y) ∝ exp (−∥Ψ(x)− Φ(y)∥22) (7.1)

whereΨ : RM → RK
andΦ : RN → RK

are non-linear map-

pings to a common high-dimensional space of dimension

K.

Our goal is to minimize the uninformative variability of x

given y while preserving discriminative information. This

can be achieved with the non-linear sufficient statistics Ψ(x)

given by the scattering coefficients, as they are stable to

small geometric deformations and preserve high-frequency

information. Furthermore, they do not have high variance

because they are computed with a non-expansive operator,

as proved in Proposition 4.3.3.

7.1 Description of the Super-Resolution
Method

Consider the problem of estimating an unknown image x ∈
RM

from a noisy and under-determined signal y = f(x) +

ε ∈ RN
, where f may be a non-linear map and ε models

additive Gaussian noise. In the super-resolution problem,

f is a non-invertible downsampling operator. Consider a

Bayesian approach given by the maximum a posteriori

(MAP) estimate

argmax
x

p(x | y) = argmax
x

p(y | x) · p(x) (7.2)

= argmax
x

log p(x) + log p(y | x), (7.3)

where we have used Bayes’ theorem and the fact that the

logarithm is a monotonically increasing function. Under the

Gaussian noise assumption, log p(y | x) ∝ −∥y − f(x)∥22
with a positive proportionality constant. The problem can

then be reformulated as

argmin
x

∥y − f(x)∥22 − α log p(x), (7.4)

for α > 0. We select a prior log p(x) ∝ −∥Ψ(x) − Φ(y)∥22
with a positive proportionality constant. The final formula-
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Figure 7.1: MSE for 1000 images

from each layer of the ocean ob-

tained with a SRCNN.

Figure 7.2: Relative error of

the reconstruction of the high-

resolution scattering coefficients

for 1000 images from each layer

of the ocean obtained with a lin-

ear operator in the scattering do-

main.

tion of the problem becomes

argmin
x

∥y − f(x)∥22 − α∥Ψ(x)− Φ(y)∥22. (7.5)

Ψ computes a scattering representation of the residuals,

whereas Φ serves as a predictive model for the scattering

representation of the downsampled image. We train this

model by minimizing ∥Ψ(x) − Φ(y)∥22 on the parameters

of Φ with a dataset of pairs (xi,yi)i∈I .

Given the non-linear nature of the scattering transform,

we explore Φ(y) =Mφ(y), where φ is a scattering repres-

entation of y and M is a linear operator learned through

least-squares regression. We hope that the non-linearity in

the representation allows for a linear model in the scattering

domain that hallucinates the high frequencies. Specifically,

we choose the representation φ such that

JΨ − Jφ = 2.

This ensures that the coefficients of the downsampled image,

representing the system’s low-frequency components, are

a subset of the coefficients of the high-resolution image.

Here, JΨ and Jφ indicate the scales J of the scattering

representations Ψ and φ, respectively.

7.2 Results using a CNN

First, we apply super-resolution using a standard CNN to

visualize the regression to the mean effect in the potential

vorticity fields. For this purpose, we utilize the lightweight

SRCNN architecture introduced by (Dong, Loy et al. 2014),

which achieved state-of-the-art performance in the super-

resolution task when it was released. Although there have

been subsequent advancements in architectures that yield

better results, we opt for SRCNN due to its simple design

and still good performance. The CNN consists of three

layers with 64, 32 feature maps and filter sizes of 9×9, 5×5,

and 5× 5, respectively, and ReLU non-linearities applied at

the first two layers. We have trained two CNN with weight

decay, one for the top-layer and the other for the bottom

layer of the 2-layer quasi-geostrophic model, and they are

trained independently with a dataset of 60,000 images. Each
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Figure 7.3: Super-resolved top-layer potential vorticity field using a SRCNN.

Figure 7.4: Super-resolved bottom-layer potential vorticity field using a SRCNN.

image represents the final state of a trajectory with different

initial conditions, ensuring their independence.

In Figure 7.1, we observe that the bottom layer exhibits the

best results. This can be attributed to its smoother features,

which are less affected by the linear blurring induced by

the regression to the mean effect. Figure 7.3 and Figure 7.4

present the results for two instances of potential vorticity

fields. Notably, the CNN outputs resemble the bilinear

interpolation fields, which are obtained by upsampling the

low-resolution images. The CNN predicts the average of the

modes of the multi-modal distribution of high-resolution

fields, which leads to the loss of filaments in the outputs.

7.3 Results using the Scattering Transform

In the case of the results obtained using the scattering

transform, we observe in Figure 7.5 and Figure 7.6 that

the linear operator used in the scattering domain has the

capability to reconstruct the high-frequencies contained

within the scattering coefficients. This leads to significantly
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Figure 7.5: Super-resolved bottom-layer potential vorticity field using a linear operator in the scattering

domain for J = 1 and L = 4.

Figure 7.6: Super-resolved bottom-layer potential vorticity field using a linear operator in the scattering

domain for J = 1 and L = 4.

improved perceptual quality results compared to those

achieved using a CNN. This is promising and holds potential

for the modeling of subgrid forcing terms.

Figure 7.2 demonstrates the effectiveness of the linear op-

erator in reconstructing the coefficients. While the results

are already quite satisfactory, with the coefficients being

recovered with a relative error of 10-30% and resulting in

perceptually high-quality synthesized fields, we can explore

the possibility of improving this performance through the

use of non-linear regression in the scattering domain. Des-

pite the advantages of the linear operator, such as faster

operations and better integration with a climate model,

investigating the benefits offered by a non-linear approach

would be valuable.
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In conclusion, our thesis has demonstrated that the scat-

tering transform holds promise as an approach to enhance

existing models for subgrid forcing terms by serving as

a potential regularizer. Through our modeling study, we

have shown that the scattering transform effectively encodes

crucial features of the potential vorticity fields.

One of the primary challenges with data-driven methods is

that the error observed point by point does not guarantee

generalizability, and often the introduction of data-driven

subgrid forcing can destabilize numerical methods. To ad-

dress this issue, it is essential to incorporate physical priors

into the loss functions to guide the model towards physically-

informed solutions. By incorporating these priors in the

scattering domain, we can mitigate the regression to the

mean effect commonly encountered in CNNs, which are

the primary architecture used for subgrid predictions in

deep learning. In the near future, we intend to integrate

scattering regularizers into existing CNNs to determine if

they yield improvements in the models’ performance.

Furthermore, we aim to investigate how the time step-

ping process influences the scattering coefficients. This

can be approached in two ways. Firstly, employing a high-

dimensional model such as a deep learning approach, we

can update the scattering coefficients and perform time

stepping in the scattering domain, reconstructing the fields

from this representation. Alternatively, due to the analytic

nature of the scattering coefficients, we can explore the gov-

erning equations in the scattering domain to identify more

suitable wavelet choices that better capture the important

statistics specific to ocean modeling problems.

While our results have been presented solely in the context

of the 2-layer quasi-geostrophic model, it is important to

assess the generalizability of our findings to other mod-

els and regimes. After completing the modeling phase, it

is necessary to implement subgrid parametrizations that

employ the scattering transform and conduct offline and

online tests to evaluate their performance and ascertain any

potential improvements.
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In summary, this thesis has shed light on the promising

capabilities of the scattering transform as a regularizer for

improving existing models for subgrid forcing terms. By in-

corporating physical priors and exploring the time stepping

process and different scattering representations, we aim to

further enhance our understanding and application of the

scattering transform in the field of ocean modeling.
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