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The aim of this article is to present a Path Integral Monte Carlo method known as the Worm
Algorithm (WA) and analyze its promising performance by studying a particular problem. For this
purpose, the well-known 2D Ising model on a square lattice with periodic boundary conditions and
without external field is considered and its alternative path integral formulation is presented. The
WA is implemented and analyzed by comparing it with the classical Metropolis algorithm, which is
known to show slowing-down near the critical temperature.

I. INTRODUCTION

Theoretical studies often involve mappings of the orig-
inal system onto an equivalent (with regards to the final
answer for some property) description in terms of ab-
stract mathematical or graphical objects. Path integrals,
high temperature expansions and Feynman diagrams are
well-known examples [1].

Under mapping one has to deal with the infinite-
dimensional configuration space having complex topol-
ogy and non-local constraints, which severely reduce effi-
ciency of Monte Carlo simulations based on standard lo-
cal updates. This sometimes leads to ergodicity problems
in large systems when the entire configuration space can
not be sampled in a reasonable computation time. Also
a somewhat related difficulty facing conventional Monte
Carlo schemes is the computation of off-diagonal corre-
lation functions since they have no direct relation to the
configuration space of the partition function.

In what follows we present the path integral formula-
tion of the 2D Ising model and the implementation of this
approach through the WA dealing with the above men-
tioned constraints by going to the enlarged configuration
space. A performance analysis of the WA is intended
by comparing it with the classical Metropolis algorithm,
whose convergence strongly slows down near the critical
region (critical slow-down effect).

II. THE 2D ISING MODEL

The 2D Ising model, aiming to study the behavior of
ferromagnetic materials, considers an L x L square lat-
tice with (toroidal) periodic boundary conditions, whose
nodes represent atomic spins o that can be found in two
states represented by the values £1 and are allowed to in-
teract only with their neighbours. Although we will work
in the absence of external field h, the general hamiltonian
for this model reads
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where J is the coupling constant or bond strength in the
lattice and (ij) refers to a pairwise interaction between

nearest neighbours. Parallel spins present a lower energy
than antiparallel ones. While the system tends to the
lowest energy, heat disturbs this tendency creating thus
the possibility of different structural phases. The model
allows the identification of a phase transition character-
ized by a critical temperature 7.

According to this hamiltonian (from now on h = 0),
the partition function Z can be written as:
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where {0;} denotes all possible configurations and where
K := pJ is defined, being 5 = 1/kgT [6].

According to Onsager’s exact solution, there exists a
phase transition at a given critical temperature
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At high temperatures spins are random and uncorrelated,
but as the temperature is lowered the interactions be-
tween them encourage nearby spins to point in the same
direction, giving rise to correlations. Groups of adjacent
spins which are correlated (tend to point in the same di-
rection) are called clusters. As we approach T, the typ-
ical size £ of these clusters, known as correlation length,
diverges giving place to arbitrarily large areas in which
the spins are pointing mostly up or mostly down.

III. METROPOLIS ALGORITHM

The Ising model becomes unapproachable to evaluate
numerically when L >> 1 so that the number 2% of pos-
sible states in the system becomes large. This fact mo-
tivates the reason for simulating the Ising model using
Monte Carlo methods.

Classically, the Metropolis algorithm is implemented,
where at each step a randomly selected spin is proposed
to be flipped with probability
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FIG. 1. Mean value of magnetization m and energy E per
spin along with the magnetic susceptibility and specific heat
as a function of T'/J for L = 5,10, 15,20, 50, by Metropolis.
The dashed line corresponds to critical temperature 7.

where AE = FE,¢w — FEyq. This guarantees ergodicity
and that a stable equilibrium will be reached [2].

Implementing this algorithm on the 2D Ising model
yields the results shown in Fig. 1, where the magneti-
zation per spin (m), magnetic susceptibility (), energy
per spin (E) and specific heat (C) are computed as

Fig. 1 shows a phase transition at a critical temperature
[7] which coincides with the theoretical one T., where m
and E present the expected sudden change and x and C
diverge.

IV. FINITE SIZE SCALING

To better estimate the value of the critical tempera-
ture, one proceeds with the finite size scaling. In this
context, a useful dimensionless quantity for accurately
locating T is the binder ratio

which is size independent at T.. Hence, the curves for
different values of the size L should intersect at a common
point given by T, as is indeed shown in Fig. 2.
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FIG. 2. Finite size scaling for Metropolis algorithm.

V. PATH INTEGRAL FORMULATION

Metropolis scheme is usually the most universal and
easy to program approach to Monte Carlo simulations.
However, its advantages are virtually canceled out near
phase transition points. In the following we present a
method which essentially eliminates the critical slowing
down problem and yet remains local. The corner stone
of this approach is the possibility to introduce the con-
figuration space of closed paths. Closed-path (CP) con-
figurations may be then sampled very efficiently using
Worm algorithm (presented in next section) for quan-
tum statistical models in which closed trajectories natu-
rally arise from imaginary-time evolution of world lines.
In classical models the CP representation derives from
high-temperature expansions for a broad class of lattice
models.

Let us develop expression (2) by expanding the expo-
nential in power series and rearranging terms [5]:

. > KN ,
z=> [Ie" =11 X m(ain)N

{oi} (i7) {o:} b=(ij) Np=0

KMo
=2 > Il Hylen

{oi} {Np} b=(ij)

KN N (4)
-y (1) (T )
(N} \b=(ij) i=10;=%1
loops KNb loops
=2V HW =2V 3" WHN}).
vy b (N}

The variable IV}, in the power series has a deeper meaning
and is called bond number. The loops label on the sum
represents the constraint that the sum of all bond num-
bers “incident on every lattice site” i, L; = Zb:@j) Ny,
has to be even; otherwise > _., ol is zero. These
non-vanishing terms explain the leading factor 2.

It is at this point where we notice that the possi-
ble combinations of {N,} can be mapped to a graphical
representation which considers combinations of bonds of
width N, between sites in the lattice (see Fig. 3 left),
where the constraint that the sum L; of all bond num-
bers incident on every site be even is translated into de-
manding that the allowed configurations of lines are that
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FIG. 3. Loop representations for the partition function and
the correlation function for the 2D Ising model, where line
thickness is proportional to Np.

of closed un-oriented loops, since loops always contribute
an even number to L =3, .y Ny,

This formulation justifies the 1oop graphical represen-
tation and the used terminology. However, in order to
implement the WA, an alternative and more compact for-
mulation can be obtained by using the following identity
(recalling 0;0; = %1), since in this case only one line can
be drawn on each bond [3]:
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where we have denoted 7 := tanh(K). Since in the 2D
lattice with N spins and periodic boundary conditions
there are 2N bonds, the partition function becomes

Z =cosh®™(K)-2N [ 27V Z H(l +Toio;) (5)
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where a 2"V factor has been taken out for convenience.
Calling Z’ the last term in brackets and expanding it
(omitting the 2=V factor for a moment) yields
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where the sums ), ; should be understood as the sum
over all sets of bonds {(ij)} such that the link length in
the set is L, being the link length the number of coupling
terms o;0;.

Notice here that, again since > _.,0; = 0, only
terms with an even link length number contribute to 2’
(actually, only L = 0,4,6,...). Call these terms closed,
indicating that they represent a closed loop. The sum
over all contributing terms gives a factor 2%V, which can-
cels out the 2 one in Z’. Rewriting 2’ in terms of
loop lengths gives

2= 97" (6)
L

where ¢(L) is the number of loops with length L and
corresponds to the correlation function over the square
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FIG. 4. Illustration of the worm steps forming a closed loop.

lattice. Thus, the partition function can finally be writ-

ten as
Z g(L (7)

As mentioned, the improvement of (7) with respect to
(4) is that we only consider N, € {0,1} instead of N, =
0,1,2,..., so only one line can be drawn on each bond.

z=2N cosh2N

VI. WORM ALGORITHM IMPLEMENTATION

We now proceed to describe the WA. As seen in (7),
the partition function is a weighted sum of all closed
loops, being T the weight for a loop of length L. This
is specially interesting since 7 = tanh(K) € [0,1] on R™.
Thus, a probabilistic interpretation can be given to them
(in contrast to weights in the first formulation (4), which
require a proper fitting leading to a tougher algorithm).

Notice now that random closed loops can be sampled
by opening a path from one fixed node and enlarging it
with new bonds, each with a probability weight 7T, till
reaching the fixed node again thus closing the worm—loop
of length L with total weight 7. The fixed node is called
Ira (Z) while the moving one Masha (M). See Fig. 3.

In order to keep track of included bonds in the genera-
tion of a loop, we implement a 2 N—size array bonds being
updated with 0/1 values denoting the presence/absence
of a drawn bond. Further, an array structure nbr spec-
ifies the location of each of the four neighbours of each
of the N sites in the lattice as well as the location of the
associated bond in bonds, being computed at the very
beginning respecting the periodic boundary conditions.

The Worm Algorithm is implemented in bond- (and
not spin—) space as follows, starting at Z = M [4]:
1. If Z = M, add one loop to statistics. Erase the

whole space by setting bonds to 0 and randomly
select a site Zy to start a new loop setting 7 := 7.

2. Select at random a direction to a neighbour J with
equal probability.

3. Move M in that direction with probability
tanh(K)'~Ne. If accepted, flip the bond variable
Ny = (Ny + 1)%2 (i.e. 04> 1) and set M := .
Increment statistics: ++G(M — I).

4. If T = M do step 1; otherwise go to step 2.
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FIG. 5. Mean energy, heat capacity and mean loop length,
respectively, as a function of T'/J for L = 20.

See illustrated procedure in Fig. 4. Notice that open
loops correspond to the G-space configuration, while
closed loops correspond to the Z—space configuration and
thus G(0) = Z. Further, the ratio G(i — j)/G(0) gives
the two—point correlation function g(i — j).

After introducing the algorithm, we now deduce on
our own the WA formulae for computing the magnitudes
of interest, since in the whole found bibliography such
results were presented without explanation and could not
be clearly understood.

First, using the statistical result based on the partition
function and cleverly manipulating the derived terms, we
obtain an expression for the mean energy:
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being (¢) the average loop length. From here follows after
some work an expression for the heat capacity:
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Since we are working in the absence of external mag-
netic field, the average magnetization (m) is zero (for
each state there exists another one with opposite mag-
netization, namely the one with all spins flipped). Thus,
the last quantity we need is the magnetic susceptibility,
which can be obtained as
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which using the partition function and some smart ma-
nipulations yields:
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In the implementation, the two-point correlation func-
tion g(i — j) is obtained by computing the number of
times Masha has been at distance i — j from Ira (being
updated each time a bond is drawn/erased by +1, respec-
tively), divided by the total number of loops (tracked by
the quantity G(0)).

VII. CONCLUSIONS

Despite the much effort devoted to the project, we
still have not obtained the desired results. However, we
present the obtained ones and discuss several features we
have been commenting on. Since the obtained magnetic
susceptibility curve isn’t of much interest, we present in-
stead the average loop length (this time denoted as (Ny))
along with the mean energy and heat capacity, as seen in
Fig. 5. Observe that the energy curve ranges in [—2, 0]
and has a similar shape as in Fig. 1, although a second
inspection shows the sudden slope change is appearing
too early. Also the heat capacity presents a curve with
a well defined peak, which however doesn’t lie at the ex-
pected critical temperature T, ~ 2.26. Last to mention
is the mean loop length curve, were we see that large
loops are formed for low temperatures while hardly any
for high ones, as was to be expected. Observe that this
curve does indeed show what seems to be a critical be-
haviour at the desired temperature, suddenly showing
that almost no loops are formed for larger temperatures
than T, ~ 2.26. This seems to show that the algorithm
is correctly implemented and that what is going wrong
is something related to the energy expression, perhaps a
numerical problem since the expression we found coin-
cides with other bibliographical sources. Although un-
fortunately not in time, this problem may soon be cor-
rected and thus the improvement of this algorithm with
respect to the Metropolis one will be analyzed showing an
expected error decrease, not to mention the already ob-
served improvement in computation velocity as also the
elimination of the critical slowing down near 7, which
Metropolis algorithm does present. Regarding computa-
tion analysis, it is worth to mention that Worm Algo-
rithm’s time has been estimated to run around ten times
faster than Metropolis algorithm, an improvement which
is mainly due to the fact that (opposed to Metropolis)
no thermalization between states in WA is needed since
averages are computed over independent loops and not
over spin configurations.
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From now on and concerning the implementation of the
Worm Algorithm, we will work in units of T* = kgT/J,
although we will continue writing T instead of T*.

Where a critical slow-down has indeed been observed when
studying the convergence in the implemented Metropolis
algorithm.
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