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Spatial and temporal calcium oscillations within cardiac cells can induce spontaneous excitations
alien to the normal pace of the heart, favouring the appearance of arrhythmias. In this work we
will study the dynamics of this oscillations and the main factors that cause them using multiple
mathematical models with the objective of providing insight into the causes of this disorders.

I. INTRODUCTION

Cardiovascular diseases (CVDs) are the leading cause
of death globally, representing 32% of all deaths and 38%
of premature deaths due to noncommunicable diseases.
The causes of CVDs are very diverse, from clogging of
the arteries, preventing blood from freely flowing to the
heart or brain, to internal bleeding in the brain or the
formation of blood clots [1].

A number of this diseases are caused by the loss of
rhythm and synchronization in the contraction of cardiac
cells from the periodic excitations of the sino-atrial node,
the natural cardiac pacemaker, in what are called cardiac
arrhythmias, like ventricular tachycardia and atrial and
ventricular fibrillation [2].

It is known that calcium plays a major role in the reg-
ulation of contraction in cardiac cells, with an increase
in its concentration triggering said contraction. In conse-
quence, it has been shown that an incorrect regulation of
intracellular calcium levels can result in the appearance
of oscillations that induce spontaneous contractions and
generate favorable conditions for the onset of arrhyth-
mias [3].

The objective of this paper is studying the main factors
that determine the appearance of this calcium oscilla-
tions through a series of compartmental cellular models,
starting with a four dimensional system in which calcium
dynamics are not only simulated in time but also along
a spatial dimension. We will continue by simplifying the
system removing the spatial dependence on a 3D model,
and finally further simplify to a minimal 2D model in
which we will show that oscillations are still present un-
der certain conditions.

II. MODELS

In this part of the study we present the different math-
ematical models used to simulate the evolution of the
calcium concentrations in diverse parts of a cardiac cell.
This parts of the cell can be represented as different com-
partments, each one with its own volume, which store
and exchange calcium ions (see fig.1). One of the main
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compartments that appear in our models is the sar-
coplasmatic reticulum (SR). The SR is an intracellular
organelle that plays a leading role in the regulation of
cytosolic calcium during contraction. It pumps calcium
from the cytosol into its interior and controls the Ca2+

flow in the opposite direction, which produces the cell
contraction. This pumping action is achieved thanks to
the SR Ca-pump or SERCA (makes Ca2+ enter the SR)
and the ryanodine receptors or RyR (release the Ca2+

to the cytosol). The other main compartment is the cy-
tosol, which simulates the intracellular concentration of
calcium far from the SR. Finally, the last compartment
is the dyadic space, which acts as an intermediate buffer
compartment between the other two and represents the
cytosolic space close to the RyR. All models developed
are based upon this basic compartment structure.

FIG. 1. Schematic view of the compartmental model with the
calcium fluxes between them.

A. 4D model: Temporal and spatial evolution of
calcium concentrations

The first and most complex model simulates the evolu-
tion of the Ca2+ concentration in the dyadic space (cd),
the SR (csr), the cytosol (ci) and the open probability of
the RyR (Po). The equations for cd, csr and Po dynamics
are taken from [3] and the ci dynamics have been added
to complete the model accounting for spatial diffusion
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and conservation of total calcium cT .

dcd
dt

= Jrel − Jd

dcsr
dt

=
vi
vsr

Jup −
vd
vsr

Jrel − Jsr,diff

dPo

dt
= kpc

2
d(1− Po)− kmPo

dci
dt

= β(ci){
vd
vi

Jd − Jup + Ji,diff}

Jrel = gPo(csr − cd), Jd =
cd − ci

τi
, Jup = gup

c2i
K2

s + c2i
,

β(ci) =
1

1 + BbKb

(Kb+ci)2

The expressions of Jrel, Jup and Jd represent the release
flux from the SR, the uptake by SERCA and the flux
going from the dyadic space to the cytosol due to diffu-
sion (see fig.1). In addition, the constants vd, vsr and vi
represent the volume of their respective compartments.
Details on the rest of the constants can be found in [3].

The terms Jsr,diff and Ji,diff , on the other hand, have
been added to the system to introduce the effect of the
spatial diffusion of the Ca2+ along the length of the one-
dimensional SR and cytosol. This way, we are modeling
the temporal and spatial evolution of the concentrations.
Since we are in 1D, we have discretized the space by dis-
tributing equispaced RyR channels in a straight line of
100µm. The diffusion terms will follow Fick’s second law
in which the temporal evolution of the concentration de-
pends on its second space derivative. The discretization
of this term will be the following (general case):

∂ck
∂t

= D
d2ck
dx2

= D
d

dx
(
dck
dx

),
dck
dx

≈ ck+1 − ck
dx

D
d2ck
dx2

≈ D
ck+1−ck

dx − ck−ck−1

dx

dx
=

D

(dx)2
{ck+1 + ck−1 − 2ck}

with ck referring to the Ca2+ concentration in the kth po-
sition of the spatial discretization for the Euler method.
Appropriate Dirichlet boundary conditions have been en-
forced on the system to maintain total calcium concen-
tration constant.

To sum up: we solve the 4D system of ODEs discretiz-
ing it both temporally and spatially and using Euler’s
method in a way that, in every time step, the three con-
centrations and Po are calculated for all positions of the
RyR channels.

B. 3D model

The 3D model describes the evolution of only cd, csr
and Po. Besides, in this model there are no diffusion
terms, and the spatial distribution has been removed.
Moreover, here the ci dynamics are not explicitly defined

because this concentration can be computed solving the
following conservation equation for the total Ca2+:

cT =
vi
v
(ci +

Bbci
Kb + ci

) +
vd
v

+
vsr
v

csr

Therefore, the 3D model will contain three ODEs (cd,
csr and Po dynamics), which are the same as the 4D
model explained before without Jsr,diff , and one alge-
braic equation of Ca2+ conservation.
It is important to comment that these last two mod-

els are deterministic. However, in our study we wanted
to observe which would be the Ca2+ evolution for an
stochastic RyR open probability.
To solve the 3D model in a different approach than the

deterministic one (Euler methods), the open and close
dynamics of the RyR were adapted to have a stochastic
evolution. At each time step, every channel has a chance
of changing states that depends on the open and close
rates of the RyR and its comparison with a random num-
ber generated by the program. The only possible states
for a RyR channel in this model are open and closed, and
the Po is obtained by dividing the number of open gates
at a given time step by the total number of gates. This
way, the Po dynamics will no longer have a deterministic
evolution, and Jrel will be calculated at each time step
with the renewed Po.

C. 2D minimal model

To further reduce the model, we assume that the open
and close dynamics of the RyR are much faster than those
of the calcium concentration. With this approximation,
Po can be considered as being in a quasi-steady state
(Ṗo ≈ 0), and can be written in the following way:

Po =
c2d

K2
o + c2d

Substituting this expression to the 2D ODEs system, we
get:

dcd
dt

= g
c2d

K2
o + c2d

− Jd(csr − cd)−
cd − ci

τi

dcsr
dt

=
vi
vsr

gup
c2d

K2
o + c2d

− vd
vsr

g
c2d

K2
o + c2d

(csr − cd)

Another approach would be to consider that Po has a
small random fluctuation or noise, such that:

Po =
c2d

K2
o + c2d

+ σ(U − 0.5)

where σ is the strength of the noise and U is a random
uniformly-distributed number between 0 and 1. This ex-
pression for Po is introduced to the 2D ODEs system like
before.
Adding noise to the open probability is a simple step

towards a more realistic model since, in real systems,
the opening and closing of the RyR channels presents
intrinsic stochastic dynamics.
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III. RESULTS

We will start with our 2D minimal and deterministic
model, with the dynamics of cd and csr we obtain once we
have used the approximation of fast RyR open dynam-
ics. Using the constants of the table in Supplementary
Material [4], we observe different behaviours depending
of the total or average Ca2+ concentration in the cell, cT .

FIG. 2. Time evolution of Ca2+ concentration for different
values of cT (2D Model)

As you can see in fig.2, for low Ca2+ concentration
(cT = 32µM), the system tends to fill the SR compart-
ment and empty the cytosol and dyadic space. In this low
concentration steady state, the system is excitable, so if
we increase this parameter to cT = 75µM, we find a new
fixed point with high ci and cd and in which csr decreases
its value compared with the case when cT = 32µM.
This makes us believe that, for high values of cT , most
of the Ca2+ ions stay in the cytosol and the SR is al-
most depleted. Although in the figure 2 we see that
ci = 4µM < csr ≃ 90µM, it does not mean that there’s
more Ca2+ ions in the SR, since the volume of the com-
partments must be taken into account, and the cytosol is
much bigger than the SR (see table in [4]). Apart from
this two states, we find another one for an intermedi-
ate value of the total concentration (cT = 54µM). In this
case, the system presents a periodic oscillatory behaviour
in all compartments of the cell. In this last oscillatory
regime range, it is also observed that the oscillations pe-
riod grows as the total calcium concentration decreases.

Now we can study the 2D model with noise in Po.
The previous results for different values of cT showed
only one oscillatory state, the one for the intermediate
total concentration. In this new model, the results have
changed, since we observe oscillations for cT=54µM and
cT=32µM, unlike in the previous case (see annex [4]),

and we have to lower cT to 20µM so that we recover the
closed-channels state. The results with noise display also
a shorter period than the equivalent without noise. Our
results with noise added to the 2D minimal model seem to
suggest that allowing the RyRs to behave stochastically
could actually increase the cT parameter region where
oscillations appear.
In the second part of the project we studied the 3D

model for the same values of cT . In the first place we
ploted the deterministic one (no stochastic effects yet).
The difference with this model is that now the open
probability of the RyR channels is properly integrated
with time. For low total concentration of Ca2+ we had

FIG. 3. Time evolution of Ca2+ concentration for different
values of cT (3D deterministic model). Normal dynamics
(left) and fast Po dynamics (right).

that csr increased with the time. This phenomena can
now be explained since we can compute how evolves the
RyR channels’ open probability, which directly affects
the concentration of Ca2+ in the SR. This probability,
for cT = 32µM is practically zero (is pretty difficult to
visualize it in fig.3 even if you expand it). These results
are coherent, since having Po ≈ 0 means that RyR chan-
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nels are closed, no Ca2+ is realeased to the cytosol or
dyadic space and the SR is being filled. This is not the
case for cT = 75µM, in which Po ≃0.13 and there is Ca2+

release to the cytosol. The results of this model are qual-
itatively the same as the 2D (as you can see in fig.2 and
3) for the three different values of cT . Oscillations also
appear for the intermediate state. In fact, since the 2D
model was obtained by using the approximation of fast
Po dynamics, if we explicitly change the value of kp and
km (which determine the dynamics of Po) we can obtain
the 2D results with the 3D system. In the left column of
fig.3 we have used the typical values of these constants.
In the right column, on the contrary, we have multiplied
both constants for a factor 103 to accelerate the dynam-
ics. Doing this we can perceive that the right column
plots coincide with the ones in fig.2. In fact, we can check
that the periodicity in the 2D oscillatory regime and the
one in the right column are the same, which confirms us
that the 2D approximation was appropriate.

FIG. 4. Comparison between the time evolution of Ca2+ con-
centration and Po of the stochastic and the deterministic (Eu-
ler) 3D model resolution.

In the stochastic resolution of the 3D model, where the
RyR dynamics are not deterministically obtained, for a
sufficiently large number of channels (N ≳ 10000), the
results coincide almost exactly with those obtained with
the full deterministic 3D model (as can be seen in fig. 4
for a cT of 54µm). On the other hand, due to the natu-
rally less smooth evolution that has the stochastic open
probability compared to the deterministic one, effect that
aggravates when having a small number of channels, we
are able to observe oscillations appear at a larger range
of cT , just like it happened when we added noise to the
2D model.

To compare the deterministic 4D model with the 3D
one, we can compare the 3D results for a given total con-
centration of Ca2+ with the arithmetic average for all
channels of the results of the 4D model assigning every

channel the same initial conditions. As can be observed
in Fig. 5, both models give the exact same time evolu-
tion, just as it happens with other cT ’s. This confirms,
once again, that our previous models can be really accu-
rate in the described situations.

FIG. 5. Comparison between the time evolution of Ca2+ con-
centration and Po of the deterministic 3D and 4D with con-
stant in space initial conditions model resolution.

IV. CONCLUSION AND DISCUSSION

Calcium ion dynamics are extremely important to un-
derstand in order to model the behavior of any muscular
tissue, since this ion is crucial for the regulation of its
contractile and expansive movements.
By running the simulations and playing with the pa-

rameters, we realized that the total concentration of
Ca2+ in the cell is the most determining parameter be-
tween having one or another regime. While lower cT
in the cell does not allow the effective transport of ions
through the channels, higher concentrations lead to os-
cillations in the Ca2+ concentration due to the periodic
increase in the open probability of the RyR channels or
to a permanently open state. A possible consequence
of this Ca2+ cycling, or directly its entrance in the SR,
is the induction of a voltage deflection during the action
potential which causes a slowing or reversal of normal re-
polarization in the cardiac cycle. This would mean that
an incorrect balancing of the calcium ions in our body or
an incorrect functioning of the implicated channels could
lead to consequences such as arrhythmia or even sudden
cardiac death [5].
It must also be noted that this models do not take into

account the transit of calcium ions between the inside and
outside of the cell, so further studies would be needed to
obtain more accurate models.
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